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Abstract

This study explores the dynamic effects of patent policy on innovation and income
inequality in a Schumpeterian growth model with endogenous market structure and
heterogeneous households. We find that strengthening patent protection has a positive
effect on economic growth and a positive or an inverted-U effect on income inequality
when the number of differentiated products is fixed in the short run. However, when
the number of products adjusts endogenously, the effects of patent protection on growth
and inequality become negative in the long run. We also calibrate the model to US
data to perform a quantitative analysis and find that the long-run negative effect of
patent policy on inequality is much larger than its short-run positive effect. This result
remains consistent with our empirical finding from a panel vector autoregression.
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1 Introduction

A recent study by Aghion et al. (2019) provides empirical evidence to show that innovation
and income inequality have a positive relationship. However, innovation and income inequal-
ity are both endogenous variables; therefore, it would be interesting to see how they are both
affected by an exogenous factor. Many growth-theoretic studies have explored the effects of
patent policy on innovation in the macroeconomy, but these studies often do not consider
its microeconomic implications on the income distribution. Therefore, this study analyzes
the effects of patent policy on innovation and inequality. Furthermore, the Schumpeterian
growth model that we develop allows us to analytically show how the effect of patent policy
on income inequality changes over time. The tractability of this dynamic analysis enables us
to compare the transition path of income inequality derived from the growth model to the
impulse response function estimated from a panel vector autoregression (VAR).
We introduce heterogeneous households into a Schumpeterian model with endogenous

market structure to explore the effects of patent protection on economic growth and income
inequality. The Schumpeterian model with endogenous market structure is based on Peretto
(2007, 2011) and features both horizontal innovation (i.e., the development of new products)
and vertical innovation (i.e., the quality improvement of products). Although endogenous
market structure gives rise to transition dynamics in the aggregate economy, the wealth dis-
tribution of households is stationary (as an equilibrium outcome) along the entire transition
path due to the stationary consumption-output and consumption-wealth ratios. This useful
property makes our analysis tractable. Upon deriving the autonomous dynamics of the aver-
age firm size, we are able to also derive the dynamics of economic growth and the evolution
of the income distribution (given a general wealth distribution).
In this growth-theoretic framework, we find that strengthening patent protection leads to

a higher growth rate and causes a positive or an inverted-U effect on income inequality when
the number of differentiated products is fixed in the short run. However, when the number
of products adjusts endogenously, the effects of patent protection on economic growth and
income inequality become negative in the long run. The intuition of these results can be
explained as follows.
Stronger patent protection confers more market power to monopolistic firms, which then

charge a higher markup and earn more profits. As a result, strengthening patent protection
has a positive effect on innovation and economic growth when the number of firms is fixed in
the short run. However, the increased profitability also attracts the entry of new firms, which
in turn reduces the market share captured by each firm. Given that it is the firm size that
determines the incentives for quality-improving innovation,1 the entry of new firms caused by
stronger patent protection stifles quality-improving innovation,2 which determines long-run
growth.3 These contrasting effects of patent protection on economic growth at different time
horizons have novel implications on the dynamics of income inequality.
In our model, households own different amounts of wealth. This wealth inequality gives

1See Cohen and Klepper (1996a, b) and Laincz and Peretto (2006) for empirical evidence.
2See Jaffe and Lerner (2004), Bessen and Meurer (2008) and Boldrin and Levine (2008) for evidence.

Boldrin and Levine (2008) even suggest to abolish the patent system entirely.
3See Peretto and Connolly (2007) for a theoretical explanation on why vertical innovation, instead of

horizontal innovation, drives growth in the long run and Garcia-Macia et al. (2019) for empirical evidence.
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rise to income inequality; see Piketty (2014) for evidence on the importance of wealth in-
equality on income inequality. Given that asset income is determined by the rate of return
on assets and the value of assets, an increase in either the real interest rate or asset value
would raise income inequality; see Madsen (2017) for evidence that asset returns are an
important determinant of income inequality. As a result, strengthening patent protection
has the following effects on income inequality in the short run. The positive effect of patent
protection on the equilibrium growth rate leads to a higher interest rate through the Euler
equation of the households; therefore, strengthening patent protection has a positive effect on
income inequality by increasing the equilibrium growth rate and the real interest rate in the
short run. This dynamic-general-equilibrium effect is also present in previous studies, such
as Chu (2010) and Chu and Cozzi (2018), who focus on quality improvement without variety
expansion. In our model, endogenous entry gives rise to a novel effect. The larger markup
as a result of stronger patent protection reduces the demand for intermediate goods, which
in turn reduces the value of assets through the entry condition of new products. Therefore,
strengthening patent protection also has a negative effect on income inequality.
The above positive and negative effects together generally give rise to an inverted-U re-

lationship between patent protection and income inequality in the short run. However, it
is also possible to have only a positive relationship between patent protection and income
inequality over the permissible range of the policy instrument. In the long run, the effect of
patent protection on economic growth becomes negative (due to endogenous market struc-
ture) as explained before. Therefore, the effect of patent protection on the real interest rate
also becomes negative, and hence, strengthening patent protection has a negative effect on
income inequality by decreasing the equilibrium growth rate and the real interest rate in the
long run. Finally, we calibrate the model to US data to perform a quantitative analysis and
find that the long-run negative effect of patent protection on income inequality is much larger
than its short-run positive effect. This dynamic pattern of income inequality is consistent
with the impulse response function estimated from a panel VAR.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which economic growth is driven by the
invention of new products. Aghion and Howitt (1992), Grossman and Helpman (1991) and
Segerstrom et al. (1990) consider an alternative growth engine that is the innovation of
higher-quality products and develop the Schumpeterian growth model. Subsequent stud-
ies, such as Smulders and van de Klundert (1995), Peretto (1998, 1999) and Howitt (1999),
develop the second-generation Schumpeterian model with both vertical and horizontal inno-
vation.4 This study contributes to the literature by developing a second-generation Schum-
peterian model with heterogeneous households to explore the effects of patent protection.
Other studies also explore the effects of patent protection on innovation in the R&D-based

growth model; see for example, Cozzi (2001), Li (2001), Goh and Olivier (2002), Furukawa
(2007), Futagami and Iwaisako (2007), Horii and Iwaisako (2007), Chu (2009, 2011), Ace-
moglu and Akcigit (2012), Iwaisako (2013), Iwaisako and Futagami (2013), Kiedaisch (2015),
Chu et al. (2016) and Yang (2018, 2020). These studies focus on models with a representative
household; therefore, they do not consider the effects of patent protection on income inequal-

4See Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)
for empirical evidence that supports the second-generation Schumpeterian model.
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ity. This study contributes to the literature by applying an R&D-based growth model with
heterogeneous households to explore the effects of patent protection on income inequality in
addition to innovation and economic growth.5

Some studies in the literature consider heterogeneous workers and explore the effects
of innovation on the skill premium or more generally wage inequality; see for example,
Acemoglu (1998, 2002), Spinesi (2011), Cozzi and Galli (2014) and Grossman and Helpman
(2018). This study complements them by assuming wealth heterogeneity rather than worker
heterogeneity and by analyzing income inequality rather than wage inequality. Some studies
in the literature also explore the relationship between income inequality and innovation
in the R&D-based growth model; see for example, Chou and Talmain (1996), Zweimuller
(2000), Foellmi and Zweimuller (2006), Jones and Kim (2018) and Aghion et al. (2019).
Our study relates to these interesting studies by exploring how patent policy influences
the relationship between innovation and inequality. Chu (2010), Chu and Cozzi (2018)
and Kiedaisch (2020) also explore the effects of patent policy on innovation and inequality.6

However, all the above-mentioned studies feature either vertical or horizontal innovation; as a
result, they do not feature endogenous market structure. Furthermore, instead of focusing on
a stationary income distribution, the tractability of our model allows us to analytically derive
the evolution of the income distribution without imposing any parametric assumption on the
wealth distribution. We find that endogenizing the market structure has novel implications
on the dynamic effects of patent protection on income inequality.
The rest of this study is organized as follows. Section 2 presents some stylized facts.

Section 3 presents the model. Section 4 analyzes the dynamics of the model. Section 5
explores the effects of patent policy. Section 6 concludes. Appendix A contains the proofs.

2 Stylized facts

This study examines whether changes in the strength of patent protection affect income in-
equality. The Ginarte-Park index of patent rights is a standard measure of patent strength
across countries; see Ginarte and Park (1997). Many studies use this index to estimate the
effects of patent strength on innovation;7 however, only a few studies explore the effects of
patent strength on income inequality. A notable example is Adams (2008) who considers
static panel regressions and finds that patent strength has a positive effect on income in-
equality, which is consistent with the positive short-run effect (but does not capture the
negative long-run effect) from our panel VAR analysis.

5This study also relates to the patent-design literature, in which Nordhaus (1969) provides the seminal
study of patent length. Subsequent studies by Gilbert and Shapiro (1990) and Klemperer (1990) explore
patent breadth. See Scotchmer (2004) for a comprehensive review of this literature, which differs from the
approach in this study by considering partial equilibrium instead of dynamic general equilibrium.

6Chu et al. (2019) explore the effects of monetary policy in a monetary Schumpeterian growth model with
heterogenous households. Like this study, their model features a complete market, which is different from
the interesting framework in Bilbiie and Ragot (2020) and Bilbiie et al. (2020), who consider heterogeneous
households in the monetary New Keynesian model with idiosyncratic shocks and incomplete markets.

7See for example Park (2005, 2008) for a discussion.
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Although the Ginarte-Park index is very influential in the literature, it is not available
at an annual frequency (available at a quinquennial frequency only), which prevents us from
using the index in our panel VAR analysis. Instead, we measure patent protection by using
total patent counts, which is an annual time series being useful for a shock analysis. We have
plotted the correlation between patent count and the Ginarte-Park index in Figure 1, which
is clearly positive on average, indicating that countries with stronger patent rights tend to
have higher patent counts. This empirical correlation may be driven by many forces, but
it is consistent with our theoretical model in which stronger patent protection increases the
number of patented products.8

Figure 1

We compile country-level data on income inequality and patent counts. The data series
are in annual frequency, giving us an unbalanced panel of 89 countries from 1980 to 2017.
The Gini index of household income inequality comes from the Standardized World Income
Inequality Database, whereas the number of patents is taken from the World Development
Indicators of the World Bank. Table 1 reports the descriptive statistics.

Table 1: Descriptive statistics

Mean p50 SD Min Max Obs

Patent_Index 2.301 2.183 1.189 0.000 5.000 1349

Log patent 7.133 7.196 2.230 0.693 13.913 2465

Gini 0.460 0.462 0.069 0.174 0.762 2465

We carry out a shock analysis in a panel VAR to examine the dynamic relationship be-
tween income inequality and patents.9 We estimate a recursive panel VAR with a maximum
of 3 lags to capture the dynamics in the data and identify a patent shock by applying the

8See the discussion in footnote 21.
9See Appendix C for a formal description of the panel VAR.
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usual Choleski decomposition of variance-covariance matrix of residuals. We estimate the
panel VAR using the GMM estimator in Abrigo and Love (2016),10 which can better deal
with unobserved country heterogeneity, especially in fixed t and large n settings, providing
consistent estimate of the mean effects across countries. We specify the following ordering
for the 2 × 1 vector of variables [patents, inequality] in order to identify the patent shock.
The reason behind this specific recursive ordering stems from the theoretical ordering of
the variables that should run from the more exogenous variable to the less exogenous one.
The variable, patents, is ordered first and followed by inequality. By undertaking a panel
VAR-Granger causality Wald test, we find patents to be exogenous among the variables.
Our aim here is to track the response of income inequality due to a shock in patents, using

a panel VAR in a bivariate setting as a benchmark: the log of patents and income inequality.
As efficiency can be improved by including a longer set of lags in GMM estimation, we
estimate the VAR using 3 lags and plot the estimated response coefficients up to a forecast
horizon of 10 years. The panel VAR approach helps us assess the common response for the
countries to a patent shock.

Figure 2 Figure 3

Figure 2 shows the bootstrapped impulse responses to a patent shock, together with
plus/minus one standard-error confidence bands, obtained by bootstrapping (1000 draws).
For a one standard deviation positive shock in patents, income inequality initially increases
and then the median response converges to a negative level in the long run. The shaded
curves represent the confidence interval around the estimated response functions, computed
from a typical Monte Carlo integration exercise with 1000 draws, for statistical significance.
Following Uhlig (2005) and Alessandri and Mumtaz (2019), we construct 68% confidence
bands around the median estimate. The eigenvalue stability condition graph in Figure
3 suggests that as all the eigenvalues lie inside the unit circle, the panel VAR satisfies the
stability condition. Although the short-run positive response of income inequality to a patent
shock is small, the novel finding here is the large negative response of inequality in the long

10This estimator is essentially a difference GMM, but the differencing is based on forward orthogonal
deviations, instead of the usual first-differencing.
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run, which is consistent with our simulation results and remains robust even if we extend
the panel VAR to a multivariate setting or consider top income inequality as an alternative
measure of income inequality; see the robustness checks in Appendix C.

3 A Schumpeterian growth model with heterogeneous

households and endogenous market structure

The Schumpeterian model with in-house R&D and endogenous market structure is based on
Peretto (2007, 2011), which features creative accumulation instead of creative destruction.11

Chu et al. (2016) introduce patent protection into the Peretto model to explore its effects on
innovation and economic growth. We further introduce heterogeneous households into the
model to analyze the effects of patent protection and endogenous market structure on eco-
nomic growth and income inequality. Our analysis provides a complete closed-form solution
for economic growth and the income distribution on the transition path and the balanced
growth path.

3.1 Heterogeneous households

The economy features a unit continuum of households, which are indexed by h ∈ [0, 1]. The
households have identical homothetic preferences over consumption but own different levels
of wealth. The utility function of household h is given by

U(h) =

∞∫

0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 determines the rate of subjective discounting and ct(h) is house-
hold h’s consumption of final good (numeraire). Household h maximizes (1) subject to

ȧt(h) = rtat(h) + wtL− ct(h). (2)

at(h) is the real value of assets owned by household h, and rt is the real interest rate.
Household h supplies L units of labor to earn a real wage rate wt.

12 From standard dynamic
optimization, the familiar Euler equation is

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct = rt − ρ, where ct ≡

∫ 1
0
ct(h)dh is aggregate consumption.

11See Garcia-Macia et al. (2019) for evidence supporting the notion that creative accumulation is the main
driving force of innovation.
12Our results are robust to allowing for population growth. Derivations are available upon request.
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3.2 Final good

Competitive firms produce final good Yt using the following production function:

Yt =

∫ Nt

0

Xθ
t (i)[Z

α
t (i)Z

1−α
t Lt/Nt]

1−θdi, (4)

where {θ, α} ∈ (0, 1). Xt(i) denotes the quantity of non-durable intermediate good i ∈
[0, Nt], and Nt is the mass of available intermediate goods at time t. The productivity of
intermediate good Xt(i) depends on its own quality Zt(i) and also on the average quality

Zt ≡
1
Nt

∫ Nt
0
Zt(i)di of all intermediate goods capturing technology spillovers. The private

return to quality is determined by α, and the degree of technology spillovers is determined
by 1−α. The term Lt/Nt captures a congestion effect of variety and removes the scale effect
in the model.13

Profit maximization yields the following conditional demand functions for Lt and Xt(i):

Lt = (1− θ)Yt/wt, (5)

Xt(i) =

(
θ

pt(i)

)1/(1−θ)
Zαt (i)Z

1−α
t Lt/Nt, (6)

where pt(i) is the price ofXt(i). Competitive producers of final good pay θYt =
∫ Nt
0
pt(i)Xt(i)di

for intermediate goods. The market-clearing condition for labor implies Lt = L for all t.

3.3 Intermediate goods and in-house R&D

The monopolistic firm in industry i produces the differentiated intermediate good with a
linear technology that requiresXt(i) units of final good to produceXt(i) units of intermediate
good i ∈ [0, Nt]. Furthermore, the firm in industry i incurs φZαt (i)Z

1−α
t units of final good

as a fixed operating cost. To improve the quality of its product, the firm also devotes Rt(i)
units of final good to R&D. The innovation specification is given by

Żt(i) = Rt(i). (7)

In industry i, the monopolistic firm’s (before-R&D) profit flow at time t is

Πt(i) = [pt(i)− 1]Xt(i)− φZ
α
t (i)Z

1−α
t . (8)

The value of the monopolistic firm in industry i is

Vt(i) =

∫
∞

t

exp

(
−

∫ s

t

rudu

)
[Πs(i)−Rs(i)] ds. (9)

The monopolistic firm in industry i maximizes (9) subject to (6), (7) and (8). The current-
value Hamiltonian for this optimization problem is

Ht(i) = Πt(i)−Rt(i) + ηt(i)Żt(i), (10)

13Our results are robust to parameterizing this congestion effect as Lt/N
1−ξ
t , where ξ ∈ (0, 1). See the

discussion in footnote 20.
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where ηt(i) is the co-state variable on (7).
We solve this optimization problem in the Appendix and derive the unconstrained profit-

maximizing markup ratio given by 1/θ. To analyze the effects of patent breadth, we introduce
a policy parameter µ > 1, which determines the unit cost for imitative firms to produce
Xt(i) with the same quality Zt(i) as the monopolistic firm in industry i.14 In general, the
parameter µ captures the market power of monopolistic firms. Here we consider the case, in
which a larger patent breadth µ increases the production cost of imitative firms and allows
the monopolistic producer of Xt(i), who owns the patent, to charge a higher markup without
losing her market share to potential imitators.15 Therefore, the equilibrium price becomes

pt(i) = min {µ, 1/θ} . (11)

We assume µ < 1/θ. In this case, a larger patent breadth µ leads to a higher markup, and
this implication is consistent with Gilbert and Shapiro’s (1990) seminal insight on “breadth
as the ability of the patentee to raise price”.
We follow previous studies to consider a symmetric equilibrium in which Zt(i) = Zt

for i ∈ [0, Nt]. In this case, the size of intermediate-good firms is also identical across all
industries, such that Xt(i) = Xt.

16 From (6) and pt(i) = µ, the quality-adjusted firm size is

Xt

Zt
=

(
θ

µ

)1/(1−θ)
L

Nt
. (12)

We define the following transformed variable:17

xt ≡ µ
1/(1−θ)Xt

Zt
= θ1/(1−θ)

L

Nt
. (13)

xt is a state variable that is determined by the quality-adjusted firm size Xt/Zt, which in
turn depends on L/Nt.

18 Lemma 1 derives the rate of return on quality-improving R&D,
which is increasing in xt and µ.

Lemma 1 The rate of return to in-house R&D is given by

rqt = α
Πt
Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
. (14)

Proof. See the Appendix.

14Here we assume a diffusion of knowledge from the monopolistic firm to imitators.
15Intuitively, the presence of monopolistic profits attracts potential imitators. However, stronger patent

protection increases the production cost of imitative products and allows monopolistic firms to charge a
higher markup without losing market share to these potential imitators; see also Li (2001), Goh and Olivier
(2002), Chu (2011) and Iwaisako and Futagami (2013) for a similar formulation.
16Symmetry also implies Πt(i) = Πt, Rt(i) = Rt and Vt(i) = Vt.
17This definition has the advantage that a change in µ does not directly affect xt.
18Given a fixed L, the number of firms Nt converges to a steady state, at which point the firm size xt also

reaches a steady state.
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3.4 Entrants

Following previous studies, we assume that entrants have access to aggregate technology Zt
to ensure symmetric equilibrium at any time t. A new firm pays βXt units of final good to
set up its operation and enter the market with a new product (which will be protected by a
patent). β > 0 is a cost parameter, and the cost function βXt captures the case in which the
setup cost is increasing in the initial output volume of the firm. The asset-pricing equation
determines the rate of return on assets as

rt =
Πt −Rt
Vt

+
V̇t
Vt
. (15)

The free-entry condition is given by19

Vt = βXt. (16)

Substituting (7), (8), (13), (16) and pt(i) = µ into (15) yields the return on entry as

ret =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
−
φ+ zt
xt

]
+
ẋt
xt
+ zt, (17)

where zt ≡ Żt/Zt is the growth rate of aggregate quality.

3.5 General equilibrium

The equilibrium is a time path of allocations {at, ct, Yt, Xt(i), Rt(i)} and prices {rt, wt, pt(i), Vt (i)}
such that the following conditions are satisfied:

• households maximize utility taking {rt, wt} as given;

• competitive firms produce Yt and maximize profits taking {pt(i), wt} as given;

• monopolistic firms produce Xt(i) and choose {pt(i), Rt(i)} to maximize Vt(i) taking rt
as given;

• entrants make entry decisions taking Vt as given;

• the value of all existing monopolistic firms adds up to the value of the households’
assets such that NtVt =

∫ 1
0
at(h)dh ≡ at;

• the market-clearing condition of labor holds such that Lt = L; and

• the following market-clearing condition of final good holds:

Yt = ct +Nt(Xt + φZt +Rt) + ṄtβXt. (18)

19We treat entry and exit symmetrically (i.e., the scrap value of exiting an industry is also βXt); therefore,
Vt(i) = βXt always holds. If Vt > βXt (Vt < βXt), then there would be an infinite number of entries (exits).
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3.6 Aggregation

Substituting (6) into (4) and imposing symmetry yield the following aggregate production
function:

Yt = (θ/µ)
θ/(1−θ)ZtL, (19)

which also uses markup pricing pt(i) = µ. Therefore, the growth rate of output is

Ẏt
Yt
= zt, (20)

which is determined by the quality growth rate zt.
20

4 Dynamics

In this section, we analyze the dynamics of the model. Section 4.1 presents the dynamics
of the aggregate economy. Section 4.2 summarizes the dynamics of the wealth distribution,
whereas Section 4.3 summarizes the dynamics of the income distribution.

4.1 Dynamics of the aggregate economy

We now analyze the dynamics of the economy. In the Appendix, we show that the consumption-
output ratio ct/Yt jumps to a unique and stable steady-state value. This equilibrium prop-
erty simplifies the analysis of transition dynamics and ensures the stationarity of the wealth
distribution even on the transition path.

Lemma 2 The consumption-output ratio jumps to a unique and stable steady-state value:

ct
Yt
=
βθρ

µ
+ 1− θ. (21)

Proof. See the Appendix.

Equation (21) implies that for any given µ, consumption and output grow at the same
rate given by

gt ≡
Ẏt
Yt
=
ċt
ct
= rt − ρ, (22)

20Parameterizing the congestion effect as L/N1−ξ
t in (4) would yield Yt = (θ/µ)θ/(1−θ)ZtN

ξ
t L in which

the output growth rate is Ẏt/Yt = zt + ξṄt/Nt, which is still determined by the rate of return r
q
t in (14) on

quality-improving R&D as (22) and (23) show. The effects of patent protection on Ẏt/Yt would remain the
same; however, the welfare effect and the optimal level of patent protection would be affected by ξ because
patent protection affects Nt, which in turn affects the levels of output and consumption when ξ > 0.

11



where the last equality uses the Euler equation in (3). Substituting (14) into (22) yields the
growth rate of output given by

gt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (23)

which depends on the state variable xt. Then, (20) implies that the quality growth rate is
also given by

zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (24)

which is positive if and only if

xt > x ≡
µ1/(1−θ)

µ− 1

( ρ
α
+ φ

)
. (25)

Intuitively, innovation requires the firm size to be large enough so that it is profitable for
firms to do in-house R&D. For the rest of the analysis, we assume that xt > x. In this case,
the dynamics of xt is derived in Lemma 3.

Lemma 3 The dynamics of xt is determined by an one-dimensional differential equation:

ẋt = µ
1/(1−θ)

[
(1− α)φ− ρ

β

]
−
(1− α) (µ− 1)− βρ

β
xt. (26)

Proof. See the Appendix.

Proposition 1 Under the parameter restriction ρ < min {(1− α)φ, (1− α)(µ− 1)/β}, the
dynamics of xt is globally stable and xt gradually converges to a unique steady-state value.
The steady-state values {x∗, g∗} are given by

x∗(µ
−

) = µ1/(1−θ)
(1− α)φ− ρ

(1− α)(µ− 1)− βρ
> x, (27)

g∗(µ
−

) = α

[
(µ− 1)

(1− α)φ− ρ

(1− α)(µ− 1)− βρ
− φ

]
− ρ > 0. (28)

Proof. See the Appendix.

The differential equation in (26) shows that given an initial value x0, the state variable
xt gradually converges to its steady-state value denoted as x

∗, which also determines N∗ =
θ1/(1−θ)L/x∗.21 On the transition path, the firm size determines the rate of quality-improving
innovation and the equilibrium growth rate gt according to (23). When xt evolves toward
the steady state, gt also gradually converges to its steady-state value g

∗. The steady-state
values of {x∗, g∗} are derived in Proposition 1.

21Therefore, the number of patented products N∗ is increasing in patent protection µ, which is consistent
with Figure 1.
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4.2 Dynamics of the wealth distribution

In this section, we show that for any given xt at any time t, the wealth distribution is
stationary and determined by its initial distribution that is exogenously given at time 0.
It is useful to recall that the aggregate economy features transition dynamics determined
by the evolution of xt. However, the wealth distribution is stationary despite the transition
dynamics in the aggregate economy because the consumption-output ratio ct/Yt is stationary,
which in turn implies that the consumption-wealth ratio ct/at is also stationary as shown in
the proof of Lemma 2.
Aggregating (2) across all households yields the following aggregate asset-accumulation

equation:
ȧt = rtat + wtL− ct. (29)

Let sa,t(h) ≡ at(h)/at denote the share of wealth owned by household h. Then, the growth
rate of sa,t(h) is given by

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
−
ȧt
at
=
ct − wtL

at
−
sc,t(h)ct − wtL

at(h)
, (30)

where wtL = (1 − θ)Yt and sc,t(h) ≡ ct(h)/ct. Given that ċt(h)/ct(h) = ċt/ct = rt − ρ, the
consumption share sc,t(h) of any household h ∈ [0, 1] is stationary such that sc,t(h) = sc,0(h),
which is endogenous. Proposition 2 derives the dynamics of sa,t(h) and shows that the wealth
distribution of households is also stationary (i.e., sa,t(h) = sa,0(h), which is exogenously
given at time 0). This stationarity is due to the stationary consumption-output ct/Yt and
consumption-wealth ct/at ratios along the transition path of the aggregate economy.

Proposition 2 The dynamics of sa,t(h) is given by an one-dimensional differential equation:

ṡa,t(h) = ρ[sa,t(h)− sa,0(h)]. (31)

Also, the wealth distribution is stationary and remains the same as the initial distribution.

Proof. See the Appendix.

4.3 Dynamics of the income distribution

In this section, we show that the income distribution is endogenous and nonstationary but
still analytically tractable. Although the wealth distribution is stationary, the transition
dynamics in the aggregate economy (in particular, the transition dynamics of the real interest
rate) gives rise to an endogenous evolution of the income distribution. Therefore, once we
trace out the transition dynamics of the real interest rate, we can also trace out the transition
dynamics of income inequality.
Income received by household h is given by

It(h) = rtat(h) + wtL. (32)
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Aggregating (32) yields the aggregate level of income as

It = rtat + wtL. (33)

Let sI,t(h) ≡ It(h)/It denote the share of income received by household h. Then, we have

sI,t(h) =
rtat(h) + wtL

rtat + wtL
=

rtat
rtat + wtL

sa,0(h) +
wtL

rtat + wtL
, (34)

which determines the evolution of the share of income received by household h and allows us
to derive any moment of the income distribution. For example, the coefficient of variation
of income is defined as22

σI,t ≡

√∫ 1

0

[sI,t(h)− 1]2dh =
rtat

rtat + wtL
σa, (35)

where σa ≡
√∫ 1

0
[sa,0(h)− 1]2dh is the coefficient of variation of wealth that is exogenously

given at time 0. Here we do not impose any parametric assumption on the distribution
of sa,0(h) except that it is non-degenerate and has a well-defined standard deviation; for
example, it may capture the case in which only the top 1% households own intangible
capital from innovation as in Aghion et al. (2019).23

Equation (35) shows that income inequality σI,t is increasing in the asset-wage income
ratio rtat/(wtL) given that wealth inequality drives income inequality in our model. Propo-
sition 3 derives the equilibrium expression for σI,t at any time t. Let’s define a composite
parameter Θ ≡ (1− θ)/(θβ).

Proposition 3 The degree of income inequality at any time t is given by

σI,t =
1

1 + µΘ/rt
σa =

1

1 + µΘ/(ρ+ gt)
σa. (36)

Proof. See the Appendix.

22In Appendix B, we show that the Gini coefficient of income is also given by σI,t =
rtat

rtat+wtL
σa when σa

is defined as the Gini coefficient of wealth.
23From (34), the top ε income share at time t is given by

∫ 1

1−ε

sI,t(h)dh =
rtat

rtat + wtL

∫ 1

1−ε

sa,0(h)dh+
wtL

rtat + wtL
ε =

σI,t
σa

[∫ 1

1−ε

sa,0(h)dh− ε

]
+ ε,

which is increasing in σI,t if and only if
∫ 1
1−ε

sa,0(h)dh > ε. In the US, the top 1% wealth share is 40%.
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5 Effects of patent breadth on growth and inequality

This section analyzes the effects of patent breadth µ on economic growth gt and income
inequality σI,t. Equation (23) shows that the initial impact of a larger µ on the growth
rate gt is positive because xt is fixed in the short run. This is the standard positive profit-
margin effect, captured by (µ−1)/µ1/(1−θ) in (23), of patent breadth on monopolistic profits
and innovation as in previous studies, such as Li (2001) and Chu (2011), which feature an
exogenous market structure. However, in our model, the market structure is endogenous and
the number of firms gradually adjusts. The higher profit margin attracting entry of new firms
reduces the size xt of each firm and the rate of return r

q
t on quality-improving innovation as

(14) shows. In the long run, this negative entry effect dominates the positive profit-margin
effect such that the new steady-state growth rate g∗ in (28) is lower than the initial steady-
state growth rate; see Figure 4 for an illustration in which patent breadth increases at time
t. In summary, endogenous market structure gives rise to opposite short-run and long-run
effects of patent protection on growth.24

Figure 4: Transitional effects of patent breadth on economic growth

The above contrasting effects of patent protection on economic growth at different time
horizons have novel implications on income inequality, which is determined by the rate of
return on assets and the value of assets as (35) shows. The initial impact of a larger patent
breadth µ has both a positive effect and a negative effect on income inequality σI,t. The
positive effect arises because a larger patent breadth initially increases the growth rate gt
and the interest rate rt as in Chu (2010) and Chu and Cozzi (2018), who focus on quality
improvement without endogenous entry. In our model, endogenous entry gives rise to a
negative effect on income inequality because a larger patent breadth reduces the demand for
intermediate goods Xt, which in turn reduces asset value via the entry condition in (16).
These positive and negative effects together generally give rise to an inverted-U relationship

24This result generalizes the one in Chu et al. (2016) by allowing the operating cost of each monopolistic
firm to depend on its own technology in addition to aggregate technology.
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between patent protection and income inequality in the short run. However, it is also possible
to yield only a positive relationship between patent protection and income inequality over
the permissible range of patent breadth µ. In the long run, the effect of a larger patent
breadth on the growth rate gt and the interest rate rt becomes negative due to endogenous
market structure. Therefore, increasing patent breadth causes a negative effect on income
inequality in the long run; see Figure 5 for an illustration in which case 1 (case 2) refers to a
small (large) increase in patent breadth at time t. Proposition 4 summarizes these results.

Proposition 4 Strengthening patent protection has the following effects on economic growth
and income inequality at different time horizons: (a) it causes a positive effect on economic
growth and a positive or an inverted-U effect on income inequality in the short run; and (b)
it causes a negative effect on both economic growth and income inequality in the long run.

Proof. See the Appendix.

Figure 5: Transitional effects of patent breadth on income inequality

5.1 Quantitative analysis

In this section, we calibrate the model to aggregate US data in order to perform a quantitative
analysis. The model features the following parameters: {α, ρ, θ, β, φ, µ}. We follow Iacopetta
et al. (2019) to set the degree of technology spillovers 1 − α to 0.833. We set the discount
rate ρ to 0.03 and the markup µ to 1.40, which is at the upper bound of the range of
values reported in Jones and Williams (2000).25 Then, we calibrate {θ, β, φ} by matching
the following moments in the US economy. First, labor income as a share of output is 60%.
Second, the consumption share of output is 64%. Third, the growth rate of output per capita
is 2%. Table 2 summarizes the calibrated parameter values.

25We will examine a range of paramater values in a robustness check.

16



Table 2: Calibrated parameter values

α ρ θ β φ µ
0.167 0.030 0.400 4.667 0.499 1.400

We simulate the effects of patent breadth µ on the quality-adjusted firm size xt, the
growth rate gt and income inequality σI,t. The baseline value of markup µ is 1.40, and we
raise µ by 0.01 to 1.41. Figure 6 presents the transitional path of the quality-adjusted firm
size xt. Figure 7 presents the transitional path of the growth rate gt. Figure 8 presents the
transitional path of income inequality σI,t in terms of percent changes from its initial value.
When patent protection strengthens, the growth rate increases from 2.00% to 2.17%, which
in turn raises income inequality by 2.43% on impact. Gradually, more products enter the
market, resulting into a gradual decrease in the quality-adjusted firm size xt from 3.50 to
3.39. This smaller firm size leads to a decrease in the steady-state growth rate to 1.77%,
which in turn decreases income inequality by 4.80% in the long run. Therefore, the negative
effect of patent breadth on income inequality in the long run is much larger in magnitude
than its positive effect in the short run. This result (especially the novel negative effect of
patent protection on income inequality in the long run) is consistent with the stylized facts
documented in Section 2. In the US, the level of patent protection has gradually increased
since the end of 1970’s.26 This period of strengthening patent protection coincides with a
period of rising income inequality during which the Gini index rises from 0.43 in 1979 to
0.51 in 2017. Our simulation results imply that when the strengthening of patent protection
stops, its positive effect on income inequality will eventually become negative after a few
decades.

Figure 6: Transitional path of the firm size

26For example, the Ginarte-Park index of patent rights increases from 3.83 in 1975 to 4.88 in 2015.
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Figure 7: Transitional path of the growth rate

Figure 8: Transitional path of income inequality

In this numerical exercise, we consider a conservatively low discount rate ρ and a relatively
large markup µ. Considering a larger ρ or a smaller µ would lead to an even more significant
decrease in economic growth g and income inequality σI in the long run. In the following
tables that report results for ρ ∈ {0.03, 0.04, 0.05} and µ ∈ {1.20, 1.30, 1.40},27 we present
the equilibrium growth rates and the percent changes in income inequality on impact when

27Here we recalibrate the other parameters {θ, β, φ} to match the same moments as before.
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µ increases by 0.01 and also when the economy reaches the new balanced growth path. The
tables show that strengthening patent protection can lead to a decrease in the steady-state
growth rate to as low as 0.79% and a decrease in income inequality by as much as 16.74%
in the long run. Therefore, we present the relatively conservative results under ρ = 0.03 and
µ = 1.40 as our benchmark.

Table 3: Effects of patent protection on economic growth

Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 2.28% 2.34% 2.40% 1.20 1.15% 0.97% 0.79%
1.30 2.22% 2.26% 2.31% 1.30 1.64% 1.56% 1.48%
1.40 2.17% 2.21% 2.25% 1.40 1.77% 1.72% 1.67%

Table 4: Effects of patent protection on income inequality

Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 4.18% 4.28% 4.35% 1.20 −16.19% −16.52% −16.74%
1.30 3.19% 3.27% 3.32% 1.30 −7.24% −7.39% −7.49%
1.40 2.43% 2.49% 2.54% 1.40 −4.80% −4.90% −4.96%

6 Conclusion

This study introduces heterogeneous households into a Schumpeterian growth model with
endogenous market structure. Although endogenous market structure causes the aggregate
economy to feature transition dynamics, the wealth distribution of households is stationary,
which in turn allows us to derive the dynamics of the income distribution. In summary, we
find that strengthening patent protection increases economic growth and causes a positive or
an inverted-U effect on income inequality in the short run when the number of differentiated
products is fixed. However, when the number of products adjusts endogenously, the effects
of patent protection on economic growth and income inequality eventually become negative.
This finding highlights the importance of endogenous market structure, which gives rise to
different effects of patent policy on innovation and inequality at different time horizons.
Therefore, previous studies that neglect the endogenous adjustment of the market structure
may have identified only the short-run effects of patent policy on innovation and inequality.
Finally, to maintain the tractability of the dynamics of income inequality, we have focused
on the effects of the aggregate economy on the evolution of the income distribution, with-
out adding into the model a potential feedback effect from the income distribution to the
aggregate economy. We leave this interesting extension to future research.

19



References

[1] Abrigo, M., and Love, I., 2016. Estimation of panel vector autoregression in Stata. The
Stata Journal, 16, 778-804.

[2] Acemoglu, D., 1998. Why do new technologies complement skills? Directed technical
change and wage inequality. Quarterly Journal of Economics, 113, 1055-1089.

[3] Acemoglu, D., 2002. Directed technical change. Review of Economic Studies, 69, 781-
809.

[4] Acemoglu, D., and Akcigit, U., 2012. Intellectual property rights policy, competition
and innovation. Journal of the European Economic Association, 2012, 10, 1-42.

[5] Adams, S., 2008. Globalization and income inequality: Implications for intellectual
property rights. Journal of Policy Modeling, 30, 725-735.

[6] Aghion, P., Akcigit, U., Bergeaud, A., Blundell, R., and Hemous, D., 2019. Innovation
and top income inequality. Review of Economic Studies, 86, 1-45.

[7] Aghion, P., and Howitt, P., 1992. A model of growth through creative destruction.
Econometrica, 60, 323-351.

[8] Alessandri, P., andMumtaz, H., 2019. Financial regimes and uncertainty shocks. Journal
of Monetary Economics, 101, 31-46.

[9] Ang, J., and Madsen, J., 2011. Can second-generation endogenous growth mod-
els explain the productivity trends and knowledge production in the Asian miracle
economies?. Review of Economics and Statistics, 93, 1360-1373.

[10] Bessen, J., and Meurer, M., 2008. Patent Failure: How Judges, Bureaucrats, and
Lawyers Put Innovators at Risk. Princeton University Press.

[11] Bilbiie, F., Kanzig, D. and Surico, P., 2020. Capital, income inequality, and consump-
tion: The missing link. CEPR DP14118.

[12] Bilbiie, F., and Ragot, X., 2020. Optimal monetary policy and liquidity with heteroge-
neous households. Review of Economic Dynamics, forthcoming.

[13] Boldrin, M., and Levine, D., 2008. Against Intellectual Monopoly. Cambridge University
Press.

[14] Chou, C.-F., and Talmain, G., 1996. Redistribution and growth: Pareto improvements.
Journal of Economic Growth, 1, 505-523.

[15] Chu, A., 2009. Effects of blocking patents on R&D: A quantitative DGE analysis. Jour-
nal of Economic Growth, 14, 55-78.

[16] Chu, A., 2010. Effects of patent policy on income and consumption inequality in an
R&D-based growth model. Southern Economic Journal, 77, 336-350.

20



[17] Chu, A., 2011. The welfare cost of one-size-fits-all patent protection. Journal of Eco-
nomic Dynamics and Control, 35, 876-890.

[18] Chu, A., and Cozzi, G., 2018. Effects of patents versus R&D subsidies on income in-
equality. Review of Economic Dynamics, 29, 68-84.

[19] Chu, A., Cozzi, G., Fan, H., Furukawa, Y., and Liao, C., 2019. Innovation and inequality
in a monetary Schumpeterian model with heterogeneous households and firms. Review
of Economic Dynamics, 34, 141-164.

[20] Chu, A., Furukawa, Y., and Ji, L., 2016. Patents, R&D subsidies and endogenous market
structure in a Schumpeterian economy. Southern Economic Journal, 82, 809-825.

[21] Cohen, W., and Klepper, S., 1996a. A reprise of size and R&D. Economic Journal, 106,
925-951.

[22] Cohen, W., and Klepper, S., 1996b. Firm size and the nature of innovation within
industries: The case of process and product R&D. Review of Economics and Statistics,
78, 232-243.

[23] Cozzi, G., 2001. Inventing or spying? Implications for growth. Journal of Economic
Growth, 6, 55-77.

[24] Cozzi, G., and Galli, S., 2014. Sequential R&D and blocking patents in the dynamics
of growth. Journal of Economic Growth, 19, 183-219.

[25] Foellmi, R., and Zweimuller, J., 2006. Income distribution and demand-induced inno-
vations. Review of Economic Studies, 73, 941-960.

[26] Furukawa, Y., 2007. The protection of intellectual property rights and endogenous
growth: Is stronger always better? Journal of Economic Dynamics and Control, 31,
3644-3670.

[27] Futagami, K., and Iwaisako, T., 2007. Dynamic analysis of patent policy in an endoge-
nous growth model. Journal of Economic Theory, 132, 306-334.

[28] Garcia-Macia, D., Hsieh, C., and Klenow, P., 2019. How destructive is innovation?.
Econometrica, 87, 1507-1541.

[29] Gilbert, R., and Shapiro, C., 1990. Optimal patent length and breadth. RAND Journal
of Economics, 21, 106-112.

[30] Ginarte, J., and Park, W., 1997. Determinants of patent rights: A cross-national study.
Research Policy, 26, 283-301.

[31] Goh, A.-T., and Olivier, J., 2002. Optimal patent protection in a two-sector economy.
International Economic Review, 43, 1191—1214.

[32] Grossman, G., and Helpman, E., 1991. Quality ladders in the theory of growth. Review
of Economic Studies, 58, 43-61.

21



[33] Grossman, G., and Helpman, E., 2018. Growth, trade, and inequality. Econometrica,
86, 37-83.

[34] Ha, J., and Howitt, P., 2007. Accounting for trends in productivity and R&D: A Schum-
peterian critique of semi-endogenous growth theory. Journal of Money, Credit, and
Banking, 33, 733-74.

[35] Horii, R., and Iwaisako, T., 2007. Economic growth with imperfect protection of intel-
lectual property rights. Journal of Economics, 90, 45-85.

[36] Howitt, P., 1999. Steady endogenous growth with population and R&D inputs growing.
Journal of Political Economy, 107, 715-730.

[37] Iacopetta, M., Minetti, R., and Peretto, P., 2019. Financial markets, industry dynamics
and growth. Economic Journal, 129, 2192-2215.

[38] Iwaisako, T., 2013. Welfare effects of patent protection and productive public services:
Why do developing countries prefer weaker patent protection?. Economics Letters, 118,
478-481.

[39] Iwaisako, T., and Futagami, K., 2013. Patent protection, capital accumulation, and
economic growth. Economic Theory, 52, 631-668.

[40] Jaffe, A., and Lerner, J., 2004. Innovation and Its Discontents: How Our Broken System
Is Endangering Innovation and Progress, and What to Do About It. Princeton University
Press.

[41] Jones, C., and Kim, J., 2018. A Schumpeterian model of top income inequality. Journal
of Political Economy, 126, 1785-1826.

[42] Jones, C., and Williams, J., 2000. Too much of a good thing? The economics of invest-
ment in R&D. Journal of Economic Growth, 5, 65-85.

[43] Kiedaisch, C., 2015. Intellectual property rights in a quality-ladder model with persistent
leadership. European Economic Review, 80, 194-213.

[44] Kiedaisch, C., 2020. Growth and welfare effects of intellectual property rights when
consumers differ in income. Economic Theory, forthcoming.

[45] Klemperer, P., 1990. How broad should the scope of patent protection be? RAND
Journal of Economics, 21, 113-130.

[46] Laincz, C., and Peretto, P., 2006. Scale effects in endogenous growth theory: An error
of aggregation not specification. Journal of Economic Growth, 11, 263-288.

[47] Li, C.-W., 2001. On the policy implications of endogenous technological progress. Eco-
nomic Journal, 111, C164-C179.

22



[48] Madsen, J., 2008. Semi-endogenous versus Schumpeterian growth models: Testing the
knowledge production function using international data. Journal of Economic Growth,
13, 1-26.

[49] Madsen, J., 2010. The anatomy of growth in the OECD since 1870. Journal of Monetary
Economics, 57, 753-767.

[50] Madsen, J., 2017. Is inequality increasing in r − g? Piketty’s principle of capitalist
economics and the dynamics of inequality in Britain, 1210-2013. CAMAWorking Papers
2017-63.

[51] Nordhaus, W., 1969. Invention, Growth, and Welfare. The MIT Press.

[52] Park, W., 2005. Do intellectual property rights stimulate R&D and productivity growth?
Evidence from cross-national and manufacturing industries data. In J. Putnam (ed.),
Intellectual Property Rights and Innovation in the Knowledge-Based Economy, 9.1-9.51,
Calgary: University of Calgary Press.

[53] Park, W., 2008. Intellectual property rights and international innovation. In K. Maskus
(ed.), Frontiers of Economics and Globalization, vol. 2, 289-327, Amsterdam: Elsevier
Science.

[54] Peretto, P., 1998. Technological change and population growth. Journal of Economic
Growth, 3, 283-311.

[55] Peretto, P., 1999. Cost reduction, entry, and the interdependence of market structure
and economic growth. Journal of Monetary Economics, 43, 173-195.

[56] Peretto, P., 2007. Corporate taxes, growth and welfare in a Schumpeterian economy.
Journal of Economic Theory, 137, 353-382.

[57] Peretto, P., 2011. The growth and welfare effects of deficit-financed dividend tax cuts.
Journal of Money, Credit and Banking, 43, 835-869.

[58] Peretto, P., and Connolly, M., 2007. The Manhattan metaphor. Journal of Economic
Growth, 12, 329-350.

[59] Piketty, T., 2014. Capital in the Twenty-First Century. Harvard University Press.

[60] Romer, P., 1990. Endogenous technological change. Journal of Political Economy, 98,
S71-S102.

[61] Scotchmer, S., 2004. Innovation and Incentives. The MIT Press.

[62] Segerstrom, P., Anant, T., and Dinopoulos, E., 1990. A Schumpeterian model of the
product life cycle. American Economic Review, 80, 1077-91.

[63] Smulders, S. and van de Klundert T., 1995. Imperfect competition, concentration and
growth with firm-specific R&D. European Economic Review, 39, 139-160.

23



[64] Spinesi, L. 2011. Probabilistic heterogeneous patent protection and innovation incen-
tives. B.E. Journal of Economic Analysis & Policy (Contributions), 11, Article 45.

[65] Uhlig, H., 2005 What are the effects of monetary policy on output? Results from an
agnostic identification procedure. Journal of Monetary Economics, 52, 381-419.

[66] Yang, Y., 2018. On the optimality of IPR protection with blocking patents. Review of
Economic Dynamics, 27, 205-230.

[67] Yang, Y., 2020. Welfare effects of patent protection in a growth model with R&D and
capital accumulation. Macroeconomic Dynamics, forthcoming.

[68] Zweimuller, J., 2000. Schumpeterian entrepreneurs meet Engel’s law: The impact of
inequality on innovation-driven growth. Journal of Economic Growth, 5, 185-206.

24



Appendix A: Proofs

Proof of Lemma 1. The current-value Hamiltonian for monopolistic firm i is given by
(10). To introduce the upper bound µ on price pt (i), we modify (10) as follows:

Ht (i) = Πt (i)−Rt (i) + ηt (i) Żt (i) + ωt (i) [µ− pt (i)] , (10’)

where ωt (i) is the multiplier on pt (i) ≤ µ. Substituting (6)-(8) into (10’), we can derive

∂Ht (i)

∂pt (i)
= 0⇒

∂Πt (i)

∂pt (i)
= ωt (i) , (A1)

∂Ht (i)

∂Rt (i)
= 0⇒ ηt (i) = 1, (A2)

∂Ht (i)

∂Zt (i)
= α

{

[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lt
Nt
− φ

}

Zα−1t (i)Z1−αt = rtηt (i)− η̇t (i) . (A3)

If pt (i) < µ, then ωt (i) = 0. In this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the
constraint on pt (i) is binding, then ωt (i) > 0. In this case, we have pt (i) = µ, proving
(11). Given that we assume µ < 1/θ , pt (i) = µ always holds. Substituting (A2), (13) and
pt (i) = µ into (A3) and imposing symmetry yield (14).

Proof of Lemma 2. Substituting (16) into the total asset value at = NtVt yields

at = NtβXt = (θ/µ)βYt, (A4)

where the second equality uses θYt = Nt(µXt).
28 Differentiating (A4) with respect to t yields

Ẏt
Yt
=
ȧt
at
= rt +

wtL

at
−
ct
at
, (A5)

where the second equality uses (2) with at ≡
∫ 1
0
at(h)h and ct ≡

∫ 1
0
ct(h)dh. Using (3) for rt,

(5) for wt, and (A4) for at, we can rearrange (A5) to obtain

ċt
ct
−
ȧt
at
=
ct
at
−

[
ρ+

µ (1− θ)

βθ

]
, (A6)

the right-hand side of which is increasing in ct/at with a strictly negative y-intercept. There-
fore, ct/at must jump to the steady state. Then, we have (21), noting (A4).

Proof of Lemma 3. Substituting zt = rt − ρ = r
e
t − ρ into (17) yields

ẋt
xt
= ρ−

µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
−
φ+ zt
xt

]
, (A7)

where we have also used the expression of zt in (24) to obtain (26).

28We derive this by using pt(i) = µ and Xt(i) = Xt for θYt =
∫ Nt

0
pt(i)Xt(i)di.
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Proof of Proposition 1. One can rewrite (26) simply as ẋt = d1 − d2xt. This linear
system for xt has a unique (non-zero) steady state that is globally (and locally) stable if

d1 ≡ µ1/(1−θ)
[
(1− α)φ− ρ

β

]
> 0, (A8a)

d2 ≡
(1− α) (µ− 1)− βρ

β
> 0, (A8b)

from which we obtain ρ < min {(1− α)φ, (1− α)(µ− 1)/β}. Then, ẋt = 0 yields the steady-
state value x∗ = d1/d2, which gives (27). Substituting (27) into (23) yields (28).

Proof of Proposition 2. Manipulating (2) yields

ȧt(h)

at(h)
= rt +

wtL

at(h)
−
ct(h)

at(h)
. (A9)

Then, the growth rate of sa,t(h) ≡ at(h)/at is

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
−
ȧt
at
=
wtL− ct(h)

at(h)
−
wtL− ct
at

, (A10)

which becomes

ṡa,t(h) =
ct − wtL

at
sa,t(h)−

sc,t(h)ct − wtL

at
. (A11)

We use (5) for wt, (21) for ct/Yt and (A4) for at/Yt in (A11) to derive

ṡa,t(h) = ρsa,t(h)− sc,t(h)
βθρ+ µ (1− θ)

βθ
+
µ (1− θ)

βθ
. (A12)

To achieve stability of sa,t(h), ṡa,t(h) = 0 must hold for any t ≥ 0 because sa,t(h) is a pre-
determined variable and its coefficient is positive. We can achieve this if and only if sc,t(h)
jumps into a stationary level at t = 0 that ensures sa,t(h) to be stationary. Then, we have

sc,0(h) =
βθρsa,0(h) + µ (1− θ)

βθρ+ µ (1− θ)
, (A13)

and sc,t(h) = sc,0(h) for any t ≥ 0. Substituting (A13) into (A12) yields (31).

Proof of Proposition 3. By (35), we have

σI,t =
1

1 + [wtL/(rtat)]
σa. (A14)

Using (5) for wt and (A4) for at/Yt, we obtain

wtL

rtat
= µ

(
1− θ

βθ

)
1

rt
, (A15)

where rt = ρ+ gt. Combining (A14) and (A15) yields (36).
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Proof of Proposition 4. With rqt = rt, it is straightforward to show from (14) that for
a given xt, rt is increasing in µ ∈ (1, 1/θ). Thus, the short-run effect of µ on rt = gt + ρ is
positive. To see the short-run effect of µ on inequality, we use (A14) and (A15) to write

σI,t =
(rt/µ)

(rt/µ) + Θ
σa, (A16)

noting rt = gt + ρ. It shows that σI,t is increasing in rt/µ, in which
29

rt
µ
=
α

µ

[
µ− 1

µ1/(1−θ)
xt − φ

]
, (A17)

which uses (14) and rqt = rt. For a given xt, we can show that

d

dµ

(
rt
µ

)
> 0⇔ (µ− 1)−

φµ1/(1−θ)

xt
−
1− µθ

1− θ
≡ κ(xt, µ) < 0. (A18)

It is useful to note that for a given xt, κ(xt, µ) is a monotonically increasing function in both
xt and µ.

30 At both ends of the original domain of µ ∈ (1, 1/θ), the signs of κ(xt, µ) are
opposite such that

lim
µ→1

κ(xt, µ) = −

(
φ

xt
+ 1

)
< 0 (A19a)

and

lim
µ→1/θ

κ(xt, µ) =

(
1− θ

θ

)[
1−

αφ

αφ+ ρ

x

xt

]
> 0, (A19b)

noting x/xt < 1. As shown in Figure 9, there uniquely exists a threshold value of µ, denoted
as µ̂(xt) ∈ (1, 1/θ), such that the effect of µ on σI,t is positive for a sufficiently small
µ ∈ (1, µ̂(xt)) and negative for a sufficiently large µ ∈ (µ̂(xt), 1/θ). This implies that the
unconstrained short-run effect of µ on σI,t follows an inverted-U shaped. However, to ensure
x∗ > x, there is an upper bound of µ, that is,

µ < 1 + β (αφ+ ρ) ≡ µ. (A20)

Thus, if µ < µ̂(xt), then only the positive part of an inverted-U effect appears in the feasible
range of µ ∈ (1, µ).

29The lower bound of the right-hand side of (A17) at xt = x, defined in (25), is strictly positive, which
implies rt/µ > 0.
30
κ(xt, µ) being increasing in xt is obvious. As for µ, note

d

dµ
κ(xt, µ) =

1

1− θ

1

xt

[
xt − x

(
αφ

αφ+ ρ

)(
1−

1

µ

)]
> 0,

in which the inequality always holds due to xt > x in (25).
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Figure 9: Proof of Proposition 4

Finally, concerning the long-run effects of µ, we differentiate (28) with respect to µ to
derive

d

dµ
g∗ = −

αβρ [(1− α)φ− ρ]

[(1− α)(µ− 1)− βρ]2
< 0, (A23)

showing the negative effect of µ on the long-run growth rate g∗. Given that r∗ = g∗ + ρ, an
increase in µ leads to a decrease in the long-run interest rate r∗ and also a decrease in the
steady-state ratio r∗/µ. Therefore, the long-run effect of µ on income inequality σI,t is also
negative.
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Appendix B: Gini coefficient

Income received by household h is given by

I(h) = ra(h) + wL = sa(h)ra+ wL, (B1)

where the identity index h is uniformly distributed between 0 and 1. We now order the
households in an ascending order of income. The Gini coefficient of income is given by
σI = 1− 2bI , where

bI ≡

∫ 1

0

LI(h)dh. (B2)

The Lorenz curve LI(h) of income is given by

LI(h) ≡

∫ h
0
I(χ)dχ

∫ 1
0
I(χ)dχ

=
ra
∫ h
0
sa(χ)dχ+ wL

∫ h
0
1dχ

ra+ wL
, (B3)

where
∫ h
0
1dχ = h and

∫ h
0
sa(χ)dχ is the Lorenz curve La(h) of wealth. To see this,

La(h) ≡

∫ h
0
a(χ)dχ

∫ 1
0
a(χ)dχ

=

∫ h
0
a(χ)dχ

a
=

∫ h

0

sa(χ)dχ. (B4)

Substituting (B3) and (B4) into (B2) yields

bI =
ra

ra+ wL

∫ 1

0

La(h)dh+
wL

ra+ wL

∫ 1

0

hdh, (B5)

where
∫ 1
0
hdh = 0.5 and

∫ 1
0
La(h)dh ≡ ba. Recall that the Gini coefficient of wealth is given

by σa = 1− 2ba. Therefore, substituting (B5) into σI = 1− 2bI yields the Gini coefficient of
income given by

σI =
ra

ra+ wL
σa, (B6)

which is the same as (35) except that σa is now the Gini coefficient of wealth.
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Appendix C: Panel VAR and robustness checks

In this appendix, we provide a formal description of the panel VAR, which extends the
traditional VAR to panel data and allows for unobserved individual heterogeneity denoted
as Λn for country n. A first-order panel VAR model can be specified as follows:

Ayn,t = Λn + Λ(L)yn,t−1 + εn,t,

where yn,t is a k× 1 vector of endogenous variables for country n at time t. As this equation
cannot be estimated directly due to contemporaneous correlations between yn,t and εn,t, the
standard reduced form can be derived by pre-multiplying the system by A−1 as follows:

yn,t = Γn + Γ(L)yn,t−1 + en,t,

where Γn = A
−1Λn, Γ(L) = A

−1Λ(L) and en,t = A
−1εn,t. The impulse response functions can

now be derived on the basis of the moving average representation of the system as follows:

yn,t = γn +
∑

i

Γi(L)en,t−i = γn +
∑

i

Φi(L)εn,t−i,

where Φi are the impulse response functions.
First, we extend the bivariate setting to a multivariate setting by including per capita

GDP growth in the analysis. Figure 10 presents the impulse response function. The initial
impact of income inequality in response to a patent shock continues to be positive. More
importantly, we continue to see a significant negative response for a 10 year forecast horizon.
The result also holds even if we exclude non-resident patents.

Figure 10: Three-variable VAR Figure 11: Top 1% income inequality

We further estimate the effects of patents by changing the inequality measure. We now
consider income inequality at the top 1% or the 99th percentile. The impulse response
function using this alternative measure is shown in Figure 11, which shows a similar response
as the benchmark in Figure 2. Specifically, the initial positive response disappears at some
point, giving rise to a negative response subsequently.
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