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Abstract

Sergey Aivazian was the head of my department at the Moscow School of Economics, but he
was much more than that. He played an important role in my life, and he contributed to my
studies devoted to copula modelling. This small memoir reports how this amazingly polite and
smart scientist helped me to develop my academic skills and to further stimulate my interest in
multivariate modelling and risk management. Some open questions related to multivariate discrete
models that were among the last topics I discussed with Sergey are reported, hoping they can be
of interest to young researchers for further studies.
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1 Introduction

Sergey Artemievich Aivazian (June 24, 1934 - March 12, 2019) was a Soviet and Russian economist.

He was the recipient of several awards and honors including (among the many), the prize and medal

of the French National Congress of Statisticians (1986), the prize of the Council of Ministers of the

USSR (1986), the medal of the European Econometric Society (1988), the title of Honored Scientist

of the Russian Federation (2002), and the L.V. Kantorovich Prize (2017) for the monograph “Quality

of Life and Living Standards Analysis: An Econometric Approach”. The last prize is awarded by the

Economics Department of the Russian Academy of Sciences for outstanding work in economics and

mathematical models and methods.

This small memoir wants to present the personality and work of Sergey Aivazian through the eyes

of an Italian researcher like me, who settled in Moscow at the beginning of the 21st century. This

memoir is organized as follows: Section 2 reports some interesting moments that I spent with Sergey,

while Section 3 briefly introduces the topic of copulas, which was the main topic I discussed with him

during the time we worked together. Section 4 describes in more detail the multivariate modelling of

operational risks with copulas, which was one of the last topics I discussed with Sergey and which still

has some open questions that can be of interest to young researchers. Section 5 briefly concludes.

2 Sergey and me

One of the most vivid memories that I have of Sergey Aivazian was our first meeting at the Central

Economic Mathematical Institute (CEMI) in Moscow in August 2007 (the CEMI is an economic

research institute of the Russian Academy of Sciences which focuses on econometrics, economic theory

and mathematical economics). His politeness and gentle methods immediately impressed me: he knew

that I arrived in Moscow for the first time in my life and I needed some time to settle in. He offered me

immediately a pretty large assortment of biscuits and sweets together with black tea: this tradition

would have characterized our meetings for years to come.

Sergey Aivazian was like a grandfather-like figure for me and he accompanied me in several steps of my

professional life: from writing several articles about copulas, to our joint textbook mainly dedicated

to econometric methods for finance (Aivazian, S. and Fantazzini, D. (2014), Methods of Econometrics,

Vol 2: Advanced Advanced course with applications in Finance, Master, Infra-M, [in Russian]), to

my Candidate of Science in Economics, till the preparation of my defense as Doctor of Science in

Economics: the Candidate of Science is the first of two doctoral-level scientific degrees in Russia,

while the second and highest doctoral degree is the title of Doctor of Science.
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I always admired the way Sergey communicated with younger colleagues. He was a living legend in

econometrics; however, he was always open to new ideas and new people. He treated me with respect

and attention. The difference in age and the difference in titles between us seemed to disappear the

moment we took our tea.

Probably, the best episode that characterized him as a man for me was the speech he gave at my

wedding party on 17/05/2008. At the time of the toasts for the newlyweds, the party organizer gave

him the microphone and presented him as the head of my department and as my “boss”. He then

replied: “there are no bosses here, we are both men of science”. We were colleagues in the best meaning

of this word: two men interested in developing the same topic for mutual benefit and -hopefully- to

the benefit of econometrics and our students.

3 Copulas (or Copulae?)

The topic of multivariate modelling with copulas was by far the main topic I discussed with Sergey

during the time we worked together. I still remember, as if it happened yesterday, the first time when

he asked me which plural form we should use with the term copula: “copulas” or “copulae”? The

first one is the regular English plural, while the latter is the irregular Latin plural for the nominative

case. Both of them are correct in the English language, but “copulae” is usually considered the most

professional-looking, and a sign of respect for the Latin language. So, how come that copulae became

such an intensive field of collaboration with Sergey Aivazian, which culminated with the publication

of our joint textbook in 2014?

Multivariate statistical analysis was one of Sergey’s main research interests and he taught and mentored

several generations of specialists in multivariate statistical analysis and econometrics, see for example

https://www.hse.ru/en/org/persons/314460253/. Moreover, he organized and supervised the famous

weekly seminar in “Multivariate Statistical Analysis and Probabilistic Modeling of Real Processes”,

which began its work at the CEMI in March 1969 and functioned continuously every Wednesday

during the winter and spring semesters (http://www.cemi.rssi.ru/activity/seminars/index.php#2).

Therefore, it should not come as a surprise that he got very interested when I started discussing

with him my research work with copulas. In this regard, it is important to remark that the evidence

of lack of multivariate normality for the joint distribution of many economic and financial variables

has been one of the main drivers behind the development of copula theory. For example, evidence that

economic variables are non-normal has been widely reported and discussed as far back as Mills (1927),

while the most reported deviations are excess kurtosis and skewness in univariate distributions, as well
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as asymmetric dependence, see e.g. Patton (2006), Fantazzini (2008), Fantazzini (2010) and references

therein.

The theory of copulas dates back to Hoeffding (1940) and Sklar (1959), but its application in sta-

tistical modelling is far more recent: see Joe (1997) and Nelsen (1999) for an introduction to copula

theory, while Cherubini et al. (2004), Aivazian and Fantazzini (2014), and Fantazzini (2019) provide

a discussion of copula techniques for financial applications.

What is a copula? An n-dimensional copula is a multivariate cumulative distribution function with

uniform distributed margins in [0,1]. Particularly important is the Sklar’s theorem (1959):

Let H denote a n-dimensional distribution function with margins F1, . . . Fn. Then, there exists a n-

copula C such that for all real (x1, . . . , xn), we have that H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If all the margins are continuous, then the copula is unique; otherwise C is uniquely determined on

RanF1×RanF2 . . .×RanFn, where Ran is the range of the marginals. Conversely, if C is a copula and

F1, . . . Fn are distribution functions, then the function H defined above is a joint distribution function

with margins F1, . . . Fn.

Proof: The proof of the Sklar’s theorem was not given in Sklar (1959), but a sketch of it was provided

in Sklar (1973), and finally showed in details by Schweizer and Sklar (1974). See also Joe (1997),

Nelsen (1999), and Durante and Sempi (2015).

The Sklar’s theorem implies that we can join together any n ≥ 2 univariate distributions, of any

type (not necessarily from the same family), with any copula to get a valid bivariate or multivariate

distribution. Copulas allow to break the distribution of a (continuous) random vector into individual

components (the marginals) with a dependence structure among them modelled by a copula, without

losing any information. Needless to say, this decomposition considerably simplifies the estimation

of a multivariate model. Moreover, we can use this theorem to extract copulae from well known

multivariate distributions: for example, the Normal copula from the multivariate Normal distribution,

the Student’s t copula from the multivariate Student’s t and so on, see Aivaizian and Fantazzini (2014)

for a detailed discussion.

4 Copulae and Operational risks

The modelling of operational risks with copulas was one of the last topics that I discussed with Sergey

and it was examined in the penultimate section (7.3) of our joint textbook published in 2014. This

theme has become important following the development of the Basel II and then the Basel III accords,
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which are recommendations on bank capital adequacy issued by the Basel Committee on Banking

Supervision. The latest reforms introduced with Basel III want to simplify the Basel II framework by

proposing a single “Standardised Measurement Approach” (SMA) to assess operational risk. Such an

approach combines a refined measure of gross income with the bank’s own internal loss history over the

last 10 years. Moreover, it allows the bank to consider net losses after recoveries and insurance, see e.g.

Chernobai et al. (2007), Ramirez (2017), Basel Committee (2017) and Akkizidis and Kalyvas (2018) for

more details. I provide below a brief introduction to the multivariate modelling of operational risks and

then present some open questions that I was discussing with Sergey before his illness, unfortunately,

took over.

4.1 A brief review of the theory

The term “operational risks” is used to define all financial risks that are not classified as market or

credit risks. They may include all losses due to human errors, technical or procedural problems, etc.

One of the most common classes of models for operational risks is the Loss Distribution Approach

(LDA), see Chapelle (2019) and Naim and Condamin (2019) for a discussion at the textbook level.

This approach employs a distribution to describe the frequency of the risky events, and another

disctribution to describe the severity of the losses. Formally, for each type of risk i = 1, ..., R and for

a given time period, operational losses can be defined as a sum (Si) of the random number (ni) of the

losses (Xij):

Si = Xi1 +Xi2 + . . .+Xini

A widespread statistical model within the LDA class of models is the actuarial model, where the

probability distribution of Si is defined as Fi(Si) = Fi(ni) · Fi(Xij), where Fi(Si) is the probability

distribution of the expected loss for risk i, Fi(ni) is the probability of the event (frequency) for risk

i, while Fi(Xij) is the loss given the event (severity) for risk i, where j = 1, . . . , ni. The actuarial

model assumes that the losses are random variables, independent and identically distributed (i.i.d.),

and the distribution of ni (frequency) is independent of the distribution of Xij . I want to remark that

in the most general case, the Basel II accord divides banks’ activities into a matrix of eight business

lines (BLs) and seven event types (ETs), for a total of R = 56 BLs/ETs risk combinations, see Basel

Committee (2002), Chernobai et al. (2007) and Karam and Planchet (2012) for more details.

In general, the frequency is modelled with a Poisson or a Negative Binomial distribution, while the

severity is modelled with an Exponential or a Pareto or a Gamma distribution, or using the lognormal

for the body of the distribution and the Extreme Value Theory (EVT) approach for the tail, see Kudrov
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(2008) and Fantazzini and Kudrov (2010). The distribution Fi of the losses Si for each intersection i

among business lines and event types is then obtained by the convolution of the frequency and severity

distributions: given that the analytic representation of this distribution is computationally difficult or

impossible, Monte Carlo methods are usually employed.

Once the risk measures for each loss Si are estimated -either the Value at Risk (VaR) or the Expected

Shortfall (ES)-, the global risk measure is then usually computed as the simple sum of these individual

measures, thus assuming a perfect dependence among the different losses Si. If we use the Sklar’s

theorem (1959) and the Frechet-Hoeffding bounds, the multivariate distribution among the R losses

at time t would be given by

H(S1t, . . . , SR,t) = min (F1(S1,t), . . . , FR(SR,t))

where H is the joint distribution of the vector of losses Sit, i = 1, . . . , R, and Fi(·) are the cumulative

distribution functions of the losses’ marginals. Needless to say, such an assumption in quite unrealistic.

Fantazzini et al. (2008) proposed to use copulas to model the dependence among operational risk losses:

by using again the Sklar’s Theorem, the joint distribution H of a vector of losses Sit, i = 1, . . . , R can

be expressed simply as the copula of the cumulative distribution functions of the losses’ marginals:

H(S1t, . . . , SR,t) = C(F1(S1,t), . . . , FR(SR,t))

Monte Carlo methods are again used to compute the required total capital for operational risk. This

approach is also known as the canonical aggregation model via copulas.

Lindskog and McNeil (2003), Embrechts and Puccetti (2008) and Rachedi and Fantazzini (2009)

proposed a different aggregation model (known as the Poisson shock model ) where the dependence

is modelled among severities and among frequencies using Poisson processes. Suppose there are m

different types of shock or event and, for e = 1, . . . ,m, let ne
t be a Poisson process with intensity λe

recording the number of events of type e occurring in (0, t]. Assume further that these shock counting

processes are independent. Consider losses of R different types and, for i = 1, . . . , R, let nit be a

counting process that records the frequency of losses of the ith type occurring in (0, t]. At the rth

occurrence of an event of type e the Bernoulli variable Iei,r indicates whether a loss of type i occurs.

The vectors

I
e
r = (Ie1,r, . . . , I

e
R,r)

′ for r = 1, . . . , ne
t

are considered to be independent and identically distributed with a multivariate Bernoulli distribu-
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tion. According to the Poisson shock model, the loss processes nit, i = 1, . . . , R, are clearly Poisson

themselves, since they are obtained by superpositioning m independent Poisson processes generated by

the m underlying event processes. Therefore, (n1t, . . . , nRt) can be thought of as having a multivariate

Poisson distribution. However, it follows that the total number of losses is not itself a Poisson process,

but rather a compound Poisson process:

nt =
m∑

e=1

ne

t∑

r=1

R∑

i=1

Iei,r

These shocks cause a certain number of losses in the i-th BL/ET, whose severity is (Xe
ir), r = 1, . . . , ne

t ,

where (Xe
ir) are i.i.d. with distribution function Fit and independent with respect to ne

t . As it may

appear immediately from the previous discussion, the key point of this approach is to identify the

underlying m Poisson processes: unfortunately, this field of studies is quite recent and more research

has to be made with this regard. Moreover, the paucity of data limits any precise identification. A

simple approach is to identify the m processes with the R risky intersections (Business Lines or Event

Types or both), so that we are back to the standard framework of the LDA approach. This is the

“soft-model” proposed in Embrechts and Puccetti (2008) and later applied to a real dataset by Rachedi

and Fantazzini (2009). Embrechts and Puccetti (2008) and Rachedi and Fantazzini (2009) allow for

positive/negative dependence among the shocks (nit) and also among the loss severities (Xit) using

copulas, but the number of shocks and loss severities are independent to each other:

Hfrequency(n1t, . . . , nRt) = Cfrequency(F1(n1t), . . . , FR(nRt))

Hseverity(X1j , . . . , XRj) = Cseverity(G1(X1j), . . . , GR(XRj))

Hfrequency
⊥ Hseverity

where Hfrequency(·) is the joint distribution function of the random vector (n1t, . . . , nRt), Fi(·) is the

cumulative distribution function of the random variable nit, while Cfrequency(·) is the copula of the

multivariate distribution function Hfrequency(·); Hseverity(·) is the joint distribution function of the

random vector (X1,j , . . . , XR,j), Gi(·) is the cumulative distribution function of the random variable

Xij , and Cseverity(·) is the copula of the multivariate distribution function Hseverity(·). Usual risk

measures such as the VaR and ES can then be computed using simulation methods, see Rachedi and

Fantazzini (2009), Aivazian and Fantazzini (2014) for more details.
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4.2 Open questions

The development of multivariate models with discrete marginals poses serious problems and it was a

topic that I discussed with Sergey in some occasions, particularly when preparing the section of our

textbook dedicated to the Poisson shock model. For example, during one of our meetings in Armenia

for the traditional summer conference in “Multivariate statistical analysis and econometrics”, Sergey

told me that the knowledge that a multivariate discrete distribution does not possess a unique copula

representation was also known in the Russian statistical literature before Marshall (1996), which is

the first publication in the English literature discussing this topic: see e.g. Blagoveschensky (2012 p.

114-115) who mentions the article titled “Classification and visualization algorithms based on quantile

analysis”, published in 1989 in the journal Computer software, BIM-M Application Program Library,

Issue 20, p. 60-76, Minsk (the author want to thank the Guest Editor for pointing him this reference).

I report below some open questions related to multivariate discrete models in general, and Poisson

shock models in particular, that can be of interest to young researchers for further studies.

Issue 1: Estimating copulas with discrete marginals by Maximum Likelihood (ML).

It is well known that if the marginal distribution functions are all continuous then the copula C is

unique, while this is not true when the marginal distributions are discrete: in this case, the copula

is only uniquely identified on
K⊗
i=1

Range(Fi), a K-dimensional set, which is the Cartesian product of

the range of all marginals. As Genest and Neslehova (2007) said, “despite the unidentifiability issue,

copula models for discrete distributions are valid constructions. They are helpful, e.g., in the context

of simulation and robustness studies”. However, when we work with discrete distributions, the Prob-

ability Integral Transformation Theorem (PITT) of Fisher (1932) does not apply, and the uniformity

assumption does not hold, regardless of the quality of the specification of the marginal model. As a

consequence, the model estimates obtained with maximum likelihood are no more consistent, see Gen-

est and Neslehova (2007), Heinen and Rengifo (2007), and Trivedi and Zimmer (2017) for a detailed

discussion. Let’s see an example:

Example :





Copula: Bivariate T-copula with ρ = −0.5, ν = 3

Marginals : Poisson1(λ1 = 1.5)

Poisson2(λ2 = 3)

T : 100000

⇛ ρ̂ = −0.45, ν̂ = 17

⇛ λ̂1 = 1.50, λ̂2 = 3.00
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The 2-step ML estimation provides consistent estimates for the marginals, but the dependence param-

eters are misspecified: the estimated t-copula is quite close to a normal copula.

Issue 2: Does the “continuous extension” of discrete marginals with uniform marginals

help the ML estimation?

Stevens (1950), Denuit and Lambert (2005), Heinen and Rengifo (2007), and Trivedi and Zimmer

(2007) proposed the continuous extension of discrete random variables to overcome the previous mis-

specification problem. More specifically, they proposed to generate artificially continued variables

X∗ = X + (U − 1), by adding Uniform[0,1] random variables to the discrete variables X with domain

X. Note that this method does not change the concordance measure between the variables. Moreover,

they state a discrete analog of the PITT, by showing that

F ∗(s) = Pr(X∗
≤ s) =

∑

x∈X:x≤[s]

fx + (s− [s])f[s+1] = F ([s]) + (s− [s])f[s+1]

is uniformly distributed on [0, 1], where [s] is the integer part of s ∈ R, and fx = Pr(X = x), x ∈ X.

Does it work? Let’s continue to use the previous numerical example:

Example

(continued) :





Copula: Bivariate T-copula with ρ = −0.5, ν = 3

Marginals : Poisson1(λ1 = 1.5)

Poisson2(λ2 = 3)

T : 100000

⇛ ρ̂ = −0.41, ν̂ = 6

⇛ λ̂1 = 1.50, λ̂2 = 3.00

There is indeed an improvement, particularly for the degrees of freedom coefficient (6 is closer to 3

than 17). However, the dependence structure is still misspecified.

Issue 3: Dealing with zero losses when computing the dependence structure of severities

in the Poisson shock model.
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Suppose to observe the following severities in four Business Lines:

1st year BL1 BL2 BL3 BL4

January 20 100 13 77

February 10 134 18 56

March 0 98 0 87

April 0 0 0 101

. . .

2nd year BL1 BL2 BL3 BL4

January 15 92 13 57

February 27 122 18 66

March 4 0 23 99

April 0 0 0 71

. . .

nth year BL1 BL2 BL3 BL4

. . .

If we want to measure the dependence among the four severities, that is CSeverity (F (X1,t), . . . , F (X4,t)),

we have to consider only the rows where all Xi,t are different from zero,

1st year BL1 BL2 BL3 BL4

January 20 100 13 77

February 10 134 18 56

March 0 98 0 87

April 0 0 0 101

. . .

2nd year BL1 BL2 BL3 BL4

January 15 92 13 57

February 27 122 18 66

March 4 0 23 99

April 0 0 0 71

. . .

nth year BL1 BL2 BL3 BL4

. . .

while we have to remove the remaining ones where zeros are present. If we do not exclude the zeros,

the dependence is underestimated (and the marginals are misspecified as well). Let’ s see a small

bivariate example:
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Example :





Frequency: n1,t ∼ Poisson1(λ1 = 1.5) ⊥ n2,t ∼ Poisson2(λ2 = 3)

Severity: Bivariate T-copula with ρ = −0.5, ν = 3

Marginals : Γ1(0.2, 90000), Γ2(0.2, 90000)

T : 100000

⇛ ρ̂ = −0.32, ν̂ = 31

⇛ Γ̂1(0.08,98823), Γ̂2(0.18,92997)

Instead, if we remove the zeros everything is fine:

Example :





Frequency: n1,t ∼ Poisson1(λ1 = 1.5) ⊥ n2,t ∼ Poisson2(λ2 = 3)

Severity: Bivariate T-copula with ρ = −0.5, ν = 3

Marginals : Γ1(0.2, 90000), Γ2(0.2, 90000)

T : 100000

⇛ ρ̂ = −0.50, ν̂ = 3

⇛ Γ̂1(0.20,90275), Γ̂2(0.20,90804)

Everything solved? Well, not really. Unfortunately, already with only 8 operational risk BLs, it is

not very common to have 8 severities different from zero at the same time t, particularly for small-

medium financial institutions. If we consider the whole 56 BLs/ETs used for operational risks, then

this situation is close to impossible (for time frequencies higher or equal to monthly observations). A

potential solution could be to compute the dependencies pairwise and then putting them together, see

Fantazzini (2010) and references therein for more details. Such a procedure may not lead to a positive

definite correlation matrix in elliptical copulas, and the eigenvalue method by Rousseeuw et al. (1993)

would have to be used. Fantazzini (2010) found that the effects of such a method on the coverage rates

and the parameters estimates in the case of a T-copula with one eigenvalue of the correlation matrix

close to zero or negative are rather limited. However, the previous solution with very scarce data like

in operational risk datasets may lead to several negative eigenvalues in the correlation matrix. More

research work would definitely be needed in this regard.

The previous discussion clarifies why I mainly suggested using the loss distribution approach with

comonotonic losses or (better) with the canonical aggregation model via copulas, whereas I suggested

to handle the Poisson shock model with care: the latter model may deliver underestimated risk

measures due to poor estimates of the distribution tails.
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5 Conclusions

One year has passed from the death of Sergey Aivazian and his presence is sorely missed. This memoir

wanted to recount his life from a different perspective, reporting some interesting moments that the

author spent with Sergey. Moreover, the general topic of copulae and some open questions related to

the multivariate modelling of operational risks were discussed, with the hope to inspire some young

researchers to deal with the increasingly important and fascinating topic of multivariate statistical

analysis and econometrics.

12



References

Aivazian, S. A. (2016). Quality of life and living standards analysis: an econometric approach. De
Gruyter, Berlin.

Aivazian, S. & Fantazzini, D. (2014), Methods of Econometrics, Vol 2.: Advanced Advanced course
with applications in Finance, Master, Infra-M, (in Russian).

Akkizidis, I., & Kalyvas, L. (2018). Final Basel III Modelling: Implementation, Impact and Implica-
tions. Springer.

Basel Committee (2002). The Quantitative Impact Study for Operational Risk: Overview of Individual
Loss Data and Lessons Learned. Bank for International Settlements.

Basel Committee (2017). Basel III: Finalising post-crisis reforms. Bank for International Settlements.

Blagoveschensky, Y. (2012). Basics of copula’s theory. Applied econometrics, 26(2), 113-130.

Chapelle, A. (2019). Operational Risk Management. Wiley.

Chernobai, A.S., Rachev, S.T., & Fabozzi, F.J. (2008). Operational risk: a guide to Basel II capital
requirements, models, and analysis. John Wiley & Sons.

Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula Methods in Finance. John Wiley & Sons

Denuit, M., & Lambert, P. (2005). Constraints on concordance measures in bivariate discrete data.
Journal of Multivariate Analysis, 93, 40-57.

Durante, F., & Sempi, C. (2015). Principles of copula theory. CRC press.

Embrechts, P., & Puccetti, G. (2008). Aggregating risk across matrix structured loss data: the case
of operational risk. Journal of Operational Risk, 3(2), 29-44.

Fantazzini, D. (2008). Dynamic copula modelling for value at risk. Frontiers in Finance and Eco-
nomics, 5(2), 72-108.

Fantazzini, D. (2010). Three-stage semi-parametric estimation of t-copulas: Asymptotics, finite-
sample properties and computational aspects. Computational statistics and data analysis, 54(11),
2562-2579.

Fantazzini, D. (2019). Quantitative finance with R and cryptocurrencies. Amazon KDP, ISBN-13,
978-1090685315.

Fantazzini, D., & Kudrov, A. (2010). Small-Sample Properties of EVT Estimators: Effects on Comput-
ing Risk Measures for Market Risk and Operational Risk Modeling. In The Risk Modeling Evaluation
Handbook, 339-361. McGraw-Hill Finance & Investing.

Fantazzini, D., Dalla Valle, L., & Giudici, P. (2008). Copulae and operational risks. International
Journal of Risk Assessment and Management, 9(3), 238-257.

Fisher, R. A. (1932). Statistical Methods for Research Workers, Oliver, Boyd, eds.

Genest, C., & Neslehova, J. (2007). A primer on copulas for count data. ASTIN Bulletin, 37(2),
475-515.

13



Heinen, A., & Rengifo, E. (2007). Multivariate autoregressive modeling of time series count data using
copulas. Journal of Empirical Finance, 14(4), 564-583.

Hoffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts
und Instituts fur Angewandte Mathematik der Universitat Berlin, 5, 181-233.

Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. CRC Press.

Karam, E., & Planchet, F. (2012). Operational risks in financial sectors. Advances in decision sciences,
Article ID: 385387.

Kudrov, A. (2008). Evaluation of the Distribution Function of Sample Maxima in Stationary Random
Sequences with Pseudo-Stationary Trend. Applied Econometrics, 11(3), 64-86

Lindskog, F., & McNeil, A. J. (2003). Common Poisson shock models: applications to insurance and
credit risk modelling. ASTIN Bulletin, 33(2), 209-238.

Marshall, A. W. (1996). Copulas, marginals, and joint distributions. In, Lecture Notes-Monograph
Series: Vol. 28, Distributions with Fixed Marginals and Related Topics, 213-222.

Mills, F.C. (1927). The Behaviour of Prices. National Bureau of Economic Research, New York.

Naim P., & Condamin, L. (2019). Operational Risk Modeling in Financial Services: The Exposure,
Occurrence, Impact Method. Wiley.

Nelsen, R. B. (1999). An introduction to Copulas, volume 139. Springer-Verlag, New York.

Rachedi, O., & Fantazzini, D. (2009). Multivariate Models for Operational Risk: A Copula Approach
Using Extreme Value Theory and Poisson Shock Models. In, Operational Risk toward Basel III: Best
Practices and Issues in Modeling, Management, and Regulation, 197-218.

Ramirez, J. (2017). Handbook of Basel III Capital: Enhancing bank capital in practice. Wiley.

Rousseeuw, P. J., & Molenberghs, G. (1993). Transformation of non positive semidefinite correlation
matrices. Communications in Statistics-Theory and Methods, 22(4), 965-984.

Schweizer, B., & Sklar, A. (1974). Operations on distribution functions not derivable from operations
on random variables. Studia Mathematica, 52(1), 43-52.

Sklar A. (1959). Fonctions de repartition a n dimensions et leurs marges. Publications de l’Institut
Statistique de l’Universite’ de Paris, 8, 229-231.

Sklar, A. (1973). Random variables, joint distribution functions and copulas. Kybernetika, 9(6),
449–460.

Stevens, W. L. (1950). Fiducial limits of the parameter of a discontinuous distribution. Biometrika,
37(1/2), 117-129.

Trivedi, P., & Zimmer, D. M. (2007). Copula modeling: an introduction for practitioners. Foundations
and Trends in Econometrics, 1(1), 1-111.

Trivedi, P., & Zimmer, D. (2017). A note on identification of bivariate copulas for discrete count data.
Econometrics, 5(1), 10.

14


	Introduction
	Sergey and me
	Copulas (or Copulae?)
	Copulae and Operational risks
	A brief review of the theory
	Open questions

	Conclusions
	References

