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Abstract

This paper studies Bertrand-Edgeworth competition among firms pro-
ducing a homogeneous commodity under efficient rationing and constant
(and identical across firms) marginal cost until full capacity utilization
is reached. Our focus is on a subset of the no pure-strategy equilibrium
region of the capacity space in which, in a well-defined sense, some firms
are large and the others are small. We characterize equilibria for such
subset. For each firm, the payoffs are the same at any equilibrium and,
for each type of firm, they are proportional to capacity. While there is a
single profile of equilibrium distributions for the large firms, there is a con-
tinuum of equilibrium distributions for the small firms: what is uniquely
determined, for the latter, is the capacity-weighted sum of their equilib-
rium distributions and hence the union of the supports of their equilibrium
strategies.

Keywords: Bertrand-Edgeworth oligopoly, mixed strategy equilib-
rium, large and small firms.
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1 Introduction

Bertrand-Edgeworth competition among capacity-constrained sellers of a homo-
geneous product has been an active field of research since Levitan and Shubik’s
[13] reappraisal of such theoretical framework. Assume a given number of firms
producing on demand a homogeneous good at constant and identical unit vari-
able cost up to some fixed capacity. Further, assume that rationing takes place
according to the surplus-maximizing rule and that demand is a continuous,
non-increasing, and non-negative function defined on the set of non-negative
prices and is positive, strictly decreasing, twice differentiable and such that the
monopolist’s profit function is strictly concave when positive. Then there are
a few well-established facts about the equilibrium of this price game. First,
at any pure strategy equilibrium the firms earn competitive profit. However,
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a pure strategy equilibrium need not exist. In this case existence of a mixed
strategy equilibrium is guaranteed by the sufficient conditions of Theorem 5 of
Dasgupta and Maskin [3]. Under similar assumptions on demand and cost, the
set of mixed strategy equilibria was characterized by Kreps and Scheinkman [12]
for the duopoly within a two-stage capacity and price game. This model was
subsequently extended to allow significant convexities in the demand function
(by Osborne and Pitchik, [14]) or differences in unit cost among the duopolists
(by Deneckere and Kovenock, [10]). This led to the discovery of new phenom-
ena, such as the possibility of the supports of the equilibrium strategies being
disconnected and non-identical for the duopolists.

The characterization of equilibria of the price game among capacity-constrained
sellers of a homogeneous product under general oligopoly is far from complete
in the literature. An important result is that the equilibrium payoff of the
largest firm (or any of the largest firms, if more than one firm has the largest
size) is equal to the payoff of the Stackelberg follower when the rivals supply
their entire capacity ([2] and [5]).1 Based on this property, Ubeda [15] showed,
among other things, that the maximum and minimum over all the supports of
equilibrium strategies belong to the support of the equilibrium strategies of any
firm with the largest capacity.2 Other results were provided by De Francesco
and Salvadori [6].

Progress on the characterization of equilibria of the price game under given
capacities has been made along several directions. One direction was to restrict
the number of competing firms. Hirata [11] and De Francesco and Salvadori [6],
[8], and [9] have analyzed the triopoly price game with a decreasing and concave
demand function, establishing independently a number of features of equilibria.
In a recent study on price strategic interaction among capacity-unconstrained
sellers facing ”captive customers” and price-rigidity of market demand, Mark
Armstrong and John Vickers [1] have also compared the resulting equilibria with
equilibria in the more standard Bertrand-Edgeworth framework; such a task has
been accomplished for the triopoly, providing a complete characterization of the
equilibria arising in the Bertrand-Edgeworth price game with rigid demand.

A second direction of research focused on portions of the whole region of an
oligopoly capacity space where no pure strategy equilibria exist (hereafter, the
no-pure strategy equilibrium region, for brevity). Vives [16], amongst others,
characterized the (symmetric) mixed strategy equilibrium of the price game for
the subset in which all firms have the same capacity. De Francesco and Sal-
vadori [7] generalized Vives’ result: they established uniqueness of equilibrium
in Vives’ symmetric capacity case and, more generally, whenever the capaci-
ties of the largest and smallest firm are, in a precise sense, sufficiently close

1The proof in [2] is carried out along the lines in [12] for the analogous result under duopoly.
After pointing out a mistake in the proof, [5] establishes the result correctly along the same
lines.

2In a still unpublished paper Ubeda [15] compares discriminatory and uniform auctions
among capacity-constrained producers and obtains a number of novel results on discriminatory
auctions: a discriminatory auction could be designed in such a way as to be equivalent to
Bertrand-Edgeworth competition under the efficient rationing rule.
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to each other. Furthermore, they characterized the equilibrium in this ”quasi-
symmetric” oligopoly, showing that the supports of the equilibrium strategies
of all firms are intervals, each with the same minimum price whereas the higher
a firm’s capacity, the higher the maximum price. Within an analysis concern-
ing horizontal merging of firms, Davidson and Deneckere [4] characterized, for
the case of linear demand, equilibria for the subset in which there are z − 1
equally-sized small firms and one large firm with a capacity that is a multiple
of the small firm’s. Again, the attention was restricted to equilibria in which
the strategies of equally-sized firms are symmetrical.

There is one result in Hirata [11]3 that extends straightforwardly to the
oligopoly. Hirata [11] showed, for the triopoly but also for the oligopoly, that a
continuum of equilibria exists in the subset of the no-pure strategy equilibrium
region in which the largest firm can meet even the highest level of total demand
possibly arising at an equilibrium. In fact, while there is one equilibrium strategy
for the largest firm, there is a continuum of equilibrium strategies for smaller
firms, in that there is a single equation determining the capacity-weighted sum
of their cumulative distributions throughout the lowest price and the highest
price. The present paper shows constructively that the subset of the no-pure
strategy equilibrium region in which a continuum of equilibria exists is much
wider.

We specifically analyze a subset of the no-pure strategy equilibrium region
in which there are two groups of firms, ”large” firms and ”small” firms: the
total capacity of the large firms can meet even the highest level of demand that
can arise at an equilibrium of the price game whereas the total capacity of the
small firms is so small that total industry capacity minus the capacity of any of
the large firms does not exceed even the smallest level of total demand that can
arise at an equilibrium. Incidentally, the combination of these two conditions
means, amongst other things, that the capacities of the large firms are close
enough to each other, in a similar fashion as in De Francesco and Salvadori [7].

Such a bipolarized industry structure has two interesting and intertwined
implications. On the one hand, and similarly as in the mentioned case studied
by Hirata [11], there is no ”direct” strategic interaction among the small firms:
more specifically, regardless of the prices being charged by the other small firms,
each small firm either sells its entire capacity, if at least one of the large firms
is more expensive, or sells nothing, if all the large firms are cheaper. On the
other hand, each large firm sells its entire capacity if, and only if, at least one
of the other large firms is more expensive. In the event of all the other large
firms selling cheaper, the expected value of its residual demand falls short of
total demand by an amount equal to the total capacity of the other large firms
(as it would be in De Francesco and Salvadori [7]) plus the capacity-weighted
sum of the probabilities of all the small firms charging a lower price. We will
characterize the equilibria for such a bipolarized industry structure. It will be
shown that the above implications are ultimately responsible for the existence of
a continuum of equilibrium distributions for the small firms. What is uniquely

3The same result was independently reached by De Francesco and Salvadori [6].
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determined, instead, are the equilibrium payoffs of all firms, the equilibrium
distributions of the large firms and hence the supports of their equilibrium
strategies, the union of the supports of the equilibrium strategies of the small
firms, and the capacity-weighted sum of the equilibrium distributions of the
small firms. Most importantly, characterizing the continuum of equilibria for
any such bipolarized industry structure involves determining the lowest and
highest price that small firms can ever charge in equilibrium: the former is
generally higher than (in a limit case, equal to) the (uniform) minimum price
each large firm will ever charge in equilibrium and the latter is always less than
the maximum price any large firm will ever charge.

Although our interest is purely theoretical, as mentioned above, the present
study is potentially relevant to a wide array of empiricists. First, the parame-
ter region it covers appears fairly natural. Second, the unique results in terms
of each firm’s equilibrium payoff, the supports of the equilibrium strategies of
the large firms and the minimum and maximum of the union of the supports
of the small firms’ equilibrium strategies provide a set of empirically testable
predictions. Quite interestingly, carrying out such a test need not require de-
tailed information on the individual capacities of each small firm, which might
be more difficult to obtain than an approximate estimate of their total capacity,
which is what actually matters for the equilibrium features.4

The remainder of the paper is organized as follows. Section 2 presents basic
properties of the equilibrium of the price game in the no-pure strategy equi-
librium region of the capacity space. Section 3 defines an industry containing
”large” firms as well as ”small” firms and then characterizes the continuum
of equilibria arising under such circumstances; a numerical example is also pro-
vided at the end of the section to illustrate the theoretical findings and to clarify
how the role of small firms may well be far from negligible. Section 4 briefly
concludes.

2 Preliminaries

Denote by Z = {1, ..., z} the set of firms.5 Each firm i produces to order a
homogeneous commodity with the same constant marginal cost (with no loss of
generality normalized to zero) up to its fixed capacity ki. Denote by K total
capacity and, with no loss of generality, let k1 > k2 > ... > kz. A continuous
demand functionD(p) which is strictly decreasing and such that pD(p) is strictly
concave over the price range in which D(p) > 0 is assumed to exist. Firm
i’s profit at strategy profile (pi, p−i) is Πi(pi, p−i) = pi min {di(pi, p−i), ki},
where di(pi, p−i) is the demand forthcoming to firm i at (pi, p−i), pi is the
price charged by firm i and p−i is the vector of prices charged by all firms
except firm i. Under efficient rationing and assuming that such demand is

4For the reader’s information, a redistribution of total capacity among the small firms
would not affect the total of their equilibrium payoffs.

5The assumptions and notation laid down in this section largely draw on De Francesco and
Salvadori (2013).
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proportional to capacity for equally priced firms, we have that di(pi, p−i) =
max{0, D(pi)−

∑
j:pj<pi

kj} ×
ki∑

r:pr=pi
kr
.

Denote by pc the competitive price: D(pc) = K if D(0) > K and pc = 0
if D(0) 6 K. As is well known (see, e.g., De Francesco and Salvadori [6]),
(p1, ..., pz) = (pc, ..., pc) is an equilibrium of the price game if, and only if, either

K − k1 > D(0) when D(0) 6 K, (1)

or
k1 6 −pc [D′(p)]p=pc when D(0) > K. (2)

Holding (2), (pc, ..., pc) is the unique equilibrium; holding (1), the competitive
payoff is earned by each firm at any equilibrium. It is also known that there are
no pure strategy equilibria if neither inequality (1) nor inequality (2) holds or,
equivalently, if

k1
K

> max

{
1−

D(0)

K
, | ε |p=pc

}
. (3)

where ε is the price elasticity of demand.
In the remainder, inequality (3) is assumed to hold. Denote by σi : (0,∞) →

[0, 1] a mixed strategy of firm i, where σi(p) = Prσi
(pi < p) is the proba-

bility that firm i charges a price lower than p under strategy σi. Note that
σi(p) is continuous except at any p◦ such that Prσi

(pi = p◦) > 0. A mixed
strategy equilibrium is denoted by φ = (φ1, ..., φz) : (0,∞)z → [0, 1]z, where
φi(p) = Prφi

(pi < p). We denote by Πi(σi, φ−i) firm i’s expected profit
when it follows strategy σi and the rivals are playing their equilibrium strat-
egy profile φ−i; in particular Πi(p, φ−i) is firm i’s expected profit when it
charges p with certainty and the rivals are playing their equilibrium strat-
egy profile φ−i. We denote by Π∗

i firm i’s expected profit at equilibrium φ,

by Si the support of φi, and by p
(i)
M and p

(i)
m the maximum and the mini-

mum of Si, respectively. Note that p ∈ Si when there is λ > 0 such that
φi(p + h) > φi(p − h) for each h ∈ (0, λ). Clearly, Π∗

i > Πi(σi, φ−i) (each
i). For any p ∈ Si, Π∗

i = Πi(p, φ−i) almost everywhere, namely, whenever
Prφj

(pj = p) = 0 (any j 6= i). In fact, Π∗
i = limpi−→p− Πi(pi, φ−i) everywhere

for p ∈ Si since, quite obviously, Π
∗
i ≥ limpi−→p− Πi(p, φ−i) (any p) and, further-

more, Π∗
i cannot be greater than limpi−→p− Πi(p, φ−i) for some p ∈ Si: since

limpi−→p+ Πi(p, φ−i) 6 Πi(p, φ−i) 6 limpi−→p− Πi(p, φ−i), that event would
imply that Πi(p, φ−i) < Π∗

i on a neighbourhood of p, contrary to the fact that
p ∈ Si.

We now present a number of properties of mixed strategy equilibria.

Proposition 1 Let inequality (3) hold. Then, in any equilibrium:

1. p
(1)
M = pM > pc, where

pM = argmax
p

p(D(p)−
∑

j 6=1

kj); (4)
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2. Π∗
i = pM (D(pM )−

∑
j 6=1 kj) > 0 for any i such that ki = k1;

3. p
(1)
m = pm > pc, where pm = max{p̂, ̂̂p} where p̂ = Π∗

1/k1 and ̂̂p is the
lower solution of equation pD(p) = Π∗

1;

4. Π∗
2 = pmk2 whether k2 < k1 or k2 = k1; Π

∗
i = pmki, each i ∈ L − {1},

where L :=
{
i ∈ Z

∣∣∣p(i)m = pm

}
;

5. D(pm) <
∑

i∈L ki and Prφi
(pi = pm) = 0, each i ∈ Z;

6. Prφ1
(p1 = pM ) > 0 if, and only if, k1 > k2 and Prφi

(pi = pM ) = 0 for
any i 6= 1.

For proof of these points, see Kreps and Scheinkman [12] for the duopoly
and, e.g., De Francesco and Salvadori [6] for the oligopoly. Yet in the proof of
the current Proposition 1(5) De Francesco and Salvadori [6] took for granted
that Prφi

(pi = pm) = 0 (each i ∈ Z). For this reason we complete here the
proof of this part.

Proof. (of Proposition 1(5))
By way of contradiction, let D(pm) >

∑
i∈L ki. Then Πi(p, φ−i) = pki >

pmki = Π∗
i (each i ∈ L) on a right neighbourhood of pm. Next let D(pm) =∑

i∈L ki. Then (p−pm)k1

p[
∑

j∈L kj−D(p)]
> 1 on a right neighbourhood of pm since

limp→pm+
(p−pm)k1

p[
∑

j∈L kj−D(p)]
= k1

−pmD′(pm) > 1: indeed, pmk1 > −p2D′(p) over the

range [pm, pM ), since −p2D′(p) is strictly increasing over that range, by strict
concavity of pD(p), and −p2MD′(p) |p=pM

= pmk1.
6 Therefore,

∏
j∈L−{1}

φj(p) ≥

(p−pm)k1

p[
∑

j∈L kj−D(p)]
> 1 on a right neighbourhood of pm - the weak inequality being

certainly an equality if p ∈ S1 on such a neighbourhood7 - an obvious contra-
diction. Therefore, D(pm) <

∑
j∈L kj . Should Prφi

(pi = pm) be greater than
zero for some i ∈ L, then Πj(p, φ−j) < Πj(pm, φ−j) (any j ∈ L − {i}) for p
larger than and close enough to pm, and hence p /∈ (∪Sj∈L−{i}) for any such
p. This means that Prφj

(pj = pm) > 0 (each j ∈ L − {i}), in its turn implying
that Π∗

j = Πj(pm, φ−j) < pmkj = limp→p
−
m
Πj(p, φ−j) = pmkj .

3 Some firms are large and the others are small

We will focus on a specific subset of the region of no pure strategy equilibria,
that in which

k1 + ...+ kn > D(pm) (5)

6The last equality derives from equalities D(pM )−
∑

j 6=1

kj+pMD′(p) |p=pM= 0 and pmk1 =

pM [D(pM )−
∑

j 6=1

kj ] (see Propositions 1(1)&(2)).

7Strict inequality might hold if, instead, p /∈ S1 for p higher than and close enough to pm
- which, by the way, implies that Prφ1

(p1 = pm) > 0.

6



D(pM ) > K − kn. (6)

The sets N = {1, ..., n} and Z −N will be referred to as the set of ”large” firms
and the set of ”small” firms, respectively. Let us look more deeply at these
inequalities in order to grasp the rationale for this terminology. According to
inequality (5), large firms as a whole can meet even the highest demand that
can arise at an equilibrium of the price game, D(pm). If n = 1, inequality
(5) coincides with the inequality that defines the subset of the no-pure strategy
equilibrium region mentioned in the introduction as explored by Hirata [11] (and
De Francesco and Salvadori [6]). According to inequality (6), total industry
capacity minus the capacity of even the smallest of the large firms does not
exceed the smallest level of demand possibly arising at an equilibrium of the
price game, D(pM ). If n = 1, inequality (6) coincides with inequality D(pM ) >
K − k1, which certainly holds as a strict inequality. Most importantly, since
K > D(pm) > D(pM ), inequalities (5) and (6) imply that

kn > kn+1 + ...+ kz, (7)

k1 − kn 6 D(pM )−
∑

j 6=1

kj (8)

consistent with the ”small” labelling of firms from n + 1 to z and with the
”large” labelling of firms from 1 to n.

Because of inequalities (5) and (6), almost everywhere in the range [pm, pM ]
the payoff function of firm i ∈ N in the face of rivals’ equilibrium strategies is
equal to

Πi(p, φ−i) = p
∏

j∈N−{i}

φj(p)

[
D(p)−

∑
j∈N−{i}

kj−
∑

r∈Z−N
φr(p)kr

]
+

+

[
1−

∏
j∈N−{i}

φj(p)

]
pki,

that is

Πi(p, φ−i) = pki − p
∏

j∈N−{i}

φj(p)


∑

j∈N

kj +
∑

r∈Z−N

φr(p)kr −D(p)


 , (9)

whereas almost everywhere in the same range the payoff function of firm r ∈
Z −N in the face of rivals’ equilibrium strategies is equal to8

Πr(p, φ−r) = F (p)kr (10)

8There are two reasons for the ”almost everywhere” qualification. First, thus far we have
not ruled out the event that, for some p◦ ∈ (pm, pM ), φj(p

◦+) > φj(p
◦) (some j ∈ N ): under

that event, for instance, Πi(p
◦, φ−i) < lim

p→p
◦
− Πi(p, φ−i), the RHS being actually the

RHS of (9). Second, because of Proposition 1(6), if k1 > k2 then limp→pM− Πi(p, φ−i) >
Πi(pM , φ−i) (any i ∈ Z − {1}).
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where

F (p) =


1−

∏

j∈N

φj(p)


 p. (11)

As will become apparent below, the main features of equilibria derive from the
properties of the payoff functions, Πi(p, φ−i) (each i ∈ N ) and Πr(p, φ−i) (each
r ∈ Z −N ). The payoff function of each small firm does not depend on the
equilibrium distributions of the other small firms: each small firm has no resid-
ual demand when all the large firms are selling at a lower price, while selling
its entire capacity when at least one of the large firms is more expensive. The
payoff function of each large firm depends on the joint equilibrium cumulative
distribution of the other large firms and the capacity-weighted sum of the equi-
librium cumulative distributions of the small firms. In fact, each large firm sells
its entire capacity when at least one of the other large firms is more expensive,
whereas, under the complementary event in which all the other large firms are
less expensive, its expected residual demand is equal to total demand minus the
total capacity of all the other large firms minus a weighted sum of the small
firms’ capacities, with weights equal to the values of the respective cumulative
distributions.

Before going any further, it is helpful to note that

∂Π1(p, φ−1)

∂p
=

∏

j∈N−{1}

φj(p)


D(p) + pD′(p)−

∑

j∈N−{1}

kj −
∑

r∈Z−N

φr(p)kr


+


1−

∏

j∈N−{1}

φj(p)


 k1 > 0 (12)

since D(p) + pD′(p) −
∑

j 6=1 kj > 0 because of Proposition 1(2) and the strict
concavity of pD(p). We can now determine the equilibrium payoff of each large
firm (and each small firm in a special case) and prove properties concerning the
supports of the strategies, the payoffs and the equilibrium distributions of the
large firms.

Proposition 2 In any equilibrium
(i) L ⊇ N , Π∗

i = pmki (each i ∈ N ) and φi(p)ki = φj(p)kj everywhere
for p ∈ Si ∩ Sj (any i, j ∈ N ); moreover, kjΠi(p, φ−i) = kiΠj(p, φ−j) almost
everywhere for p ∈ Si ∩ Sj (any i, j ∈ N );9

(ii) Π∗
r/kr = Π∗

s/ks (each r, s ∈ Z −N );
(iii) if k1+ ...+kn > D(pm), then L = N and Π∗

r > pmkr (each r ∈ Z −N );
(iv) if k1 + ...+ kn = D(pm), then L ⊃ N and Π∗

i = pmki (each i ∈ Z);

(v) Si = [pm, p
(i)
M ] (each i ∈ N ); S1 = S2 ⊇ S3 ⊇ ... ⊇ Sn; moreover,

Si ⊃ Si+1 (each i ∈ N−{1, n}) if and only if ki > ki+1;

9Because of part (vi), not yet proved, kjΠi(p, φ−i) = kiΠj(p, φ−j) everywhere for p ∈
Si ∩ Sj − {pM} (any i, j ∈ N ).
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(vi) Prφi
(pi = p) = 0 (any p ∈ [pm, pM ) and any i ∈ Z);

(vii) p := max
⋃

r∈Z−N
Sr 6 p

(n)
M ;

(viii) if either any of inequalities (5) and (6) is satisfied as a strict inequality

or k2 > kn, then p < p
(n)
M and Πr(p

(n)
M , φ−r) < Π∗

r.

Proof. (i) Since D(pm) > D(pM ) > K − kn >
∑

i∈L ki, if L 6⊇ N , then
Proposition 1(5) is contradicted. L ⊇ N implies Π∗

i = pmki (each i ∈ N ),
because of Proposition 1(4), and hence

∏

j∈N−{i}

φj(p) =
(p− pm)ki

p

[
∑
j∈N

kj +
∑

r∈Z−N
φr(p)kr −D(p)

] , ∀p ∈ Si (13)

because of equation (9). As a consequence, for any p ∈ Si ∩ Sj (i, j ∈ N ),
φi(p)ki = φj(p)kj . Moreover, from equations (9) we obtain that, almost every-
where throughout [pm, pM ],

Πj(p, φ−j)

kj
=

Πi(p, φ−i)

ki
+
φj(p)kj − φi(p)ki
φj(p)φi(p)kjki

p
∏

l∈N

φl(p)

[
∑

l∈N

kl +
∑

r∈Z−N

φr(p)kr −D(p)

]
.

(ii) Equations (10) imply that Πr(p, φ−r)ks = Πs(p, φ−s)kr (any r, s ∈
Z −N ), almost everywhere throughout [pm, pM ].10 Then the claim follows
straightforwardly. Indeed, if Π∗

r/kr < Π∗
s/ks, then Sr ∩ Ss = ∅ since, at any

p ∈ Sr ∩ Ss, Πr(p, φ−r(p)) = Π∗
r and Πs(p, φ−s(p)) = Π∗

s; but then firm r’s
strategy would not be a best response to φ−r, since a payoff of Πr(p, φ−r) =
(kr/ks)Π

∗
s > Π∗

r is obtained by quoting any p ∈ Ss.
(iii) If L ⊃ N , then, by Proposition 1(4) and part (ii), Π∗

r = pmkr (each
r ∈ Z −N . Then, according to Proposition 1(5), p ∈ Sr (some r ∈ L−N ) for
p larger than and close enough to pm. Hence equation (10) implies

∏
i∈N

φi(p) =

p−pm

p
. Thus, on a right neighbourhood of pm,

∑
j∈N

kj+
∑

r∈Z−N
φr(p)kr −D(p) =

φi(p)ki, because of equation (13) (each i ∈ N ); but then it follows from limp→pm+φi(p) =
0 that limp→pm+

∑
r∈Z−N

φr(p)kr < 0. Thus L = N . Further, since limp→pm+ F ′(p) =

1, F (p) is increasing on a right neighbourhood of pm. As a consequence,
Π∗

r > pmkr (any r ∈ Z −N ). Otherwise firm r would have failed to make
a best response given that Πr(p, φ−r) > pmkr for p close enough to pm.

(iv) If L = N , then Proposition 1(5) is contradicted. Therefore, by Propo-
sition 1(3) and part (ii), Π∗

r = pmkr (each r ∈ Z −N ).
(v) The claim is obviously equivalent to:

Sn−u =
[
pm, p

(n−u)
M

]
= ∩h∈[1,n−u]Sh u = 0, 1, ..., n− 2 (14)

10The argument in the text would work even if, contrary to part (vi), not yet proved,
Prφi

(pi = p◦) > 0 (some p◦ ∈ Si and some i ∈ N ), except for Πr(p◦, φ−r) and Πs(p◦, φ−s)
being replaced by limp→p◦− Πr(p, φ−r) and limp→p◦− Πs(p, φ−r), respectively.
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Property (14) will be proved by induction. Let us first prove that (14) holds for
u = 0. Because of part (i) and Proposition 1(5), there is p̃ such that [pm, p̃] ⊆

∩i∈NSi. If there is ˜̃p > p̃ such that (p̃, ˜̃p) ∩ (∩i∈NSi) = ∅, then either (a)

p̃ = p
(n)
M , or (b) Prφi

(pi = p̃) > 0 for some i ∈ Z, or (c) there is a gap (p̃, p◦)
in Sj (some j ∈ N and some p◦ > p̃): namely, φj(p

◦) = φj(p̃), while φj(p)
is increasing in both p̃ and p◦. Let us first exclude the event (b). By way of
contradiction, let Prφr

(pr = p̃) > 0 (some r ∈ Z −N ). As a consequence, there
is p◦ ∈ (p̃, pM ) such that (p̃, p◦) ∩ (∪j∈NSj) = ∅, since limp→p̃+ Πj(p, φ−j) <
limp→p̃− Πj(p, φ−j) = Π∗

j , each j ∈ N . But then it follows from equation (10)
that Πr(p, φ−r) > Πr(p̃, φ−r) = Π∗

r over the range (p̃, p◦). Quite similarly, if
Prφi

(pi = p̃) > 0 (some i ∈ N ), then (p̃, p◦) ∩ (∪j∈Z−{i}Sj) = ∅ for some
p◦ ∈ (p̃, pM ), but then Πi(p, φ−i) > Πi(p̃, φ−i) = Π∗

i over the range (p̃, p◦)
because of part (i) and inequality (12). Let us now exclude the event (c). If
there is p◦◦ ∈ (p̃, p◦] such that (p̃, p◦◦) ∩ (∪i∈ZSi) = ∅, a contradiction is found
by following an argument similar to that used to exclude the event (b). Then
there is h 6= j such that (p̃, p◦) ∩ Sh 6= ∅ and φj(p

◦)kj = φj(p̃)kj = φh(p̃)kh <

φh(p
◦)kh, and therefore Πj(p

◦, φ−j) <
kj

kh
Πh(p

◦, φ−h) 6
kj

kh
Π∗

h = Π∗
j , contrary

to the fact that p◦ ∈ Sj . Now assume that property (14) holds for u = v < n−2;

then there is p̃ > p
(n−v)
M such that [pm, p̃] = caph∈N ;h6n−v−1Sh. Hence the same

argument used above proves that property (14) holds for u = v + 1. Note that

p
(n−v)
M = p

(n−v−1)
M if and only if kn−v−1 = kn−v, because of part (i).

(vi) It is an obvious consequence of part (v).

(vii) By way of contradiction, let p > p
(n)
M . Then φ1(p) > φ1(p

(n)
M ) = kn

k1
, the

equality being a consequence of part (i). Therefore,

∏

j∈N

φj(p) = φ1(p)
p− pm

p

k1
K −D(p)

>
p− pm

p

kn
K −D(p)

>
p− pm

p
: (15)

the equality is a consequence of equation (9) and part (i) since
∑

r∈Z−N
φr(p)kr =

∑
r∈Z−N

kr; the second inequality is a consequence of inequality (6). Thus Πr(p, φ−r)) <

pmkr because of equation (10) and the definition of p is contradicted.

(viii) By way of contradiction, let p = p
(n)
M . Then instead of (15) we have

∏

j∈N

φj(p) = φ1(p)
p− pm

p

k1
K −D(p)

=
p− pm

p

kn
K −D(p)

>
p− pm

p
. (16)

It follows that Πr(p, φ−r)) 6 pmkr. Hence, if inequality (5) holds as a strict
inequality, part (iii) is contradicted; if either inequality (6) holds as a strict
inequality or k2 > kn (or both), then the weak inequality in (16) is satisfied as a

strict inequality and hence Πr(p, φ−r)) < pmkr. Finally, it follows from p < p
(n)
M

that

∏

j∈N

φj(p
(n)
M ) = φ1(p

(n)
M )

(p
(n)
M − pm)k1

p
(n)
M

[
K −D(p

(n)
M )
] =

(p
(n)
M − pm)kn

p
(n)
M

[
K −D(p

(n)
M )
] >

p
(n)
M − pm

p
(n)
M

,

10



implying that Πr(p
(n)
M , φ−r)) 6 pmkr 6 Π∗

r , with at least one strict inequality:
the last inequality is strict if inequality (5) is strict and the first inequality is
strict if either k2 > kn, or inequality (6) is strict (or both).

Proposition 2 allows segment [pm, pM ] to be partitioned into three parts:
[pm, p), [p, p], (p, pM ], where p = min

⋃
r∈Z−N

Sr and p = max
⋃

r∈Z−N
Sr. The

first part is empty if and only if k1+ ...+ kn = D(pm); the second part contains⋃
r∈Z−N

Sr. In the first and third parts the equilibrium distributions are easily

determined.

3.1 The equilibrium distributions in [pm, p)

In this and in the following subsection we assume that k1 + ... + kn > D(pm).
In the range [pm, p) the equilibrium distributions are: φr(p) = 0 for each r ∈
Z −N and

φl(p) =
1

kl



p− pm

p

∏
j∈N

kj

∑
j∈N

kj −D(p)




1
n−1

(17)

for each l ∈ N , because of equations (9) and Proposition 2. It is easily recognized
that the RHS of equation (17) is quasi-concave throughout [pm, pM ].11 More-

over, it is larger than 1 for p = pM and l = n since pM

[
D(pM )−

∑
j∈N−{1}

kj

]
>

pmk1. Hence there is p̃
(n)
M ∈ (pm, pM ) such that in the range [pm, p̃

(n)
M ] the RHS

of equation (17) is increasing and no larger than 1 for each i ∈ N . Hence the
functions F (p) and Πr(p, φ−r) = F (p)kr are well-defined in the range [pm, p] if

and only if p 6 p̃
(n)
M and this inequality can easily be proved by following the

same procedure used to prove Proposition 2(vii)-(viii).

3.2 Determining p and the equilibrium payoffs of small

firms

In order to determine p and the equilibrium payoff of each small firm, the
functions φl(p) (each l ∈ N ) and F (p), as calculated in the range [pm, p] -
that is, by keeping φr(p) = 0 (each r ∈ Z −N ) - need to be extended some-
what beyond p. Let us call these extended functions φg

l (p) and G(p), respec-

tively. In the range [pm, p̃
(n)
M ], φg

l (p) consists of the RHS of equation (17) and

G(p) =

[
1−

∏
j∈N

φg
l (p)

]
p. The functions φg

l (p) and G(p) are well-defined in the

11The sign of its first derivative coincides with the sign of function pm

[

∑

j∈N
kj −D(p)

]

+

(p− pm) pD′(p) which is decreasing in the mentioned range, is positive for p = pm and
negative for p = pM .
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mentioned range. As we will see, p equals the argument of a maximum of G(p)

in the range (pm, p̃
(n)
M ). We will show that such a maximum exists, but we were

not able to prove that it is unique, even if all our simulations suggest that it
is so. That said, we prove that p coincides with the largest argument in which
such a maximum is obtained.

Proposition 3 Let k1+...+kn > D(pm). Then p = max argmax
p∈(pm,p̃

(n)
M

)
G(p)

and

Π∗
r =



1−




(p− pm)

(
∏

j∈N
kj

) 1
n

p

[
∑
j∈N

kj −D(p)

]




n
n−1


pkr. (18)

Proof. Since G(p̃
(n)
M ) =

[
1−

∏
j∈N

φg
j (p̃

(n)
M )

]
p̃
(n)
M < pm, as can easily be checked,

G(p) has a maximum at some p ∈ (pm, p̃
(n)
M ). By way of contradiction, let

G(p) > F (p) for some p ∈ (p, p̃
(n)
M ). Then,

[
1−

∏
j∈N

φj(p)

]
p 6 F (p̄) = G (p̄) 6

G(p) =

[
1−

∏
j∈N

φg
j (p)

]
p, where the first weak inequality is certainly an equal-

ity for p ∈ ∪Sr. Therefore,
∏

j∈N
φj(p) >

∏
j∈N

φg
j (p) and, as a consequence of

equation (13) and the definition of functions φg
j (p)’s,

∑
r∈Z−N

φr(p)kr 6 0, an

obvious contradiction. Next, again by way of contradiction, let G(p) > G(p) for
some p ∈ (pm, p). Under such an event, firm r would get G(p)kr > Π∗

r = G(p)kr
by charging a price somewhat less than p. Finally, equation (18) derives straight-
forwardly from Π∗

r = F (p)kr (each r ∈ Z −N ) and equation (17).
A simple intuition can be gained if we spell out the procedure whereby,

whenever p > pm, we have determined p and correspondingly the equilibrium
payoff per unit of capacity F (p) of each small firm: p is such as to maximize
firm r’s payoff function, when the strategy profile of the large firms is such as to
yield them their equilibrium payoffs pmki in the event of small firms charging a
higher price.

3.3 The equilibrium distributions in (p, pM ]

In the range (p, pM ], φr(p) = 1 for each r ∈ Z −N and equations (9) can thus
be written

Πi(p, φ−i) = pki −
∏

j∈N−{i}

φj(p)p [K −D(p)] . (19)

Taking into account Proposition 2(i)&(iv), these equations are enough to deter-
mine all the φi’s in the range (p, pM ]. This is done straightforwardly if k2 = kn.

12



In this case [p, pM ] ⊂ (∩j∈NSj): then it follows from equations (19) that, for
each i ∈ N ,

φi(p) =
1

ki



p− pm

p

∏
j∈N

kj

K −D(p)




1
n−1

(20)

throughout (p, pM ]. If, instead, k2 > kn, then (p, pM ] can be partitioned in

a number of non-empty intervals (p
(i+1)
M , p

(i)
M ], where each i < n is such that

ki > ki+1 and, by definition, p
(n+1)
M = p. In each range (p

(i+1)
M , p

(i)
M ], φl(p) = 1

for l = i+ 1, ..., n; then equations (19) lead to

φl(p) =
1

kl



p− pm

p

∏
j6i

kj

K −D(p)




1
i−1

(21)

for each l = 1, ..., i. The RHS of equation (21) (each l = 1, ..., i) is in fact strictly

increasing over the range (p
(i+1)
M , pM ], its derivative being strictly decreasing

over that range and equal to zero at p = pM : hence, p
(i)
M is the unique solution

of the equation (p− pm)
∏
j6i

kj = p [K −D(p)] ki−1
i over the range (p

(i+1)
M , pM ].

Thus p
(i)
M = pM if ki = k2, since pmk1 = pM

[
D(pM )−

∑
j

kj 6=1

]
; if ki < k2,

then p
(i)
M < pM and φl(p

(i)
M ) = ki

kl
< 1 for any l < i such that kl > ki.

Next we prove that any large firm l with kl < k2 would earn strictly less

than Π∗
l by charging any price higher than p

(l)
M . In the next subsection, we prove

that any small firm r would earn strictly less than Π∗
r by charging more than p.

This will complete the analysis of the range (p, pM ].

Proposition 4 For any l ∈ N−{1, 2} such that kl < k2, Πl(p, φ−l) < Π∗
l over

the range (p
(l)
M , pM ].

Proof. It is enough to remark that over any non-empty range (p
(i+1)
M , p

(i)
M ],

Πl(p, φ−l)/kl < Πi(p, φ−i)/ki = pm for any l > i+ 1, since φi(p) >
kl

ki
.

3.4 The equilibrium distributions in [p, p]

Let p ∈
⋃

r∈Z−N
Sr. Then we obtain from equations (10) and Proposition 3 that

∏

j∈N

φj(p) =
p− F (p̄)

p
(22)
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and, afterwards, from equations (9) and Proposition 2 that

φl(p) =
1

kl

p− F (p̄)

p− pm


∑

j∈N

kj +
∑

r∈Z−N

φr(p)kr −D(p)


 l ∈ N . (23)

As a consequence, also by using equation (22) again,

∑

r∈Z−N

φr(p)kr =

[
p

p− F (p̄)

]n−1
n p− pm

p


∏

j∈N

kj




1
n

−


∑

j∈N

kj −D(p)


 .(24)

Finally, from equations (23) and (24) we obtain

φl(p) =
1

kl

[
p− F (p̄)

p

] 1
n


∏

j∈N

kj




1
n

l ∈ N . (25)

Remark 1. By construction the RHS of equation (17) equals the RHS of
equation (25) for p = p, whereas it is larger than the latter for p > p. As a
consequence, the RHS of equation (24) equals zero for p = p and is positive for
p > p.

Another remark concerns a constant finding of our simulations, according to
which the RHS of equation (24) is strictly increasing over the relevant subset.
Whenever this is the case, equations (24) and (25) hold throughout [p, p] and
[p, p] =

⋃
r∈Z−N

Sr. On the other hand, we have not been able to establish

theoretically the generality of the above finding, except for the special case in
which k1+...+kn = D(pm) (see Proposition 5(v) below). Nevertheless, a general
characterization of equilibria is possible. This is what is done in the following
proposition.

Proposition 5 If k1 + ...+ km > D(pm), in any equilibrium
(i) p is the largest solution of the equation

[
p− F (p̄)

p

]n−1
n

=
p− pm

p [K −D(p)]


∏

j∈N

kj




1
n

(26)

over the range (p, p
(n)
M );
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(ii) the set of equilibrium distributions of the small firms is any set of non-
negative, continuous and non-decreasing functions no larger than 1 such that

∑

r∈Z−N

φr(p)kr =

min
y∈[p,p]





[
y

y − F (p̄)

]n−1
n y − pm

y


∏

j∈N

kj




1
n

−


∑

j∈N

kj −D(y)








(27)

over the range [p, p];
(iii) the equilibrium distributions of the large firms are uniquely determined

by the equations

φi(p) =
1

ki



p− pm

p

∏
j∈N

kj

∑
j∈N

kj +
∑

r∈Z−N
φr(p)kr −D(p)




1
n−1

(28)

over the range [p, p];
(iv) Πr(p, φ−r) < Π∗

r over the range (p, pM ], each r ∈ Z −N .
(v) If k1 + ...+ kn = D(pm), then the RHS of equation (24) is increasing in

the whole range [p, p], so that [p, p] =
⋃

r∈Z−N Sr, and p < p
(n)
M 6 pM ; p is the

single solution of the equation


p−pm

p

∏

j∈N

kj




1
n

− [K −D(p)] = 0 (29)

over the range (p, p
(n)
M ); the set of equilibrium distributions of the small firms

is, over the range [p, p], any set of non-negative, continuous and non-decreasing
functions no larger than 1 such that

∑

r∈Z−N

φr(p)kr =


p−pm

p

∏

j∈N

kj




1
n

−


∑

j∈N

kj −D(p)


; (30)

the equilibrium distributions of the large firms are uniquely determined by the
equations (28) over the range [p, p]; Πr(p, φ−r) < Π∗

r over the range (p, pM ],
each r ∈ Z −N .

Proof. (i) By definition p is a solution to equation (26) and p < p < p
(n)
M

because of Proposition 2(v)&(viii). Note, furthermore, that the RHS of (26) is
lower (higher) than the LHS at any p where the RHS of (24) is lower (higher)

than
∑

j∈Z−N
kr. Over (p, p

(n)
M ) equation (26) has an odd number of solutions.

Indeed, since the RHS of equation (24) equals zero at p (Remark 1), the RHS
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of equation (26) is smaller than the LHS at p too. On the other side, the RHS

of equation (26) is larger than the LHS at p
(n)
M . In order to recognize this fact,

we obtain from equations (11) and (21) for i = n, that

F (p
(n)
M ) =


1−

1∏
j∈N

kj



p
(n)
M − pm

p
(n)
M

∏
j∈N

kj

K −D(p
(n)
M )




n
n−1


 p

(n)
M

and since F (p
(n)
M ) < F (p̄) because of Proposition 2(viii), we obtain that the

RHS of equation (26) is larger than the LHS at p
(n)
M .

Let us say that a solution is odd if there is a left neighbourhood in which
the RHS of equation (26) is smaller than the LHS, whereas a solution is even
if there is a left neighbourhood in which the RHS of equation (26) exceeds the
LHS. Let p′ be an odd solution differing from the largest one and p′′ be the
lowest even solution larger than p′. Clearly, p 6= p′′ since the RHS of equation
(24) is decreasing for p less than and close enough to p′′ whereas, because of
Proposition 2(vi), p ∈

⋃
r∈Z−N

Sr on some left neighbourhood of p. Nor can it be

that p = p′. Under such an event,
∑

r∈Z−N
φr(p)kr =

∑
r∈Z−N

kr is larger than the

RHS of equation (24) in a right neighbourhood of p′′ that is part of
⋂

i∈N
Si (see

Proposition 2(v)-(vi)) and therefore φj(p) is lower than the RHS of equation
(25) (each j ∈ N ), but then F (p) = F (p), an obvious contradiction.

(ii)-(iii) The RHS of equation (27) is a non-decreasing function that equals 0
at p, also because of Remark 1, and equals

∑
r∈Z−N

kr at p. Whenever the RHS of

equation (27) is increasing, it equals the RHS of equation (24) and the RHS of
equation (28) equals the RHS of equation (25). Therefore F (p) = F (p) whenever
the RHS of equation (27) is increasing. Over any range (p′, p′′) ⊂ [p, p] in which
the RHS of equation (27) is constant, it is lower than the RHS of equation (24)
and the RHS of equation (28) is higher than the RHS of equation (25). Therefore
F (p) < F (p), consistent with the fact that (p′, p′′) ∩ (∪r∈Z−NSr) = ∅.

(iv) Since
∑

r∈Z−N
φr(p)kr =

∑
r∈Z−N

kr is lower than the RHS of equation (24)

over the range (p, p
(n)
M ] (see the proof of part (i)), over the same range φl(p) is

larger than the RHS of equation (25), each l ∈ N , and, as a consequence, F (p) <

F (p). If kn < k2, so that p
(n)
M < pM , then F (p) = p

[
1− φ1(p)

p−pm

p
k1

K−D(p)

]
<

pm < F (p) over the range (p
(n)
M , pM ). The first inequality derives from φ1(p) >

φ1(p
(n)
M ) = kn

k1
> K−D(p)

k1
, whereas the last inequality holds since inequality (5)

is strict and Proposition 2(iii) holds.
(v) Because of Proposition 2(iii), p = F (p) = pm. As a consequence, equa-

tion (24) can be written as equation (30) and equation (26) can be written as
equation (29). The derivative of the RHS of equation (30) is positive if, and
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only if,

pm


∏

j∈N

kj




1
n

+m

(
p−pm

p

)n−1
n

p2D′(p) > 0. (31)

The LHS of inequality (31) is a strictly decreasing function in the range [pm, pM ]
since the second addend is strictly decreasing due to the strict concavity of
pD(p). This is enough since the LHS of inequality (31) is by definition non-

negative for p = p. Now we will prove that p < p
(n)
M = pM . Because of

Proposition 2(viii) we can concentrate on the case in which k2 = kn and K −
kn = D(pM ) > K − k1 (the inequality is a consequence of Proposition 1(2)).

In this case the RHS of equation (30) equals
∑

r∈Z−N kr also at pM = p
(n)
M .

Nevertheless, at p = pM , the LHS of inequality (31) is negative since, because of

the fact that p2MD′(pM ) = −pmk1, it equals pmk
1
n

1 k
n−1
n

2 −n
(

pM−pm

pM

)n−1
n

pmk1 =

pmk
1
m

1

[
k

n−1
n

2 − n
(

pM−pm

pM
k1

)n−1
n

]
= pmk

1
n

1 (1−m) [K −D(pM )]
n−1
n < 0, the

last equality deriving since pM−pm

pM
= φ

1
(pM ) = k2

k1
. Hence, because of quasi-

concavity of the RHS, equation (29) has two solutions in the range [p, pM ]:
the former is p, the latter is pM . Clearly, over the range (p, pM ), the RHS of
equation (30) is higher than

∑
r∈Z−N kr. Therefore, Πr(p, φ−r) < Π∗

r over that
range and Πr(pM , φ−r) < Π∗

r .

Remark 2. There is a continuum of profiles of equilibrium distributions
for the small firms, and this is so whether or not the RHS of equation (24) is
strictly increasing over the relevant subset. The continuum of equilibria includes
one in which the equilibrium distributions are the same for each small firm: at
the ”symmetric” equilibrium, the equilibrium distribution is

φr(p) =

[
p

p−F (p̄)

]n−1
n p−pm

p

(
∏

j∈N
kj

) 1
n

−

[
∑
j∈N

kj −D(p)

]

∑
r∈Z−N

kr

for any p ∈
⋃

r∈Z−N
Sr (each r ∈ Z −N ).

Some considerations are in order about the role played by firms r ∈ Z −N .
Although the total capacity of these firms is fairly small, their impact on the
equilibrium may well be sizeable. Simple comparative statics will help to see
this point. Take the number and capacities of the small firms as an independent
variable while keeping fixed the number and capacities of the large firms. Of
course, mere reshuffling of capacities among the small firms would not affect
the continuum of equilibria: so long as

∑
r∈Z−N

kr does not change, Si and Π∗
i

(each i ∈ N ),
∑

r∈Z−N
Π∗

r and ∪Sr∈Z−N remain unchanged. On the other hand,
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there is room for a significant (upward or downward) change in ξ :=
∑

r∈Z−N
kr

that does not violate inequalities (5) and (6): any such change would have a
considerable impact on the equilibria. The resulting change of the equilibrium
payoff is ∆Π∗

1 ≈ −pM∆ξ for the largest firm and ∆Π∗
i ≈ − ki

k1
pM∆ξ for any large

firm; thus, for each large firm, the proportional change in the equilibrium payoff

is
∆Π∗

i

Π∗
i

≈ − ∆ξ

D(pM )−
∑
j 6=1

kj
, which may be far from negligible, as the example in

the following subsection illustrates.

3.5 Numerical example

A numerical example will be helpful in several respects, first of all to illustrate
our theoretical findings. Let n = 5, D(p) = 22 − p, k1 = 9.2, k2 = 8.5, k3 = 6,
k4 = 0.4, k5 = 0.2. Then pM = 3.45, pm = p̂ = 1.29375, Π∗

1 = pmk1 = 11.9025,
and Π∗

2 = pmk2 = 10.996875. Since k1+k2+k3 = 23.7 > D(pm) = 20.70625 and
D(pM ) = 18.55 > K − k3 = 18.3, then firms 1, 2, and 3 are ”large” firms, con-
sequently Π∗

3 = pmk3 = 7.7625, and firms 4 and 5 are ”small” firms. Inequality
(5) is strict and hence L = {1, 2, 3}. According to equations (17), over the range

[pm, p], φ1(p) =
1
9.2

√
469.2p−1.29375

p(1.7+p) , φ2(p) =
1
8.5

√
469.2p−1.29375

p(1.7+p) and φ3(p) =

1
6

√
469.2p−1.29375

p(1.7+p) ; hence, G(p)kr = p

[
1− 21.66102489

(
p−1.29375
p(1.7+p

) 3
2

]
kr (r =

3, 4) over the range [pm, p̃
(3)
M ] = [1.29375; 1.761639635]. Then it is found that

argmax
p∈(pm,p̃

(3)
M

)
G(p) = 1.330357324, implying that F (p) = 1.305422514 and

hence Π∗
4 = F (p)k4 = 0.5221690056 and Π∗

5 = F (p)k5 = 0.2610845028. Over
the set ∪r∈{4,5}Sr, (φ4(p), φ5(p)) is any pair of continuous and non-decreasing
functions such that equation (24) holds, namely:

0.4φ4(p)+0.2φ5(p) =
p− 1.29375

p

(
p

p− 1.305422514

) 2
3

469.20
1
3 −1.7−p (32)

The RHS of equation (32) is strictly increasing throughout [p, p̃
(3)
M ], implying

that ∪r∈{4,5}Sr = [p, p], where p = 1.423433842, the single value of p ∈ [p, p̃
(3)
M ]

such that the RHS of (32) is equal to 0.6. According to equations (25), over the

range [p, p] = [1.330357324; 1.423433842], φ1(p) = 1
9.2

(
469.2p−1.305422514

p

) 1
3

,

φ2(p) =
1
8.5

(
469.2p−1.305422514

p

) 1
3

, and φ3(p) =
1
6

(
469.2p−1.305422514

p

) 1
3

.

Over the range (p, p
(3)
M ] = (1.423433842; 1.911346695], φ1(p) =

1
9.2

√
p−1.29375
p(2.3+p) 469.2,

φ2(p) =
1
8.5

√
p−1.29375
p(2.3+p) 469.2 and φ3(p) =

1
6

√
p−1.29375
p(2.3+p) 469.2; p

(3)
M = 1.911346695.

Over the remaining range (p
(3)
M , pM ] = (1.911346695; 3.45], φ1(p) = 8.5p−1.29375

p(2.3+p)

and φ2(p) = 9.2p−1.29375
p(2.3+p) : of course, φ2(pM ) = 1 while φ1(pM ) = k2

k1
= 8.5

9.2 =
0.9239130437.
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A few variants of this numerical example also allow us to assess the role
played by the small firms. Suppose that, other things being equal, the total
capacity of the small firms decreases from 0.6 to zero. This would result in a
sizeable increase in pM , pm, and Π∗

i (each i ∈ N ): Π∗
1 would rise to 14.0625,

meaning that Π∗
i (each i ∈ N ) would increase approximately by 18.15 percent.

Or let total capacity of the small firms increase from 0.6 to 1.1, no matter
whether their number change. Note that firms 1, 2, and 3 are still ”large” firms
while the remaining firms are still ”small” firms in that inequalities (5) and
(6) still hold. By straightforward computation it is found that the equilibrium
payoff of firm 1 would now fall to 10.24, meaning a fall by approximately 13.97
percent for each large firm, compared to the initial industry structure.

4 Concluding remarks

This paper is a further contribution to the analysis of equilibria of the price
game in a setting of given capacities. We in fact characterized the equilibria
in a specific subset of the no-pure strategy equilibrium region of the capacity
space, the subset where, according to a well-defined distinction, there are ”large”
firms along with ”small” firms. It was found that, with an industry structure
like this, the interval between the minimum price pm and maximum price pM
being quoted in equilibria can be partitioned into three intervals, [pm, p), [p, p],
and (p, pM ], where p and p are, respectively, the minimum and the maximum
of the union of the supports of the small firms. The first part is empty in a
limit case, whereas the other two are never so. As is the case for all firms
in the ”quasi-symmetric” oligopoly (De Francesco and Salvadori [7]), it was
shown, first of all, that the minimum price pm is the minimum of the support
of the equilibrium strategy for any large firm and, second, that for any large
firm the support is an interval which, for any large firm smaller than firm 2,
is smaller than for any larger firm. We determined the equilibrium payoffs for
all firms and we saw that, for firms of the same type, the equilibrium payoffs
are proportional to capacities. Except in the limit case in which p = pm, the
equilibrium payoff per unit of capacity is larger for the small firms and we
saw that p, and correspondingly the equilibrium payoff of each small firm, is
the solution of a virtual maximization problem facing any small firm. Finally,
although a continuum of equilibrium distributions exist for the small firms, the
capacity-weighted sum of these distributions is the same at each equilibrium
and hence the union of the supports of their equilibrium strategies is also the
same.

To conclude, there is undoubtedly still a long way to go before the equilibria
of the price game among capacity-constrained sellers across the whole region of
no-pure strategy equilibria are characterized. Yet it is encouraging that such
a task could be performed for the bipolarized distribution of total capacity
assumed in the present paper. It seems reasonable to expect that the findings
obtained - most notably, the procedure to determine the equilibrium payoff
and the minimum price for the relatively small firms - may also be helpful to
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characterize equilibria in parts of that region that lie somewhere in between the
symmetric and ”quasi-symmetric” case (De Francesco and Salvadori [7]) and
the bipolarized industry structure of this paper.
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