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ABSTRACT 

This study combines regression analysis with machine learning analysis to study the merit order 

effect of renewable energy focusing on German market, the largest market in Europe with high 

renewable energy penetration. The results show that electricity from wind and solar sources 

reduced the spot market price by 9.64 €/MWh on average during the period from 2010 to 2017. 

Wind had a relatively stable impact across the day, ranging from 5.88 €/MWh to 8.04 €/MWh, 

while the solar energy impact varied greatly across different hours, ranging from 0.24 €/MWh to 

11.78 €/MWh and having a stronger impact than wind during peak hours. The results also show 

characteristics of the interactions between renewable energy and spot market prices, including the 

slightly diminishing merit order effect of renewable energy at high generation volumes. Finally, a 

scenario-based analysis illustrates how different proportions of wind and solar energies affect the 

spot market price. 
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1. INTRODUCTION 

With the mounting concerns over climate change caused by conventional energy sources such as 

fossil fuels, making the transition in the electricity supply industry from conventional energy 

sources to renewable energy (RE) sources has become a critical challenge for society. The 

European Union (EU)'s RE policy has developed along with the liberalization of the electricity 

market (Cointe and Nadaï, 2018). Among the countries of the EU, Germany is a leader in terms 

of its promotion of RE and its ultimate aim of building a sustainable energy system. The share of 

electricity derived from RE sources in Germany more than doubled over the decade from 2008, 

strongly led by solar and wind energy generation (German Federal Ministry for Economic Affairs 
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and Energy, 2019), and reached 40.4% of the net electricity generation1 in 2018 (Fraunhofer ISE, 

2019). Germany’s increasing RE capacity contributes to the country’s construction of a 

sustainable energy system, but the intermittent nature of RE creates challenges in managing the 

flexibility required in electricity supply and demand. Therefore, investigation of the impact of an 

increasingly RE-sourced electricity supply on the overall trends and the volatility of the spot 

market price is important for both future RE policy making and the design of the electricity market. 

In Germany, electricity traded at the spot market accounted for 302 TWh in 2015, representing 

53% of German electricity consumption. The spot market trading and auctions of electricity are 

carried out by the European Power Exchange (EPEX). Day-ahead auctions take place at 12 pm 

each day for the 24 hours of the following day. In these day-ahead auctions, electricity producers 

offer electricity at their short run marginal cost (SRMC). The SRMC is the cost of production of 

a unit of electricity in the short-term and mainly consists of fuel, variable operations and 

management, and CO2 costs. The offers from the producers are then lined up, beginning with 

those with the lowest SRMC and running in cost order up to those with the highest SRMC. This 

price-setting mechanism is called the merit order mechanism. The SRMCs of the RE sources are 

                                         
1 Net electricity generation refers to gross electricity generation minus the consumption of the power 
stations' auxiliary services. 
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almost zero, and they are followed by other sources that have higher SRMCs (e.g., nuclear energy, 

lignite, hard coal, gas and fuel oil plants). Under the merit order mechanism, the addition of further 

volumes from RE sources with their near-zero SRMC to the offer list is known to cause a 

reduction in the electricity price, which is called the merit order effect (MOE) (Sensfuß et al., 

2008).  

Advancing our understanding of the pricing dynamics of the electricity market is of critical 

importance both for the market participants and for the design of the electricity market, and thus 

a considerable number of studies have addressed this topic. This study builds upon these preceding 

studies and aims to advance our understanding of the MOE, with a particular focus on the MOE 

of electricity from RE sources (both wind and solar) on the spot market price in Germany. As 

noted by Jónsson et al. (2010), electricity market pricing data typically have complex 

characteristics such as nonlinearity and nonstationarity that must be taken into careful 

consideration when conducting such an analysis. As will be discussed in the next section, the most 

common approach among the studies that have used econometric approaches to investigate the 

MOE of RE has been to use a regression model with ex-post data. Following these previous 

studies, this study uses both a linear regression method and a machine learning (ML) approach to 
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investigate the MOE of RE. The main objectives of this study are threefold: first, to estimate the 

average change in the wholesale price during the period studied (from 19/7/2010 to 18/12/2017) 

and to investigate how the MOE varies across the hours of the day; second, to analyze the features 

that are difficult to capture using the linear regression method by using the ML approach; and 

finally, to perform a scenario-based analysis to examine how different proportions of the wind 

and solar energies affect the spot market price. 

The rest of this paper is structured as follows. In Section 2, before the methodology used in this 

study is described in detail, the existing studies on the MOE are reviewed. In Section 3, the data 

used in this study are first presented, followed by a description of the proposed methodology: the 

generalized least squares (GLS) method and the extreme gradient boosting method. Section 4 then 

presents the results, beginning with the results of an analysis when using the data as one unique 

series (2010–2017 analysis), followed by the results of an analysis using the data when separated 

into 24 hourly series (hourly analysis), and then the results of the scenario-based analysis using 

the ML approach. Finally, conclusions are presented in Section 5.  

 

2. LITERATURE REVIEW 

Existing studies of the MOE can mostly be classified as either simulation-based studies that use 
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both hypothetical and real data or empirical studies that use ex-post data and are generally 

conducted using econometric models. Most of these earlier studies used simulation-based 

approaches: Sensfuß et al. (2008) conducted an analysis focused on Germany based on a detailed 

electricity market simulation platform called the PowerACE Cluster System and their results 

showed that electricity generation from RE has a considerable impact on the market prices, with 

an average electricity price reduction of 7.8 €/MWh in 2006. Weigt (2009) also modeled the 

German electricity market and reported an average price reduction effect for wind generation of 

approximately 10 €/MWh between January 2006 and June 2008. The study also showed that the 

price effect of wind generation increased over time during the study period. Sáenz de Miera et al. 

(2008) performed a simulation analysis that focused on the Spanish electricity market and showed 

that wind generation had reduced Spanish electricity prices considerably by −7.08 €/ MWh to 

−12.44 €/MWh between 2005 and 2007. Another simulation study by Holttinen et al. (2001) 

focused on Nordpool2 to investigate the effects of wind generation on market prices. Their study 

used wind data ranging from 1961 to 1990 to calibrate their model and showed that the model 

yielded price reductions of 2 €/MWh for each 10 TWh of additional annual wind generation in a 

                                         
2 Nordpool is the Nordic electricity market that covers Norway, Denmark, Finland, and Sweden. 
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2010 forecast scenario. 

With the increasing availability of ex-post data for both the spot market prices and the RE 

electricity supplies, more recent studies have used econometric approaches to investigate the 

actual MOE of RE.3 Among these empirical studies, the most common approach has been to use 

a regression model with ex-post data. Stating with the German market, Neubarth et al. (2006) used 

a univariate regression model to investigate the MOE of wind generation on spot prices during 

the period from 2004 to 2005 and showed that for each additional GW of wind power generated, 

the spot market price fell by 1.89 €/MWh. Würzburg et al. (2013) pointed out that very limited 

empirical evidence was available for the MOE in Germany and used a multivariate regression 

model along with daily averaged data on electricity prices to investigate the MOE of RE (solar 

and wind power). Their study showed that between 2010 and 2012, RE reduced the electricity 

spot price on average by 7.6 €/MWh. Cludius et al. (2014), while also focusing on the German 

market, performed a time-series regression analysis using hourly data on the spot market price, 

wind and solar generation, and the load, and showed that electricity from wind and solar energy 

sources caused reductions in the German/Austrian day-ahead spot electricity price of 6 €/MWh in 

                                         
3 For a more comprehensive review of early studies on MOE, see Würzburg et al. (2013). 
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2010 and 10 €/MWh in 2012. Similar studies have also been conducted while focusing on other 

countries: Gelabert et al. (2011) focused on the Spanish spot market price, and their ordinary least 

squares (OLS) estimation results showed that a marginal increase of 1 GWh of electricity from 

RE is associated with a reduction of approximately 1.9 €/MWh in the wholesale prices during the 

period studied between 2005 and 2010. Clò et al. (2015) also performed a time-series regression 

analysis that focused on the impact of wind and solar generation on the Italian spot market price. 

Their study showed that between 2005 and 2013, wind and solar generation reduced the wholesale 

electricity prices on average by 4.2 €/MWh and 2.3 €/MWh, respectively. Another more recent 

study by Quint and Dahlke (2019) investigated the MOE of wind generation while focusing on 

the Midcontinent Independent System Operator (MISO), which is the largest wholesale electricity 

market by geographical area worldwide. Their study used several models, including a basic cross-

sectional multivariate regression analysis, the Prais-Winsten estimation methods, and a seasonal 

autoregressive-moving average with exogenous inputs (SARIMAX) model, and showed that each 

1 GWh of additional wind generation reduced the wholesale prices in MISO by $1.4/MWh to 

$3.4/MWh. 

All these studies focusing on the wholesale electricity markets in various countries and regions 
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have supported the proposition that the acquisition of more electricity from RE sources leads to 

reduced electricity prices. While studies of this type that used regression models have helped to 

advance our understanding of the MOE of RE, the existing studies of the MOE have largely 

focused on estimation of the average change in the wholesale price; however, studies that have 

investigated how the MOE differs across the hours of the day are scarce. Therefore, to fill this 

gap, this study investigates both the average change in the wholesale price and also the changes 

in the MOE across the hours of the day.  

Another important feature of this paper lies in its use of the ML approach to investigate the MOE. 

While a linear regression method is used in this study and most of the previous studies that 

investigated MOE used its strength in being able to quantify the average MOE, the functional 

form in a linear regression method is predetermined and this makes it more challenging to capture 

any unusual features of the data, such as nonlinear relationships between the variables. In contrast 

to regression modeling, which designs the relationships between the variables using a 

mathematical equation provided by the modeler, ML is a type of algorithm that can learn from the 

data without an explicit relationship structure between the variables. Learning the relationship 

structure, regardless of its functional form, confers the ability to infer many complex and nonlinear 
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relationships, which often leads to high predictive performance. However, this is also what gives 

a “black box” appearance to ML and makes it difficult to quantify the average MOE. Therefore, 

an ML approach is used in this study to analyze the features that are difficult to capture using the 

linear regression method that we also employ, and it is also used to perform a scenario-based 

analysis to investigate how different proportions of wind and solar generation would affect market 

prices. ML methods are increasingly being used in economic and financial analysis of the 

electricity markets (e.g., in price prediction). One of the earliest studies that used ML in economic 

and financial analysis of the electricity markets was conducted by Conejo et al. (2005) and 

included prediction of the electricity spot market price using artificial neural networks (ANNs). 

Papadimitriou et al. (2014) used a support vector machine (SVM)-based prediction model to 

forecast next-day electricity prices and demonstrated the strength of their SVM method by 

forecasting electricity prices with high accuracy. The feedforward neural network (FFNN), which 

offers an advantage in that it does not require complex data preprocessing (e.g., time series 

decomposition, detrending, and seasonal adjustment), was used by Dudek (2016) in an electricity 

price forecasting approach. The ensemble method, which is a meta-learning approach that 

combines multiple weak learner decision trees to formulate strong learners, has also been widely 
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applied to electricity price prediction (see e.g., Mirakyan et al., 2017; Tian et al., 2010). While 

these studies demonstrated the strength of ML-based approaches in dealing with electricity price 

data with complex characteristics, most studies that have used ML approaches to analyze the 

electricity markets have focused on electricity price prediction, but none have used ML to 

investigate the MOE of RE more closely.  

An extreme gradient boosting method, which is a type of ensemble method with greater predictive 

power and higher interpretability than most conventional ML methods, is used in this study 

(Carmona, 2019). The XGBoost Explainer R package (Foster, 2017) is then used to provide 

further improvement in the interpretability of the extreme gradient boosting model by allowing 

the predictions from the model to be split into the individual impacts of each feature. 

 

3. DATA AND METHODS 

This section describes the data used in this study and provides details of the two estimation 

methods used: the GLS method and the extreme gradient boosting method. 

 

3.1. Data 
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Until October 2018, the German electricity market formed a joint bidding zone with Austria at 

EPEX SPOT for both the intraday and day-ahead markets4 that was the largest market in Europe 

(with the German part of the market being the larger of the two). Germany and Austria also produce 

significant amounts of their electricity from wind and solar sources. The majority of the wind and 

solar capacity is installed in Germany (55,876 MW of wind and 42,396 MW of solar sources in 

Germany, in contrast to 2,926 MW of wind and 1,404 MW of solar sources in Austria, at the end 

of 2017)5. As the largest market with high RE penetration, the German/Austrian spot market is thus 

a desirable candidate for investigation of the MOE of RE and the results of such a study could 

provide useful insights that are applicable to other countries aiming for increased RE adoption. 

Therefore, to analyze the MOE of electricity generated from wind and solar sources, we use hourly 

data for the day-ahead (spot) market price of the German/Austrian spot market (Price) that were 

obtained from EPEX as the dependent variables. The hourly data for the total load of Germany and 

Austria (Load), as published by the European Network of Transmission System Operators for 

Electricity (ENTSO-E), and the hourly data for the electricity generated from wind and solar 

                                         
4 Following an officially imposed split of the bidding zone, the joint German/Austrian bidding zone was 
divided into two national bidding zones on October 1st, 2018. 
5 IRENA (2018) 
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sources during the same hours (Wind and Solar) that were obtained from the European Energy 

Exchange (EEX) are used as the explanatory variables. The period of study ranges from 19/7/2010 

to 18/12/2017; this study therefore covers the longest time period to date for investigation of the 

MOE of RE using hourly data of all the published literature on empirical investigation of the MOE.  

Figure 1 presents a plot of the spot market price characteristics from 19/7/2010 to 18/12/2017. As 

the figure shows, some negative prices were recorded among the spot market prices during the 

study period; this mainly occurs because of system inflexibilities that can lead to periods with 

excess power. These inflexibilities include renewable generation systems dealing with priority 

dispatch and production support mechanisms, conventional generation systems facing techno-

Figure 1: Time Series of Prices from 19/7/2010 to 18/12/2017  

Source: EPEX  
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economic limitations in their output variations, and the must-run conditions of certain power plants 

for system security reasons (De Vos, 2014). Between 19/7/2010 and 18/12/2017, negative prices 

were observed 527 times, corresponding to 0.81% of the data. Previous studies that focused on 

negative prices, such as Genoese et al. (2010), showed that the relationships between RE generation, 

load, and negative prices differ from the relationships between RE generation, load, and positive 

prices, which makes it difficult to estimate the MOE accurately when using a linear regression 

model. However, the main aims of this study are to examine the MOE using a linear regression 

model that has been widely applied to study of the MOE, to analyze features that are difficult to 

capture using a linear regression method, and to conduct a scenario-based analysis using an ML 

approach; therefore, because the negative prices have different characteristics and they consist of 

less than 1% of the sample data, the negative prices have been taken out of the data.  

Table 1 shows the descriptive statistics for the four variables. The mean spot market price was 

38.20 €/MWh and ranged from 0 €/MWh to 210.00 €/MWh. When compared with the price 

variations, the load fluctuations are relatively small. The mean values of the solar and wind powers 

are 3.40 GW and 6.92 GW, respectively. Because solar power is unavailable during the night, the 

generated solar power frequently reached zero during this time. Descriptive statistics for the data 
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when separated into 24 hourly series are presented in the Appendix.  

Table 1: Descriptive Statistics for the Variables during the Period of Study 

 Mean Standard deviation Minimum Maximum 

Price (€/MWh) 38.20 15.49 0 210.00 

Load (GW) 64.19 11.86 34.74 92.29 

Solar (GW) 3.40 5.43 0 28.33 

Wind (GW) 6.92 6.02 0.08 37.87 

Observations: 64,310 

Table 2 shows the correlation coefficients among the variables under study. The price is correlated 

with the load (positive) and the generated wind power (negative) to some extent, but the correlation 

coefficients are not large. Figure 2 shows a histogram of the spot market price. As the histogram 

shows, the price data distribution is close to a normal distribution.  

Table 2: Correlation Coefficients among the Variables 

 Price Load Solar Wind 

Price 1.00 - - - 

Load 0.50 1.00 - - 

Solar -0.08 0.32 1.00 - 

Wind -0.38 0.11 -0.10 1.00 
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We tested for unit roots in the data for the variables using the Phillips-Perron test. As a result, the 

null hypothesis of the existence of nonstationarity was rejected with a significance level of 1%. 

 

3.2 Estimation Methods  

The aim of this study is to advance our understanding of the MOE of electricity from RE sources 

(i.e., wind and solar) on the spot market price of the German/Austrian market. To achieve this aim, 

two approaches are used: the GLS regression method and the extreme gradient boosting method. 

These analyses are conducted using the data as one unique series (2010–2017 analysis) and using 

Figure 2: Histogram of EPEX Spot Price (Excluding Negative Prices) 

Source: EPEX  
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the data separated into 24 hourly series (hourly analysis) to investigate both the average change in 

the wholesale price and the changes across the hours of the day. 

3.2.1 Linear regression approach: GLS  

Following the previous studies (Cludius et al., 2014 and Würzburg et al., 2013) on the MOE, to 

quantify and present the MOE, we first regressed the spot market price with the load (total demand) 

and the electricity from the solar and wind sources using the OLS method. However, based on 

application of the Durbin-Watson (DW) statistics and the Breusch-Pagan test to our OLS results, 

both a positive serial correlation (DW statistics: 0.28) and heteroscedasticity were observed. 

Therefore, we used the GLS method with Prais-Winsten estimation and calculated the robust 

standard error (eq. (1)). An important and necessary assumption that is made for the chosen 

regression methodology is that the short-term electricity demand is perfectly price inelastic; this is 

the usual assumption made in similar studies that have used regression models to quantify the MOE. 

To enable the control required for systematic price changes, yearly, monthly, daily, and hourly 

dummies were also introduced into the model.  

𝑃𝑟𝑖𝑐𝑒& =	𝛽*𝐿𝑜𝑎𝑑& + 𝛽0𝑆𝑜𝑙𝑎𝑟& + 𝛽3𝑊𝑖𝑛𝑑&	

														+6𝛽7𝑑𝑦7,&
7

+6𝛽:𝑑𝑚:,&
:

+6𝛽<𝑑𝑑<,&
<

+6𝛽=𝑑ℎ=,&
=

+ 𝜀& 
(1) 
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where dy is the year dummy, dm is the month dummy, dd is the date dummy, and dh is the hour 

dummy. ε is the error term, 𝛽* , 	𝛽0 , 	𝛽3 , 	𝛽7 , 	𝛽: , 	𝛽< , and 	𝛽=	 are coefficients, t is the 

specific hour, y is the year, m is the month, d is the date in a particular week, and h is the hour. 

The coefficients 𝛽0 and 𝛽3 are estimates of the specific MOEs that show the average reduction 

in the spot market price per additional GW of electricity obtained from wind or solar sources within 

a given hour. To estimate the total average MOE, these specific effects are multiplied by the load-

weighted average (LWA6) of the electricity obtained from wind or solar sources per hour (eq. (2)).  

We apply the same model for the hourly analysis while excluding the hour dummy.  

3.2.2 Machine learning approach: Extreme gradient boosting method  

To support the analysis using GLS and to perform the scenario-based analysis, this study uses an 

ML method: the decision trees (DTs) model. To explore the effects of the RE electricity sources 

(wind and solar) on the spot market price, we use the following empirical relationship (eq. (3)):  

                                         
6 The LWA is calculated by multiplying the load in each hour by the power generated from the renewable 
sources in the same hour, summing up the results acquired over all hours, and then dividing this sum by 
the total load during the analyzed period. 

𝑇𝑜𝑡𝑎𝑙	𝑀𝑒𝑟𝑖𝑡	𝑂𝑟𝑑𝑒𝑟	𝐸𝑓𝑓𝑒𝑐𝑡 = 	𝛽0𝐿𝑊𝐴(𝑊𝑖𝑛𝑑) + 𝛽3𝐿𝑊𝐴(𝑆𝑜𝑙𝑎𝑟) (2) 

𝑃𝑟𝑖𝑐𝑒& = 𝑓(𝐿𝑜𝑎𝑑&, 𝑆𝑜𝑙𝑎𝑟&,𝑊𝑖𝑛𝑑& , 𝑑𝑦7,& , 𝑑𝑚:,& , 𝑑𝑑<,& , 𝑑ℎ=,&) (3) 
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The model is fitted by growing a number of DTs to create an ensemble of DTs that minimizes both 

the bias and the variance. For this purpose, we use the extreme gradient boosting method, which is 

a type of ensemble method that creates an ensemble via an iterative forward stage-wise process 

that involves fitting of multiple sets of DTs with a gradually increasing focus on observations that 

were predicted poorly by the previous set of DTs. The final value of this ensemble is then taken 

from a linear combination of these sets of DTs, thus creating an ensemble that minimizes both bias 

and variance (Miller et al., 2016).  

To control for overfitting, we divided our data into two subsets, i.e., a training set and a test set, 

with a ratio of 7:3. Our model is then fitted using the training data set to produce the best ensembles 

that provide the lowest in-sample error, which is shown by the mean absolute percentage error 

(MAPE) value. After that, we test the performance of our model in prediction of the unobservable 

data using the test data set and calculate the out-of-sample errors (i.e., the MAPEs) of our 

ensembles. If the out-of-sample MAPE does not differ significantly from the in-sample MAPE, we 

can then be assured that our model is not overfitted. However, if the out-of-sample MAPE differs 

significantly from the in-sample MAPE, we should then suspect model overfitting. To deal with 

this problem, we iteratively reduce the number of nodes or branches in our DTs model and repeat 
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the procedure until we obtain the optimum DTs model, which has an out-of-sample MAPE that 

does not differ significantly from the in-sample MAPE. The maximum number of iterations that 

we use to tune our model is 1000. We also control the learning rate of the iteration process at 0.l 

and limit the maximum depth of the DTs to 10. 

Ensembles of DTs combine hundreds or even thousands of single DTs to build complex models 

that provide good predictive performance, but these models are often difficult or even impossible 

to interpret. Therefore, these “black-box” models must be complemented by additional tools to 

enable exploration of the key features of these models. These features include identification of the 

most influential variables that affect the outcome variable; comprehension of the marginal effect 

of a specified independent variable of interest on the predicted outcome while also accounting for 

the average effects of the other independent model variables; and determination of how a predicted 

outcome variable would change if the input variables changed.  

For this purpose, this work relies on the variable importance plot, the partial dependence plot and 

the variable breakdown plot, which are all provided by the XGBoost Explainer package (Foster, 

2017). The variable importance plot provides a list of the most significant independent variables 
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in descending order based on their drop-out loss. The plot indicates the variables that make 

significant contributions to the predictive power of the model and also determines the variables 

that can be excluded from the model. The partial dependence plot visualizes the relationships 

between the independent variables and the outcome variable to allow us to determine whether the 

appropriate functional form is monotonic, linear, polynomial or a more complex form. The variable 

breakdown plot shows the contributions of each variable to the final prediction and indicates how 

the predicted outcome variable would be altered if the input variables were changed. The variable 

breakdown plot allows us to differentiate between the effects of wind and solar generation on the 

electricity market price formation and how changes in the proportions of the RE (wind and solar) 

sources will affect the spot market price. While maintaining a constant load, we constructed several 

scenarios using different proportions of wind and solar energy for a selected hour (13:00) and 

conducted a scenario-based analysis to examine how expected increases in the RE capacity in 

Germany would affect the spot market price. 

 

4. RESULTS AND DISCUSSION 

The following subsections provide the results for an analysis using the data as a unique series (the 
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2010–2017 analysis) and a second analysis using the data separated into 24 hourly series (the 

hourly analysis). In both analyses, the results of the GLS regression are introduced first and are 

followed by those from the extreme gradient boosting method.  

 

4.1 Merit Order Effect – 2010–2017 Analysis  

Table 3 summarizes the GLS regression results. All the explanatory variables were significant with 

a 0.1% level. As expected, the load affects the spot market prices positively, while the wind and 

solar powers both have negative effects. This result is in line with those obtained in previous studies 

of the MOE (see Section 2). A comparison of the two RE sources shows that electricity generated 

from solar sources has a slightly stronger effect on the spot market prices than electricity generated 

from wind sources during the period studied. This is mostly because the solar generation pattern 

coincides with peaks in demand in Germany, as observed by Frantzen and Hauser (2012). This 

aspect will be investigated closely in the hourly analysis. 

Table 3: GLS Regression Results  

  2010–2017 

Load 1.23*** (0.013) 
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Wind -0.88*** (0.020) 

Solar -0.93*** (0.017) 

DW statistic 1.80 

R-square 0.54 

Observations 64310 

Note: Robust standard errors in parenthesis. The results, including all variables, are 

provided in full in the Appendix. 

*** Significance level of 0.1% 

Based on the results given above, the total average MOE of the RE sources is then calculated (see 

Table 4). These results show that during the period under study, the electricity from the wind and 

solar sources depressed the spot market price by 6.17 €/MWh and 3.47 €/MWh, respectively, which 

gives a total average MOE for these RE sources of 9.64 €/MWh. Our result for the total average 

MOE of the RE sources is compatible with the results of previous studies on the MOE on the 

German/Austrian spot market prices, which ranged from 5.0 €/MWh to 10.13 €/MWh (Cludius et 

al., 2014; Sensfuß, 2011; and Würzburg et al., 2013).  

Table 4: Total MOE of the RE Sources 

  2010–2017 

LWA of Wind (GW) 7.04 

LWA of Solar (GW)  3.71 
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MOE of Wind (€/MWh) −6.17 

MOE of Solar (€/MWh) −3.47 

Total MOE of RE (Wind and Solar) sources (€/MWh) −9.64 

Note: LWA stands for load-weighted average, as described in Subsection 3.2. 

Table 5 shows the predictive performance results for the model that was created using the extreme 

gradient boosting method. From the five summary statistics, we can see that the model is powerful 

enough to predict the spot market prices in all data ranges. This can be determined from the 

predicted values, which show rather good agreement with the actual data in all the sample ranges 

with the exception of the maximum value, where our model slightly underestimated the price 

(208.68 €/MWh, with the actual value being 210 €/MWh). Additionally, based on the predictive 

power evaluation, the overall model performance is very good, with R-squared and correlation 

values both exceeding 0.99. In terms of the MAPE, our model also demonstrates excellent 

performance with a MAPE value of well below 0.1 (0.04). 

Table 5: Predictive Performance of the Model 

Summary statistics Actual Predicted 

Minimum 0.00 -0.65 

1st Quartile 28.06 28.15 

Median 36.52 36.53 
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Mean 38.20 38.22 

Quartile 47.91 47.68 

Maximum 210.00 208.68 

R Square - 0.991 

MAPE - 0.0379 

Correlation - 0.996 

Figure 3 shows the variable importance plots7. The most influential variable based on the drop-out 

loss that determines the spot price for electricity is the Load (i.e., the total demand), which is 

                                         
7 Variable importance plots indicate which of the variables have the largest relative influence in 
contributing more to the model. Therefore, these plots should not be interpreted as showing the 

magnitudes of impacts of the variables on the price. 

Figure 3: Variable Importance Plots 
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followed by the electricity from wind, and that generated from solar sources. This result is largely 

in line with that obtained from the GLS regression, which showed Load, Wind, and Solar as the 

three most influential variables. With regard to the time dummy variables, years 2011 (y11) and 

2012 (y12) were found to have the most influential effects on the price when compared with the 

Figure 4: Three-dimensional Partial Dependence Plots 
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other years. In 2011, following the Fukushima Nuclear Disaster that occurred in Japan, Germany 

shut down nuclear power plants with a capacity of roughly 11 GW, which shifted the entire merit 

order curve to the left (Bublitz et al., 2017). This nuclear phase-out could be the major reason why 

2011 and 2012 show higher impacts on price than the other years.  

Based on the results of the partial dependent plot analysis that was conducted for the three most 

influential variables, i.e., Load, Wind, and Solar, as shown in Figure 4(a) and (b), the Load has an 

almost linear and positive impact on the spot market price. The figures demonstrate that the 

electricity from both the wind and solar sources reduces the spot market price and that these sources 

have somewhat linear relationships with price. These results imply that the linear regression 

method can be used to estimate the MOE accurately to a certain degree while considering the 

somewhat linear relationships between the three most influential variables and the price. However, 

it is notable that when the generation volumes are very high for both the solar and wind sources, 

the MOE of this additional wind and solar penetration diminishes slightly, as indicated by Figure 

4(c).  

 

4.2 Merit Order Effect – Hourly Analysis   
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Table 6 summarizes the results of the GLS regression performed for the hourly analysis. These 

results show that both the load and the wind sources were significant for all 24 hours with a 0.1% 

level. Because solar generation did not occur during H1, H2, and H3, it was omitted for these hours. 

Solar generation becomes statistically significant for H6 and H7 with a 5% level, and is also 

significant for H8 to H19 with a 0.1% level. When the effects of wind and solar generation are 

compared, the results show that the effect of solar generation becomes higher during H6, H7, H11, 

H12, and H13.  

Table 6: GLS Regression Results for Each Hour 

Hour Load Wind Solar 

DW 

statistic 
R-square Observations 

H1 0.37 ***(0.043) -1.08 ***(0.024) N/A  2.13 0.67 2,674 

H2 0.47 ***(0.045) -1.11 ***(0.024) N/A 2.06 0.66 2,654 

H3 0.52 ***(0.046) -1.17 ***(0.025) N/A 2.07 0.64 2,635 

H4 0.48 ***(0.046) -1.14 ***(0.025) -2,304.33(23526.35) 2.08 0.62 2,649 

H5 0.40 ***(0.040) -1.10 ***(0.025) -142.36(113.570) 2.14 0.62 2,659 

H6 0.28 ***(0.032) -0.97 ***(0.025) -8.13*(3.201) 2.12 0.65 2,671 

H7 0.29 ***(0.029) -0.92 ***(0.028) -1.40*(0.587) 2.04 0.74 2,658 

H8 0.37 ***(0.034) -1.10 ***(0.040) -1.03***(0.211) 2.05 0.74 2,677 

H9 0.39 ***(0.035) -1.13 ***(0.037) -1.06***(0.099) 2.09 0.73 2,692 

H10 0.36 ***(0.035) -1.15 ***(0.035) -1.14***(0.061) 2.10 0.73 2,695 

H11 0.34 ***(0.036) -1.13 ***(0.031) -1.16***(0.048) 2.09 0.72 2,690 

H12 0.35 ***(0.036) -1.11 ***(0.023) -1.17***(0.047) 2.10 0.70 2,691 

H13 0.31 ***(0.035) -1.05 ***(0.027) -1.09***(0.039) 2.09 0.72 2,684 

H14 0.33 ***(0.033) -1.02 ***(0.026) -1.02***(0.038) 2.06 0.74 2,678 
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H15 0.32 ***(0.032) -1.00 ***(0.026) -0.97***(0.039) 2.06 0.74 2,669 

H16 0.32 ***(0.032) -0.94 ***(0.024) -0.88***(0.041) 2.07 0.74 2,670 

H17 0.30 ***(0.034) -0.95 ***(0.025) -0.82***(0.049) 2.09 0.72 2,678 

H18 0.31 ***(0.040) -1.09 ***(0.032) -0.79***(0.076) 2.08 0.67 2,699 

H19 0.32 ***(0.047) -1.21 ***(0.036) -0.77***(0.140) 2.12 0.60 2,701 

H20 0.29 ***(0.043) -1.14 ***(0.031) -0.34(0.294) 2.16 0.60 2,702 

H21 0.24 ***(0.040) -1.01 ***(0.027) 0.24(0.731) 2.20 0.63 2,701 

H22 0.22 ***(0.037) -0.91 ***(0.024) 2.93(2.926) 2.21 0.63 2,699 

H23 0.21 ***(0.037) -0.94 ***(0.023) 2,071.27(2012.296) 2.21 0.66 2,700 

H24 0.30 ***(0.045) -0.98 ***(0.023) -119.39(5668.283) 2.13 0.69 2,684 

Note: Robust standard errors in parenthesis. For H1, H2, and H3, generation from solar was 0, 

and thus solar is not used in the analysis for these hours. 

*** Significance level of 0.1%; * Significance level of 5%. 

Based on the results presented in Table 6, the average MOEs for both wind and solar generation 

are calculated for each hour, with results as shown in Table 7. These results show that wind had a 

relatively stable impact across the different hours of the day, ranging from 5.88 €/MWh (H7) to 

8.04 €/MWh (H3), while the impact of the solar sources differs greatly across the different hours, 

ranging from 0.24 €/MWh (H6) to 11.78 €/MWh (H12). When the total MOE is considered, RE 

had a relatively higher MOE between H9 and H19, with a higher MOE than the total average MOE 

of RE based on the 2010–2017 analysis, which was 9.64 €/MWh. The RE had a high price reduction 

effect for H12 and H13 with prices of 19.39 €/MWh and 19.19 €/MWh, respectively, which are 

approximately double the value of the total average MOE of RE. 

Table 7: Total MOE for the RE Sources for Each Hour 



 30 

Hour 
LWA of Wind 

(GW) 

LWA of Solar 

(GW) 

MOE of Wind 

(€/MWh) 

MOE of Solar 

(€/MWh) 

Total MOE of RE 

(Wind and Solar) 

sources (€/MWh) 

H1 7.17 0.00 -7.78 N/A -7.78 

H2 6.99 0.00 -7.76 N/A -7.76 

H3 6.85 0.00 -8.04 N/A -8.04 

H4 6.82 0.00 -7.78 N/A -7.78 

H5 6.84 0.00 -7.51 N/A -7.51 

H6 6.91 0.03 -6.70 -0.24 -6.94 

H7 6.42 0.37 -5.88 -0.52 -6.40 

H8 6.78 1.23 -7.43 -1.26 -8.69 

H9 6.60 3.19 -7.48 -3.39 -10.87 

H10 6.51 5.84 -7.48 -6.66 -14.14 

H11 6.62 8.33 -7.47 -9.68 -17.15 

H12 6.87 10.06 -7.61 -11.78 -19.39 

H13 7.08 10.79 -7.42 -11.77 -19.19 

H14 7.18 10.61 -7.33 -10.78 -18.11 

H15 7.20 9.59 -7.21 -9.35 -16.56 

H16 7.20 7.87 -6.79 -6.96 -13.74 

H17 7.25 5.74 -6.91 -4.70 -11.61 

H18 7.34 3.65 -8.03 -2.87 -10.90 

H19 7.32 1.90 -8.82 -1.46 -10.28 

H20 7.27 0.73 -8.26 N/A -8.26 

H21 7.25 0.17 -7.35 N/A -7.35 

H22 7.33 0.01 -6.64 N/A -6.64 

H23 7.37 0.00 -6.92 N/A -6.92 

H24 7.29 0.00 -7.14 N/A -7.14 

Figure 5 shows the results of the partial dependent plot analysis that was conducted for H13, which 

is the hour during which both solar and wind generation showed significant impacts on the price. 

As shown in Figure 5(a) and (b), for H13, the positive impact of the Load on the price diminishes 
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along with the increasing demand. The figures show that, similar to the case of the 2010–2017 

analysis, the electricity obtained from both wind and solar sources reduces the spot market price, 

and that these sources have somewhat linear relationships with the price. However, it is notable 

that the impact of RE, and particularly that of wind, become unresponsive to the price if the share 

of the RE exceeds a specific threshold, as indicated by the figures. When the results are compared 

with those of the 2010–2017 analysis (Figure 4), we observe that the relationships between the 

Figure 5: Three-dimensional Partial Dependence Plots of H13 

(a) (b) 

(c) 

Price Price 

Price 

Wind 
Solar 

Solar 

Load 
Load 

Wind 



 32 

three most influential variables (i.e., Load, Wind, and Solar) and Price are more complex in the 

hourly analysis, with more apparent thresholds and changes in tendencies, especially for the wind 

and solar sources when their generation volume is high.  

 

4.3 Scenario-based Analysis – Variables Breakdown  

To provide a more detailed analysis of how the wind and solar energies interact with the price, we 

constructed eight scenarios using different proportions of wind and solar generation for H13, and 

then conducted a scenario-based analysis using the model developed by the extreme gradient 

boosting method to examine how the expected increase in the RE capacity in Germany would affect 

the spot market price. 

The baseline is the mean value of solar generation, wind generation, and load. While the load is 

maintained at its mean value for all eight scenarios, the volume of solar and wind generation is 

increased by 10% of the mean value for scenario 1, and by 20%, 30%, 40%, 50%, 100%, 150%, 

and 200% for scenarios 2 to 8, respectively. These results show that if the volume of RE generation 

increases by 100% and 200% of the mean value, the spot prices could then be reduced significantly 

to approximately 20 €/MWh and 10 €/MWh, respectively, for H13. Another notable point from 

these results is that increased volumes of solar and wind generation tend to reduce the positive 
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impact of the load on the price. 

 

5. CONCLUSIONS 

Understanding how the rapidly increasing development of RE affects the spot market price has 

become an important element of the economic research on RE and the electricity markets and 

could be helpful in both policy making and planning related to RE, and also in the design of the 

electricity markets. To gain a deeper understanding of the price reduction effect (i.e., the MOE) 

of RE on the spot market prices, we have examined the MOEs of wind and solar power on the 

Figure 6: MOE with Different Mixes of Wind and Solar – H13  

Baseline Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8

Solar MOE (left axis) 4.54 -2.55 -1.39 -5.37 -10.63 -10.41 -16.52 -17.96 -17.89

Wind MOE (left axis) 2.21 -5.79 -1.57 -0.67 -4.76 -4.35 -3.20 -9.55 -12.12

Load Contribution (left axis) 5.35 5.35 5.35 5.01 5.05 3.15 0.53 -0.97 -0.11

Estimated Pr ice (left axis) 52.81 37.73 43.10 39.68 30.37 29.10 21.53 12.24 10.59

Volume of Solar (right axis) 10.86 11.95 13.03 14.12 15.21 16.29 21.72 27.16 32.59

Volume of Wind (right axis) 7.01 7.72 8.42 9.12 9.82 10.52 14.03 17.53 21.04
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spot market price of the joint German/Austrian electricity market using the GLS method and the 

extreme gradient boosting method.  

Using hourly data that covered the longest period of study of the MOE, we first showed that, 

based on the regression analysis, the electricity from the RE (wind and solar) sources reduced the 

spot market price by 9.64 €/MWh on average during the period from 2010 to 2017. Additionally, 

by investigating how the impacts of the wind and solar sources vary across the different hours of 

the day, the study showed that wind sources had a relatively stable impact across the different 

hours of the day, with prices ranging from 5.88 €/MWh to 8.04 €/MWh, while the impact of solar 

generation varies greatly across the different hours, ranging from 0.24 €/MWh to 11.78 €/MWh 

and having a stronger impact than wind generation during the peak hours.   

The results from the extreme gradient boosting method have shown further important 

characteristics of the interactions between RE and the spot market price, including: 1) the 

somewhat linear interactions of the load and the RE sources with the price, which imply that the 

linear regression method can estimate the MOE accurately to a certain degree; and 2) the slightly 

diminishing MOE of the RE sources at high generation volumes, particularly for wind generation. 

Finally, using a scenario-based variable breakdown analysis, we showed how the different 
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proportions of RE generation change the MOE. 
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Appendix  

Table A: Full Results of 2010-2017 GLS Analysis 

 2010-2017 

Load 1.23*** (0.013) 

Wind -0.88*** (0.020) 

Solar -0.93*** (0.017) 

dy11 5.82*** (0.838) 

dy12 1.11(0.855) 

dy13 -2.84**(0.845) 

dy14 -12.52***(0.769) 

dy15 -10.77***(0.769) 

dy16 -16.11***(0.782) 

dy17 -9.19***(0.879) 

dm01 -2.86***(0.758) 

dm02 -2.53**(0.823) 

dm03 -1.31(0.736) 

dm04 1.65*(0.725) 

dm05 2.41***(0.678) 

dm06 2.82***(0.658) 

dm07 3.96***(0.651) 

dm08 4.12***(0.664) 

dm09 3.48***(0.678) 

dm10 2.49**(0.727) 

dm11 -0.33(0.671) 

dm12 N/A 

dd01 -1.31***(0.219) 

dd02 -0.45(0.245) 

dd03 -0.31(0.256) 

dd04 -0.13(0.254) 

dd05 0.002(0.247) 

dd06 1.09***(0.213) 

dd07 N/A 
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dh01 1.79***(0.090) 

dh02 2.04***(0.114) 

dh03 1.58***(0.129) 

dh04 0.23(0.135) 

dh05 -0.84***(0.132) 

dh06 -1.98***(0.132) 

dh07 -2.95***(0.167) 

dh08 -1.46***(0.225) 

dh09 -1.22***(0.266) 

dh10 -1.52***(0.303) 

dh11 -2.40***(0.340) 

dh12 -2.36***(0.367) 

dh13 -2.64***(0.367) 

dh14 -3.02***(0.356) 

dh15 -3.43***(0.334) 

dh16 -3.64***(0.307) 

dh17 -3.76***(0.280) 

dh18 -1.63***(0.253) 

dh19 0.27(0.226) 

dh20 0.38*(0.195) 

dh21 -0.88***(0.162) 

dh22 -1.72***(0.125) 

dh23 -0.13(0.087) 

dh24 N/A 

DW statistic 1.80 

R-square 0.54 

Observations 64310 

Note: Robust standard errors in parenthesis. dm12, dd07, and dh24 are bases for the month, 

day, and hour dummies, respectively.  

*** Significance level of 0.1%; ** Significance level of 1%; * Significance level of 5%. 

Table B: Descriptive Statistics for the Variables of Each 24 Hourly Series 
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  Mean Standard deviation Minimum Maximum 

H1 

Price (€/MWh) 31.03 10.01 0.01 57.32 

Load (GW) 53.49 5.59 39.90 71.85 

Solar (GW) 0 0 0 0 

Wind (GW) 7.04 5.59 0.16 33.96 

Observations: 2,674 

H2 

Price (€/MWh) 29.02 9.99 0 57.32 

Load (GW) 51.32 5.58  37.83 69.26 

Solar (GW) 0 0 0 0 

Wind (GW) 6.82 5.4 0.16 32.29 

Observations: 2,654 

H3 

Price (€/MWh) 27.53 10.1 0 57.32 

Load (GW) 50.25 5.58 36.67 69.03 

Solar (GW) 0 0 0 0 

Wind (GW) 6.65  5.29 0.15 32.39 

Observations: 2,635 

H4 

Price (€/MWh) 26.04 10.01 0 57.32 

Load (GW) 50.19 5.67 36.45 69.03 

Solar (GW) 5.6e-8 2.9e-8 0 0.00015 

Wind (GW) 6.64 5.32 0.14 32.66 

Observations: 2,649 

H5 

Price (€/MWh) 26.21 9.86 0 57.32 

Load (GW) 51.30 5.95 35.20 68.03 

Solar (GW) 0.00024 0.00091 0 0.019 

Wind (GW) 6.68        5.4 0.14 31.76 

Observations: 2,659 

H6 

Price (€/MWh) 28.51 9.99 0 57.32 

Load (GW) 54.29 7.07 34.90 71.64 

Solar (GW) 0.03 0.07 0 0.39 
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Wind (GW) 6.74 5.56 0.13 32.39 

Observations: 2,671 

H7 

Price (€/MWh) 35.29 12.41 0 91.21 

Load (GW) 60.77 10.05 34.74 80.27 

Solar (GW) 0.31 0.51 0 2.26 

Wind (GW) 6.69 5.66 0.13 33.86 

Observations: 2,658 

H8 

Price (€/MWh) 42.82 16.81 0.04 183.49 

Load (GW) 66.46 11.75 35.77 87.83 

Solar (GW) 1.27 1.52 0 6.42 

Wind (GW) 6.64 5.88 0.15 34.47 

Observations: 2,677 

H9 

Price (€/MWh) 45.28 17.15 0.02 175.55 

Load (GW) 69.66 11.25 36.85 89.8 

Solar (GW) 3.2 2.89 0.003 11.28 

Wind (GW) 6.53 6.09 0.13 35.08 

Observations: 2,692 

H10 

Price (€/MWh) 44.58 16.09 0.07 150.1 

Load (GW) 71.28 10.07 39.42 90.26 

Solar (GW) 5.81 4.25 0.03 16.7 

Wind (GW) 6.46 6.22 0.09 35.34 

Observations: 2,695 

H11 

Price (€/MWh) 43.35 15.94 0.04 151.07 

Load (GW) 72.93 9.52 42.44 91.14 

Solar (GW) 8.3 5.34 0.08 21.31 

Wind (GW) 6.56 6.35 0.09 34.5 

Observations: 2,690 

H12 

Price (€/MWh) 43.11 16.1 0.02  135 

Load (GW) 74.23 9.09 45.7 91.7 

Solar (GW) 10.02 6.03 0.13 24.2 

Wind (GW) 6.83 6.49 0.08 36.27 
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Observations: 2,691 

H13 

Price (€/MWh) 40.79 15.6 0.73 121.58 

Load (GW) 73.28 9.05 46.98 91.09 

Solar (GW) 10.8 6.43 0.2 26.16 

Wind (GW) 7.02 6.54 0.1 37.12 

Observations: 2,684 

H14 

Price (€/MWh) 38.89 15.63 0 117.68 

Load (GW) 71.98 9.58 46.97 90.71 

Solar (GW) 10.66 6.59 0.17 26.84 

Wind (GW) 7.12 6.5 0.11 36.93 

Observations: 2,678 

H15 

Price (€/MWh) 37.69 15.3 0.03 112.21 

Load (GW) 70.6 9.73 45.73 89.65 

Solar (GW) 9.72 6.58 0.11 27.16 

Wind (GW) 7.12 6.39 0.16 36.58 

Observations: 2,669 

H16 

Price (€/MWh) 37.89 14.85 0.02 117.18 

Load (GW) 69.64 9.71 44.58 89.09 

Solar (GW) 8.04 6.24 0.02 26.84 

Wind (GW) 7.11 6.31 0.15 36.36 

Observations: 2,670 

H17 

Price (€/MWh) 39.16 14.95 0.06 121.12 

Load (GW) 69.21 9.6 43.31 90.49 

Solar (GW) 5.92 5.37 0.00065 19.68 

Wind (GW) 7.14 6.26 0.15 35.69 

Observations: 2,678 

H18 

Price (€/MWh) 44.57 17.4 0.07 151.88 

Load (GW) 70.41 9.79 44.17 92.29 

Solar (GW) 3.77 3.94 0 13.39 

Wind (GW) 7.23 6.32 0.16 36.75 

Observations: 2,699 



 44 

 

H19 

Price (€/MWh) 48.87 17.73 7.45 210 

Load (GW) 70.95 9.42 44.81 91.11 

Solar (GW) 1.97 2.4 0 8.35 

Wind (GW) 7.19 6.28 0.21 37.42 

Observations: 2,701 

H20 

Price (€/MWh) 49.11 15.38 2.16 169.9 

Load (GW) 70.12 8.87 45.4 88.63 

Solar (GW) 0.75 1.09 0 3.88 

Wind (GW) 7.15 6.25 0.25 37.87 

Observations: 2,702 

H21 

Price (€/MWh) 44.9 12.7 0.23 136.03 

Load (GW) 67.26 7.8 46.89 84.22 

Solar (GW) 0.17 0.31 0 1.24 

Wind (GW) 7.15 6.19 0.27 37.82 

Observations: 2,701 

H22 

Price (€/MWh) 40.62 10.97 0.11 94.89 

Load (GW) 64.41 6.75 46.4 79.99 

Solar (GW) 0.01 0.03 0 0.14 

Wind (GW) 7.25 6.08 0.26 35.19 

Observations: 2,699 

H23 

Price (€/MWh) 38.9 10.46 2.59 65.14 

Load (GW) 61.84 6.03 45.99 77.8 

Solar (GW) 0 0 0 0 

Wind (GW) 7.29 5.95 0.19 34.16 

Observations: 2,700 

H24 

Price (€/MWh) 33.46 9.93 0.04 56.29 

Load (GW) 57.1 5.72 43.04 74.42 

Solar (GW) 0 0 0 0 

Wind (GW) 7.18 5.74 0.17 33.6 

Observations: 2,684 


