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Abstract. Greenhouse gas emissions caused by urban residents' energy consumption 
arise from the 1) transportation and 2) housing sectors. This energy consumption 
depends on the population distribution of the city. This study quantitatively examines 
the effectiveness of congestion tolls, carbon tax, and land use regulations on the social 
welfare and the reduction of urban CO2 emissions. Results show that, among the three 
policies, the congestion toll can increase the social welfare by about 99% of the increase 
in the first-best scenario, which shows the best among the three policies, and can reduce 
the amount of total CO2 emissions by about 22%, which is almost the highest level 
among the three policies. These results suggest that congestion tolling, which is 
primarily the Pigovian tax for congestion, does not only internalize congestion 
externalities but also reduce CO2 emissions rather effectively through downsizing 
transportation distances and housing sizes with the spatial change in population density 
in the city. 
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1. Introduction 

Global warming is a worldwide problem, which can cause various unpredictable disasters, 

including the spread of infectious diseases1. In 2019, the World Meteorological Organization 

announced that the world average concentration of major greenhouse gases (GHG, mainly 

CO2) in 2018 reached a record high. This is despite the fact that many countries established 

rather large reduction targets over a decade earlier. At the United Nations Framework 

Convention on Climate Change (1992), China, India, Japan, and the USA targeted 60-65%, 

33-35%, 26%, and 26-28% reductions in greenhouse gas emissions, respectively, from 2005 

to 2030 (2025 in the USA). Other countries also set their own targets. To achieve these 

targets, a lot of endeavors are likely to be required in a vast range of sectors. 

While industrial sectors generate CO2 emissions, urban activities (e.g., households and 

urban traffic) also generate a large amount of CO2 emissions. According to the 2017 report 

by the Ministry of Environment in Japan, about 30% of CO2 emissions come from urban 

residential activities. Similarly, the US Environmental Protection Agency (2015) reports that 

about half of GHG emissions come from urban activities.  

CO2 emissions caused by urban residents' energy consumption arise from the 1) 

transportation and 2) housing sectors. Pigovian tax is a solution to congestion as well as CO2 

emissions. Pigovian tax on CO2 emissions is called carbon tax, and it has been introduced by 

many countries. Carbon tax can directly decrease individual energy consumption, and 

indirectly decrease energy consumption through a change in the distribution of residents 

 
1 Indeed, a recent report “Preventing the next pandemic” by the United Nations (2020) says “Climate change is 

a major factor in disease emergence. The survival, reproduction, abundance and distribution of pathogens, 

vectors and hosts can be influenced by climatic parameters affected by climate change. Warmer temperatures 

could also increase the incidence of disease both by increasing the vector population size and distribution and 

by increasing the duration of the season in which infectious vector species are present in the environment.” 
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within the city. Congestion also depends on the distribution of residents. So, carbon taxes 

reduce not only CO2 emissions but also congestion externalities. Similarly, congestion 

pricing, which is a Pigouvian tax on congestion, can reduce CO2 emissions through the 

change in the distribution of residents. 

Likewise, change in land use regulations, a typical urban policy, also has effects on 

energy demand and congestion externalities through the change in the distribution of 

residents. The change in the distribution of residents changes the total commuting distance 

and the congestion levels. In addition, as floor space per household increases, household 

energy consumption from lighting, cooling and heating increases. Land use policies can 

change CO2 emissions through changes in floor space per household.  

In summary, carbon tax and congestion pricing, which are primarily Pigouvian taxes 

for the respective externalities, and land use regulations all reduce CO2 emissions through 

the change in energy consumption in the 1) transportation and 2) housing sectors by 

changing the spatial distribution of residents. 

Some empirical studies have investigated the relation between urban land use and 

energy use from various viewpoints. Glaeser and Kahn (2010) compared CO2 emissions 

across U.S. cities and within U.S cities with respect to transportation (cars and public 

transportation), home heating, and household electricity. As a result, they show that denser 

cities generally have lower CO2 emissions, and that urban areas, which are denser than 

suburban areas, generally have significantly lower emissions than suburban areas. Iwata and 

Managi (2014) have found that land use policies such as taxes and command-and-control 

regulations can alter city density and may change CO2 emissions. Waldron et al. (2013) have 

reported that energy use would change if a group of buildings were relocated. However, 

forced relocation of buildings cannot result in a long-term equilibrium. In the long-run, 

residents’ utilities are in equilibrium as the equilibrium rents change.  
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To explore such a long-term effect, urban locational equilibrium models incorporating 

energy-usage can be used for the quantitative appraisal of the effects of urban policies on 

CO2 emissions. Bertaud and Brueckner (2005) numerically calculate the welfare cost of 

building size regulation at urban location equilibrium. Some studies have shown that floor 

area ratio (FAR) regulation and urban growth boundary (UGB) policy can substitute as a 

second-best regime for a first-best toll regime in a congested city (Brueckner, 2007; Kono 

and Joshi, 2019). Larson et al. (2012) and Larson and Yezer (2015) have shown that gasoline 

tax, urban greenbelts, and FAR regulation affect energy demand in urban areas in 

consideration of urban spatial equilibrium; however, they did not consider environmental 

externality explicitly. Borck (2016) explores the effects of maximum FAR regulations on 

environments. He does not consider traffic congestion, and does not evaluate optimal FAR 

regulation, energy policy, or toll regime.  

As the first exploration of the effects of energy taxation in an urban setting, Borck and 

Brueckner (2017) show that considering energy consumption due to transportation and 

housing in a city, the combination of energy tax, commuting tax, and housing tax makes the 

city more compact and reduces energy consumption. However, they do not consider traffic 

congestion, which is a typical externality in a city. If we additionally consider traffic 

congestion, we can compare the effects of urban policies on the welfare including welfare 

losses due to congestion. In addition, urban policies affecting the size of housing lots change 

energy consumption on air conditioning in housing. About 14% of CO2 emissions come 

from the household sector, and a quarter of this is due to air conditioning (Energy White 

Paper 2017, Japan). So, it is necessary to consider the use of air conditioning depending on 

the size of housing lots2 as well.  

 
2 Another difference is that our study evaluates the effect of optimal FAR regulation.  
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With this background, we study the externalities of congestion and CO2 emissions and 

numerically evaluate how urban policies influence the structure of the city, social welfare 

and CO2 emissions. In particular, we target the broad impacts of urban policies (i.e. 

congestion toll regime, FAR regulation) and carbon tax on urban energy structure to clarify 

the effects of these policies on CO2 emissions from a long-term view. For this purpose, we 

use a spatial general equilibrium model which can take account of traffic congestion and 

global warming externalities. 

We extend the spatial general equilibrium model of a congested monocentric city 

developed by Kono et al. (2012). In our model, residents decide to choose the location where 

they live, and consumption of housing space. In addition, they select the temperature on their 

air-conditioner. Indeed, using the U.S. city data, Glaeser and Kahn (2010) show that places 

with milder Januarys (hotter Julys) have lower (higher) emissions, which is the result of less 

(more) use of artificial heating (cooling). So, it is important to consider energy consumption 

for heating and air conditioning. 

In our model, residents consume energy for air-conditioning to endogenously set the 

room temperature of their houses to a comfortable level. Rehdanz and Maddison (2005) 

demonstrate that there is a close relationship between climate (e.g., temperature, and 

precipitation) and well-being of the people. Our model supposes that people maximize their 

own utility through their use of energy. According to Glaeser and Kahn (2010), in most of the 

U.S. cities, homes in urban areas use lower volumes of electricity than homes in the suburbs. 

This reflects the difference in energy-efficiency with respect to the size of housing lots3. Our 

 
3 But Glaeser and Kahn (2010) show that this energy consumption tendency between cities and suburbs is not 

clear with respect to heating-related emissions. It depends on the city. This is probably because the building 

structure can affect heating-efficiency. The current paper does not consider the difference in building 

structures. This is for a future study. 
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endogenous energy consumption mechanisms naturally take account of such a dependency of 

the energy efficiency on the housing lot size.  

The remainder of this paper is organized as follows. Section 2 presents the model. 

Section 3 presents the explanation of parameters we used for this analysis. Section 4 reports 

our main findings and explains the mechanisms of the findings. Section 5 provides a 

conclusion while discussing the broader applicability of the findings. Finally, the Appendix 

section provides mathematical derivations. 
 

2. Model 
2.1. The city 

We extend the spatial general equilibrium model of a congested monocentric city developed 

by Kono et al. (2012). The city is circular, and is symmetric along any radial axis. We 

consider a closed city accommodating N households. The residential area in the city expands 

from 𝑥 ൌ 0.1 at the edge of the central business district (CBD) to x  x  at the urban 

boundary. Since we focus on only the residential areas, it is not meaningful for the radius of 

the business area to be set as 0.1. This corresponds to a point CBD assumption. The urban 

boundary 𝑥̅  is detemined endogenously. At each location, a constant fraction, r
, of the 

land is used for a radial road network, and 𝜌ℎ is the share of land available for housing. 

Developers build dwelling units on land rented from the absentee landowners. The total floor 

supply per unit area of land at x is denoted by F(x) , which expresses building height or FAR 

at x, and is regarded as a continuous function of distance.  

2.2. Household behavior 

The model introduces environmentally-related factors such as temperature and energy 

use into a spatial general equilibrium model of a congested monocentric city. Residents 
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use energy for lighting, cooling, heating, etc., to control the temperature of their houses. 

For simplicity, one member of a household commutes to the CBD.4 A household can 

choose one location within the city to reside. The per-year utility of a household is assumed 

to be composed of a partial utility function of housing area, denoted q , numeraire composite 

goods, denoted c, which includes all non-housing consumer goods, and another partial utility 

of temperatures in summer and winter, denoted 𝑡௖ሺ𝑚ሻ for 𝑚 ∈ 𝑠𝑢𝑚𝑚𝑒𝑟 and 𝑡௛ሺ𝑚ሻ for 𝑚 ∈ 𝑤𝑖𝑛𝑡𝑒𝑟. 𝑚 denotes a month and 𝑚 ൌ 1,2, … ,12. The utility function is given by 
 

( ) (v c g q h   𝑡௖ሺ𝑚ሻ௠∈௦௨௠௠௘௥, 𝑡ℎሺ𝑚ሻ௠∈௪௜௡௧௘௥),                  (1)  

where g(q) is a concave function of q, and ℎሺ𝑡௖ሺ𝑚ሻ௠∈௦௨௠௠௘௥, 𝑡ℎሺ𝑚ሻ௠∈௪௜௡௧௘௥ሻ is a 

concave function of monthly room temperatures with air-conditioning. We divide a year into 

two seasons, summer and winter, and assume that residents use cooling or heating. 

The household utility is maximized subject to the budget constraint given by 
 𝑐 ൅ 𝑝𝑞 ൅ 𝛷ሺ𝑡௖ , 𝑡ℎ, 𝑞, 𝑝௟ , 𝑝௖ , 𝑝ℎሻ ൌ 𝑦 െ 𝑘ሺ𝑥ሻ, and                        (2)   
 𝛷ሺ𝑡௖ , 𝑡ℎ, 𝑞, 𝑝௟ , 𝑝௖, 𝑝ℎሻ ≡ 𝑝௟𝑞 ൅ 𝑝௖𝑞 ∑ ൫𝑡௢ሺ𝑚ሻ െ 𝑡௖ሺ𝑚ሻ൯௠∈௦௨௠௠௘௥ ൅                                           𝑝ℎ𝑞 ∑ ሺ𝑡ℎሺ𝑚ሻ െ 𝑡௢ሺ𝑚ሻሻ௠∈௪௜௡௧௘௥ ,     (3) 
 

where  is the expenditure on air-conditioning (cooling and heating) and light in a 

house. y is the household income per period under consideration, 𝑘ሺ𝑥ሻ is the round-trip 

commuting cost to the CBD from x, which is distance from the CBD, p is the price per 

square meter of housing,  is the energy price per meter for lighting per square meter, pc
 

is the energy price per square meter to lower the temperature by 1 degree Celsius,  is the 

energy price per square meter to raise the temperature by 1 degree Celsius 𝑡௢ሺ𝑚ሻ െ 𝑡௖ሺ𝑚ሻ 

 
4 Total population is given by multiplying N by household size. If the household size is constant over distance, 

the number of households is proportional to population density. 

()

pl

ph
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and 𝑡ℎሺ𝑚ሻ െ 𝑡௢ሺ𝑚ሻ represent the difference between the room temperature and outside 

temperature 5 in summer and winter, respectively.  

The first term of Eq. (3) captures the effect that energy use of lighting increases with 

an increase in a household’s floor space. The second and third terms capture the effect that 

energy use increases with an increase in the difference between outside temperature and the 

room temperature. In our model, the temperature at which residents feel most comfortable is 

assumed to be 23 degrees (hereafter ), and they choose the room temperature on air-

conditioning under a budget constraint to maximize their own utility. Disutility increases as 

the difference between the set temperature and  increases. For example, residents use 

heating if room temperature is below , which we define as winter, and they use cooling if 

it is above , which we define as summer. Floor rent p equals the maximum floor rent bid 

by a household as a result of the competition among residents.  

Substituting the resulting demand functions back into the utility function and equating 

the result to a parametric utility level at location x, v(x)  solves p(x) and q(x) as 𝑝ሺ𝑥ሻ ൌ 𝑝ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ and 𝑞ሺ𝑥ሻ ൌ 𝑞ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ.   (4)    

2.3. Commuting Cost 

We assume that automobiles are the only mode of commuting, and that only one radial route 

extends across the residential zone between the CBD and the urban boundary. Furthermore, 

the commuting cost is incurred only when commuting to and from the CBD edge. According 

to most of the prior literature including Brueckner (2007), and Kono et al. (2012), the 

commuting cost per km at x is given by 

 
5 We assume that indoor temperature is equal to outside temperature when residents do not use air-

conditioning in their homes. We do not consider the thermal insulation performance of housing.  

to(m)

a

a

a

a
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𝑇ሺ𝑥ሻ ൌ 𝜂ሺ1 ൅ 𝛿ሻ ቂ௡ሺ௫ሻ஼ ቃ఍
,                                   (5)                 

where , ,   are positive parameters, n(x)  denotes the number of households residing 

beyond x and 𝐶 denotes the road capacity. Because commuters from more distant locations 

increasingly join traffic while moving towards the CBD, the unit cost of commuting from x 

depends on the ratio of traffic volume to road capacity, expressed by n(x) / C .6  

The term [n(x) C]  in Eq. (5) denotes congestion, whereas n(x) is expressed as 𝑛ሺ𝑥ሻ ൌ ׬ 2𝜋𝑠𝜌௛௫̅௫ 𝐷ሺ𝑠ሻ𝑑𝑠 . Note that 𝑛ሺ0.1ሻ ൌ 𝑁  and 𝑛ሺ𝑥̄ሻ ൌ 0 . When an additional 

commuter joins traffic at x, the resultant change in congestion cost is given by T (x) n(x) , 

which, multiplied by n(x) , gives the total externality caused by unpriced congestion, 

expressed as   𝑛ሺ𝑥ሻ డ்ሺ௫ሻడ௡ሺ௫ሻ ൌ 𝜁𝛿 ቂ௡ሺ௫ሻ஼ ቃ఍ ≡ 𝜏ଵሺ𝑥ሻ,                            (6) 

where 1(x)  equals congestion toll at x that fully internalizes congestion externality.  

In addition, the total damage from the CO2 emissions externality at location x is 

generated. A commuter at x pays the total commuting cost, denoted by 𝑘ሺ𝑥ሻ , which is 

inclusive of the congestion toll, carbon tax and direct costs, and is given by 𝑘ሺ𝑥ሻ ൌ ׬ ሼ𝑇ሺ𝑠ሻ ൅ 𝜏ଵሺ𝑠ሻ ൅ 𝜏ଶሺ𝑠ሻሽ𝑑𝑠௫̄଴.ଵ ,       (7) 

where  expresses carbon tax at location x.7 

 
6 Previous studies define road capacity as 2𝜋𝑥𝜌௥. Instead of 2𝜋𝑥𝜌௥, we set a constant 𝐶 as road capacity; 

because we make the model generate the actual congestion level when using congestion parameters set by the 

Japanese Society of Civil Engineers, we set value 𝐶 as 175,000 so as to make the congestion level equal to the 

actual level in the baseline simulation. 

7 𝜏ଶሺ𝑥ሻ ൌ 𝑐𝑎𝑟𝑏𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 ቀ ௬௘௡௧஼ைమቁ ൈ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛ሺ𝑙ሻ ൈ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ቀ௧஼ைమ௟ ቁ 

 ⟺ 𝜏ଶሺ𝑥ሻ ൌ 15,000 ቀ ௬௘௡௧஼ைమቁ ൈ ଶଷଵሺ௧௜௠௘௦ሻൈଶሺ௥௢௨௡ௗ ௧௥௜௣ሻൈ௫ሺ௞௠ሻଽ.ସቀೖ೘೗ ቁ ൈ 0.00232 ቀ௧஼ைమ௟ ቁ   ∴ 𝜏ଶሺ𝑥ሻ ൌ 1710𝑥 

 

 2 (x)
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When no congestion toll and carbon tax are levied in the city, 𝜏ଵሺ𝑥ሻ and 𝜏ଶሺ𝑥ሻ in Eq. 

(7) are set to zero. Finally, to help set the stage for what will come later, we differentiate n(x) 

and t(x) with respect to distance x, which yields 
 𝑛ᇱሺ𝑥ሻ ≡ ௗ௡ሺ௫ሻௗ௫ ൌ െ2𝜋𝑥𝜌௛𝐷ሺ𝑥ሻ

 
and 𝑘 ′ሺ𝑥ሻ ≡ ௗ௞ሺ௫ሻௗ௫ ൌ 𝑇ሺ𝑥ሻ ൅ 𝜏ଵሺ𝑥ሻ ൅ 𝜏ଶሺ𝑥ሻ. (8) 

  
2.4. Developers’ Behavior 

Developers are assumed to be perfectly competitive and are therefore price-takers. They 

combine housing capital (or building materials) and land to produce residential buildings. 

Housing output per unit of land is expressed as F(S), where 𝐹 is the housing production 

(floor area) function, and S is the capital-to-land ratio. Using S as the reverse function of F(S), 

the total developers’ net profit from the total floor space supply in the city, denoted  , is 

given by  𝛱 ൌ ׬ 2𝜋𝑥𝜌ℎሾ𝐹ሺ𝑥ሻ𝑝ሺ𝑥ሻ െ 𝑆ሺ𝐹ሺ𝑥ሻሻ െ 𝑟ሺ𝑥ሻሿ𝑑𝑥௫̄଴.ଵ ,           (9) 

where r(x)  is the land rent, and the price of capital is normalized at unity. Developers 

maximize profit per unit of land with respect to F(x) . Solving the relevant first-order condition 

for F(x)  provides  

p(x)  S F  0 ,                             (10) 

and solving Eq. (10) for F(x)  and S(F) yields  𝐹ሺ𝑥ሻ ൌ 𝐹ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ  and 𝑆ሺ𝐹ሺ𝑥ሻሻ ൌ 𝑆ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ.      (11) 

Substituting this solution into the profit function in Eq. (9), and considering that the 

developers’ profit is zero at any location because of perfect competition among developers, 

 
The external cost of carbon dioxide emissions is set at 15,000 yen / tCO2, which is the Swedish standard tax 

rate. Sweden has led the way in terms of carbon tax since 1991 (Japanese Ministry of the Environment, 2017). 
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the land rent is expressed as 𝑟ሺ𝑥ሻ ൌ 𝐹ሺ𝑥ሻ𝑝ሺ𝑥ሻ െ 𝑆ሺ𝐹ሺ𝑥ሻሻ ൌ 𝑟ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ.    (12) 

Finally, population density, denoted by D, equals housing square km per unit of land 

divided by square km per dwelling, and is expressed as 𝐷ሺ𝑥ሻ ൌ ிሺௌሺ௫ሻሻ௤ሺ௫ሻ .             (13) 

2.5. Market Clearing Conditions 

The market clearing conditions are given as follows. Equation (14) implies that the total 

population N is exogenously given and is fixed. ׬ 2𝜋𝑥𝜌ℎ𝐷ሺ𝑦 െ 𝑘ሺ𝑥ሻ, 𝑣ሺ𝑥ሻሻ𝑑𝑥௫̄଴.ଵ ൌ 𝑁                     (14) 

Equation (15) states that the household utility across all locations should be equal to the 

equilibrium utility level, which is endogenously determined. 

v(x)  u   [0.1, ]x x                                   (15) 

The total floor space supplied by developers at a location equals the total floor space consumed 

by households at that location, which is expressed by 

F(x)  D(x)q(x) [0.1, ]x x  .                          (16) 

Finally, Eq. (17) implies that the land rent at the edge of the city is equal to the agricultural 

rent, denoted by  in the case of no urban growth boundary (UGB) regulation. 𝑟ሺ𝑦 െ 𝑘ሺ𝑥̄ሻ, 𝑢ሻ|ே௢௎ீ஻ ൌ 𝑟௔                             (17) 

Note that when a UGB regulation is imposed, 𝑥̄ is set exogenously; so in such a case, Eq. 

(17) does not hold. 

2.6. Social Welfare Function 

The social welfare function is denoted as follows: 𝑊 ൌ 𝑁𝑢 ൅ න 2𝜋𝑥𝜌ℎሾ𝑟ሺ𝑥ሻ െ 𝑟௔ሿ𝑑𝑥௫̄
଴.ଵ ൅ න 𝑛ሺ𝑥ሻሼ𝜏ଵሺ𝑥ሻ ൅ 𝜏ଶሺ𝑥ሻሽ𝑑𝑥௫̄

଴.ଵ  

ra
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െ 𝑒 ׬ 𝑛ሺ𝑥ሻሼ𝐸௖ሺ𝑥ሻ ൅ 𝐸௥ሺ𝑥ሻሽ𝑑𝑥௫̄଴.ଵ .     (18) 

In words, the social welfare is composed of money-metric aggregate utility, the differential 

land rent, tax revenues, and environmental externalities caused by CO2, where e is monetary-

term environmental externalities per CO2 emission. 

3. Model Specification and Calibration 

3.1. Setting parameters and data sources  

The parameters are set as closely as possible according to real data. The city we target is 

basically the city of Sendai, Japan, with about 500 thousand households, but it is a hypothetical 

city in the sense that some parameters do not match those of Sendai. The number of commuters 

N  living in the area is set at 500,000. The ratio of residential area to the whole area, 𝜌ℎ, is set 

at 1/15. The fraction of land available for roads r
 is set at 0.2.  

Net household income y in Sendai 2005 was JPY 4,046,000 per year. Travel time cost is 

equal to half the wage rate (Small and Verhoef (2007)), and is set at JPY 19100 per hour. This 

wage rate (w) is calculated by dividing average monthly gross salary by average monthly 

working hours. The agricultural land rent ra  is calculated from research of land prices and 

rents by the Japan Real Estate Institute. We used the average agricultural land rent of paddy 

fields in Miyagi Prefecture and set it at JPY 5,950,000 per square km. 

The utility function is specified as 
 

   2 22

int
( , , , )

2c h c h

m summer m w er

v c q t t c q q a t a t
 

 

        
 
  ,

  
(19) 

 

where , , and are positive multiplicative factors. We set the value of 𝛼 and 𝛽 such 

that in equilibrium, the inequality of 0 ൏ 𝑞 ൏ ఉଶఈ holds for all distances in the city. We set 

parameters 𝛼 ൌ 116.9, and 𝛽 ൌ 28866.5,  for the utility function in equation (19) using data 

  
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for unit floor rent (p) and floor space per household (q).8 Outside temperatures (monthly mean 

temperature)  are given exogenously. Similarly, we set  γ ൌ 12846.5 using Eq. (A8) 

and data for floor space per household (q). The room temperatures 𝑡௖ሺ𝑚ሻ and 𝑡ℎሺ𝑚ሻ which 

residents determine, are given in Eqs. (A13) an (A14), respectively.  
 

3.2. Calculation method of CO2 emissions 

Sources of CO2 emissions are from commuting and residences in this model. CO2 emissions 

from commuting and residences are defined as follows.9 𝐸௖ሺ𝑥ሻ ൌ ଶଷଵሺ௧௜௠௘௦ሻൈଶሺ୰୭୳୬ୢ୲୰୧୮ሻൈ௫ሺ୩୫ሻଽ.ସቀೖ೘೗ ቁ ൈ 0.00232 ቀ୲େைమ௟ ቁ ൌ 0.11𝑥  (20) 

 and 
 𝐸௥ሺ𝑥ሻ ൌ 𝑞ሺ𝑥ሻ൛𝛿௟ ൅ 𝛿௖ ∑ ൫𝑡௢ሺ𝑚ሻ െ 𝑡௖ሺ𝑚ሻ൯௠∈௦௨௠௠௘௥ ൅ 𝛿ℎ ∑ ൫𝑡ℎሺ𝑚ሻ െ 𝑡௢ሺ𝑚ሻ൯௠∈௪௜௡௧௘௥ ൟ. 

            (21)                 

For calculation of CO2 emissions caused by commuting 𝐸௖ሺ𝑥ሻ, multiplying the 

distance of the residence from the center x by 231 working days and by 2 (round trips) 

gives total mileage (km) per year. Dividing it by average fuel consumption (9.4 km/liter) 

gives total fuel consumption per year. Furthermore, multiplying it by average emissions 

0.00232 tCO2/liter of gasoline cars gives CO2 emissions from commuting. 10  The 

calculated value is 0.11. 

For calculation of CO2 emissions caused by residences 𝐸௥ሺ𝑥ሻ, we use the value of 

 
8 We use only data of studio apartments for estimating this, due to data constraints. 
9 We use conversion factors 𝛿௟ ൌ 0.0185 ൈ 0.16, 𝛿௖ ൌ 0.00139 ൈ 0.16, and 𝛿௛ ൌ 0.00071 ൈ 0.081. This 

value is set so that the average values in the baseline simulation are equal to 0.15GJ (cooling), 3.88GJ 

(heating), and 0.81GJ (lighting), which are obtained from data of Sendai, compiled by Tonooka et al. (2005). 

The unit is GJ/year/household. 
10 In the Japanese Greenhouse Gas Emissions Calculation and Reporting Manual, CO2 emissions from 

commuting is defined as 𝐸௖ሺ𝑥ሻ ൌ fuel consumptionሺ𝑙ሻ  ൈ emission factorሺtCOଶ/𝑙ሻ. 

to(m)
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0.16 tCO2/GJ for electricity for lighting and cooling.11 For heating in residences, various 

kinds of fuel are used: electricity, city gas, liquefied petroleum gas (LPG), and kerosene. 

We use the weighted average of these (16% electricity, 5% city gas, 0.6% LPG, 78% 

kerosene). Hence, we use the value 8.1×10-2 tCO2 /GJ.12 Finally, the external cost of CO2, 

e in Eq. (18), is set at 15,000 JPY/tCO2 (=119EUR/tCO2), which is the standard tax rate 

for tCO2 used in Sweden. Sweden is one of the leading countries which introduce carbon 

taxes. Actually, the rate is relatively high, compared to other countries’ rates (e.g., 62 

EUR/tCO2 in Finland, and 44.6 EUR/tCO2 in France in 2018). 
 

3.3. Calibration of pc , ph, pl    

The first term of Eq. (3) represents expenses for lighting, the second is for cooling, and the 

third represents expenses for heating. Tonooka el al. (2005) analyzed detailed energy demand 

estimation and CO2 emissions of residences by prefecture and housing type in Japan. Among 

energy use in residences, energy consumption of heating, cooling, and lighting may change 

with the increase/decrease of floor space in buildings. Therefore, we focus on energy 

consumption of heating and cooling, and estimate it as follows. 

First, among data of energy consumption by fuel (e.g., electricity, utility gas, liquefied 

petroleum gas, and kerosene)13, we calculate the total energy consumption for heating and 

cooling, considering the use ratio. Second, we obtain expenses for heating and lighting (e.g., 

electricity, utility gas, liquefied petroleum gas, kerosene) from the Housing Survey in Japan. 

Third, we multiply the utility costs by the percentage of heating and cooling in total energy 

 
11 The Federation of Electric Power Companies of Japan estimate it as 0.00057 t-CO2/kwh for electricity. 

Considering 1kwh=0.0036GJ, we use the value 0.16t-CO2/ GJ. 
12 (0.00057×0.16)+(0.00018×0.05)+(0.000213×0.06)+(0.000244×0.78)=0.00029 t-CO2/kwh. 
13 Detailed data comes from Tonooka et al. (2005). 
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consumption by fuel.14 Finally, we set the most comfortable temperature as 23 degrees 

Celsius. Data for outside temperatures are monthly average temperatures, obtained from the 

Japan Metrological Agency. In our model, residents use the energy to increase the room 

temperature from the outside temperature to the temperature of their choice. The energy 

consumption necessary to increase the temperature by one degree Celsius increases 

according to the housing consumption. Data for housing consumption is obtained from the 

Land General Information System (www.land.mlit.go.jp/webland/). Thus, we set pc =231,

ph=95, and = 230. 
 
3.4. Calibration of transportation cost function  
 

For the transportation cost function, Eq. (5), we use a pair of congestion exponent parameter

 and multiplicative factor 𝛿 ൌ 0.48, which are set by the Japanese Society of Civil 

Engineers (2003). This parameter set expresses an average urban road function. Parameter  

expresses the travel cost incurred while driving 1 km in the case of no congestion. We set  

at JPY 25,586.15 The road capacity C is set as 175,000. 
 
3.5. Estimation of the housing production function  

We specify the housing production function as 𝐹 ൌ 𝜃𝑆జ, where S is the capital for buildings,  𝑣 and 𝜃 are positive multiplicative factors, and 0  1. We estimate the parameters, using 

data of construction costs, the area of the site, and total floor area, which are shown in Urban 

 
14 For example, in the case of cooling (electricity), the ratio of use for cooling in total energy consumption

（2.1%）× electricity cost (JPY 141,646)= JPY 2,952. Energy use for cooling is only electricity, while that for 

heating is electricity, utility gas, liquefied petroleum gas, and heating oil. 
15 This is because 231（working days）×2（round trip）×[1.0（km）/30（km/h）]×{1905.6（yen/h）/2+23.62

（yen/km）×30（km/h）}= 25,586 yen where the value within [ ] expresses the average time to travel 1 km. 1906

（yen/hour）= 31.76（wage rate）×60（min）.   

pl

  2.82




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Re-development in Japan No. 1-7.16 However, the data include commercial buildings, which 

might be constructed decoratively. Hence, we estimate the parameters of the production 

function with data in which the building is smaller than the maximum floor area ratio 

regulation in the residential areas of Sendai (about 500%), and estimate parameters. We used 

113 data samples. As a result of parameter estimation with OLS, parameter 𝑣 is set at 0.75, 

and the multiplicative factor 𝜃 is set at 0.28 (See Table 3 in the Appendix). 𝑣 =0.75 expresses the elasticity of housing production with respect to construction 

materials, where housing is produced from land and construction materials. The housing 

production function depends on the country, but Combes et al. (2017) estimate this as 0.80 

using French data. Our estimation is close to this. = 0.75 implies that the cost of building 

per-square-meter housing space increases to the power of 1/0.75 (=1.3) as the per-square-meter 

housing space (this is, roughly, the height of buildings) increases. 

4. Numerical simulation 

This section describes the procedures for numerical calculations and simulations of the 

equilibrium. 
 
4.1. The setup 

For numerical calculations, the distance from the CBD is discretized and indexed by 𝑖. This 

represents rings and i 1  at the CBD edge. The inner radius of ring i   is given by 

xi 1  i 1 , where xi  represents a distance variable for the corresponding ring. The 

width of each ring, 𝜀, is set at 0.1 km.  
 
4.2. Steps of the numerical simulation 

Income y  is exogenously set. The total commuting cost from ring 𝑖, 𝑡௜, is derived as 

 
16 The Urban Renewal Association of Japan compiled this data. 


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t1  0;  ti1  ti   t (x)  ti  [Ti 1i  2i ].       (24) 𝑇௜,1i
 and  2i

 are set per km, using Eq. (5) and Eq. (6), as 

  𝑇௜ ൌ 𝜂 ൅ 𝛿 ቂ௡೔஼ ቃ఍
, 𝜏ଵ௜ ൌ 𝜁𝛿 ቂ௡೔஼ ቃ఍

,                   (25)
 

where 𝑛௜ denotes the total population beyond ring 𝑖, which is given by  

  n
i
 

h
[x

k1
2  x

k

2]D
k

ki

i*
 ,             (26) 

where 𝑖∗  denotes the outermost ring such that 𝑛௜∗ ൌ 0 . Finally, the social welfare is 

expressed as 

W  
h
[x

i1
2  x

i

2 ][D
i
u  r

i
 r

a
]

i1

i*

  n
i
(1i

 2i
)             (27) 

where 1i
, 2i

 are set to zero when no congestion toll or carbon tax are levied. 

The iterative process starts at 𝑖 ൌ 1  with t1  0   and n1  N  , and is conducted 

conditional on the value of 𝑢 that should satisfy the equilibrium conditions. In the laissez-

faire, toll-regimes, and carbon tax regimes, the iteration stops when i  reaches a value 𝑖∗ 

such that 𝑛௜∗ ൒ 0  but 𝑛௜∗ାଵ ൏ 0 , indicating that the population 𝑁  is just accommodated 

within the radius of 𝑥̄ ൌ 𝑥௜∗; the increment in 𝑛௜ is expressed, using Eq. (7), as 

 n
i1  n

i
  n (x

i
)  n

i
 CD

i
.                        (28) 

We then check the equilibrium condition stated in Eq. (17) – that is, the land rent at the 

urban boundary should be equal to the agricultural rent. Until the result shows r
i*
 ra   

within a reasonable degree of accuracy, the iteration process is repeated by adjusting 𝑢.  

 In the FAR regulation regime, the floor space supply on each ring 𝑖 is set exogenously. 

Equations (12) and (13) are rewritten as 

   𝑟௜ ൌ 𝐹௜𝑝௜ െ 𝑆௜ , and  𝐷௜ ൌ ி೔௤೔,          (29)  

where pi  and qi  are defined in Eqs. (A7) and (A8), respectively. 
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4.3. Numerical results 

We present five numerical results: (i) the laissez faire equilibrium (baseline), (ii) the 

equilibrium under the congestion toll regime, (iii) the equilibrium under the carbon tax, (iv) 

the equilibrium under the congestion toll regime and carbon tax (first best), (v) the equilibrium 

under FAR regulation and UGB regulation. In regime (v), the city is divided into four zones 

with equal widths (zone 1 to zone 4 from the city center to the suburbs), and the optimal 

regulatory level is selected by changing the floor area ratio in every zone. City boundary is set 

to be the same value as the city radius of the first best regime (regime (iv)). As Kono et al. 

(2012) and Pines and Kono (2012) prove, the optimal regulation should impose a minimum 

floor area ratio regulation (i.e., a larger floor area ratio than the market ratio) in at least one 

zone in the center17. In the current simulation model, the optimal regulations are obtained with 

15% up in zone 1, 50% down in zone 2, 60% down in zone 3, and 70% down in zone 4 from 

the market equilibrium floor area ratio. We obtained this optimal combination of floor area 

ratios by changing the ratios by 5 % in all the zones.  

We measure the impact of urban policies, such as congestion toll regime and carbon tax 

regime, on urban energy structure to clarify the relationship between these policies and the 

effects on the urban environment. The numerical results are presented in Tables 1, 2 and Fig. 

1. 

The results of social welfare and welfare gains are shown in the first and second columns 

of Table 1, respectively. Welfare gains are calculated assuming the first best regime (iv) as 

100%. Social welfare in regime (ii) is the second largest, at 2.09017*1012 yen, and welfare 

 
17 Intuitively, the combination of “maximum FAR in one part of the city” with “minimum FAR in another part 

of the city” is more efficient than “FAR regulation imposed in only one part of the city” to minimize total 

deadweight loss, which is the cost of reducing negative externality. In a monocentric city with transportation 

congestion, minimum FAR should be imposed in the central areas of the city. See related discussion in Kono et 

al. (2010) or Kono and Joshi (2019) for an intuitive explanation. 
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gain is 98.5%. In regime (v), FAR regulation and UGB regulation regime, welfare gains are 

54.4%. On the other hand, in regime (iii), the carbon tax regime, welfare gain is only 13.4%. 

The radius of the city decreases from the equilibrium boundary in every regime and it is the 

smallest in the first best regime (iv), at 8.7 km. 

Table 2 shows the results of CO2 emissions and difference in total CO2 emissions from 

the laissez-faire regime (i) under each policy. In the five regimes, the amount of total CO2 

emissions is the smallest (268,353 tCO2/year) in the FAR regulation regime (v), which is 

24.9% smaller than that of the laissez-faire regime (i) (357,160 tCO2/year). In the first best 

regime (iv) (the congestion toll and carbon tax regime), the amount of total CO2 emissions is 

the second smallest (268,944 tCO2/year), which is 22.4% smaller than that of the baseline. In 

the congestion toll regime (ii), the amount of total CO2 emissions is the third smallest (277,075 

tCO2/year), which is 22.4% smaller than that of the laissez-faire regime (i). On the other hand, 

in the carbon tax regime (iii), it is only 3.3% (345,326 tCO2/year) smaller than that of the 

baseline. 

Looking at the sources of CO2 emissions, the reduction rate in emissions from 

commuting is larger in all policies. In particular, in the congestion regime (ii) and the first best 

regime (iv), the reduction rate of emissions from commuting is about 2 times larger than that 

from housing. This is because the congestion toll increases the number of residents living near 

the CBD, and the total commuting distance of the whole city is shortened. On the other hand, 

the reduction rate of emissions of residents in the FAR regulation and UGB regulation regime 

(v) is the largest of the five regimes. This is because the housing size per household is reduced 

by the FAR regulation and UGB regulation regime (v).  

Figure 1 shows the results of population density in each regime. The population densities 

in the laissez-faire regime (i) and the carbon tax regime (iii) are almost the same, and those in 

the congestion tax regime and the first-best regime are almost identical. In the congestion tax 
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regime (ii) and the first-best regime (iv), a larger FAR than the baseline is obtained from the 

city center up to 0.5km, and a smaller FAR is obtained beyond this. This is because many 

households move closer to the city center to avoid paying high congestion taxes. 
 

Table 1. Social welfare and main variables 
 

Regime 
Social welfare 

（1012 yen） 
Welfare gains (%)

Residents' utility 

（106 yen/person） 
Urban boundary 

(km) 
(i) Laissez-faire  

(No-regulation) 2.07123 - 4.096 10.0 

(ii) Congestion toll 2.09017 98.5% 3.981 9.1 

(iii) Carbon tax 
(15000 yen/tCO2) 

2.07382 13.4% 4.091 9.5 

(iv) Congestion toll + 
Carbon tax 
(first best) 

2.09046 100.0% 3.979 8.7 

(v) FAR regulation + 
UGB regulation 2.08169 54.4% 4.073 8.7 

 
 

Table 2. CO2 emissions 
 

Regime 
 Total 

emissions

（tCO2) 

Difference 

(%) 

Sources of emissions 
Commuting

（tCO2) 
Difference 

(%) 
Residences

（tCO2) 
Difference 

(%) 

(i) Laissez-faire 
(No-regulation) 

357160 - 122975 - 234185 - 

(ii) Congestion toll 277075 -22.4% 81694 -33.6% 195380 -16.6%

(iii) Carbon tax 
(15000 yen/tCO2) 

345326 -3.3% 116525 -5.2% 228800 -2.3%

(iv) Congestion toll + 
Carbon tax 
(first best) 

268944 -24.7% 77811 -36.7% 191134 -18.4%

(v) FAR regulation + 

UGB regulation 
268353 -24.9% 80117 -34.9% 188235 -19.6%
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Figure 1. Population density in each regime 

 

4.4 Sensitivity analysis 

To check the robustness of the results, we perform sensitivity analyses. We change the road 

capacity, which affects congestion externalities, by increasing or decreasing it by 10%. With 

this change, we can change the relative importance between congestion externalities and CO2 

emissions.   

The social welfare and the reduction in CO2 are shown in Figures 2 and 3, while the results 

of main endogenous variables are shown in Tables 4-7 in the Appendix. As Figure 2 shows, 

the results of social welfare in both cases of -10% and +10% are not so different from the 

original simulations. When the road capacity is increased (reduced), residents migrate to the 

suburbs (the center). As a result, CO2 emissions from transportation are increased (reduced). 

Furthermore, the migration increases (decreases) per-household housing space. Accordingly, 
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CO2 emissions from houses are also increased (reduced). In this situation, imposition of carbon 

tax has only large (limited) effects on the increase in social welfare because the amount of CO2 

is large (small) in the small (large) road capacity case.  

Although such changes are observed, the general tendency is not changed much from the 

original simulation. In particular the relative impacts of the policies are not changed. So, the 

results we obtain in the original simulation are likely to be robust. 

 

Figure 2. Sensitivity analyses (Social welfare levels compared with the first best) 

  

  
Figure 3. Sensitivity analyses (CO2 emissions) 
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5. Conclusion 

This study quantitatively examines the effectiveness of congestion tolls, carbon tax, and land 

use regulations on the social welfare and the reduction of urban CO2 emissions. Our model 

incorporates the energy consumption of air conditioning as an endogenous variable.  

Our numerical results show that each policy has different impacts on residents, land 

owners, and CO2 emissions. The carbon tax (resp. congestion toll) scenario increases social 

welfare by about 13% (resp. 99 %) of the increase in the first-best scenario, and the amount 

of total CO2 emissions is about 3% (resp. 20%) smaller than those of the laissez faire 

equilibrium. In the floor area ratio regulation scenario, social welfare increases by about 

55% of the increase in the first-best scenario, and the amount of total CO2 emissions is about 

20% smaller than that of the laissez faire equilibrium.  

These results suggest that congestion tolls are very similar to the first-best policies in 

terms of social welfare. FAR regulation is also rather socially-efficient. Regarding the 

reduction of CO2 emissions, congestion tolls and FAR regulation are both rather effective. 

From these results, we can conclude that congestion tolling, which is primarily the Pigovian 

tax for congestion, not only internalizes congestion externalities but also reduces CO2 

emissions effectively through downsizing commuting distances and housing sizes with the 

spatial change in population density in the city. So, the congestion toll can work as a measure 

against CO2 emissions arising from homes as well as transportation from the viewpoints of 

social welfare and CO2 emissions. 

Our results show that congestion tolls are very useful for reducing CO2 emissions 

through the spatial change in the population distribution. Actually, besides congestion tolls, 

there are multiple car-related taxes such as car usage tax, ownership tax, and purchase tax, 

which increase personal costs related to cars. Hayashi et al. (2001) simulate the effects of 
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these car-related taxes on reducing CO2 emissions, and demonstrate which taxes are effective 

without considering a city space explicitly. Actually, since each of these taxes differently 

affect the population distribution in a city, a future study should combine Hayashi et al.’s 

model with ours in order to take account of the relationship between multiple car-related 

taxes and the population distribution. Furthermore, in this combined model, we should take 

account of marginal costs of public funds to measure the social welfare because each tax 

generates a different deadweight loss. To do this, this future work can use the framework of 

Kono et al. (2019) which optimize multiple car-related taxes simultaneously to reduce the 

total tax deadweight losses.  

  

Appendix 
A.1. First-order conditions of the residents’ behavior 
The Lagrangian function representing resident’s behavior is set as follows. 

         

 ൅𝜆ሼ𝑦 െ 𝑘ሺ𝑥ሻ െ 𝑐 െ 𝑞ሾ𝑝 ൅ 𝑝௟ ൅ 𝑝௖ ∑ ሺ𝑡௢ሺ𝑚ሻ െ 𝑡௖ሻ௠∈௦௨௠௠௘௥ ൅ 𝑝ℎ ∑ ሺ𝑡ℎ െ௠∈௪ ௜௡௧ ௘௥𝑡௢ሺ𝑚ሻሻሿሽ           (A1)               

The first order conditions are as follows. 

                                                    (A2) 

డ௅డ௤ ൌ െ2𝛼𝑞 ൅ 𝛽 െ 𝜆ሺ𝑝 ൅ 𝑝௟ ൅ 𝑝௖ ∑ ሺ𝑡௢ሺ𝑚ሻ െ 𝑡௖ሺ𝑚ሻሻ ൅௠∈௦௨௠௠௘௥𝑝௛ ∑ ሺ𝑡௛ሺ𝑚ሻ െ 𝑡௢ሺ𝑚ሻሻ௠∈௪ ௜௡௧ ௘௥ ሻ ൌ 0       (A3) 
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A.2. Detailed simulation setup 

The main endogenous variables are derived from the model as below.  

Unit floor rent, pi   i

1


 2




   2                              (A7) 

Floor space per household,                                    (A8) 

Capital-to-land ratio, 
           

(A9) 
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            (A10)
 

Population density,           (A11) 

Total unregulated floor space per unit of land, 

                             (A12) 
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CO2 emissions from residences 

 E r

i   i  l  c (to(m) tc )
msummer

  h (th  to(m))
mw int er








            (A16)  

where 𝜅௜ ൌ ଶఊଶఈఊିఓభ ሺ𝑢 െ 𝑦 ൅ 𝑘௜ሻ,   

qi   i

Si    i

1


 2






   2























1
1

Di 
Fi

qi



  i

1


 2




   2
























1


1

1

 i

Fi    i

1


 2






   2
























1


1

1

thi  a 
ph


 i

1  pc

2Csummer  ph

2Cw int er



26 
 

    
2  pl  pc to (m) a 

msummer

  ph a  to(m) 
mw int er

 , 3  pcCsumer  phCw int er

18 

where 𝐶௦௨௠௠௘௥ and 𝐶௪௜௡௧௘௥ represent the numbers of months of summer and winter seasons, 

respectively. 

 

A.3. Estimation of parameters of the floor space production function 

Arranging 𝐹 ൌ 𝜃𝑆జ with logarithm transformation, we obtain 𝑙𝑛𝐹 ൌ 𝑙𝑛𝜃 ൅ 𝜐𝑙𝑛𝑆. Using 

this, we estimate the parameters. The result is shown below. Estimation results are 

statistically significant. In addition, as the main text in Subsection 3.5 shows, the estimated 

elasticity is close to the elasticity recently estimated by Combes et al. (2017) using French 

data. 
 

Table 3: Estimation of the floor space production function 

  Coefficient Standard Error t-value 𝑙𝑛𝜃 -5.879 0.3482 -16.885 𝜐 0.7497 0.0343 21.873 

Observations  113 
Adjusted R2 0.810 

Note: The construction costs are calculated using the discount rate of 4%. 

 

A.4. Results of the sensitivity analyses 

The results of main variables in the sensitivity analyses are shown in Tables 4-7.  
 
  

 
18 The values of 1 , 2 , and 3  are 196972, 13384.6, and 1412, respectively. 
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Figure 4. Social welfare (10% reduction in road capacity) 
 

Regime 
Social welfare 

（1012 yen） 
Welfare gains (%)

Residents' utility 

（106 yen/person） 
Urban boundary 

(km) 

(i) Laissez-faire 
(No-regulation) 

2.06030 - 4.073 9.8 

(ii) Congestion toll 2.08184 98.7% 3.944 8.9 

(iii) Carbon tax 
(15000 yen/tCO2) 

2.06301 12.4% 4.069 9.3 

(iv) Congestion toll + 
Carbon tax 

2.08212 100.0% 3.943 8.5 

(v) FAR regulation + 
UGB regulation 

2.07224 54.8% 4.050 8.5 

 

 

Figure 5. Social welfare (10% increase in road capacity) 
 

Regime 
Social welfare 

（1012 yen） 
Welfare gains (%)

Residents' utility 

（106 yen/person） 
Urban boundary 

(km) 

(i) Laissez-faire 
(No-regulation) 

2.08056 - 4.115 10.1 

(ii) Congestion toll 2.09686 98.1% 4.008 9.3 

(iii)Carbon tax 
(15000 yen/tCO2) 

2.08300 14.7% 4.109 9.7 

(iv) Congestion toll + 
Carbon tax 

2.09717 100.0% 4.006 8.7 

(v) FAR regulation + 
UGB regulation 

2.08963 54.6% 4.093 8.7 
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Figure 6. CO2 emissions (10% reduction in road capacity) 
 

Regime 
 Total 

emissions

（tCO2) 

Difference 

(%) 

Sources of emissions 
Commuting

（tCO2) 
Difference 

(%) 
Residences

（tCO2) 
Difference 

(%) 

(i) Laissez-faire 
(No-regulation) 

340544 - 113334 - 227210 - 

(ii) Congestion toll 259365 -23.8% 73926 -34.8% 185439 -18.4%

(iii) Carbon tax 
(15000 yen/tCO2) 

329433 -363% 107501 -5.1% 221932 -2.3%

(iv) Congestion toll + 

Carbon tax 
251871 -26.0% 70476 -37.8% 181395 -20.2%

(v) FAR regulation + 

UGB regulation 
246871 -27.5% 71580 -36.8% 175292 -22.9%

 
 

Figure 7. CO2 emissions (10% increase in road capacity) 
 

Regime 
 Total 

emissions

（tCO2) 

Difference 

(%) 

Sources of emissions 
Commuting

（tCO2) 
Difference 

(%) 
Residences

（tCO2) 
Difference 

(%) 

(i) Laissez-faire 
(No-regulation) 

371120 - 131519 - 239601 - 

(ii) Congestion toll 293491 -20.9% 89289 -32.1% 204203 -14.8%

(iii) Carbon tax 
(15000 yen/tCO2) 

358750 -3.3% 124592 -5.3% 234157 -2.3%

(iv) Congestion toll + 

Carbon tax 
284543 -23.3% 84800 -35.5% 199742 -16.6%

(v) FAR regulation + 

UGB regulation 
286658 -22.8% 88511 -32.7% 198147 -17.3%

 
  



29 
 

Reference 

Bertaud, A., Brueckner, J.K., 2005. Analyzing building-height restrictions: predicted    

Impacts and welfare costs. Regional Science and Urban Economics 35, 109–125. 

Borck, R., Brueckner, J.K, 2017. Optimal Energy Taxation in Cities, Journal of the 

Association of Environmental and Resource Economists vol5, No2, 481-516 

Borck, R., 2016. Will Skyscrapers Save the Planet? Building Height Limits and Urban 

Greenhouse Gas Emissions, Regional Science and Urban Economics 58, 13-25. 

Brueckner, J.K., 2007. Urban growth boundaries: an effective second-best remedy for 

  unpriced traffic congestion? Journal of Housing Economics 16, 263–273. 

Combes, P. P., Duranton, G., & Gobillon, L., 2017. The production function for housing: 

Evidence from France, SSRN working paper 

Glaeser, E. L. and Kahn, M. E. 2010. The greenness of cities: Carbon dioxide and urban 

development. Journal of Urban Economics 67, 404-418 

Hayashi, Y., Kato, H., & Teodoro, R. V. R., 2001. A model system for the assessment of the 

effects of car and fuel green taxes on CO2 emission. Transportation Research Part D: 

Transport and Environment, 6(2), 123-139.  

Iwata, K., and S. Managi, 2014. Can Urban Planning Instruments Solve Externalities? 

Empirical Analysis of Regulations and Taxes, discussion paper  

Japan Agency for Natural Resources and Energy, 2017. Energy white paper 2017 (in 

Japanese). 

Japan Society of Civil Engineers, 2003. Application of the theory of road traffic demand 

prediction. 

Japan Real Estate Institute, 2018, Land Price and Rent. 



30 
 

Japan Meteorological Agency, 2018. Past weather data, 

http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=34&block_no

=47590&year=2016&month=&day=&view=a2, (Last access 2018/7/25) 

Kono, T., K. K. Joshi, T. Kato and T.Yokoi, 2012. Optimal regulation on building size   

and city boundary: An effective second-best remedy for traffic congestion    

externality, Regional Science and Urban Economics 42, 619-630. 

Kono, T., & Joshi, K. K., 2019. Traffic Congestion and Land Use Regulations Theory and 

Policy Analysis. Elsevier, Amsterdam, ISBN: 9780128170205. 

Kono, T., Kaneko, T., & Morisugi, H., 2010. Necessity of minimum floor area ratio regulation: 

a second-best policy. The Annals of Regional Science, 44(3), 523-539. 

Kono, T., Mitsuhiro, Y., & Yoshida, J. (2019). Simultaneous optimization of multiple taxes 

on car use and tolls considering the marginal cost of public funds in Japan. The Japanese 

Economic Review, 1-37.  

Larson, W., F. Liu, and A. Yezer, 2012. Energy footprint of the city: Effects of urban 

   land use and transportation policies, Journal of Urban Economics 72,147-159 

Larson, W., & Yezer, A., 2015. The energy implications of city size and density. Journal of 

Urban Economics, 90, 35-49. 

Ministry of Internal Affairs and Communications Statistics Bureau, 2012. Household 

Survey. 

Ministry of the Environment, 2018. “Introduction of carbon taxes in other countries”, 

https://www.env.go.jp/policy/tax/misc_jokyo/attach/intro_situation.pdf， (Last access 

2018/7/25) 

Pines, D., & Kono, T., 2012. FAR regulations and unpriced transport congestion. Regional 

Science and Urban Economics, 42(6), 931-937. 



31 
 

The United Nations, 2020, “Preventing the next pandemic: Zoonotic diseases and how to 

break the chain of transmission”, https://reliefweb.int/report/world/preventing-next-

pandemic-zoonotic-diseases-and-how-break-chain-transmission. (Last access 

2020/7/7) 

Tonooka, Y., O.Fukasawa, Y. Murahashi and S.Miura, 2005. A detailed energy estimation and 

CO2 emission inventory of residential house by prefecture and housing type in Japan, 

Journal of Environmental Engineering. AIJ, No. 592, 89-96, June, 2005 (in Japanese). 

Waldron, D., J.P. John, S. C. Lannon, T. Bassett and H. M. Iorwerth, Heledd Mair, 2013. 

Embodied energy and operational energy: Case studies comparing different urban 

layouts Presented at: Building Simulation 2013 (BS2013): 13th International 

Conference of the International Building Performance Simulation Association, 

Chambéry, France, 25-28 August 2013. 
 


