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Modeling Stock Market Volatility in
Emerging Markets: Evidence from

India

- Bhaskkar Sinha1

ABSTRACT

This study models the volatility present in the inter day returns in the stock of the two
major national indices of India. Sensitive Index or Sensex related to Bombay Stock
Exchange (BSE) and Nifty associated with National Stock Exchange (NSE). The
objective is to model the phenomena of volatility clustering and persistence of shock

using asymmetric GARCH family of models. Research showed that EGARCH model
successfully models the Sensex (BSE) data whereas it is GJR-GARCH which was able to

explain conditional variance in the returns from Nifty (NSE).

1 Author is a Research Scholar with IIMT, Hyderabad, India. The author conveys his gratitude to the
audience of ICFAI for their encouragement and critical assessment during the presentation. Thanks to Dr
Vijaya B Marisetty (Monash University) and Dr. V.N. Reddy for their guidance.



1.0 THEORETICAL BACKGROUND

An efficient market is one which fully and instantaneously reflects all available relevant

information in the share price. According to Fama (1970), there are three forms of market

efficiency based on the information dissemination. These forms – weak form, semi-

strong form and strong form – have been tested in various equity markets, both in
developed and emerging markets. However most of the studies have attended to the weak

form of efficiency which proposes that current stock prices reflect all information
contained in past stock prices. This implied that no investor can consistently earn

abnormal returns from trading based on historical prices.

The weak form efficiency hypothesis has been tested in developed markets in abundance

. For example, Fama (1965) did it for U.S., Dryden (1970) for U.K., Andersen and
Bollerslev (1997) for 8 European markets. Conrad and Juttner (1973) for Germany,

Jennergren and Korsvold (1975) for Norway and Sweden. Similarly some of the Asian

markets were also taken under study, such as Lawrence (1986) for Malaysia and
Singapore. These studies provided inconclusive results. The developed markets, e.g., U.S

and some European markets were found to be weak form efficient. However, evidence
from emerging markets indicated rejection of the weak form of hypothesis. Can we say

that the returns in such markets followed predictable trends?

Besides efficiency, it is the volatility prevailing in the market which influences the return
distributions. The issue of volatility has gain prominence in the emerging markets like
India as they move towards a trading scenario which aims to restrict the return
distribution within resistance level. [INSERT Table #1 about here]

Volatility of returns in India became more prominent due to some crisis which
challenged the trust and “interest” of the smaller investors and raised some microstructure



issues. [INSERT TABLE#2 about here]. The author tried to address this issue in this
study.

Volatility, to describe without a specific implied metric, is the variability of the random
(unforeseen) component of a time series. It can be used to measure specific risk of a
single instrument or the risk associated with an entire portfolio of instruments. Stock
return volatility measures the random variability of the stock returns. More specifically, it
is the standard deviation of daily equity returns around the mean value and the stock
market volatility is the return volatility of the aggregate market portfolio.

The seminal work of Engle (1982) where he introduced the concept of Autoregressive

Conditional Heteroscedasticity (ARCH) became a very powerful tool in the modeling of

financial data in general and stock returns in particular. Compared to conventional time

series models, ARCH models allowed the conditional variances to change through time

as functions of past errors. First approach was to improve the univariate ARCH model

with an alternative specification of the variance function. One improvement was

introduced by Bollerslev (1986) where the Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) process was presented. Further, the Integrated GARCH

(IGARCH) Engle and Bollerslev (1994) and the exponential GARCH (EGARCH) Nelson

(1991) were prominent one where re-specification of variance equation was studied.

However, the magnitude of empirical research on stock return volatility in emerging

markets like India was not abundant. While Roy and Karmakar (1995) focused on the

measurement of the average level of sample standard deviation to examine whether
volatility has increased , Goyal (1995) used conditional volatility estimates, as suggested

by Schwert (1989), to identify the trend in volatility. He also studied the impact of carry

forward system on the level of volatility. ARCH/GARCH models have been used by
Thomas (1995, 1998), Pattanaik & Chatterjee (2000) to model the volatility in Indian

financial market.

The research objective of this paper was to understand the return data (inter day) of
securities & see if asymmetric GARCH models can explain persistence of shock and
volatility.



2.0 RESEARCH DESIGN

The study spanned the period from March 1995 through March 2005. reason being major
changes were brought about in the structure and functioning of the Indian stock market
during those years. The sample population of the study consists of the daily returns of the
two most prominent domestic indices, viz., Sensex and Nifty. These market indices were
fairly representative of the various industry sectors.

The daily stock price data on Sensex and Nifty were downloaded from PROWESS, the
online database maintained by the Centre for Monitoring of Indian Economy (CMIE).
Daily opening, high, low and closing prices of the two indices were considered for the
period of study. These equity prices were adjusted for bonus and right issues.

The daily stock prices were converted to daily returns. Logarithmic difference of prices
of two successive periods was used to determine the rate of return.

3.0 Methodology

Ordinary regression model assumed homoscedisticity (errors have same variance through
out). If the error variance was not a constant, the data were said to be heteroscedastic.

Heteroscedasticity in stock returns are well documented (Fama, 1965; Bollerslev, 1986).
Studies found that the stock returns were characterized by - auto correlation in the returns,
serial correlation in the square of return values indicating volatility clustering, negative
asymmetry in the distribution of returns and Leptokurtosis in the distribution of returns
(thicker tails compared to a normal distribution).

The ARCH and the GARCH family of models assumed conditional heteroscedasticity
with homoscedastic unconditional error standard deviation. That is, the changes in
variance were a function of preceding errors and represent temporary and random
departures from a constant unconditional variance .The advantage of ARCH/GARCH
family of models was that it captures the tendency in financial data for volatility
clustering.



The mean return was modeled as an AR (Auto Regressive) (p) process. This required
testing for stationarity of the series to imply that mean and covariance of the return
distribution were time independent. This was done using the unit root test. Then an AR
model was fitted to the data generating process as suggested by Box and Jenkins (1976).
Finally, the conditional variance was modeled as a symmetrical or asymmetrical GARCH
process.

4.0 TESTS, RESULTS AND ANALYSIS

4.1 Diagnostic Tests

A visual examination of the plot of daily returns on Sensex [INSERT figure #1 about
here] showed that returns continuously fluctuated about the mean value that was close to
zero. The return movements were both in positive and negative territory. Larger
fluctuations tend to cluster together and were separated by periods of relative calm. This
was in accordance with Fama’s (1965) observation of “volatility clustering”.

Descriptive statistics [INSET Table #3 about here] for both Sensex and Nifty returns
showed skewness statistic of daily returns different from zero which indicated that the
return distribution was asymmetric. Furthermore, relatively large excess kurtosis
suggested that the underlying data was leptokurtic (heavily tailed and sharp peaked) . The
Jarque – Bera statistic calculated to test the null hypothesis of normality rejected the
normality assumption.

Both the indices appeared to have strong autocorrelations in one-day lag returns with
significant coefficient. Also, the autocorrelation in the squared daily returns suggested
presence of clustering. The results rejected the independence assumption for the time
series of given data set. Stationary of the return series were tested by conducting both
Dickey-Fuller and Phillip-Peron tests. The results of both the test confirmed that the
series are stationary. [INSERT Table #4 about here].



4.2 Application of Box-Jenkins Methodology

For both the indices the autocorrelation function (ACF) and partial autocorrelation
function (PACF) were determined. Ljung-Box-Pierce Q statistic was highly significant
[refer Table #3] which confirmed the presence of first order correlation in the series. The
existence of a leptokurtic distribution, presence of volatility clustering and changing
conditional variance suggested an ARCH or GARCH process, which was confirmed by
computing the value of Lagrange Multiplier (LM).

5.0 MODELING VOLATILITY

5.1 Volatility Behavior

Preceding section revealed that the volatility of the indices might follow an ARCH
process. However, we begin with a commonly used volatility estimator – the extreme

value volatility estimator, as proposed by Garman and Klass (1980).[insert equation#1
about here] This estimator was based on the best analytic scale invariant estimator which
made use of the intra day values - opening, closing, high and low. The Garman & Klass
estimator values obtained for Sensex.(here, n=1 ) showed a change in volatility .
[INSERT figure #2 about here]

5.2 Model Specifications

There was a significant presence of ARCH effect in the residuals of the fitted AR (1)

return generating process. Also, the volatility estimators indicating graphically of

volatility clustering led us to the next step of modeling. The conditional variance of the

residual was modeled as an ARCH (Q) process with the mean return governed by AR(1)

process. [INSERT Equiation #2 about here]. In all the cases, ARCH parameters were

significant. The ARCH parameters were insignificant from ARCH (8) onwards in the

case of Sensex and ARCH (6) for Nifty. The model was selected on the basis of highest

log-likelihood values and minimum AIC (Akaike Information Criterion) and the SBC

(Schewart’s Information Criterion) values [ shown in Table #5 and Table # 6 for Sensex].

We select AR(1) – ARCH (7) process for the Sensex and AR(1) – ARCH (5) for Nifty as

the representative of the conditional volatility process.



The autocorrelation function (ACF) and the partial autocorrelation function (PACF) of
the squared residual series were examined as a diagnostic on the appropriateness of the
ARCH process. It was found that although the estimated ACF of the squared residual
series seemed to decay as the lag increased, the PACF did not become zero after seven
lags for Sensex and five lags for Nifty. Therefore, as far as the ACF and PACF are
concerned, the data do not fully agree with a pure ARCH process.

We now fit the GARCH models to the daily return series. [INSET Equation # 3 about
here]

We found all the parameters in the GARCH (1,1) model were significant. Also the model
favored GARCH (1,1) process as it had a lower AIC and SBC criteria for a comparable
log –likelihood function.[ INSERT Table # 7 about here]. As for the stationarity of the

variance process, it was observed that α1+β1 is 0.9752 for Sensex and 0.9577 for Nifty

respectively. This is less that unity indicated no violation of any stability condition.
However, the sum was rather close to one which indicated a long persistence of shocks in
volatility.

Lamoureux and Lastrapes (1990) had proposed a half life period of a shock to the
variance. Half-life period is that period in which the shock diminishes to half of its
original size. The half life for the GARCH (1, 1) process [INSET equation #4 about here]
was 23.75 days for Sensex and 17.04 days for Nifty. It meant that any bad or good news
did have a long lasting and significant impact on the volatility of the prices.

5.3 Asymmetrical Response to the Arrival of News

Schwert (1989) and Black (1976) had shown that the returns are negatively correlated
with volatility. This implied that the returns were more volatile in response to bad news
compared to the good news. Differential approach to the information is not captured in
the symmetrical GARCH model. A separate modeling techniques need to be used to
capture the asymmetric response as suggested by Engle, Ng and Rothschild (1990).



Estimating the GJR – GARCH and the EGARCH (exponential GARCH) and testing the
significance of the asymmetric terms was considered to test the asymmetric effects.

5.4 The GJR-GARCH Model

The GJR- GARCH model was introduced by Glosten, Jagannathan, and Runkle (1993).
The specification for the conditional variance is:[INSERT equation # 5 about here]

In this model the good and bad news had differential effects on the conditional variance.
Good news have the influence of α, while the bad news have the influence of (α + ω) . If

ω > 0, we could say that the leverage effect exists while news is asymmetric when ω ≠ 0.
The outcome of the model (refer Table #7) showed that the parameters in the variance
equation was significant. The leverage term was highly significant both for Sensex

(0.09515) and Nifty (0.0897). The assumption that positive and negative shocks have
different impact on the volatility of daily returns was reinforced. The AIC and the SBC of
this model was lower compared to the GARCH (1, 1) model and also had a higher log
likelihood value.

5.5 The EGARCH Model

The EGARCH model was proposed by Nelson (1991). The specification for the
conditional variance is:[INSERT equation #6 about here]

The left-hand-side of the equation has the log of the conditional variance hence the

leverage effect is exponential rather than quadratic. Therefore, the forecast of the
conditional variance were guaranteed to be non-negative. [refer Table #7 for EGARCH

estimation]. We found all the coefficients were significant for both Sensex (0.052 ) and

the Nifty (0.065 ). The leverage term was negative and statistically different from zero

indicating the presence of leverage effect for the stock market returns during the sample
period. The log –likelihood was higher and the AIC and the SBC were lower compared to

GARCH (1, 1) model for both the indices.



The GJR-GARCH model and the EGARCH model outperformed the GARCH class of
models. However, when we compared the asymmetric models, we found that, for Sensex,
the EGARCH model was a better fit. This was in accordance with the lowest AIC and the
SBC and the highest log –likelihood value. The improvement in model fitting signifies
that returns respond differently to the arrival of negative and positive shocks unlike the
vanilla GARCH model.

6.0 CONCLUSION

The volatility of the Indian stock market exhibited characteristics similar to those found

earlier in many of the major developed and emerging stock markets, viz., autocorrelation

and negative symmetry in daily returns. It was shown that asymmetrical GARCH models

outperform the OLS models and the Vanilla GARCH models. While it was the EGARCH

model which provided a better fit for the Sensex data, GJR-GARCH model showed better

acceptance in case of Nifty. A significant half life for both the indices indicated the

persistence of shock in the system. Persistence of shock could explain the time varying

risk premium. If the shock was short term in nature, then the investor would restrain from

making any changes in their discounting factor while obtaining the present discounted

value of the stock and hence its price.



APPENDIX
TABLE # 1

Date/month/year Landmark(s)
03-Nov-94 Electronic trading incorporated in NSE
13-Dec-94 Ban on "badla"in Indian market

Mar/Jul 1995 Electronic trading commences in BSE
17-Jun-95 Circuit filter system adopted by NSE
05-Oct-95 Ban on "badla" revised

NSCC & NSDL (Depositories) commences
their

Apr /Nov 1996 operation
Securities Law amended to enable

derivatives
1999 trading
Dec-99 Rolling settlements system introduced

12-Jun-00 Start of equity index futures trading
04-Jul-01 equity index options trading commences
02-Jul-01 Carry forward trade was abolished

TABLE #2

Amount
Year Events (stock market crisis) involved(INR)

1992 Harshad Mehta : the market went up by 143% between Sept 91 & Apr 92 54 Billion

1994
M.S.Shoes: (Pawan Sachdeva) manipulated the share prices before a Rights 170
issue Million

1995
61.8

Sesa Goa , Rupangi Impex & Magan Industries Ltd Million

1997 CRB Group : C.R. Bhansali 7 Billion

1998
Rs. 0.77

involving BPL, Videocon,Sterlite stocks Billion

2001 Ketan Parekh (K10 stocks) Rs. 1 Billion



TABLE #3 : DESCRIPTIVE STATISTICS OF DAILY RETURNS

Statistics Sensex(BSE) Nifty(NSE)
Observation period Mar95/MAY04 MAR95/May04
# observations(T) 2134 2134
Mean 0.00348 0.00012
StandardDeviation 0.017298 0.016963
Skewness 0.1236 0.43147
Excess Kurtosis 2.8353 3.973548
Jarque Bera statistics 621.7(2tailedp=0.00) 1470. 126(2tailedp=0.00)
Q(1)a 26.42(2tailedp=0.00) 6.37(2tailedp=0.00)
Q2(1)b 117.26(2tailedp=0.00) 65.48(2tailedp=0.001)
ARCH LM statistic(atlag=1) 129.35 117.64
ACFdatlag=1forreturns 0.11(Asymptoticbound=0.042 ) 0.078(Asymptoticbound=0.042)
ACFatlag=1forsquaredreturns 0.27(Asymptoticb ound=0.042) 0.168(Asymptoticbound=0.042)

Notes
a. Q(K)is the LjungBox statistic identifying the presenceoffirstorderautocorrelationinthe

returns.nullhypothesis:noautocorrelation.Dist ributedaschisquare(K).
b. Q 2(K)istheLjungBoxstatisticidentifyingthepres enceoffirstorderautocorrelationinthe

squaredreturns.nullhypothesis:noautocorrelati on,distributedaschisquare(K).
c. ARCHLMstatisticistheLagrangeMultipliertes tstatisticforthepresenceofARCH.Null

hypothesis:noheteroscedasticity,distributedasa chisquare(K).Criticalvalueat1per
centlevelofsignificanceis6.63at1degreeoff reedom.Valuesforotherhigherlagare
alsosignificant.

d. ACFisautocorrelationfunctionforreturnsand squaredreturnsresp.



Table # 4:UNIT ROOT TESTING FOR DAILY RETURNS
AugmentedDickeyFullerTests numberoflags=42
NullHypothesis TestStatistic MacKinnonAsymptoticcriticalvalue

Sensex Nifty @10%C.I.

constant=0 7.926 6.566 1.6157
intercept=0 7.927 6.566 2.59
constant=0
trendcoeff.=0 7.012 6.334 3.22
intercept=0
constant=0

Truncatedlags=6(Nifty)&7
PhillipPerronTests (Sensex)
NullHypothesis TestStatistic MacKinnonAsymptoticcriticalvalue

Sensex Nifty @10%C.I.

intercept=0 47.56 39.396 2.59
constant=0
trendcoeff.=0 39.97 36.737 3.22
intercept=0
constant=0

Table # 5: Information criteria for BSE Sensex Return AR (p) – ARCH (q)
models AIC

p/q 0 1 2 3 4 5 6 7
0 -5.316 -5.3145 -5.313 -5.3114 -5.3099 -5.3083 -5.3068 -5.3053
1 -5.205 -5.2273 -5.2496 -5.2719 -5.2942 -5.3166 -5.3389 -5.3612
2 -5.225 -5.2531 -5.2325 -5.2356 -5.2387 -5.2418 -5.2449 -5.2148
3 -5.2449 -5.2789 -5.2317 -5.1844 -5.2915 -5.2561 -5.2207 -5.1854
4 -5.2649 -5.3047 -5.22 -5.1432 -5.3442 -5.2704 -5.1966 -5.1227
5 -5.2849 -5.2781 -5.2713 -5.2645 -5.2576 -5.2508 -5.2144 -5.2372



Table #6 :Information criteria for BSE Sensex Return AR (p) – ARCH (q) models
SBIC

p/q 0 1 2 3 4 5 6 7
0 -5.1447 -5.1269 -5.1261 -5.1278 -5.126 -5.125 -5.1452 -5.3214
1 -5.1536 -5.1358 -5.1305 -5.1353 -5.1402 -5.145 -5.1254 -5.3415
2 -5.1504 -5.1447 -5.1349 -5.1429 -5.1543 -5.165 -5.1756 -5.3417
3 -5.1553 -5.1536 -5.1393 -5.1504 -5.1685 -5.185 -5.2015 -5.3124
4 -5.1581 -5.1625 -5.1437 -5.1579 -5.1826 -5.205 -5.2273 -5.313
5 -5.1609 -5.1714 -5.1481 -5.1655 -5.1968 -5.225 -5.2531 -5.3136



COEFFCIENTS OF SYMMETRIC AND ASYMMETRIC GARCH MODELS – SENSEX & NIFTY

(p) = where, p is the probability value

TABLE # 7

BSE-SENSEX NSE-NIFTY

GARCH(1,1) EGARCH(1,1) GJRGARCH(1,1) GARCH(1,1) EGARCH(1,1) GJRGARCH(1,1)

C 0.000648(0.000) 0.0521(0.000) 0.0551(0.000) 0.000 751(0.000) 0.0825 0.0957
α0 0.00000064(0.008) 0.1798 0.1605 0.00000314(0.00 02) 0.1189 0.1868
α1 0.062409(0.000) 0.2965 0.1527 0.055409(0.000) 0. 05447 0.06483
β1 0.912815(0.000) 0.9217 0.7988 0.902315(0.000) 0. 9328 0.8326

β1+α1 0.975224 0.95772
0.052 0.065

[(Res<0)*ARCH(1)] 0.09515 0.089743
Loglikelihood 5785.784 5682.246 5589.231 5785.78 4 5458.357 5684.216

AIC 5.54127 5.5621 5.5528 5.54127 5.4781 5.65 79
SBIC 5.538487 5.5633 5.5488 5.538487 5.4958 5 .5962



FIGURES AND GRAPHS

FIGURE # 1

Daily Returns on BSE Sensex(1995-2004)
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FIGURE # 2

Estimated volatility of BSE Sensex returns (GK estimator)
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Mathematical expressions

Equation # 1

Equation# 2
rt = a0 + a1rt-1+ εt

Where, Ψ t-1 s the set of information available at time t-1

Equation # 3

Equation # 4 Half Life determination

Hf = 1 – [Ln 2/ Ln (α1+β1)]

Equation # 5

16



Equation # 6
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