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                                                                                             Abstract 

Models for a continuous risk outcome has a wide application in portfolio risk management and capital allocation. We introduce a 

family of interval distributions based on variable transformations. Densities for these distributions are provided. Models with a 

random effect, targeting a continuous risk outcome, can then be fitted by maximum likelihood approaches assuming an interval 

distribution. Given fixed effects, regression function can be estimated and derived accordingly when required. This provides an 

alternative regression tool to the fraction response model and Beta regression model.  

 
Keywords: interval distribution, model with a random effect, tailed index, expected shortfall, heteroscedasticity, Beta regression 

model, fraction response model, maximum likelihood.  

 

1.  Introduction 

 

For a continuous risk outcome 0 < 𝑦 < 1, a model with a random effect has potentially a wide 

application in portfolio risk management, especially, for stress testing ([1], [2], [7], [16], [19]), capital 

allocation, conditional expected shortfall estimation ([3], [11], [17]).     

 

Given fixed effects  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘), two widely used regression models to estimate the expected 

value 𝐸(𝑦|𝑥) are: the fraction response model ([10]) and Beta regression model ([4], [6], [8]). There are 

cases, however, where tail behaviours or severity levels of the risk outcome are relevant. In those cases, a 

regression model may no longer fit in for the requirements. In addition, a fraction response model of the 

form 𝐸(𝑦|𝑥) = Φ(𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑘𝑥𝑘) may not be adequate when data exhibits significant 

heteroscedasticity, where Φ is a map from  𝑅1 to the open interval (0, 1). 
 

In this paper, we assume that the risk outcome 𝑦 is driven by a model: 
 

                     𝑦 = Φ(𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑘𝑥𝑘 + 𝑏𝑠),                                                             (1.1) 
 

where 𝑠 is a random continuous variable following a known distribution, independent of fixed effects (𝑥1, 𝑥2, … , 𝑥𝑘). Parameters 𝑎0, 𝑎1, … , 𝑎𝑘 are constant, while parameter 𝑏 can be chosen to be dependent 

on (𝑥1, 𝑥2, … , 𝑥𝑘) when required, for example, for addressing data heteroscedasticity. 

 

Given random effect model (1.1), the expected value 𝐸(𝑦|𝑥) can be deduced accordingly. It is given by 

the integral ∫ Φ(𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑘𝑥𝑘 + 𝑏𝑠)𝑓(𝑠)𝑑𝑠𝛺  over the domain 𝛺 of 𝑠, where 𝑓 is the probability 

density of 𝑠. Given the routine QUAD implemented in SAS and Python, this integral can be evaluated as 

quickly as other function calls. Relative error tolerance for QUAD is 1.49e-8 in Python and is 1e-7 in 

SAS. But one can rescale the default tolerance to a desired level when necessary. This leads to an 

alternative regression tool to the fraction response model and Beta regression model.    

 

We introduce a family of interval distributions based on variable transformations. Probability densities for 

these distributions are provided (Proposition 2.1). Parameters of model (1.1) can then be estimated by 

maximum likelihood approaches assuming an interval distribution. In some cases, these parameters get an 

analytical solution without the needs for a model fitting (Proposition 4.1). We call a model with a random 

effect, where parameters are estimated by maximum likelihood assuming an interval distribution, an 

interval distribution model.  
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In its simplest form, the interval distribution model 𝑦 = Φ(𝑎 + 𝑏𝑠), where 𝑎 and 𝑏, are constant, can be 

used to model the loss rate as a random distribution for a homogeneous portfolio. Let 𝑦𝛼 and 𝑠𝛼 denote 

the 𝛼-quantiles for 𝑦 and 𝑠 at level 𝛼, 0 < 𝛼 < 1. Then 𝑦𝛼 = Φ(𝑎 + 𝑏𝑠𝛼). The conditional expected 

shortfall for loss rate 𝑦, at level 𝛼, can then be estimated as the integral 
11−𝛼 ∫ Φ(𝑎 + 𝑏𝑠)𝑓(𝑠)𝑑𝑠[𝑠𝛼,+∞) , 

where 𝑓 is the density of 𝑠. Meanwhile, a stress testing loss estimate, derived from a model on a specific 

scenario, can be compared in loss rate to severity 𝑦𝛼(= Φ(𝑎 + 𝑏𝑠𝛼)), to position its level of severity. A 

loss estimate may not have reached the desired, for example, 99% level yet, if it is far below 𝑦0.99, and far 

below the maximum historical loss rate. In which case, further recalibrations for the model may be 

required.  

 

The paper is organized as follows: In section 2, we introduce a family of interval distributions. A measure 

for tail fatness is defined. In section 3, we show examples of interval distributions and investigate their 

tail behaviours. We propose in section 4 an algorithm for estimating the parameters in model (1.1).  

 
2.  Interval Distributions Generated by Transformations 

 

Interval distributions introduced in this section are defined for a risk outcome over a finite open interval (𝑐0, 𝑐1), where 𝑐0 < 𝑐1 are finite numbers. These interval distributions can potentially be used for 

modeling a risk outcome over an arbitrary finite interval, including interval (0,1), by maximum likelihood 

approaches.  

 

Let 𝐷 = (𝑑0, 𝑑1), 𝑑0 <  𝑑1, be an open interval, where 𝑑0 can be finite or −∞  and 𝑑1 can be finite or +∞.   Let 
  
               Φ:  𝐷 → (𝑐0, 𝑐1)                                                                                                    (2.1)  
 

be a transformation with continuous and positive derivatives Φ′(x) = ϕ(𝑥). A special example is (𝑐0, 𝑐1) = (0, 1), and Φ: 𝐷 → (0, 1) is the cumulative distribution function (CDF) of a random variable 

with a continuous and positive density. 

 

Given a continuous random variable 𝑠, let 𝑓 and  𝐹 be respectively its density and CDF. For constants 𝑎  

and 𝑏 > 0, let  
    

                  𝑦 = Φ(𝑎 + 𝑏𝑠),                                                                                                        (2.2) 
 

where we assume that the range of variable (𝑎 + 𝑏𝑠) is in the domain 𝐷 of  Φ. Let 𝑔(𝑦, 𝑎, 𝑏) and 𝐺(𝑦, 𝑎, 𝑏) denote respectively the density and CDF of 𝑦 in (2.2).  

 

Proposition 2.1. Given Φ−1(𝑦), functions 𝑔(𝑦, 𝑎, 𝑏) and 𝐺(𝑦, 𝑎, 𝑏) are given as: 
 

              𝑔(𝑦, 𝑎, 𝑏) = 𝑈1/(𝑏𝑈2),                                                                                         (2.3) 

              𝐺(𝑦, 𝑎, 𝑏) = 𝐹 [Φ−1(𝑦)−𝑎𝑏 ].                                                                                     (2.4) 
 

where 
 

              𝑈1 = 𝑓{[Φ−1(𝑦) − 𝑎]/𝑏},  𝑈2 = ϕ[Φ−1(𝑦)].                                                      (2.5) 
 

Proof.  A proof for the case when (𝑐0, 𝑐1) = (0, 1) can be found in [18].  The proof here is similar. Since 𝐺(𝑦, 𝑎, 𝑏) is the CDF of 𝑦, it follows: 
 

 𝐺(𝑦, 𝑎, 𝑏) = 𝑃[Φ(𝑎 + 𝑏𝑠) ≤ 𝑦] 
                  = 𝑃{𝑠 ≤ [Φ−1(𝑦) − 𝑎]/𝑏} 
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                  = 𝐹{[Φ−1(𝑦) − 𝑎]/𝑏}. 
 

By chain rule and the relationship Φ[Φ−1(𝑦)] = 𝑦, the derivative of Φ−1(𝑦) with respect to 𝑦 is 
 𝜕Φ−1(𝑦)𝜕𝑦 = 1ϕ[Φ−1(𝑦)].                                                                                                (2.6) 
 

Taking the derivative of  𝐺(𝑦, 𝑎, 𝑏) with respect to 𝑦, we have 

 

             
𝜕𝐺(𝑦,𝑎,𝑏)𝜕𝑦 = 𝑓 {[Φ−1(𝑦)−𝑎]/𝑏}𝑏ϕ[Φ−1(𝑦)] = 𝑈1𝑏𝑈2.  □  

 

One can explore into these interval distributions for their shapes, including skewness and modality. For 

stress testing purposes, we are more interested in tail risk behaviours for these distributions.   

 

Recall that, for a variable X over (-∞, +∞), we say that the distribution of X has a fat right tail if there is a 

positive exponent 𝛼 > 0, called tailed index, such that 𝑃(𝑋 > 𝑥) ~ 𝑥−𝛼. The relation ~ refers to the 

asymptotic equivalence of functions, meaning that their ratio tends to a positive constant. Note that, when 

the density is a continuous function, it tends to 0 when 𝑥 → +∞. Hence, by L’Hospital’s rule, the 

existence of tailed index is equivalent to saying that the density decays like a power law, whenever the 

density is a continuous function. 

        

For a risk outcome over a finite interval (𝑐0, 𝑐1), 𝑐0, < 𝑐1, however, its density can be +∞ when 

approaching boundaries 𝑐0 and 𝑐1. Let 𝑦0 be the largest lower bound for all values of 𝑦 under (2.2), and 𝑦1 the smallest upper bound. We assume 𝑦0 = 𝑐0 and 𝑦1 = 𝑐1. 
 

We say that an interval distribution has a fat right tail if the limit  𝑙𝑖𝑚𝑦⤍𝑦1− 𝑔(𝑦, 𝑎, 𝑏) = +∞, and a fat 

left tail if 𝑙𝑖𝑚𝑦⤍𝑦0+ 𝑔(𝑦, 𝑎, 𝑏) = +∞,  where 𝑦 ⤍ 𝑦0+ and 𝑦 ⤍ 𝑦1−  denote respectively 𝑦 approaching 𝑦0 

from the right-hand-side, and 𝑦1 from the left-hand-side. For simplicity, we write 𝑦 ⤍ 𝑦0 for 𝑦 ⤍ 𝑦0+, and 𝑦 ⤍ 𝑦1  for 𝑦 ⤍ 𝑦1−.   
 

Given 𝛼 > 0, we say that an interval distribution has a fat right tail with tailed index 𝛼 if  𝑙𝑖𝑚𝑦⤍𝑦1  𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽 = +∞ whenever 0 < 𝛽 < 𝛼, and 𝑙𝑖𝑚𝑦⤍𝑦1   𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽 = 0  for 𝛽 > 𝛼.  Similarly, an interval distribution has a fat left tail with tailed index 𝛼 if 𝑙𝑖𝑚𝑦⤍𝑦0  𝑔(𝑦, 𝑎, 𝑏)(𝑦 −𝑦0)𝛽 = +∞  whenever 0 < 𝛽 < 𝛼, and 𝑙𝑖𝑚𝑦⤍𝑦0   𝑔(𝑦, 𝑎, 𝑏)(𝑦 − 𝑦0)𝛽 = 0  for 𝛽 > 𝛼. Here the status at 𝛽 = 𝛼 is left open. There are examples (Remark 3.4), where an interval distribution has a fat right tail 

with tailed index 𝛼, but the limit 𝑙𝑖𝑚𝑦⤍𝑦1 𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛼 can either be +∞ or 0. Under this 

definition, a tailed index of an interval distribution with a continuous density is always larger than 0 and 

less or equal to 1, if it exists. 

  

Recall that, for a Beta distribution with parameters 𝛼 > 0 and 𝛽 > 0, its density is given by 𝑓(𝑥) = 𝑥𝛼−1(1−𝑥)𝛽−1𝐵(𝛼,𝛽) , where 𝐵(𝛼, 𝛽) is the Beta function. Under the above definition, Beta distribution has a fat 

right tail with tailed index (1 − 𝛽) when 0 < 𝛽 < 1, and a fat left tail with tailed index (1 − 𝛼) when 0 < 𝛼 < 1.  
 

Next, because the derivative of Φ is assumed to be continuous and positive, it is strictly monotonic. 

Hence  Φ−1(𝑦) is defined. Let 
 

                   𝑧 = Φ−1(𝑦).                                                                                                      (2.7) 
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Then 𝑙𝑖𝑚𝑦⤍𝑦0  𝑧 exists (can be −∞), and the same for 𝑙𝑖𝑚𝑦⤍𝑦1  𝑧 (can be +∞).  Let 𝑙𝑖𝑚𝑦⤍𝑦0  𝑧 = 𝑧0,  

and 𝑙𝑖𝑚𝑦⤍𝑦1  𝑧 = 𝑧1. Rewrite 𝑔(𝑦, 𝑎, 𝑏) as 𝑔(Φ(𝑧), 𝑎, 𝑏) by (2.7). Let 𝜕[𝑔(Φ(z), 𝑎, 𝑏)]−1𝛽/𝜕𝑧 denote the 

derivative of [𝑔(Φ(z), 𝑎, 𝑏)]−1/𝛽 with respect to 𝑧.    

 

Lemma 2.2. Given 𝛽 > 0, the following statements hold:  
 

(i) 𝑙𝑖𝑚𝑦⤍𝑦0 𝑔(𝑦, 𝑎, 𝑏)(𝑦 − 𝑦0)𝛽 = 𝑙𝑖𝑚𝑧⤍𝑧0  𝑔(Φ(z), 𝑎, 𝑏)(Φ(z) − y0)𝛽 and 𝑙𝑖𝑚𝑦⤍𝑦1  𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽 =  𝑙𝑖𝑚𝑧⤍𝑧1  𝑔(Φ(𝑧), 𝑎, 𝑏)(𝑦1 − Φ(𝑧))𝛽. 

(ii) If  𝑙𝑖𝑚𝑦⤍𝑦0  𝑔(𝑦, 𝑎, 𝑏) = +∞ and 𝑙𝑖𝑚𝑧⤍𝑧0 {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]−1𝛽/𝜕𝑧}/ϕ(z) is 0 (resp. +∞),  

then 𝑙𝑖𝑚𝑦⤍𝑦0  𝑔(𝑦, 𝑎, 𝑏)(𝑦 − 𝑦0)𝛽 = +∞ (resp. 0). 

(iii) If  𝑙𝑖𝑚𝑦⤍𝑦1  𝑔(𝑦, 𝑎, 𝑏) = +∞  and  𝑙𝑖𝑚𝑧⤍𝑧1 − {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]−1𝛽/𝜕𝑧}/ϕ(z) ) is 0 (resp. +∞), then 𝑙𝑖𝑚𝑦⤍𝑦1    𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽 = +∞ (resp. 0).  
 

Proof. The first statement follows from the relationship 𝑦 = Φ(z). For statements (ii) and (iii), we show 

only (iii). The proof for (ii) is similar. Notice that 
 

                 [𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽]−1/𝛽 = [𝑔(𝑦,𝑎,𝑏)]−1/𝛽𝑦1−𝑦 =  [𝑔(Φ(z),𝑎,𝑏)]−1/𝛽𝑦1−Φ(z) .                          (2.8) 

 

By L’Hospital’s rule and taking the derivatives of the numerator and the denominator of (2.8) with 

respect to 𝑧, we have 𝑙𝑖𝑚𝑦⤍𝑦1 [𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽]−1/𝛽 = 0  (resp. +∞ ) if  𝑙𝑖𝑚𝑧⤍𝑧0 −{𝜕[𝑔(Φ(𝑧), 𝑎, 𝑏)]−1/𝛽/𝜕𝑧}/ϕ(𝑧) is 0 (resp. +∞). Hence 𝑙𝑖𝑚𝑦⤍𝑦1    𝑔(𝑦, 𝑎, 𝑏)(𝑦1 − 𝑦)𝛽 =+∞ (resp. 0). □ 

 

For tail convexity, we say that the right tail of an interval distribution is convex if 𝑔(𝑦, 𝑎, 𝑏) is convex for 𝑦1 − є < 𝑦 < 𝑦1 for sufficiently small є > 0.  Similarly, the left tail is convex if 𝑔(𝑦, 𝑎, 𝑏) is convex for  𝑦0 < 𝑦 < 𝑦0 + є for sufficiently small є > 0.  One sufficient condition for convexity for the right (resp. 

left) tail is 𝑔𝑦𝑦′′ (𝑦, 𝑎, 𝑏) ≥ 0 when 𝑦 is sufficiently close to 𝑦1 (resp. 𝑦0).   

 

Again, write 𝑔(𝑦, 𝑎, 𝑏) = 𝑔(Φ(𝑧), 𝑎, 𝑏). Let  
 

              ℎ(𝑧, 𝑎, 𝑏) = log[𝑔(Φ(𝑧), 𝑎, 𝑏)],                                                                             (2.9) 
 

where log (𝑥) denotes the natural logarithmic function. Then  
 

             𝑔(𝑦, 𝑎, 𝑏) = exp[ℎ(𝑧, 𝑎, 𝑏)].                                                                                   (2.10) 
 

By (2.9), (2.10), using (2.6) and the relationship 𝑧 = Φ−1(𝑦),  we have 
 

      𝑔𝑦′ = [ℎ𝑧′ (𝑧)/ϕ(z)]exp [ℎ(Φ−1(𝑦), 𝑎, 𝑏)],                                                           

      𝑔𝑦𝑦′′ = [ℎ𝑧𝑧′′ (𝑧)ϕ2(z) − ℎ𝑧′ (𝑧)ϕz′ (𝑧)ϕ3(z) + ℎz′ (z)ℎz′ (z)ϕ2(z) ] exp [ℎ(Φ−1(𝑦), 𝑎, 𝑏)].                                    (2.11) 

 

The following lemma is useful for checking tail convexity, it follows from (2.11).  

 

Lemma 2.3.  Suppose ϕ(z) > 0, and derivatives ℎz′ (z), ℎz′′(z), and ϕz′ (z), with respect to 𝑧, all exist. If  ℎ𝑧𝑧′′ (𝑧) ≥ 0 and ℎ𝑧′ (𝑧)ϕz′ (𝑧) ≤ 0, then 𝑔𝑦𝑦′′ (𝑦, 𝑎, 𝑏) ≥ 0. □ 
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3.  Examples of Interval Distributions and Their Tail Behaviours  

 

In this section, we focus on the case where (𝑐0, 𝑐1) = (0, 1), and Φ: 𝐷 → (0, 1) in (2.2) is the CDF of a 

continuous distribution. This includes, for example, the CDFs for standard normal and standard logistic 

distributions.  
 

One can explore into a wide list of densities with different choices for Φ and 𝑠 under (2.2). We consider 

here only the following four interval distributions: 
 𝐴.  𝑠~𝑁(0,1) and Φ is the CDF for the standard normal distribution.     𝐵.  𝑠 follows the standard logistic distribution and Φ is the CDF for the standard normal distribution.   
      C. 𝑠 follows the standard logistic distribution and Φ is its CDF. 

      D. 𝑠~𝑁(0,1) and Φ is the CDF for standard logistic distribution.    
 

Densities for cases A, B, C, and D are given respectively in (3.3) (section 3.1), (A.1), (A.3), and (A5) 

(Appendix A). Tail behaviour study is summarized in Propositions 3.3, 3.5, and Remark 3.6. Sketches of 

density plots are provided in Appendix B for distributions A, B, and C.      

 
3.1. Case A: The Vasicek Distribution and Its Tail Behaviours  

 

Using the notations of section 2, we have ϕ = 𝑓 and Φ = 𝐹.  We claim that 𝑦 = Φ(𝑎 + 𝑏𝑠) under (2.2) 

follows the Vasicek distribution ([13], [14]). 
 

By (2.5), we have 
 log (𝑈1𝑈2) = −𝑧2+2𝑎𝑧−𝑎2+𝑏2𝑧22𝑏2                                                                                   (3.1)                                 = −(1−𝑏2)(𝑧− 𝑎1−𝑏2)2+ 𝑏21−𝑏2𝑎22𝑏2 .                                                                     (3.2) 

 

Therefore, we have 

           𝑔(y, 𝑎, 𝑏) = 1𝑏 exp { −(1−𝑏2)(𝑧− 𝑎1−𝑏2)2+ 𝑏21−𝑏2𝑎22𝑏2 }.                                                         (3.3) 
 

Again, using the notations of section 2, we have 𝑦0 = 0 and 𝑦1 = 1. With 𝑧 = Φ−1(𝑦), we have  𝑙𝑖𝑚𝑦⤍0  𝑧 = −∞ and 𝑙𝑖𝑚𝑦⤍1  𝑧 = +∞.  Recall that a variable  0 < 𝑦 < 1 follows a Vasicek distribution 

([13], [14]) if its density has the form: 
 𝑔(𝑦, 𝑝, 𝜌) = √1−𝜌𝜌  exp {− 12𝜌 [√1 − 𝜌Φ−1(𝑦) − Φ−1(𝑝)]2 + 12  [Φ−1(𝑦)]2},         (3.4) 

 

where 𝑝 is the mean of y, and 𝜌 is a parameter called asset correlation.   

 

Proposition 3.1.  Density (3.3) is equivalent to (3.4) under the relationships: 
 𝑎 = 𝛷−1(𝑝)√1−𝜌    and   𝑏 = √ 𝜌1−𝜌 .                                                                                 (3.5) 

 

Proof. A similar proof can be found in [19]. By (3.4), we have 
 𝑔(𝑦, 𝑝, 𝜌) = √1−𝜌𝜌  exp {− 1−𝜌2𝜌 [Φ−1(𝑦) − Φ−1(𝑝)/√1 − 𝜌]2 + 12  [Φ−1(𝑦)]2}  

                 = 1𝑏 exp {− 12 [𝛷−1(𝑦)−𝑎𝑏  ]2} exp {12  [Φ−1(𝑦)]2}    
 

                  = 𝑈1/(𝑏𝑈2) = 𝑔(𝑦, 𝑎, 𝑏). □ 
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The following relationships are implied by (3.5): 
 𝜌 = 𝑏21+𝑏2 ,                                                                                                               (3.6) 
 𝑎 = 𝛷−1(𝑝)√1 + 𝑏2.                                                                                             (3.7) 

 

Remark 3.2. The mode of 𝑔(𝑦, 𝑝, 𝜌) in (3.4) is given in ([14]) as Φ (√1−𝜌1−2𝜌 Φ−1(𝑝)). We claim this is the 

same as Φ ( 𝑎1−𝑏2). By (3.6), 1 − 2𝜌 = 1−𝑏21+𝑏2 and √1 − 𝜌 = 1√1+𝑏2.  Therefore, we have 
 
 √1−𝜌1−2𝜌 Φ−1(𝑝) = √1+𝑏21−𝑏2 Φ−1(𝑝) = 𝑎1−𝑏2.   

 

This means Φ (√1−𝜌1−2𝜌 Φ−1(𝑝)) = Φ ( 𝑎1−𝑏2).  □ 

 

Proposition 3.3.  The following statements hold for 𝑔(𝑦, 𝑎, 𝑏) given in (3.3): 
 

(i) 𝑔(𝑦, 𝑎, 𝑏) is unimodal if  0 < 𝑏 < 1 with mode given by Φ ( 𝑎1−𝑏2), and is in U-shape if 𝑏 > 1.  

(ii) If 𝑏 > 1, then 𝑔(𝑦, 𝑎, 𝑏) has a fat left tail and a fat right tail with tailed index (1 − 1/𝑏2). 

(iii)  If 𝑏 > 1, both tails of 𝑔(𝑦, 𝑎, 𝑏) are convex, and is globally convex if in addition 𝑎 = 0. 
 

Proof. For statement (i), we have −(1 − 𝑏2) < 0 when  0 < 𝑏 < 1. Therefore by (3.2) function  log (𝑈1𝑈2) 

reaches its unique maximum at  𝑧 = 𝑎1−𝑏2, resulting in a value for the mode at Φ ( 𝑎1−𝑏2). If 𝑏 > 1, then  −(1 − 𝑏2) > 0, thus by (3.2), 𝑔(𝑦, 𝑎, 𝑏) is first decreasing and then increasing when 𝑦 varying from 0 to 

1. This means (𝑦, 𝑎, 𝑏 ) is in U-shape. 

 

Consider statement (ii). First by (3.3), if 𝑏 > 1, then 𝑙𝑖𝑚𝑦⤍1  𝑔(𝑦, 𝑎, 𝑏) = +∞ and 𝑙𝑖𝑚𝑦⤍0 𝑔(𝑦, 𝑎, 𝑏) =+∞. Thus 𝑔(y, 𝑎, 𝑏) has a fat right and a fat left tail. Next for tailed index, we use Lemma 2.2 (ii) and 

(iii). By (3.1),   
 

                [𝑔(Φ(z), 𝑎, 𝑏)]−1/𝛽 = 𝑏1/𝛽  exp (− (𝑏2−1)𝑧2+2𝑎𝑧−𝑎22𝛽𝑏2 )                                                (3.8) 
 

By taking the derivative of (3.8) with respect to 𝑧 and noting that ϕ(z) =  1√2𝜋 exp (− 𝑧22 ), we have 

 

    − {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]− 1𝛽/𝜕𝑧} /ϕ(z) = √2𝜋𝑏1𝛽  (𝑏2−1) 𝑧+𝑎𝛽𝑏2  exp (− (𝑏2−1)𝑧2+2𝑎𝑧−𝑎22𝛽𝑏2 + 𝑧22 ).        (3.9) 
 

Thus  𝑙𝑖𝑚𝑧⤍+∞  − {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]− 1𝛽/𝜕𝑧} /ϕ(z) is 0 if  
𝑏2−1𝛽𝑏2 > 1, and is +∞ if  

𝑏2−1𝛽𝑏2 < 1. Hence by 

Lemma 2.2 (iii), 𝑔(𝑦, 𝑎, 𝑏) has a fat right tail with tailed index (1 − 1/𝑏2). Similarly, for the left tail, we 

have by (3.9) 
         {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]− 1𝛽/𝜕𝑧} /ϕ(z) = −√2𝜋𝑏1𝛽   (𝑏2−1) 𝑧+𝑎𝛽𝑏2  exp (− (𝑏2−1)𝑧2+2𝑎𝑧−𝑎22𝛽𝑏2 + 𝑧22 ).     (3.10)     
 

Thus 𝑙𝑖𝑚𝑧⤍−∞  {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]− 1𝛽/𝜕𝑧} /ϕ(z) is 0 if  
𝑏2−1𝛽𝑏2 > 1, and is +∞ if  

𝑏2−1𝛽𝑏2 < 1.  Hence 𝑔(𝑦, 𝑎, 𝑏) has a fat left tail with tailed index (1 − 1/𝑏2) by Lemma 2.2 (ii).  

 

For statement (iii), we use Lemma 2.3. By (2.9) and using (3.2), we have 
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             ℎ(𝑧, 𝑎, 𝑏) = log ( 𝑈1𝑏𝑈2) = −(1−𝑏2)(𝑧− 𝑎1−𝑏2)2+ 𝑏21−𝑏2𝑎22𝑏2 − log (𝑏).  

 

When 𝑏 > 1, it is not difficult to check out that  ℎ𝑧𝑧′′ (𝑧) ≥ 0 and ℎ𝑧′ (𝑧)ϕz′ (𝑧) ≤ 0 when 𝑧 ⤍ ±∞ or when 𝑎 = 0. □ 
 

Remark 3.4. Assume 𝛽 = (1 − 1/𝑏2) and 𝑏 > 1. By (3.9), we see  
 

          𝑙𝑖𝑚𝑧⤍+∞  − {𝜕[𝑔(Φ(z), 𝑎, 𝑏)]− 1𝛽/𝜕𝑧} /ϕ(z)  
 

is +∞ for  𝑎 = 0, and is 0 for 𝑎 > 0.  Hence for this 𝛽, the limit 𝑙𝑖𝑚𝑦⤍1 𝑔(𝑦, 𝑎, 𝑏)(1 − 𝑦) 𝛽 can  be either 

0 or +∞, depending on the value of 𝑎. □ 

 

3.2. Tail Behaviours for Interval Distributions for Cases B-D   

        

For these distributions, we again focus on their tail behaviours. A proof for the next proposition can be 

found in Appendix A. 
 

Proposition 3.5.  The following statements hold: 
  

(a) Density 𝑔(𝑦, 𝑎, 𝑏) has a fat left tail and a fat right tail for case B for all 𝑏 > 0, and for case C if 𝑏 >1. For case D, it does not have a fat right tail nor a fat left tail for any 𝑏 > 0.  
(b) The tailed index of 𝑔(𝑦, 𝑎, 𝑏) for both right and left tails is 1 for case B for all 𝑏 > 0, and is (1 − 1𝑏) 

for case C for B for 𝑏 > 1. □ 
 

Remark 3.6. Among distributions A, B, C, and Beta distribution, distribution B gets the highest tailed 

index of 1, independent of the choices of 𝑏 > 0. □ 
 

 

4.  Algorithms for Fitting Interval Distribution Models  

 

In this section, we assume that Φ in (2.2) is a function from 𝑅1 to (0, 1) with positive continuous 

derivatives. We focus on parameter estimation algorithms for model (1.1). 

 

First, we consider a simple case, where risk outcome 𝑦 is driven by a model: 
 

             𝑦 = Φ(𝑣 + 𝑏𝑠),                                                                                                                 (4.1) 
 

where 𝑏 > 0 is a constant, 𝑣 = 𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑘𝑥𝑘, and 𝑠 ~𝑁(0, 1), independent of fixed effects 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘).  The function Φ does not have to be the standard normal CDF. But when Φ is the 

standard normal CDF, the expected value 𝐸(𝑦|𝑥) can be evaluated by the formula 𝐸𝑆[Φ(𝑎 + 𝑏𝑠)] =Φ ( 𝑎√1+𝑏2) ([12]).  

 

Given a sample {(𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖, 𝑦𝑖)}𝑖=1𝑛 , where (𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖, 𝑦𝑖) denotes the 𝑖𝑡ℎ data point of the 

sample, let 𝑧𝑖 = Φ−1(𝑦𝑖). and 𝑣𝑖 = 𝑎0 + 𝑎1𝑥1𝑖 + ⋯ + 𝑎𝑘𝑥𝑘𝑖.  By (2.3), the log-likelihood function for 

model (4.1) is: 
 

            𝐿𝐿 = ∑ {log 𝑓 (𝑧𝑖−𝑣𝑖𝑏 ) − logϕ(𝑧𝑖) − 𝑙𝑜𝑔𝑏}𝑛𝑖=1 ,                                                       (4.2) 
 

where 𝑓 is the density of 𝑠. The part of ∑ logϕ(𝑧𝑖)𝑛𝑖=1  is constant, which can be dropped off from the 

maximization.  
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Recall that the least squares estimators of 𝑎0, 𝑎1, … , 𝑎𝑘, as a row vector, that minimize the sum squares 
 

                    𝑆𝑆 = ∑ (𝑧𝑖 − 𝑣𝑖)2𝑛𝑖=1                                                                                       (4.3) 
 

has a closed form solution given by the transpose of (X𝑇X)−1XTZ ([5], [9]) whenever the design matrix X 

has a rank of 𝑘, where 
 

             X = ⌈1 𝑥11 … 𝑥𝑘11 𝑥12 … 𝑥𝑘2    …1 𝑥1𝑛 … 𝑥𝑘𝑛⌉,   Z = ⌈ 𝑧1𝑧2…𝑧𝑛 ⌉. 
 

The next proposition shows there exists an analytical solution for the parameters of model (4.1).  
 

Proposition 4.1. Given a sample {(𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖, 𝑦𝑖)}𝑖=1𝑛 , assume that the design matrix has a rank of  𝑘.  
If 𝑠 ~ 𝑁(0, 1),  then the maximum likelihood estimates of parameters (𝑎0, 𝑎1, … , 𝑎), as a row vector, and 

parameter 𝑏 are respectively given by the transpose of (X𝑇X)−1XTZ, and 𝑏2 = 1𝑛 ∑ (𝑧𝑖 − 𝑣𝑖)2𝑛𝑖=1 . In 

absence of fixed effects {𝑥1, 𝑥2, … , 𝑥𝑘}, parameters 𝑎0 and 𝑏2 degenerate respectively to the sample mean 

and variance of  𝑧1, 𝑧2, … , 𝑧𝑛 .  
 

Proof. Dropping off the constant term from (4.2) and noting 𝑓(𝑧) = 1√2𝜋 exp (− 𝑧22 ), we have 
 

          𝐿𝐿 = − 12𝑏2 ∑ (𝑧𝑖 − 𝑣𝑖)2 − 𝑛𝑙𝑜𝑔𝑏,𝑛𝑖=1                                                                        (4.4)                     
 

Hence the maximum likelihood estimates (𝑎0, 𝑎1, … , 𝑎𝑘) are the same as least squares estimators of (4.3), 

which are given by the transpose of  (X𝑇X)−1XTZ.  By taking the derivative of (4.4) with respect to 𝑏 and 

setting it to zero, we have 𝑏2 = 1𝑛 ∑ (𝑧𝑖 − 𝑣𝑖)2𝑛𝑖=1 . □ 
 

Next, we consider the general case of model (1.1), where the risk outcome 𝑦 is driven by a model: 
 

             𝑦 = Φ[𝑣 + 𝑤𝑠],                                                                                                                  (4.5) 
 

where parameter 𝑤 is formulated as 𝑤 = exp(𝑢),  and 𝑢 = 𝑏0 + 𝑏1𝑥1 +  … + 𝑏𝑘𝑥𝑘.  We focus on the 

following two cases: 
 

       (a)  𝑠 ~ 𝑁(0, 1),  
       (b)  𝑠 is standard logistic.  
 

Given a sample {(𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖, 𝑦𝑖)}𝑖=1𝑛 ,  let 𝑤𝑖 = exp (𝑏0 + 𝑏1𝑥1𝑖 + … + 𝑏𝑘𝑥𝑘𝑖) and 𝑢𝑖 = 𝑏0 +𝑏1𝑥1𝑖 +  … + 𝑏𝑘𝑥𝑘𝑖.  The log-likelihood functions for model (4.5), dropping off the constant part log(𝑈2), 
for cases (a) and (b) are given respectively by (4.6) and (4.7): 
 

          𝐿𝐿 = ∑ − 12 [(𝑧𝑖 − 𝑣𝑖)2/𝑤𝑖2 − 𝑢𝑖],𝑛𝑖=1                                                                       (4.6)                                       

          𝐿𝐿 = ∑ {−(𝑧𝑖 − 𝑣𝑖) /𝑤i − 2 log[1 + exp [−(𝑧𝑖 − 𝑣𝑖) /𝑤𝑖] − 𝑢𝑖} , 𝑛𝑖=1                   (4.7)                       
 

Recall that a function is log-concave if its logarithm is concave. If a function is concave, a local 

maximum is a global maximum, and the function is unimodal. This property is useful for searching 

maximum likelihood estimates. 

 

Proposition 4.2. The functions (4.6) and (4.7) are concave as a function of (𝑎0, 𝑎1, … , 𝑎𝑘). As a function 

of (𝑏0, 𝑏1, … , 𝑏𝑘), (4.6) is concave.  
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Proof.  It is well-known that, if )(xf is log-concave, then so is ),( bAzf +  where bAz + : 1
RR

m→  is 

any affine transformation from the m-dimensional Euclidean space to the 1-dimensional Euclidean space. 

For (4.6), the function 𝑓(𝑥) = −(𝑧 − 𝑣)2 exp(−2𝑢) is concave as a function of 𝑣,  thus function (4.6) is 

concave as a function of (𝑎0, 𝑎1, … , 𝑎𝑘). Similarly, this function 𝑓(𝑥) is concave as a function of 𝑢, so 

(4.6) is concave as a function of  (𝑏0, 𝑏1, … , 𝑏𝑘).  
 

For (4.7), the linear part −(𝑧𝑖 − 𝑣𝑖) exp (−𝑢𝑖), as a function of (𝑎0, 𝑎1, … , 𝑎𝑘), in (4.7) is ignored. For 

the second part in (4.7), we know − log{1 + exp [ −(𝑧 − 𝑣)/ exp (𝑢)]}, as a function of 𝑣, is the 

logarithm of the CDF of a logistic distribution. It is well-known that the CDF for a logistic distribution is 

log-concave. Thus (4.7) is concave with respect to (𝑎0, 𝑎1, … , 𝑎𝑘).  □ 
 

In general, parameters (𝑎0, 𝑎1, … , 𝑎𝑘) and  (𝑏0, 𝑏1, … , 𝑏𝑘) in model (4.5) can be estimated by the 

algorithm below. 
 

Algorithm 4.3. Follow the steps below to estimate parameters of model (4.5): 
 

(a) Given  (𝑏0, 𝑏1, … , 𝑏𝑘), estimate (𝑎0, 𝑎1, … , 𝑎𝑘) by maximizing the log-likelihood function; 

(b) Given (𝑎0, 𝑎1, … , 𝑎𝑘),  estimate  (𝑏0, 𝑏1, … , 𝑏𝑘) by maximizing the log-likelihood function; 

(c) Iterate (a) and (b) until a convergence is reached. □ 

 
Conclusion. With the interval distributions introduced in this paper, models with a random effect can be 

fitted for a continuous risk outcome by maximum likelihood approaches assuming an interval 

distribution. These models provide an alternative regression tool to the Beta regression model and fraction 

response model, and a tool for tail risk assessment as well.   
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Appendix A 

 

Proof of Proposition 3.5 in section 3. 
 𝐵.  𝑠 follows the standard logistic distribution and Φ is the CDF for the standard normal distribution.   

      C. 𝑠 follows the standard logistic distribution and Φ is its CDF.  

      D. 𝑠~𝑁(0,1) and Φ is the CDF for standard logistic distribution.    

 

For case B, functions ϕ and Φ  in Proposition 2.1 are respectively the standard normal density and CDF. 

Density 𝑓 for the standard logistic distribution is given by 𝑓(𝑥) = exp(−𝑥) /(1 + exp(−𝑥))2. Recall the 

relationship 𝑧 = Φ−1(𝑦). Then 𝑔(𝑦, 𝑎, 𝑏) in (2.3) is given by    
 

             𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 𝑐 exp (− 𝑧−𝑎𝑏 + 𝑧22 ) {1 + exp[− 𝑧−𝑎𝑏  ]}−2,                                       (A.1) 

 

where 𝑐 = √2𝜋𝑏 .  Rewrite 𝑓(𝑥) as 𝑓(𝑥) = exp(𝑥) /(1 + exp(𝑥))2. Then 𝑔(𝑦, 𝑎, 𝑏) has the form:  
 

             𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 𝑐 exp (𝑧−𝑎𝑏 + 𝑧22 ) {1 + exp[ 𝑧−𝑎𝑏  ]}−2.                                              (A.2) 

 

With 𝑧 = Φ−1(𝑦),  𝑙𝑖𝑚𝑦⤍0  𝑧 = −∞ and 𝑙𝑖𝑚𝑦⤍1  𝑧 = +∞. Thus 𝑙𝑖𝑚𝑦⤍1   𝑔(𝑦, 𝑎, 𝑏) = +∞ by (A.1), and 𝑙𝑖𝑚𝑦⤍0   𝑔(𝑦, 𝑎, 𝑏) = +∞ by (A.2).  Hence 𝑔(𝑦, 𝑎, 𝑏) has a fat right tail and a fat left tail for all 𝑏 > 0.   

 

Next for tailed index, we use Lemma 2. We note that 𝑙𝑖𝑚𝑦⤍1  𝑧 = +∞, and the part {1 + exp[− 𝑧−𝑎𝑏  ]}−2 

in (A1.) approaches 1 when 𝑧 → +∞. Hence by (A.1) and using (2.8), we have for the right tail 
  

   𝑙𝑖𝑚𝑦⤍1 [𝑔(y,,𝑎,𝑏)]− 1𝛽1−𝑦 = 𝑙𝑖𝑚𝑧⤍+∞  𝑐1exp [− 1𝛽(− 𝑧−𝑎𝑏 +𝑧22 )]  1−Φ(z) = 𝑙𝑖𝑚𝑧⤍+∞ 𝑐1𝛽 (− 1𝑏 + 𝑧) exp [− 1𝛽(− 𝑧−𝑎𝑏 +𝑧22 )]  ϕ(z)    
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by L’Hospital’s rule, where 𝑐1 = 𝑐− 1𝛽 . Since ϕ(𝑧) = 1√2𝜋 exp (− 𝑧22 ),  the above limit is 0 when 0 < 𝛽 <1, and is +∞ if  𝛽 > 1.  Similarly, for the left tail, by (A.2), we have 
 

  𝑙𝑖𝑚𝑦⤍0 [𝑔(y,,𝑎,𝑏)]− 1𝛽𝑦 = 𝑙𝑖𝑚𝑧⤍−∞  𝑐1exp [− 1𝛽(𝑧−𝑎𝑏 +𝑧22 )]  Φ(z) = 𝑙𝑖𝑚𝑧⤍−∞ 𝑐1𝛽 (1𝑏 − 𝑧) exp [− 1𝛽(− 𝑧−𝑎𝑏 +𝑧22 )]  ϕ(z)   

 

by L’Hospital’s rule, which is 0 when 0 < 𝛽 < 1, and is +∞ if  𝛽 > 1. Thus the left and right tailed 

indexes for case B are 1 by Lemma 2.2.  

 

For case C, we have ϕ = 𝑓, where 𝑓(𝑥) = exp(−𝑥)(1+exp(−𝑥))2.  Density 𝑔(𝑦, 𝑎, 𝑏) in Proposition 2.1 is given by    

 

          𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 1𝑏 exp ((1 − 1𝑏) 𝑧 + 𝑎𝑏) [1 + exp(−𝑧)]2[1 + exp (− 𝑧−𝑎𝑏 )]−2.          (A.3) 

 

With 𝑧 = Φ−1(𝑦), we have 𝑙𝑖𝑚𝑦⤍0  𝑧 = −∞ and 𝑙𝑖𝑚𝑦⤍1  𝑧 = +∞.  If 𝑏 > 1, then (1 − 1𝑏) > 0,  hence 𝑙𝑖𝑚𝑦⤍1   𝑔(𝑦, 𝑎, 𝑏) = +∞ by (A.3), and 𝑔(𝑦, 𝑎, 𝑏) has a fat right tail when 𝑏 > 1. Rewrite ϕ(𝑥) as ϕ(𝑥) = exp(𝑥) /(1 + exp(𝑥))2, then 𝑔(𝑦, 𝑎, 𝑏) has the form:  
 

        𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 1𝑏 exp ((1 − 1𝑏) (−𝑧) − 𝑎𝑏) [1 + exp(𝑧)]2 [1 + exp (𝑧−𝑎𝑏 )]−2 .             (A.4)  

 

Hence 𝑙𝑖𝑚𝑦⤍0   𝑔(𝑦, 𝑎, 𝑏) = +∞, as both [1 + exp(𝑧)] and [1 + exp (𝑧−𝑎𝑏 )] approach 1 when 𝑧 ⤍ −∞. 

Thus 𝑔(𝑦, 𝑎, 𝑏) has a fat left tail.  

 

Next, we note that the part [1 + exp(−𝑧)] and [1 + exp(−𝑧 + 𝑎) /𝑏] in (A.3) both approach 1 when 𝑧 ⤍+∞. Hence by (A.3) and using (2.8), we have 
 

        𝑙𝑖𝑚𝑧⤍+∞  [𝑔(Φ(z),𝑎,𝑏)]−1/𝛽1−Φ(z) = 𝑙𝑖𝑚𝑧⤍+∞ 𝑐 exp[− 1𝛽(1−1𝑏)𝑧]1−Φ(z) =  𝑙𝑖𝑚𝑧⤍+∞ 𝑐𝛽(1−1𝑏) exp[− 1𝛽(1−1𝑏)𝑧] ϕ(z)    
 

by L’Hospital’s rule, where 𝑐 = 𝑏1𝛽exp (− 𝑎𝛽𝑏).  Since ϕ(𝑧) = exp(−𝑧) /(1 + exp(−𝑧))2, the above 

limit is 0 if  
1𝛽 (1 − 1𝑏) > 1, and is +∞ if  

1𝛽 (1 − 1𝑏) < 1. This means 𝑔(𝑦, 𝑎, 𝑏) has a fat right tail with 

tailed index (1 − 1/𝑏) when 𝑏 > 1. Similarly, for the left tail, we have by (A.4) 
 

         𝑙𝑖𝑚𝑦⤍0 [𝑔(y,,𝑎,𝑏)]−1/𝛽𝑦  = 𝑙𝑖𝑚𝑧⤍−∞ 𝑐 exp[− 1𝛽(1−1𝑏)(−𝑧)]Φ(z) = 𝑙𝑖𝑚𝑧⤍−∞ 𝑐𝛽(1−1𝑏) exp[1𝛽(1−1𝑏)𝑧] ϕ(z)      

 

by L’Hospital’s rule, where 𝑐 = 𝑏1𝛽exp ( 𝑎𝛽𝑏).  Using ϕ(𝑧) = exp(𝑧)(1+exp(𝑧))2, we see the above limit is 0 for  1𝛽 (1 − 1𝑏) > 1, and is +∞ if  
1𝛽 (1 − 1𝑏) < 1. This means 𝑔(𝑦, 𝑎, 𝑏) has a tailed index (1 − 1/𝑏) for the 

left tail when 𝑏 > 1. 

 

For case D, functions ϕ and Φ  are respectively the density and the CDF for the standard logistic 

distribution, and 𝑓 is the standard normal density. Since ϕ(𝑧) = exp(−𝑧)(1+exp(−𝑧))2, by Proposition 2.1,  

 

             𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 𝑐 exp (𝑧 − (𝑧−𝑎)22𝑏2 ) [1 + exp (−𝑧)]2,                                      (A.5) 

 

where 𝑐 = 1𝑏√2𝜋.  Write ϕ(𝑧) as ϕ(𝑧) = exp(𝑧) /(1 + exp(𝑧))2. Then 𝑔(𝑦, 𝑎, 𝑏) has another form:  
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             𝑔(𝑦, 𝑎, 𝑏) = 𝑈1𝑏𝑈2 = 𝑐 exp (−𝑧 − (𝑧−𝑎)22𝑏2 ) [1 + exp (𝑧)]2.                                        (A.6) 

 

With 𝑧 = Φ−1(𝑦), we have  𝑙𝑖𝑚𝑦⤍0  𝑧 = −∞ and 𝑙𝑖𝑚𝑦⤍1  𝑧 = +∞. Thus 𝑙𝑖𝑚𝑦⤍1   𝑔(𝑦, 𝑎, 𝑏) = 0 by 

(A.5), and 𝑙𝑖𝑚𝑦⤍0   𝑔(𝑦, 𝑎, 𝑏) = 0 by (A.6). Hence 𝑔(𝑦, 𝑎, 𝑏) does not have a fat right tail, neither a fat 

left tail. □ 

 

 

Appendix B 

 

Sketches of density plots for interval distributions A-C in section 3.  

 

We focus on interval distributions given as the examples in section 3 with fat tails. This includes 

distributions A, B, and C.  Figures B1, B2, and B3 below plot respectively the probability densities for 

these three types of interval distributions. Values for parameters 𝑎 and 𝑏 are given at the top of the chart. 

Two densities are included for each of three type distributions, with different values for parameter 𝑏 but 

the same value for parameter 𝑎.    

           

     
          

It is observed that, with 𝑏 > 1, all curves have a fat right tail and a fat left tail, and the curve with a higher 

parameter 𝑏 climbs up the tails more quickly than the other, as the latter has lower tailed index. The 

roughness in the middle is a consequence of squeezing the values in 𝑥-axis, in order to put together the 

left and right tails into the chart (see the value crossing in 𝑥-axis from left to right). It does not necessarily 

reflect the true behaviours of the curves.   

 

Figure B1. Interval distribution A           Figure B2. Interval distribution B Figure B3. Interval distribution C
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