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The present paper develops a new Instrumental Variables (IV) estimator for spatial,
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For this class of models, the only approaches available in the literature are based on
quasi-maximum likelihood estimation. The approach put forward in this paper is ap-
pealing from both a theoretical and a practical point of view for a number of reasons.
Firstly, the proposed IV estimator is linear in the parameters of interest and it is com-
putationally inexpensive. Secondly, the IV estimator is free from asymptotic bias. In
contrast, existing QML estimators suffer from incidental parameter bias, depending on
the magnitude of unknown parameters. Thirdly, the IV estimator retains the attrac-
tive feature of Method of Moments estimation in that it can accommodate endogenous
regressors, so long as external exogenous instruments are available. The IV estimator
is consistent and asymptotically normal as N,T — oo, such that N/T — ¢, where
0 < ¢ < c0. The proposed methodology is employed to study the determinants of risk
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1 Introduction

Economic behavior is intrinsically dynamic; that is, it is influenced by past own behaviour.
This phenomenon, commonly described as “state dependence”, is due to habit formation, costs
of adjustment and economic slack, among other factors. The importance of state dependence
has been recognised in the panel data literature since its infancy.

More recently, it has been forcefully pointed out that, in addition to state dependence,
economic behaviour is also subject to network effects, and social interactions among individual
agents (see e.g. the pioneering work of Case (1991) and Manski (1993)). At the same time,
economic agents inhabit common economic environments, and therefore their behaviour is
subject to aggregate shocks, which may be due to shifts in technology and productivity,
changes in preferences and tastes, to mention only a few. In the former case, economic
agents’ own behaviour is influenced by the behaviour of other agents, possibly their peers. In
the latter case, agents’ own behaviour is influenced by economy-wide shocks.

In panel data analysis, state dependence is commonly characterised using dynamic models;
social interactions are modelled using spatial econometric techniques, as described e.g. in
Kelejian and Piras (2017); and aggregate shocks are typically captured by common factors,
also known as “interactive effects” (Sarafidis and Wansbeek (2012, 2020)).

The present paper develops a new Instrumental Variables (IV) estimator for spatial, dy-
namic panel data models with interactive effects under large N and T asymptotics, where N
denotes the number of cross-sectional units and 7" denotes the number of time series obser-
vations. For this class of models, the only approaches available in the literature are based
on quasi-maximum likelihood estimation (QMLE); see Shi and Lee (2017) and Bai and Li
(2018). The approach put forward in this paper is appealing both from a theoretical and
from a practical point of view for a number of reasons.

Firstly, the proposed IV estimator is linear in the parameters of interest and it is com-
putationally inexpensive. In contrast, QML estimators are nonlinear and require estimation
of the Jacobian matrix of the likelihood function, which may be subject to a high level of

numerical complexity in spatial models with N large; see e.g. Section 12.3.2 in Lee and Yu

1See e.g. the seminar papers by Balestra and Nerlove (1966), Anderson and Hsiao (1982) and Arellano
and Bond (1991). A recent overview of this literature is provided by Bun and Sarafidis (2015).



(2015). To provide some indication of the likely computational gains of our method, in the
Monte Carlo section of this paper we found that the total length of time taken to estimate
2,000 replications of the model when N =T = 200, was roughly 4.5 minutes for IV and 4.5
hours for QMLE. Hence in this specific design, QMLE was 60 times slower than IV.?

Secondly, the proposed IV approach is free from asymptotic bias. In contrast, existing
QML estimators suffer from incidental parameter bias, depending on the sample size and
the magnitude of unknown parameters of the data generating process (DGP). Unfortunately,
approximate procedures aiming to re-center the limiting distribution of these estimators using
first-order bias correction can fail to fully remove the bias in finite samples, which can lead
to severe size distortions, as confirmed in our Monte Carlo study.

Last, the proposed estimator retains the attractive feature of Method of Moments esti-
mation in that it can potentially accommodate endogenous regressors, so long as external
exogenous instruments are available. Even in cases where such instruments are not easy to
find, our approach provides a framework for testing for endogeneity, based on the overiden-
tifying restrictions test statistic. In contrast, the exogeneity restriction is difficult to verify
within MLE and so it is typically taken for granted.

There is substantial literature on dynamic panels under large N and T asymptotics (e.g.
Hahn and Kuersteiner (2002) and Alvarez and Arellano (2003), among others). More recently,
several new methods have been developed to control for unobserved shocks, common factors
and strong cross-sectional dependence; see e.g. Chudik and Pesaran (2015), Everaert and
De Groote (2016), Moon and Weidner (2017), Juodis et al. (2020) and Norkute et al. (2020).
However, none of these papers considers spatial interactions and endogenous network effects.

There is also substantial literature on spatial panel data analysis and social interactions,
which, however, mostly ignores the potential presence of common unobserved shocks. Some
notable contributions include Yu et al. (2008), Korniotis (2010), Debarsy et al. (2012) and
Lee and Yu (2014), among others.

The present paper sits on the intersection of the above two strands of literature. Despite

the fact that such intersection is highly relevant for the analysis of economic behaviour, the

2This ratio appears to decrease (increase) roughly exponentially with smaller (larger) values of N.



field is fairly new in the econometrics literature and, as such, it is sparse.

We put forward a two-step IV estimation approach that extends the methodology of
Norkute et al. (2020) to the case of panel data models with spatial interactions, in addition
to state dependence and interactive effects. The main results in our paper cannot be deduced
from those in Norkute et al. (2020). Our two-step procedure can be outlined as follows:
in the first step, the common factors in the exogenous covariates are projected out using
principal components analysis, as in Bai (2003). Next, the slope parameters are estimated
using standard IV regression, which makes use of instruments constructed from defactored
regressors. In the second step, the entire model is defactored based on factors extracted from
the first step residuals. Subsequently, an IV regression is implemented again using the same
instruments.

The strategy above requires that the covariates used to construct instruments are strictly
exogenous with respect to the purely idiosyncratic error term. That is, endogeneity arises
primarily due to non-zero correlations between the regressors and the common factor com-
ponent. Otherwise, the proposed approach requires the use of external instruments, which
are exogenous with respect to the idiosyncratic disturbance, although they can be potentially
correlated with the common factor component.

The proposed IV estimator is consistent and asymptotically normally distributed as N, T" —
oo such that N/T — ¢, where 0 < ¢ < co. Moreover, the proposed estimator does not have
asymptotic bias in either cross-sectional or time series dimension. The main intuition of this
result lies in that we extract factor estimates from two sets of information that are mutually
independent, namely the exogenous covariates and the regression residuals. Therefore, there
is no correlation between the regressors and the estimation error of the interactive fixed effects
obtained in the second step. In addition, the proposed estimator is not subject to “Nickell
bias” that arises with QML-type estimators in dynamic panel data models.

The underlying assumption behind our approach is that the covariates of the model are
subject to a linear common factor structure. While this poses certain restrictions on the DGP
from a statistical point of view, there exist several economic theories and plenty of evidence

that provide support for such assumption (see e.g. Favero et al. (2005) and Heckman et al.



(2006)). Furthermore, this assumption has been frequently employed in both econometrics
and statistics literature (see e.g. Pesaran et al. (2013), Bai and Li (2013), Westerlund and
Urbain (2015) and Hansen and Liao (2018), among many others.) Notably, the factors that
hit the regressors can be entirely different to those that enter into the regression disturbance.

We study the determinants of risk attitude of banking institutions, with emphasis on
the impact of increased capital regulation. To the best of our knowledge, this is the first
paper in the literature that estimates state dependence and endogenous network effects, while
controlling for unobserved aggregate shocks. The results bear important policy implications
and provide evidence that the more risk-sensitive capital regulation introduced by the Dodd-
Frank Act in 2011 has succeeded in influencing banks’ behaviour in a substantial manner. A
Stata program (ado file) that computes our approach is under preparation and will be made
available to the community in due course.

The remainder of this paper is organised as follows. Section 2 describes the model and
the main idea behind the proposed method. Section 3 lists the set of assumptions employed
and derives the large sample properties of the proposed IV estimator. Section 4 examines
the finite sample performance of the estimator and confirms that it performs well. Section 5
presents the empirical illustration. A final section concludes. Proofs of the main results are
documented in the Online Appendix of the paper.

Throughout, we denote the largest and the smallest eigenvalues of the N x N matrix A =
(ij) DY pmax(A) and fmin (A), respectively, its trace by tr(A) = SN | ay;, its column sum norm
by [|A|l} = max;<j<y SN, |a;;l, its Frobenius norm by ||A|| = \/tr(A’A), and its row sum
norm by [|[Alls = maxi<i<ny Xy |a;;|. The projection matrix on A is Py = A(A’A)'A’
and M =I—P4. C is a generic positive constant large enough, 6% = min{N,T}. We use

N, T — oo to denote that NV and T" pass to infinity jointly.

2 Model and Two-Step Estimation Approach

We consider the following spatial dynamic panel data model with exogenous covariates:
N

Y =D Wiy + pYi—1 + X8 + oV'hy + e, (2.1)
=1



1=1,2,...,N,t=1,2,...,T, where y;; denotes the observation on the dependent variable
for individual unit ¢ at time period ¢, and x; is a k x 1 vector of regressors with slope
coefficients 8. The spatial variable Zévzl w;;y;¢ picks up endogenous network effects, with
corresponding parameter ). w;; denotes the (i, j)th element of the N x N spatial weights
matrix W, which is assumed to be known. The lagged dependent variable captures dynamic
or temporal effects.* The error term of the model is composite: hf and ¢ denote 7, x 1
vectors of latent factors and factor loadings respectively, and ¢;; is an idiosyncratic error.

To ensure that the covariates are endogenous to the factor component, we assume that

Xy = DV + vy, (2.2)
where f0 denotes a r, x 1 vector of latent factors, I'’ denotes an r, x k factor loading
matrix, while v; is an idiosyncratic disturbance of dimension k x 1. Note that h? and ft0
can be identical, share some common factors, or they can be completely different but may be
mutually correlated. Similarly, ¢! and T'Y can be mutually correlated.*

In the context of spatial panels, the above structure of the covariates has also been studied
by Bai and Li (2013). The main difference between these two specifications is that the model
in Eq. (2.1) allows for dynamics through the lagged dependent variable, and the covariates
in Eq. (2.2) are not necessarily driven by the same factors as those entering into the error
term of y. This has an appealing generality in that, in practice, the common shocks that hit
y and X may not be identical.

Stacking the T" observations for each ¢ yields

yi = vYw; + py; 1 + X8 + HOSO? + €43 2.3)
2.3

X; = F1? + v,
where y; = (yi1>~-7yz’T),7 Yi-1 = (yiOw”ayi,T—l), and €, = (611, T 75iT)/ denote T" x 1

vectors, X; = (x;1, -+ ,X;7) and V; = (vi1,...,vyr)" are matrices of order T' x k, while

3Tt is straightforward enough to extend this model by adding a spatial-time lag, as e.g. in Shi and
Lee (2017). We do not explicitly consider this specification here in order to simplify the exposition. The
theory developed in the present paper remains valid for this case, with only minor modifications. Simulation
results for this specification are reported in Section 4. Furthermore, exogenous network effects, e.g. through
an additional term Zjvzl wijx;té, and further lagged values of y;; can also be allowed in a straightforward
manner without affecting the main derivations of the paper.

4Without loss of generality, r, and r, are treated as known. In practice, the number of factors can be
estimated consistently using e.g. the information criteria of Bai and Ng (2002), or the eigenvalue ratio test
of Ahn and Horenstein (2013). The results of the Monte Carlo section indicate that these methods provide
quite accurate estimates in our design.



H°=(hY,--- ,hY) and F° = (fP,--- ,£2)" are of dimensions T x r, and T X r,, respectively.
Finally, Y = (y1,--- ,yr) denotes a T' x N, matrix and the N x 1 vector w; represents the
1th row of Wy.

The model in Eq. (2.3) can be written more succinctly as follows:

y; = Ci0 +u,, (2:4)
where C; = (Yw;,yi -1, X;), 0 = (¢, p, ,8'), and u; = H%Y + ¢;.

Let X;_, = L™X;, where L™ denotes the time series lag operator of order 7. We shall
make use of the convention X; o = X;. Our estimation approach involves two steps. In
the first step, the common factors in X;_, are asymptotically eliminated using principal
component analysis, as advanced by Bai (2003). Next, instruments are constructed using
defactored covariates. The resulting first-step IV estimator of @ is consistent. In the second
step, the entire model is defactored based on estimated factors extracted from the first step IV
residuals. Subsequently, a second IV regression is implemented, using the same instruments
as in step one.

In particular, define F_, as /T times the eigenvectors corresponding to the r, largest
cigenvalues of the T' x T matrices (NT)™* SN, X; . X] __, for 7 = 0,1. Let Mz =1Ir—

~ ~ ~ —1 ~
F_. (F’_ TF_T> F’ _ denote T x T matrices that project onto the orthogonal complement of

F_ . 7=01.
The matrix of instruments is formulated as follows:
N
Zi = MI’;XZ, MﬁllX@_l, Z ’UJZJMI’;XJ y (25)
j=1

which is of dimension T x 3K .5

The first-step IV estimator of @ is defined as:

—1 ~

6=(AB'A) ABg, (2.6)

®More instruments can be used with respect to further lags of X; or spatial lags Zjvzl w;i; X, —r, for 7 > 1.

Instruments constructed from powers of the spatial weights matrix can also be used, such as Z;\le wz(f)Xj,

for £ =2,3,..., where wff) denotes the (i, j)th element of the N x N spatial weights matrix W4, which is
defined as the product matrix taking W and multiplying it by itself /-times. It is well documented in the
literature that including a larger number of instruments may render the IV estimator more efficient, although
such practice can also potentially magnify small sample bias. In principle, one could devise a lag selection
procedure for optimising the bias-variance trade-off for the IV estimator, as per Okui (2009); however, we
leave this avenue for future research. The present paper assumes that both 7 > 1 and £ > 1 are small and do
not depend on 7.



where
-1 XL 1 &
A_— ZCz B=—>77; ¢c,=—) Zy,.
Z ’ NT 2 Bl & = 22y
Under certain regularlty conditions, 6 is consistent (see Theorem 3.1 in Section 3), al-
though asymptotically biased. Rather than bias-correcting this estimator, we put forward a

second-step estimator, which is free from asymptotic bias and is potentially more efficient.

Remark 2.1 Since our approach makes use of the defactored covariates as instruments,
identification of the autoregressive and spatial parameters requires that at least one element
of B is not equal to zero. Otherwise, it is easily seen that identification of p and ¢ is not
possible since the lagged and spatial defactored covariates become irrelevant instruments. We
believe that this requirement is mild, especially compared to the restriction that all of the
elements in B are non-zero. Moreover, this restriction is common in estimation of spatial
models using Method of Moments, see e.g. Kelejian and Prucha (2007). Note that it is not
necessary to know a priori which covariates have non-zero coefficients, since by construction

IV regression does not require all instruments to be relevant to all endogenous regressors.

To implement the second step, we estimate the space spanned by H° from the first step
IV residuals, ie. U; =y; — C,0. In specific, let H be defined as v/T times the eigenvectors

corresponding to the 7, largest eigenvalues of the T x T matrix (NT)~! SN, 6,4

The proposed second-step IV estimator for @ is defined as follows:

6= (A'B7'A)"'A'B ¢, (2.7)
where
A 1%2’1\/10]?, 1%2’M2~ 1ZZM
Ay 1 o\ A — ; g4, C Q-
NT &% NT & S a%h & = N i

Section 3 shows that the second-step IV estimator is normally d1str1buted and correctly

centered around the true value.

Remark 2.2 The validity of the procedure above crucially hangs on the assumption that X;
is strictly exogenous with respect to g;. Violations of such restriction are detectable using
the overidentifying restrictions test statistic, which is readily available within our framework.
When strict exogeneity of X; fails, identification of the model parameters requires the use

of external instruments. These instruments can still be correlated with the common factor



component, although they need to be exogenous with respect to ;. The theoretical analysis
of our approach based on external instruments remains exactly identical, with X; in Eq.
(2.5) replaced by the external instruments. As it is common practice in the literature (e.g.
Robertson and Sarafidis (2015) and Kuersteiner and Prucha (2018)), in what follows we do
not explicitly account for this possibility in order to avoid the cost of additional notation to
separate covariates that can be used as instruments from those that cannot. Finite sample

results for a model with endogenous regressors are provided in the Monte Carlo section.

A particularly useful diagnostic within IV estimation is the so-called overidentifying re-
strictions (J) test statistic. In our context, this test is expected to pick up potential violations
of exogeneity of the defactored covariates with respect to the idiosyncratic error in the DGP

for y, ;4. The J test statistic is given by
N

J= NlT (Z WMy Z; ) (Zz M uz> (2.8)

i=1

where @; = y; — C;0 and Q = 2B with 62 = Y., /Mg, /NT.

3 Asymptotic properties

The following assumptions are employed throughout the paper:

Assumption A (idiosyncratic error in y) The disturbances ;; are independently distributed

across i and over t, with mean zero, E(¢2) = 02 > 0 and E|e;|*t° < C < oo for some & > 0.

Assumption B (idiosyncratic error in x) The idiosyncratic error in the DGP for x;

satisfies the following conditions:
1. vy is group-wise independent from €;;

2. E(vy) = 0 and E||vy|[¥™° < C < oo

Co

Let 84 = E (visv;t). We assume that there exist o;; and G4, ||2i;s| < 7i; for all
(s,t), and || ;]| < G5 for all (4,j), such that

1 N N N N T T

i=1j=1 s=1t=1 i=1 j=1s=1t=1

4. For every (s,t), E||N~ 1/2 i 1(stVZt S|t < C < oo.

B

The largest eigenvalue of E (V,; V%) is bounded uniformly in i and T.



6. For any h, we have

1

N N N N
T O 0SS sl 32X vt @ Vi v £, < €

i1=1j1=142=1 jo=1 s=1t=1

7. For any s, we have

1 N
*|

T
Z Vhsvht E (V;zsvht)] fto

h:l t=1

'ﬂ

T T T T
/ /
333X [eov (Vi Vi Vi Vi)

1s1=1s2=1t1=1ta=1

M=

)

=1

<

.
Il

Assumption C (factors) E|f’||* < C < oo, T7'FVF° 25 2 > 0 as T — oo for some
non-random positive definite matriz Lp. E||h||* < C < oo, TT'THYH? 25 By >0 as T —
oo for some non-random positive definite matriz Xg. £) and h? are group-wise independent

from vy and 4.

Assumption D (loadings) I'Y ~ i.i.d(0,3r), ¢? ~ ii.d(0,%,), where p and X, are

positive definite. E|T?* < C < oo, E||@?|" < C < oo. In addition, T and ¢ are

independent groups from €y, vy, £ and hY.

Assumption E (weighting matrix) The weights matric W y satisfies that
1. All diagonal elements of W are zeros;
2. The matries Wy and In — YW are invertible;

3. The row and column sums of the matrices Wy and (Iy — wWN)_1 are bounded uni-

formly in absolute value.

1

ZiHWN —yWa) | < C; 2\\[/)@ —yWa) )| =C

Assumption F (identification) We assume that

1. A= plimMTﬁooﬁ SN ZiC; is fived with full column rank, and B = plimN,Tﬁooﬁ VYA

1s fixed and positive definite.

2. B|IT'Z/Z:|”™ < C < 00 and B | T Z,C;|*** < C < o0 for alli and T.

10



The assumptions above merit some discussion. Assumption A is in line with existing
spatial literature (see e.g. Lee and Yu (2014)) and is imposed mainly for simplicity. In
particular, in practice £; can be heterogeneously distributed across both ¢ and ¢. However,
as it commonly the case in a large body of the panel data literature based on Method of
Moments estimation, we do not consider such generalizations in order to avoid unnecessary
notational complexity.

Assumption B implies that the covariates of the model, x;;, are strictly exogenous with
respect to g, i.e. E (g4]x},) = 0 for all ¢ and s. This assumption is often employed in the
panel data literature with common factor residuals when both N and T are large (see e.g.
Pesaran (2006) and Bai (2009)). Assumption B implies that defactored covariates are valid
instruments for the endogenous variables of the model. In addition, Assumption B allows for
cross-sectional and time series heteroskedasticity, as well as autocorrelation in v;;. Note that,
unlike with €;, here it is important to allow explicitly for this more general setup because,
conditional on F°, the dynamics in X; are solely driven by V;.

Assumptions C and D are standard in the principal components literature; see e.g. Bai
(2003), among others. Assumption C permits correlations between f? and h), and within
each one of them. Assumption D allows for possible non-zero correlations between ¢? and
I‘?, and within each one of them. Since for each 7 y; and x; can be affected by common
shocks in a related manner, it is potentially important to allow for this possibility in practice.

Assumption E is standard in the spatial literature, see e.g. Kelejian and Prucha (2010).
In particular, Assumption E.1 is just a normalisation of the model and implies that no in-
dividual is viewed as its own neighbour. Assumption E.2 implies that there is no dominant
unit in the sample, i.e. an individual unit that is asymptotically, for N large, correlated
with all remaining individuals. Assumptions E.3-E.4 concern the parameter space of ¢ and
are discussed in detail Kelejian and Prucha (2010, Sec. 2.2). Notice that the assumptions
above do not depend on a particular ordering of the data, which can be arbitrary so long as
Assumption E holds true. Moreover, Wy is not required to be row normalized. Although
it is convenient to work with a row-normalised weighting matrix, in some applications, es-

pecially those analysing social interactions and network structures, row normalisation might

11



not always be appropriate.
Last, Assumption F ensures IV-based identification, see e.g. Wooldridge (2002, Ch. 5).
The asymptotic properties of the one-step estimator are determined primarily by those of

Z;ui /V'NT. Thus, the following proposition is useful:

Proposition 3.1 Under Assumptions A-F, we have
1 X 1 X T N
N Zy = ———=> Zu; + [ b1+ 1/ by 0, (1
\/NTZ; \/NT; NP TPt )
where Zi = (23, wi;MpX j, MpoMpo X, _1, Mpo X; ) with X; = X;— % S0, X, TY(X0) 7117,
X=X — 230 XY (X)), Y’ = NN, TITY

. while by = (b}, by, bls)
and b2 :( ,217 ,227 /23)/'6

Based on the above proposition, Theorem 3.1 establishes convergence in probability of the

one-step IV estimator, 6.

Theorem 3.1 Under Assumptions A-F, as N,T — oo such that N/T — ¢, where 0 < ¢ < o0,

we have

VNT (6-6)=0,(1) . (3.1)

Asymptotic normality follows through by using similar arguments as for 0 below. To save
space, we do not derive this property explicitly here because 0 is mainly used to estimate H.

Since the asymptotic properties of the two-step estimator are determined primarily by
those of Z;Mﬁuz /V/NT, in what follows we focus on this particular term. The formal analysis

is provided as a proposition below.

Proposition 3.2 Under Assumptions A- F, we have

VNT ) 3.2

1 X, 1
—— ) ZMzu,; = Zie, + O, () + 0 (
NN AVIEELSS o) T\ o,
As we see from Proposition 3.2, the estimation effect in ﬁ >N ZgMﬁui can be ignored
asymptotically. Since g; is independent of Z; and H® with zero mean, the limiting distribution

of ﬁZf\le Z;Mﬁui is centered at zero. Hence, the asymptotic normality result can be

6See Eq. (A.87) and (A.88) in the Online Appendix of the paper for explicit expressions of these bias
terms. To save space, we do not report these expressions here, given also that we do not bias-correct the
first-step estimator.

12



readily obtained by applying the central limit theorem for martingale differences in Kelejian
and Prucha (2001).

The following theorem establishes consistency and asymptotic normality for 6.

Theorem 3.2 Under Assumptions A-F, as N, T — oo such that N/T — ¢, where 0 < ¢ < 00,
we have

VNT (6 —0) - N (0,®)
where ¥ = o2 (A{)BEIAO)_I, Ay =plimy 7, A, Bg =plimy . B, with

1 N 1 N
A=_—_—N7C, B=—> 7Z7Z,.

NT ; Y NT 12::1 ‘

Moreover, U — U250 as N,T — oo, where

T =5’ (AB'A)

Note that 0 is asymptotically unbiased. This is in stark contrast with existing QMLE es-
timators available for spatial panels, which require bias correction. The main intuition of
this result lies in that within our approach, factor estimates are extracted from two sets
of information that are mutually independent, the exogenous covariates and the regression
residuals. Therefore, there is no correlation between the regressors and the estimation error
of the interactive fixed effects obtained in the second step of our procedure.”

The limiting distribution of the overidentifying restrictions test statistic is established in

the following theorem:

Theorem 3.3 Under Assumptions A-F, as N, T — oo such that N/T — ¢, where 0 < ¢ < 00,
we have
y N X2

where v =3k — (k4 2).

4 Monte Carlo Experiments

We investigate the finite sample behaviour of the proposed approach by means of Monte
Carlo experiments. We shall focus on the mean, bias, RMSE, empirical size and power of the

t-test.

"For the case of a static panel with no spatial lags, Cui et al. (2020) provide a detailed technical comparison
between the present methodology and the one developed by Bai (2009).

13



4.1 Design

We consider the following spatial dynamic panel data model:

N k Ty
Yit = QG + pYir—1 + 1 Z Wi Yt + Z Bexpie + Uiy Uy = oy + Z SOSifg,t + €it, (4.1)
j=1 /=1 s=1
1=1,...N,t=—-49, ..., T where
so,t = pfsfg,t—l +(1— P?S)I/QCs,ty (4.2)

with (54 ~i.0.d.N(0,1) for s =1,...,7,. We set pss =0.5Vs, k=2 and r, = 3.

The spatial weighting matrix, Wy = [w;;] is an invertible rook matrix of circular form
(see Kappor et al. (2007)), such that its ith row, 1 < ¢ < N, has non-zero entries in positions
i — 1 and i 4+ 1, whereas the non-zero entries in rows 1 and N are in positions (1,2), (1, N),
and (N, 1), (N, N — 1), respectively. This matrix is row normalized so that all of its nonzero
elements are equal to 1/2.

The idiosyncratic error, £;, is non-normal and heteroskedastic across both ¢ and ¢, such
that e = o€ — 1)/V2, €y ~ i.d.d.x?, with 02 = ¢y, n; ~ i.i.d.x2/2, and ¢, = t/T for
t=0,1,...,T and unity otherwise.

The process for the covariates is given by

Toir = fho; + ifygsifg’t +op; 1=1,2,...,N; t=—-49,—-48,...,T, (4.3)
for ¢ =1,2. We set r, = S.ZlThus, the first two factors in wu, [}, fo, also drive the DGP for
Teir, L = 1,2. However, f3, does not enter into the DGP of the covariates directly. Observe
that, using notation of earlier sections, £ = (f7,, %), and h = (f2,, 13, f9.).

The idiosyncratic errors in the covariates are serially correlated, such that

Vit = PosVrit—1 + (1 — pij)l/?wm; @yt ~ 1.4.d.N(0,¢%), (4.4)
for £ =1,2. We set p, s = p, = 0.5 for all .

All individual-specific effects and factor loadings are generated as correlated and mean-

zero random variables. In particular, the individual-specific effects are drawn as
a; ~idd.N(0,(1=p)*); e = puecsi + (1= p ) P, (4.5)
where wy; ~ 1..d.N(0, (1 — p)?), for £ = 1,2. We set p,, = 0.5 for £ =1,2.

The factor loadings in u; are generated as ¢%; ~ i.i.d.N(0,1) for s = 1,...,r,(= 3), and

the factor loadings in x1;; and xo; are drawn as

’yg)si = P%ls@gi + (1 - p?y,ls)l/Qflsi; glsz’ ~ ZZdN(Oa 1)7 (46)
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Vosi = Praster + (1= p2 0) 2 Easis Easi ~ i.0.d.N(0, 1); (4.7)
respectively, for s = 1,...,7, = 2. The process in Eq. (4.6) allows the factor loadings to
f{)’t and f207t in x1;; to be correlated with the factor loadings corresponding to the factor that
does not enter into the DGP of the covariates, i.e. f§,. On the other hand, Eq. (4.7)
ensures that the factor loadings to f, and f3, in @y are correlated with the factor loadings
corresponding to the same factors in w;, fﬂt and f7,. We consider p,11 = py12 € {0, 0.5},
whilst py 21 = py,20 = 0.5.

It is straightforward to see that the average variance of &;; depends only on ¢2. Let 7,
denote the proportion of the average variance of u; that is due to ;. That is, we define
Ty =2/ (ry +¢2). Thus, for example, m, = 3/4 means that the variance of the idiosyncratic
error accounts for 75% of the total variance in u. In this case most of the variation in the
total error is due to the idiosyncratic component and the factor structure has relatively minor
significance.

Solving in terms of ¢? yields

= ai““m)ry. (4.8)
We set ¢? such that m, € {1/4, 3/4}.8
We define the signal-to-noise ratio (SNR) conditional on the factor structure, the individual-

specific effects and the spatial lag, as follows:
B24+B5\ 2 2 o
SNR;;m”@“_@QML:<Lﬁ)%+”ﬂ2 i (4.9

var (€) G2
where L is the information set that contains the factor structure, the individual-specific effects

and the spatial lag”?, whereas var (g;;) is the overall average of F (%) over i and t. Solving

for ¢2 yields

2 2 2\ 1
2 2 P 51+ 53
%—4EFNR 1—&](1—&) . (4.10)

We set SNR = 4, which lies with the range {3,9} considered by the simulation study of Bun
and Kiviet (2006) and Juodis and Sarafidis (2018).
We set p = 0.4, ¢ = 0.25, and §; = 3 and B, = 1, following Bai (2009).

8These values of 7, are motivated by the results in Sargent and Sims (1977), in which they find that two
common factors explain 86% of the variation in unemployment rate and 26% of the variation in residential
construction.

9The reason for conditioning on these variables is that they influence both the composite error of y;;, as
well as the covariates.
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In addition to the model provided in Eq. (4.1), we also consider an augmented model that

includes a spatial-time lag as an additional covariate, that is,

N k N
Yit = Q; + pYir—1 + Z Wi, Yje + Z Bex g + 1 Z Wi Yje—1 + Ut (4.11)
We study the optimal two-step f\zfl estimatoi?ldeﬁned in E]q:.1(2.7), based on the following
set of instruments stack in the (7" x 4k) matrix Z;:
N N
Z; = MzX;, Mg X 1, Mg leinja Mg, 2; wiXj 1| (4.12)
where X; = X; — X, i.e. the covariates are Crosg—_sectionally demea?r;ed in order to control for
individual-specific fixed effects. Thus, the above set of instruments employs contemporaneous
as well as lagged defactored (and spatial) covariates.!”

In order to allow for cross-section and time series heteroskedasticity, the variance estimator

for the two-step IV procedure is given by

T=(AB'A) AB'OB'A(ABA) (4.13)
with
A~ ]_ N A A
/ A Al

and t; = y; — CZHA.
The J test statistic we use is as in Eq. (2.8) with Q replaced by the expression above.

In order to check the performance of the IV estimator with endogenous covariates, as well
as the power of the J test, we consider the situation where x;; and ¢;; are contemporaneously
correlated. In particular, for £ =1 the DGP in Eq. (4.3) is replaced by the following one:

Tz
T = p1i + Y VoS og + v + 0565 i = 1,2, N;  t=—49,—48, ... T. (4.15)

This implies th;?mm is endogenous with respect to €;, while x5, remains strictly exoge-

nous.'! We construct a single external instrument, denoted as ws;, which is given by

it = g+ D90y + Vi + Dozt i = 1,2, N5t = —49, 48, ..., T, (4.16)

s=1

10We have also explored the performance of two additional IV estimators. The first one omits the lagged
spatial defactored covariates, i.e. it excludes the last term in Eq. (4.12) from the set of instruments. The
second one replaces the lagged spatial defactored covariates with contemporaneous defactored covariates that
arise from the square of the spatial weighting matrix, as e.g. in Kelejian and Prucha (2007), p. 143. In the
baseline model (11 = 0), all three estimators perform similarly. However, when #; # 0, the performance of
two IV estimators that do not make use of lagged spatial defactored covariates as instruments, deteriorates
substantially. This is mainly because 1 is weakly identified in this case. In order to facilitate the comparison
of the results obtained for the two DGP’s in Eq. (4.1) and Eq. (4.11), we shall focus on the IV estimator
that makes use of the instruments in Eq. (4.12). The results for the remaining IV estimators are available
from the authors upon request.

" The power of the J statistic is expected to be higher when both covariates are endogenous.
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where p13;, vz and 75, are generated as in Eqgs. (4.5), (4.4) and (4.7) respectively. The value
of ¥ is set such that the correlation between (vy; + 0.5¢;) in Eq. (4.15) and (v14 + Jvzy) in
Eq. (4.16) equals 0.5.

To obtain a consistent IV estimator, the matrix of instruments is revised as follows:

Z; = (Mfi M; X, . MAgjwin. Mz gjwijijyl) (4.17)
where X; = (X3;, Xo;) is of dimension 7' x 2.

As a benchmark, we also consider the bias-corrected QMLE estimator proposed by Shi and
Lee (2017).'* While the QMLE estimator is not consistent when some covariates are correlated
with the idiosyncratic error, it is of interest to see the extent to which its performance is
affected in this case.

In terms of the sample size, we consider three cases. Case I specifies N = 1007 and
T = 257 for 7 = 1,2,4. This implies that while N and T increase by multiples of 2, the
ratio N/T remains equal to 4 in all circumstances. Case II specifies T' = 1007 with N = 257
for 7 = 1,2,4. Therefore, N/T = 1/4, as both N and T grow. Finally, Case III sets
N =T =507, 7 = 1,2,4. These choices allow us to consider different combinations of (N, T)
in relatively small and large sample sizes.

All results are obtained based on 2,000 replications, and all tests are conducted at the
5% significance level. For the power of the “t-test”, we specify Hy : p = p° + 0.1 (or Hy :
Y =%+ 0.1, and Hy : B = () + 0.1 for £ = 1,2) against two sided alternatives, where

p%, 40, 8%, 39 denote the true parameter values.

4.2 Results

Tables 4.1-4.4 report simulation results for the baseline model in Eq. (4.1) for 7, = 3/4.
Results for m, = 1/4 can be found in Online Appendix C. “Mean” denotes the average value of
the estimated parameters across 2,000 replications. Similarly, “RMSE” represents the average
squared deviation of the estimated parameter from its true value across 2,000 samples. “ARB”
denotes absolute relative bias, which is defined as ARB = (]54 — 6|/ 0g> 100, where 6, denotes

the (th entry of @ = (1, p, ')’ Size-corrected power is reported, based on the 2.5% and 97.5%

12\We are grateful to Wei Shi and Lung-fei Lee for providing us the computational algorithm for the QMLE
estimator.
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quantiles of the empirical distribution of the t-ratio under the null hypothesis.!?

As we can see from all four tables, for both IV and QMLE the values obtained for the
Mean are close to the true parameters in most cases. Moreover, as predicted by theory, RMSE
declines steadily with larger values of N and T, roughly at the rate of v/NT. Therefore, in
what follows we shall mainly focus in our discussion on relative RMSE performance, ARB
and size properties of the two estimators.

Table 4.1 presents results for the autoregressive parameter, p. QMLE outperforms IV
in terms of RMSE, which reflects the higher efficiency of maximum likelihood/least-squares
compared to IV. However, QMLE exhibits substantial ARB and thereby it is severely size-
distorted. Note that both ARB and size distortions tend to become smaller as the sample
size increases, albeit at a slow rate when N/T = 4. In contrast, IV has little ARB and good

size properties in most cases, with some mild distortions observed only when N is small.'*

Table 4.1: Baseline Model. Results for p = 0.4, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400  .017 082 .065 1.00 390 014 2.52  .361 1.00
2 .400  .007 104 .059 1.00 396 .006 1.08 .293 1.00
4 .400  .004 .054  .052 1.00 398  .003 551 286 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .014 116 .084  1.00 400 .008 169 138 1.00
2 .400  .007 033 .066 1.00 400 .004 .087 .085 1.00
4 .400  .003 .008 .048 1.00 400 .002 .080 .079 1.00
Case III: N =507, T'= 501
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .015 074 .052 1.00 397 .009 870 146 1.00
2 .400  .007 026 .056 1.00 398  .005 493 121 1.00
4 .400  .003 .017  .053 1.00 399 .002 2225 109 1.00

Table 4.2 focuses on the spatial parameter, ). One noticeable difference compared to
Table 4.1 is that in this case IV appears to outperform QMLE in terms of RMSE, albeit the

difference decreases substantially as the sample size gets larger. As before, IV is subject to

13The size-adjusted power is employed in the present experimental study because of size distortions, which
otherwise make the power comparison between the two estimators difficult.

1This is in contrast to the PC estimator developed by Bai (2009), who shows that the estimator suffers
from asymptotic bias. Cui et al. (2020) analyse this result further.
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some small size distortion when N is small, which however tends to be eliminated quickly as

N grows. QMLE is severely size-distorted.

Table 4.2: Baseline Model. Results for ¢ = 0.25, m, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .019 119 .062  1.00 250 .033 216 .392  1.00
2 .250 .008 112 .051 1.00 .250 015 159 258 1.00
4 .250 .004 .080 .052 1.00 .250 .006 113 134 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250  .017 .054  .094 1.00 250 .023 156 156 1.00
2 .250  .008 009 .062 1.00 250 .010 226 .078 1.00
4 250  .004 .016 .054 1.00 250 .005 .007 .070 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .251 017 218 .076 1.00 250 .025 026 .213 1.00
2 .250  .008 039  .060 1.00 250 .011 .092 139 1.00
4 .250  .004 012  .054 1.00 250 .005 .001 .068 1.00

Tables 4.3—4.4 report results for 8; and S5, respectively. The results are qualitatively no
different from those in Table 4.2, with one exception: when either N or T is small, size-
adjusted power appears to be relatively lower. Moreover, IV often appears to have higher

power than QMLE in moderate sample sizes.

Table 4.3: Baseline Model. Results for §; =3, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 2571
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .057 .019 .058 .405 3.01 .065 312 .209  .395
2 3.00 .026 .030 .060 .952 3.01 .026 204 .087 .982
4 3.00 .013 022 .051 1.00 3.00 .013 112 087 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .052 .021  .082 .465 3.00 .087 037 404 198
2 3.00 .026 .001 .061 .957 3.00 .034 .033 211 .877
4 3.00 .004 .008 .054 1.00 3.00 .015 .003 .134 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .056 046  .056 .459 3.00 .065 144 236 .370
2 3.00 .027 .004 .067 .931 3.00 .027 121 117 .965
4 3.00 .012 .004 .050 1.00 3.00 .012 .045 .085 1.00
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Table 4.4: Baseline Model. Results for g, =1, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .066 947 109 .350 1.06  .093 6.41 .415 .345
2 1.00 .025 087 .057 .981 1.01 .029 1.35 .142 .982
4 1.00 .012 039  .055 1.00 1.00  .012 379 .079 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .049 043  .086 .465 1.07 118 7.10 .531 .179
2 1.00 .025 043 074 .972 1.02 .040 1.81 .306 .876
4 1.00 .012 .003 .059 1.00 1.00 .014 361 134 1.00
Case III: N =507, T =507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .050 222 .063 .539 1.05  .086 5.18 .369 .311
2 1.00 .024 023 .052 .985 1.01 .028 1.15 .156 .987
4 1.00 .012 023 .050 1.00 1.00 .012 2228 .090 1.00

Table 4.5 reports simulation results corresponding to the augmented spatial panel data
model in Eq. (4.11), which includes a spatial-time lag. As argued in Section 2, the proposed
IV estimator remains consistent and asymptotically normal in this model. Table 4.5 focuses
on ;. The results for the remaining coefficients are similar to those obtained for the model
without a spatial-time lag and can be found in Online Appendix C. In most cases IV has
negligible bias with fairly accurate size properties. On the other hand, QMLE tends to be
biased and size-distorted unless both N and T are relatively large. QMLE outperforms IV in
terms of RMSE.
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Table 4.5: Model with spatial-time lag. Results for ¢, = 0.20, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .200 .030 128 0 .059  .920 .204 .017 1.98 .167 1.00
2 .200 014 128 .056  1.00 .200 .008 839  .091 1.00
4 .200 .007 013 .049 1.00 200 .004 612 .095 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .199  .028 456 .087 .925 .198  .020 895 .248 1.00
2 .200 .014 .090 .058 1.00 200 .009 028 173 1.00
4 .200 .007 150 .060 1.00 200 .004 .052  .089 1.00
Case III: N =507, T =507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .199 .028 434 070 .922 .201 .016 475 137 1.00
2 .200 .014 069 .067 1.00 201 .008 478 111 1.00
4 .200 .007 059  .063 1.00 200 .004 168 .068  1.00

Table 4.6 reports simulation results for the baseline model in Eq. (4.11) with x; endoge-
nous, as in Eq. (4.15). The matrix of instruments is given by Eq. (4.17). To save space, we
only report results for the coefficient of the endogenous variable, 5;. The IV estimator per-
forms well. In comparison to Table 4.3, two main differences are noteworthy: firstly, for small
values of 7 the RMSE of the IV estimator increases by a multiple scalar that ranges between
1.3-1.7; secondly, the power of the t-test decreases substantially for small values of either N or
T'. These results are not surprising given that the correlation between the defactored regressor
x1 and the instrument drops by a half. For QMLE, ARB ranges between 35% — 40%, and the
size of the t-test equals 1 under all circumstances. These results show that QMLE is quite
sensitive when some of the covariates are endogenous. As far as the remaining parameters
are concerned (not reported here), the estimate of the autoregressive coefficient appears to
be more sensitive to endogeneity than the estimate of the spatial parameter. In particular,
the bias of the estimate of p fluctuates around 6.7%. Furthermore, the size of the estimator
is close to 1 in all cases.' This implies that detecting possible violations of exogeneity of the

regressors is very important in practice.

5These simulation results are available upon request.
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Table 4.6: Model with endogenous covariate. Results for 5, = 3, m, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.01 077 269 075 .312 4.19 1.19 39.5 1.00 .340
2 3.00 .034 .049 .051 .831 4.14 1.14 38.0 1.00 .662
4 3.00 .017 014  .050 1.00 4.12 1.12 374 1.00 .964
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .067 123 .083 .359 4.06 1.06 35.2 1.00 .198
2 3.00 .033 .040 .064 .837 4.07  1.07 35.5 1.00 .356
4 3.00 .017 028 .055 1.00 4.09 1.09 36.3 1.00 .544
Case III: N =507, T =507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .069 184 .065 .359 4.11 1.11 37.0 1.00 .236
2 3.00 .034 035  .063 .812 4.11 1.11 36.9 1.00 .468
4 3.00 .017 021 .054 1.00 4.10 1.10 36.7 1.00 .792

Table 4.7 summarises the finite sample behaviour for the overidentifying restrictions test.
Panel A and Panel B provide the rejection frequencies corresponding to the IV estimator
that makes use of the matrix of instruments given by Eq. (4.12). Columns ‘I’, ‘IT’ and ‘IIT’
correspond to N = 1007, T' = 257, N = 257, T'= 1007 and N = 507, T' = 507, respectively,
forr=1,2,4.

As we can see, the size of the J-test is close to its nominal level (5%) in most cases,
with some minor size distortions when N is small. On the other hand, the J-test appears
to have substantial power when the exogeneity of (a subset of) the instruments is violated.
For example, the power of the test for N =T = 50 and N = T = 100 is 30.9% and 88.9%
respectively.

Panel C provides results on the empirical size of the J-test when the instruments employed

are given by Eq. (4.17). In general, some mild distortions are observed only for N small.

Table 4.7: Size and power performance for the J test statistic

Panel A Panel B Panel C
size power size
(A | I III I I III 1 11 111
1 .054 .083 .068 388  .515 513 .070 .092 073
2 .055 .063 .067 978 989 988 063 .074 .062
4 .049 .053 .051 1.00 1.00 1.00 .049 .058 .048
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Finally, a desirable aspect of our approach is that it is linear in the parameters and
therefore it is computationally inexpensive. Obviously, the exact computational gains depend
on the sample size. As an indication, when N = T = 50, the total length of time taken to
estimate 2,000 replications of the model was roughly 20 seconds for IV and 740 seconds for
QMLE. On the other hand, when N = T = 200 the corresponding figures were roughly 4.5
minutes and 4.5 hours for IV and QMLE, respectively.'® Therefore, QMLE was 37 (60) times

slower than IV in these specific designs.!”

5 An Analysis of Bank Attitude Towards Risk

We study the determinants of risk attitude of banking institutions, with emphasis on the
impact of increased capital regulation over the past decade or so, via the introduction of the
Dodd-Frank Act'®, which also coincided with the establishment of Basel III internationally.
We employ panel data from a random sample of 350 U.S. banking institutions, each one
observed over 56 time periods, namely 2006:Q1-2019:Q4. All data are publicly available
and they have been downloaded from the Federal Deposit Insurance Corporation (FDIC)
website.”

We pay focus on the spatial interactions of banking behavior, in order to account for bank-
ing linkages and endogenous network effects. Furthermore, we control for unobserved common
shocks, such as the recent economic recession that took place during the period 2007-2009,

which was accompanied by rapidly falling housing prices. To the best of our knowledge, this

16The simulation experiments have been implemented using Matlab on a single CPU with Core i7-6700 @
3.40 GHz and 16 GB RAM. The algorithm is currently being written as an ado file in Stata 15 and it will be
made available to all Stata users on the web.

17Simulation results for the case m, = 1/4 are reported in the Online Appendix C of the paper. The
results are qualitatively similar in terms of a comparison between IV and QMLE. However, in general, both
estimators perform a bit better than in the case where m, = 3/4. In addition, the Online Appendix C of the
paper reports results for the case where the purely idiosyncratic error term of the model is normally distributed
and homoskedastic, and m, = 3/4; see Tables C.11-C.14. Again, the results are qualitatively similar in terms
of the relative performance of IV and QMLE, and therefore the conclusions remain unchanged.

18The Dodd-Frank Act (DFA) is a US federal law enacted during 2010, aiming “to promote the financial
stability of the United States by improving accountability and transparency in the financial system, to end “too
big to fail”, to protect the American taxpayer by ending bailouts, to protect consumers from abusive financial
services practices, and for other purposes”; see https://www.cftc.gov/sites/default/files/idc/groups/
public/@swaps/documents/file/hr4173_enrolledbill.pdf. In a nutshell, the DFA has instituted a new
failure-resolution regime, which seeks to ensure that losses resulting from bad decisions by managers are
absorbed by equity and debt holders, thus potentially reducing moral hazard.

19Gee https://www.fdic.gov/.
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is the first paper in the literature that estimates state dependence and endogenous network

effects and controls for the impact of unobserved aggregate shocks.

5.1 Model Specification

We estimate the same regression model as in Eq. (2.1) or (4.1), for ¢ = 1,...,350, and
t=1,...,56, using the following variables:
yit = NPL;, which denotes the ratio of non-performing loans to total loans for bank i at
time period ¢t. This is a popular measure of bank risk.?° Higher values of the NPL ratio
indicate that banks ex-ante took higher lending risk and therefore they have accumulated
ex-post more bad loans;
2154 = INEFF}; denotes the time-varying operational inefficiency of bank ¢ at period ¢, which
has been constructed based on a cost frontier model using a translog functional form, two
outputs and three inputs?!;
Ty = CAR; stands for “capital adequacy ratio”, which is proxied by the ratio of Tier 1
(core) capital over risk-weighted assets;
3z = SIZEy is proxied by the natural logarithm of banks’ total assets;
x4q4 = BUFFFER; denotes the amount of capital buffer, and it is computed by subtracting
from the core capital (leverage) ratio the value of the minimum regulatory capital ratio (8%);
x5t = PROFITABILITY is proxied by the return on equity (ROE), defined as annualized

net income expressed as a percentage of average total equity on a consolidated basis;

20 An alternative such measure is the ratio of risk-weighted assets to total assets. This involves multiplying
the amount of different types of assets by the standardised risk weight associated with each type of assets.
However, this measure has been criticised because it can be easily manipulated e.g. by engaging in regulatory
capital arbitrage; see Vallascas and Hangendorff (2013).

2n particular, following Altunbas et al. (2007), we specify

3 2 2 2
INTCit =) ulnPuic + ) 6alnYie +0.5 Y D mnlnYmialnYois
h=1 h=1 m=1n=1
3 3 2 3
+ Z Z 7Tm,nln-Prnitln-Pnit + Z Z gmnlnsztlnPnzt +e+ 1+ Vit

m=1n=1 m=1n=1

(5.1)

where T'C represents total cost, Y7 and Y5 denote two outputs, net loans and securities, respectively. The
former is defined as gross loans minus reserves for loan loss provision. The latter is the sum of securities
held to maturity and securities held for sale. P;, P> and P3 denote three input prices, namely the price of
capital, price of labor and price of loanable funds. The model above is estimated using two-way fixed effects
regression. The bank-specific, time-varying operational inefficiency component is captured by the sum of the
two fixed effects, i.e. €¢; + 7.
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reir = QUALITY;; represents the quality of banks’ assets and is computed as the total
amount of loan loss provisions (LLP) expressed as a percentage of assets. Thus, a higher level
of loan loss provisions indicates lower quality;

x7y = LIQUIDITY} is proxied by the loan-to-deposit (LTD) ratio. The main idea is that
if this ratio is too high, banks may not have enough liquidity to meet unforeseen funding
requirements, and vice versa;

xsis = PRESSURE; represents “institutional pressure” and is binary. In specific, it takes
the value of unity if a bank has a capital buffer that is less than or equal to the 10th percentile
of the distribution of capital buffer in any given period, and zero otherwise.

Finally, the error term is composite; 7; captures bank-specific effects, hY is a ry X 1 vector
of unobserved common shocks with corresponding loadings given by ¢! and ¢; is a purely
idiosyncratic error. Note that r, is unknown.

Some discussion on the interpretation of the parameters is noteworthy. The autoregressive
coefficient, p, reflects costs of adjustment that prevent banks from achieving optimal risk levels
instantaneously (Shrieves and Dahl (1992)). The coefficient of the spatial lag, ¢, captures
endogenous links within a network model of interconnected bank balance sheets.

Be, for £ = 1,...,k, denote the slope coefficients of the model. (; captures the effect of
operational inefficiency on problem loans. There are two competing hypotheses that predict
opposite scenarios in regards to this effect: the so-called “bad management hypothesis” ad-
vocates that lower cost efficiency leads to an increase in the number of problematic loans.
In particular, managers’ failure to control costs sufficiently, can result in poor monitoring of
loans and thereby higher default rates (see e.g. Fiordelisi et al. (2011)). In contrast, the
so-called “skimping hypothesis” posits that banks may achieve low costs by under-spending
on loan underwriting and monitoring, which brings about a larger volume of problem loans
(see e.g. Tan and Floros (2013)). Thus f; could be either positive or negative depending on
which hypothesis appears to be supported by the data.

B2 measures the effect of capital adequacy on bank risk. Several theories predict that
changes in capital levels and bank risk are positively related to one another. For example, a

standard view is that since the value of expected bankruptcy costs is an increasing function
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of the probability of bankruptcy, banks would tend to increase (decrease) capital levels when
they increase (decrease) asset portfolio risk, and conversely.??

(3 measures the effect of size on risk-taking behavior. Under the “too-big-to-fail hypoth-
esis”, large banks, knowing they are systematically important, may count on public bailout
in periods of financial distress.

Capital buffer theory postulates that for a value-maximizing bank, incentives to increase
asset risk decline as its capital increases. That is, more stringent capital requirements reduce
the gains to a bank from increasing the risk of its asset portfolio (see e.g. Furlong and Keely
(1989)). Thus, 4 is expected to be negative. The same argument applies for the coefficient
of institutional pressure, (s.

Finally, the direction of the effects of profitability (ROE), asset quality and liquidity on
bank risk behavior, 85, 8¢ and 7, is ultimately an empirical question. For example, standard
theory suggests that higher bank profitability dissuades bank risk-taking because profitable
banks stand to lose more shareholder value if downside risks realize (Keeley (1990)). On the
other hand, in the presence of leverage constraints, more profitable banks can borrow more
and engage in risky side activities on a larger scale (Martynova et al. (2019)).

The spatial weights matrix has been constructed following the methodology of Fernandez
(2011). In particular, let

dij = \/2(1 = pij), (5.2)
where p;; denotes Spearman’s correlation coefficient between banks ¢ and j, corresponding
to a specific financial indicator observed over ¢ time periods. Then, the (i, j)-element of
the N x N spatial weights matrix, Wy, is defined as w;; = exp(—d,;). Thus, more distant
observations take a smaller weight. Each of the rows of Wy has been divided by the sum of
its corresponding elements so that >°; w;; = 1 for all j. Finally, the diagonal elements of Wy
are set equal to zero in order to ensure that no individual is treated as its own neighbor.

We make use of two financial indicators to construct weights, namely the debt ratio,

defined as total liabilities over total assets, and the dividend yield, defined as the dividend

22This theory is mainly relevant for banks whose optimum capital ratio is in excess of the regulatory
minimum levels. Alternative theories supporting a positive value of 35 are discussed by Shrieves and Dahl
(1992).
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over market price per share.

5.2 Estimation

The model is estimated using the second-step IV estimator put forward in the present
paper. INEF'F is treated as endogenous with respect to £;; due to reverse causality. Reverse
causality arises because higher levels of risk imply additional costs and managerial efforts
incurred by banks in order to improve existing loan underwriting and monitoring procedures.
To tackle reverse causality we instrument [N EFF using the ratio of interest expenses paid
on deposits over the value of total deposits. Higher values of this variable indicate lower levels
of cost efficiency, all other things being equal.?

The remaining covariates are treated as exogenous with respect to ;. However, these
covariates can be potentially correlated with the common factor component, ¢'h?, in which

case they are endogenous with respect to the total error term, u;;. Therefore, we instrument

these covariates using the corresponding defactored regressors. The matrix of instruments is

N N
Zi = (MF\XZ, Mﬁ71Xi7—1; Mﬁ Z wZJX], Mi‘ﬂ\il Z wz‘ij7_1) ; (53)
j=1 Jj=1
where X, = (Xy;, X9, - - - , Xg;) 18 of order T' x 8, with x,; = xy; — X, and xy; is a vector of order

T x 1 that denotes the ¢th covariate corresponding to (3, for £ = 2,... k. X;;, denotes the

external instrument used to identify the effect of cost inefficiency. Thus, we make use of 32

moment conditions in total, and with 10 parameters the number of degrees of freedom equals

22. Such degree of overidentification is important in order to enhance identification even if

some covariates end up not being statistically significant.

The projection matrix Mg is computed based on 7, factors estimated from (NT) ™' YV (Xy;, X445 Xg;) (3

Mg | and Mg are computed in a similar manner. The number of factors is estimated us-

ing the eigenvalue ratio test of Ahn and Horenstein (2013). The variance estimator for the

two-step IV procedure is given by Eqgs. (4.13)-(4.14).

Following Debarsy et al. (2012), we distinguish between direct, indirect and total effects.

23The correlation between these two variables in the sample equals 0.22.
24This choice is due to the fact that using all covariates to estimate factors resulted in rejecting the model
based on the J-test.
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In particular, stacking the N observations for each ¢ in Eq. (2.1) yields
k

Y = py@-1 + VWnyr + ; Bexery +
uy = (?7 + ®°n) + e(t)) ,
where y ;) is of dimension N x 1, and similarly for the remaining variables. ®° = (¢, ..., %),
denotes an N X r, matrix of factor loadings.
Solving the model above yields
Yy = [In(1 = pL) — oWy (Zk: @fXat)) +[In(1 = pL) —¢Wy] " ug.  (5.5)
The matrix of partial derivatives of thefe:;pected value of y with respect to the ¢th covariate
in the long-run is given by:
85;27) . aii?\:)] = [In(1—p) — Wi By, (5.6)

Following LeSage and Pace (2009), we define the direct effect as the average of the diagonal

elements in the matrix above. The indirect effect is defined as the average of the sum of the
column entries other than those on the main diagonal. The total effect is the sum of the two
effects. The matrix of partial derivatives of the expected value of y with respect to the fth

covariate in the short-run is obtained from 5.6 by setting p = 0.

5.3 Results

Column “Full” in Table 5.1 below reports results for the entire period of the sample,
i.e. 2006:Q1-2019:Q4.% Columns “Basel I-II” and “DFA” present results for two different
subperiods, namely 2006:Q1-2010:Q4 and 2011:Q1-2019:Q4 respectively. The first subsample
corresponds to the Basel I-II regulatory framework and includes the financial crisis period
(2007-2009). The second subsample corresponds to the Dodd-Frank Act.

In regards to Column “Full”, we can see that the autoregressive and spatial parameters
are statistically significant and similar in magnitude, which provides evidence for both state
dependence and endogenous network linkages.

The coefficient of operational inefficiency is positive and statistically significant, providing
support for the “bad management hypothesis” instead of the “skimping hypothesis”. This

outcome is consistent with Williams (2004). The effect of capital adequacy ratio on bank

Z5Tables D.1-D.2 in the Online Supplement report additional robustness results in terms of different spec-
ifications and/or different estimation approaches.
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risk is positive and statistically significant at the 5% level. On the other hand, bank size
appears not to be associated with risky attitude from a statistical point of view. This finding
per se is in contrast with the “too-big-to-fail hypothesis”. However, as we shall shortly see
from the discussion of the results reported in Columns “Basel I-II"-“DFA”, the bank size
effect appears to be large and statistically significant when the model is re-estimated during
2006:Q1-2010:Q4 only.

Capital buffer has a negative and significant effect on risk attitude, which is consistent
with capital buffer theory. Asset quality (or lack of thereof) appears to have a strong positive
effect on risk attitude, which is in line with the findings of Aggarwal and Jacques (2001),
who show that banks with higher levels of loan loss provision also have a larger proportion
of risky assets in their portfolios. Similarly, liquidity (or lack of thereof) appears to exert a
strong positive effect on risk. Not surprisingly, banks with less liquid assets face more risk.

Profitability does not appear to exert a statistically significant effect on risk attitude.?® Fi-
nally, conditional on capital buffer levels, the effect of institutional pressure is not statistically
significant, although the sign of the coefficient is plausible.

Columns “Basel I-II"-“DFA” present results for two different subperiods. Some major
differences are worth noting. First of all, the size effect is much larger in magnitude during
the period under Basel I-II, and remains statistically significant at the 1% level. This implies
that the “too-big-to-fail hypothesis”, or moral hazard-type behavior in general, was indeed
prevalent before the financial crisis hit, and up to 2010. However, the introduction of the
DFA appears to largely alleviate this problem. In particular, the effect of size becomes small
and is no longer statistically significant. This is consistent with the findings of Zhu et al.
(2020), who show that bank behavior during the DFA provides support to Gibrat’s “Law”,
which postulates that the size of a bank and its growth rate are independent.

Secondly, the effect of operational inefficiency appears to be much larger during the period
under the Basel I-II than that under the DFA. Similarly, quality and liquidity of portfolios
exert a much stronger effect on risk-taking behavior during the period under Basel I-II than

DFA. That is, banks with more liquid and higher quality assets are willing to take on more

26However, this result changes when profitability is proxied using an alternative measure, namely the
return on assets (ROA) as opposed to ROE. This outcome is documented in Table D.1.
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risk during Basel I-II but not so during the DFA. Finally, it appears that more profitable
banks are less willing to take on more risk during the DFA,| whereas there seems to be no
effect during Basel I-11.

These results bear important policy implications and provide evidence that the more risk-
sensitive capital regulation introduced by the DFA framework has succeeded in influencing
banks’ behaviour in a substantial manner. This conclusion is contrary to the findings of Ding
and Sickles (2019), who infer that the effectiveness of the DFA may be limited.

Table 5.2 below reports direct, indirect and total effects, which have been computed as
described in Eq. (5.6) with p = 0.2” Total effects are simply the sum of direct and indirect
effects. Panel A corresponds to the full sample, i.e. the period spanning 2006:Q1-2019:Q4.
In this panel, the direct effects are identical to the estimated coefficients reported in Column
(1) of Table 5.1. Direct and indirect effects appear to be of similar magnitude. In particular,
roughly speaking, around 55% of the total effects can be attributed to the direct ones, and
45% is due to the indirect effects.

The results change substantially when the sample is split into two subperiods. In partic-
ular, for the first subsample (Panel B), the direct effects appear to be larger, contributing
roughly three quarters of the total effect. In contrast, for the second subsample (Panel C),
direct effects contribute about 48% of the total effect, which is of similar magnitude with the

finding obtained from the full sample.

2"The long-run results are qualitatively identical and so we do not provide them here to save space. They
are available upon request.
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Table 5.1: Results for different subperiods

Full Basel I-11 DFA
R 0.405*** 0.388"* 0.413"*
p (AR parameter) (0.060) (0.070) (0.128)
7 (spatial parameter) 0149 0.255" 0.535™
patial p (0.104) (0.109) (0.270)
S 0.331% 0.584* 0.196*
P (inefficiency) (0.086) (0.296) (0.104)
- 0.011* 0.030* 0.008"
B> (CAR) (0.005) (0.011) (0.004)
B, (size) 0.031 0.8717* 0.020
3 (0.072) (0.328) (0.178)
- -0.033" -0.028 -0.015
B (buffer) (0.015) (0.025) (0.015)
- . -0.002 -0.002 -0.010**
B (profitability) (0.002) (0.004) (0.004)
B (quality) 0.224" 0.239"* 0.001
6 (quatty (0.035) (0.042) (0.077)
S 1.438+ 2,714 0.937
Br (liquidity) (0.213) (0.531) (0.358)
B (inst. pressurc) -0.022 0.014 -0.021
(0.041) (0.066) (0.057)

7 1 1 1

P 2 1 1
test 28.649 30.205 28.937
[0.156] [0.114] [0.147]

Notes: Column “Full” reports results obtained from the full sample. Column “Basel I-II”
reports results for the first subsample that spans 2006:Q1-2010:Q)4. This is the period un-
der Basel I-1I. Column “DFA” reports results for the second subsample that spans 2011:Q1-
2019:Q4. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10. p-values in
square brackets.
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Table 5.2: Decomposition of effects
Panel A: Full sample
Full sample Direct Indirect Total

inefficiency 0.331 0.265 0.596
CAR 0.011 .008 0.019
size 0.031 0.025 0.056
buffer -0.033 -0.026 -0.059
profitability -0.002 -0.002 -0.004
quality 0.224 0.179 0.404
liquidity 1.438 1.157 2.591
inst. pressure -0.022 -0.018 -0.040

Panel B: Basel I-1I1
Direct Indirect Total

inefficiency 0.584 0.197 0.782
CAR 0.030 0.010 0.040
size 0.871 0.197 0.782
buffer -0.028 -0.009 -0.037
profitability -0.001 -0.001 -0.002
quality 0.239 0.081 0.320
liquidity 2.714 0.917 3.631
inst. pressure  0.014 0.005 0.019

Panel C: DFA

Direct Indirect Total
inefficiency 0.196 0.220 0.417
CAR 0.008 0.008 0.015
size 0.020 0.022 0.042
buffer -0.015 -0.017 -0.032
profitability -0.010 -0.011 -0.021
quality 0.001 0.001 0.002
liquidity 0.937 1.052 1.991
inst. pressure -0.021 -0.023 -0.044

Notes: See the discussion in the main text on the computation of direct and indirect effects.
Basel I-1I spans the period 2006:Q1-2010:Q4 (T = 21). DFA spans the period 2011:Q1-
2019:Q4 (T = 35).

6 Concluding Remarks

This paper develops a new IV estimator for spatial, dynamic panel data models with inter-
active effects under large N and T' asymptotics. The proposed estimator is computationally
inexpensive and straightforward to implement. Moreover, it is free from asymptotic bias in
either cross-sectional or time series dimension. Last, the proposed estimator retains the at-
tractive feature of Method of Moments estimation in that it can potentially accommodate

endogenous regressors, so long as external exogenous instruments are available.
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Simulation results show that the proposed IV estimator performs well in finite samples,
that is, it has negligible bias and produces credible inferences in all cases considered. We have
applied our methodology to study the determinants of risk attitude of banking institutions,
with emphasis on the impact of increased capital regulation over the past decade or so. The
results of our analysis bear important policy implications and provide evidence that the more
risk-sensitive capital regulation that was introduced by the Dodd-Frank framework in 2011

has succeeded in influencing banks’ behaviour in a substantial manner.
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Online Appendix A: Proofs of main theoretical results

Throughout the appendix, we use C' to denote a generic finite constant large enough, which need not to be the same at
each appearance. Denote the projection matrix Po = A(A’A)"!A’ and the residual maker Mg = I — P4 for a matrix A.
Let E be 7, x 7, diagonal matrix that consist of the first r, largest eigenvalues of the T' x T matrix (NT)~! Zf\il X, X!
Then by the definition of eigenvalues and f‘, FE = (NT)~1 Efil XiX;f. It’s easy to show that = is invertible following
the proof of Lemma A.3 in Bai (2003). Then

N N N
- 1 - 1 - 1 .
F-F'R=—) FI'VW'FE"'+ —Y V,IVF'FE!'+ —) V,VIF=! Al
NF L FTIVIFE S v B ONDY (A1)
and
. 1 N R 1 N R 1 N R
f-R'T) = ET'F VIV + ~T > ETFFIvi + ~T > ETF Vivy (A.2)
=1 =1 =1

where R = (NT)~! Zfil ITYFYFE'. Following the proof of Lemma A.3 in Bai (2003) again, we can show that R is
invertible.
Let 2, be a r, xr,, diagonal matrix that consists of the first r,, largest eigenvalues of the T'x T matrix (NT) =} Zf\il Xi,—1X;771-

Then by the definition of eigenvalues and f‘,l, f‘,lEL = (NT)! Zi\; Xi’,lxa_lf‘,l. It’s easy to show that =, is in-
vertible following the proof of Lemma A.3 in Bai (2003). Then

F_,-F° m,

1 al 0 O~x7/ - 1 1 al o0/ 1 1 al / -~ 1 (AS)
=S FO00V, FE =Y Vi IVFYF B+ =YV LV FE]
e 1L+NTZ,=1 m1hd -1 1L‘LNTi=1 m1 V-1 1L

where R = (NT)~! Zfil I‘?I‘?/Fo_'lf‘_lEzl. Following the proof of Lemma A.3 in Bai (2003) again, we can show
that MR is invertible.



Lemma A.1 Under Assumptions B to D, we have

(@) THF —FR[* = 0,(557) , T [F -1 = F2, > = 0, (357) »

(b) T7(F —FR)F® = 0,(657), T~ (F — F'R)F’, = 0,(057) ,

“HF_1 —FOR)FO = 0,(057) , T HF_1 — FO M)FO ) = 0,(637),

“LF - F°R)'F = 0,(532), T~ Y (F - F'R)F_, = 0, (032) ,

F o —FOR)F = 0,(057), T (F 1 —FLR)F 1 = 0,(657),

“Y(F -—F°R)H’ = 0,(652), T (F_, — F* ,R)'H" = 0,(552),

() E=0,(1),R=0,(1) ,E'=0,(1) ,R'=0,(1),
EL=0,(1) ,|=0,(1) .E;' =0,(1) R =0,(1)
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Proof of Lemma A.1. For the proofs of (a) to (f), and (h), see Proof of Lemma 4 in Supplemental Material, Norkute
et al. (2020). For (g), we decompose the left hand side term as
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Lemma A.2 Under Assumptions A to D, for all i, we have
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by Assumptions A, B8, and C.
Consider (e). We have
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by Assumptions B3 and C. This completes the proof. O]

Lemma A.3 Under Assumptions A to D, we have
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Proof of Lemma A.3. For (a), please see Lemma 6 in Norkute et al. (2020). For (b), the left hand side is bounded in
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Similar to the equation (A.5), we can show that
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with Markov inequality. Then we have (¢). The cases (d) to (m) can be proved similarly. This completes the proof. [J

Lemma A.4 Under Assumptions A to E, we have
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Proof of Lemma A.4. Consider (a). By Cauchy-Schwardz inequality, we have
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Then we complete the proof of (a). Following the proof of part (a), we can prove part (b) with E|[jp;|* < C, and prove
part (¢) with Lemma A.2 (a).



Consider (d). Note that 771/2F° = O,(1) and T~Y/?2H° = O,(1). With Lemmas A.4 (a) to (c), we can prove (d)
easily with the definition of u,.

Following the proof part of (a), we can prove part (e) with Lemma A.2 (b), and we can prove part (f) with Lemma
A2 (c).
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by Assumption D and Lemma A.2 (d).

Following the proof of (g), we can prove part (h) with Assumption D and Lemma A.2 (e).
Consider (z). With the equation (A.1), we have
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by Lemma A.1 (a) and A.1 (e), Lemma A4 (c), (e), (f) and (g). This completes the proof. O



Lemma A.5 Under Assumptions A to D, we have
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Consider the term B3. With the definition of R, B3 can be written as
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Lemma A.6 Under Assumptions A to D, we have
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Consider the term Cs. Since u; = H¢? + &;, we can derive that
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We consider the term C; ;. By the equation (A.1), we have
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by Lemma A.1 (h) and Lemma A.4 (d). For the term Cj ; 2, we can reformulate it as

N N
N3/2T1/2 Zzl

IR [ (x®) )

2 ~\ —1
FO/F FO/F() -

N
1 0
> TOViE°
H NT =1

> TViE°
=1

[

N FO/FO -1
> wi Ty (Y°) 11“2V,NTZV rY %! < - ) Fou;

i=1 ¢ 7j=1

N N N N —1
T1 _ 1 VI,V _, (FYFO F%u;
Yy 1(N22r2 a ) o ()

i=1 j=1 =1 h=1
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For the term C; 1.3, we can decompose it as

N N N -1 1
1 F F B FOIFO FO/ui
N3/2T1/2 DD > wiTy (X)) lrfvf Z]E VhV,)FOOR( T ) (x®) 1( T ) T
=1 ¢=1 j=1
N N N N A\ —1
1 FYF FUFO Fu.
0r 0\—190 / 0 0y—1 ?
N3/2T1/2 ;;;wwr (X)L Vigr hz: Vi E(ViVy)) F R( T ) (") < 7 ) T
N N N AN\ —
L 0/(y0) =119 / 0 FUF 0 FUFO\ ' FOy,
N3/2T1/221;lemr (Y0)- I‘VZNThZIE Vivi) (F-F'R) | — (X (= 7
i J

»—
=

N
N3/2T1/2 Z Z

=1 1

N N A\ 1
- F()/F F(]/FO FO/ i
wsTY (1) TVigp 3 (ViVh ~E(VaVi)) (F - F'R) <T> o (S)
(=1 j=1 h

b

which are bounded by

N N - . / )
S| (57) =)
T

11 R 1 Y
(S (o) e S

s=1t=1

)P IR

3 (VaVi, ~B(ViVi) |

+%H\/%Zr2
*HFZ
Flar sy

o (4E) . ()

by Lemmas A.1 (a), (i), (m) and (n) and Lemma A.4 (d), and the fact that

T T 1 N 1 N
2.2, (w > e%) £E (N szsm> H =0,(1)
/=1 h=1

s=1t=1

|E=ER)

\F Z]E (VaV})

1 (};vhvz —~E(V,V}) ) H HF_\/E;)R\D

Nl

14




because

i)

1 N
E (N > v;wvht> ‘

1/2

01/2 T T 1 N N
< T ZZ ZZ E(j,és lré))

s=1t=1 =17
1/2
oz I A . . | /
<SS F X Il (2 R 2 ) 5 Vhovi
s=1t=1 £=1 j=1 h=1
1/2
cr I T 1NN LN 32 I 1N
S5 3) 31 £ 90 U IET ES SV | EEE-w 3) ol 6 55 o | EYae
s=1t=1 (=1 j=1 h=1 s=1t=1 h=1
by Assumptions B3, C and D.
Combining the above terms, we can derive that
1 N N N
0/ (A~0y =170y /7
_N3/2T1/22;2“’”F (Y)Y Vi Mgu,
i=1£=1
1 N N N
0/ (A0 —1
T N32TL2 2;2“}2]11 (X) ' TYViMpou,
1=10=1 j=
N N N N
T1 (1 Vv,V FYFO\ " F'y; VT
v 2 2 wi Ty () 1<NZZF2 T FO'>(TO) ( 7 ) 7 0p<5 >+0p
i=1 j=1 £=1h=1

This completes the proof. [

Lemma A.7 Under Assumptions A to D, we have

N N N F/FO -1
(4 0 / /
ESE ) 9 WL Ul ) B A
=1 ¢=1 j=1
N N N F/Fo o
N3/2T3/2 2.2 2wy () ( T ) FEVIV) Mg + 0, <ﬁ5%) O (Tim)
i=1 (=1 j=1

if T/N? = 0 as N, T — oo.

Proof of Lemma A.7. Denote the left-hand-side of the above equation

N N N F/FO -
Cs = N3/2T3/2 ZZZ“’%’J’F?I(TO)1< T ) F'(VeVy —E(VVy)) Mgu,.

i=1¢=1j=1

Since Mﬁ =1r— T-1FF’ and u; = Hocp? + €5,

N N N RO -
Cs = /2T3 7 S wi T (%) ( ) F' (V,V, —E(V,V})H® (A.22)
=1 (=1 j=1
N N N F/FO -1
+3 /2T3 e SN wi, Ty (x%) ( ) F (V,V, —E(V,V)) e (A.23)
i=1 (=1 j=1

15



N

N X 0 0 :/E\VFO = /\ﬁ/U‘
/ / ! /! v
N3/2T3/2 ;;J lwwr (") T F' (V,V, —E(VIZV@))FT (A.24)
=Cs51+C52—Cs3.
N N N TR0 -1
1€l < | yaragars 2o 3o 3w T (%) ( T ) R'FY (V. V)~ E(V, V) H'p) (A.25)
=1 (=1 j=1
N N N 0 -1 R ,
+ N3/2T3/2 Z Z waro/ (X%~ ( T ) (F - FOR) (VeV, —E(V, V) H} (A.26)
i=1 (=1 j=1
N -1
F'F SN FY (V,V, —E(V,V)})H°
; I\O/ TO -1 R (=1 14 4 0 A27
< 7 ;;'wi' I e | 7 IR| N le?]l (A.27)
S ) PR | S VLB VDR oy s
NS j=1 SR VNT
=0y (T_1/2) +Op (57&)
by Lemma A.1 (a) (k) (1) and Lemma A.4 (a).
N N N ot f’FO -1
|Cs.2]] < N3/2T3/2 DY wi,TY () R'FY (V,V, —E (V,V)))e; (A.29)
i=1 (=1 j=1
N N N P )
+ N3/2T3/2 Do D wiTy(x)” ( ) (F-F'R) (VoV] —E(ViV)))e; (A.30)
=1 (=1 j=1
FY (V,V, —E(V,V))) e
w; :[10/ TO —1 R Z/ 1 0 4 0 A31
_NTW;;I e IHee) = IR N o0l (asD)
+ 1 zN:ZN:| | HFO/H H(TO)_lH FF\ |[|[F-FR Zévzl (VeVy —E(V,VY)))ei OH (A.32)
~ wiz| ||T; o (A.
Nog= T T a VNT v
=0, (T772) + 0, (5%)
by Lemma A.1 (a), Lemma A.2 (d) (e) and Lemma A4 (a).
N N N EN -1 ~
1 L (FFO Fru,
Css = Samqam 2o 2 > wily (X)) < o ) R'F” (V,V; —E(V,V)) F'R=— (A.33)
i=1¢=1 j=1
N N N ~ -1 R
F'F° ~ F'u
0rs 0y\—1 107 ! / 0 ?
N3/2T3/2 2;2“’ ;TY(r0) ( - ) R'F” (V,V, —E(V,V})) (F—F R) 0 (A.34)
i=14=1 j=
N N N = -1 =
1 0rp~-0y—1 [ F'E° 5 o) / /) o F Wi
+ T E;Ewijrj (x| = (F-F'R) (V.V}, ~E(V,V)) F'R— (A.35)
1= =1 9=
N N N ~ -1 R
1 0r(~n0y—1 [ E'FY 5 wop) / (7 pop) F
+ 5T Z};;wijrj (x| = (F-F'R) (ViV}, ~E(V,V)) (F-F'R) =" (A.36)
1= Jj=

=Cs531+Cs532+Cs533+Cs3.4.

Noting that

~ / - /
Flu: FO/H() o FO¢, (F — FOR) H° o (F — FOR) €5
) / 7 i

T = =R e, + R T + T w; + 7
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R'FY (V,V,

N N N
0r 0
ICoaall < N3/2T3/2 22> Ty ()

i=1 (=1 j=1

<f"FO

CE(V,V}) F'RR/ AL

(]/HO Lp[)
T 2

N N N :’E\‘ FO/.
i N3/2T3/2ZZZU}”FO/ o ( ) R'F” (V,V} —E(V/V})) FPRR' —
i=1 (=1 j=1
N N N P (IA?‘—FOR)/HO
0 0
+ N3/2T3/2 ;;] 1w”l" () ( ) R'FY (V,V, -E(V,V))F'R 7
N N N (IA?‘—FOR)IEz
+ 3/2 3/2 ZZZ“’UFO/ )" R/FO/ (VeVy, —E(V, V) F°R
N T =1 ¢=1 j=1 T
FF SN FY (V,V/, — E (V,V})) FO
< st 2o ol I e | (57 HH Ll /A
FOIHO
<RI |2 ot
FF SN FY (VV, —E(V,V}))F
i 1-\0/ TO —1 (=1 Y/
riz Sl I | () ‘H Vi
F0/€i
\/T
0/ 0 -1 FF Ze 1F0/(V2Ve E(VEV,))
g 2o el I x| (EF) H | Vi
, (f‘fFOR)/HO )
oY | R——— . ]
1 L _ FEO\ ||| TN, FY (VoV], —E(V,V)) B
e 2o el I x| (EF) H |E Y
~ !
F*FOR &;
><HR||2 (T)
=0, (T*W’)
by Lemma A.1 (a), Lemma A.2 (j) and Lemma A.4 (a) (e) (i).
[Cs.3.2l
N N N o\ L 01110
< | s 2o 20 S w00 (Fﬁ ) R (V,V} - E(V,vy) (F - FR) R0
i=1 (=1 j=1
1 N N N (Fpo -1 - —
+ Ng/QTB/QZ;;;wijI‘?’(TO) 1( - ) R'F” (V,V, — E (V,V})) (FfFOR) R~
1 QeI 0/ 0\—1 f/FO B 10/ / / ' 0 (ﬁ_FOR)/HO
+ N3/2T3/2;;;w”rj (T°) ( - ) R'FY (V,V}, — E (V,V})) (F—F R) -
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(A.37)

(A.38)

#{1.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

o}



/
_ FOR) c

Shuly 0 0 f/FO - 0 - 0 (
/ / / ! /
+ N3/2T3/2 ; ;;wwr (") ( T > R'FY (V,V, —E(V,Vy)) (F —-F R) 7
N N ~ —1 N
) 0/ 0y—1 F'F° Ze=1 FY (V5V2 —E (VZVQ))
gg g | |05 1)~ ‘(T JNT (A.52)
F - F'R FOHO
Nia i TH 2 (A.53)
1 LEE FEO\ | SN, B (VeV, —E(V,V)
- i 1-\0/ TO -1 =1 LVy tVy A54
o 2 el I M(T Qs (a0
F-F'R FY¢;
x WH IRI |~ (A.55)
F’ F > "(VeV, —E(VeVy))
2 Sl (5 HHfl e e
f\ _ FOR F — FOR H0
\Wﬂ<T)HﬁH a5
A o o [(FE) | S E (vevy — B (v, vy)
oy bl I (7 v (A58
—~ /
F - F'R F-F'R) ¢
H IR <T) (A.59)
=0p (61:1%1“)
by Lemma A.1 (a), Lemma A.2 (i) and Lemma A.4 (a) (e) (i).
[Cs.3.5]] (A.60)
1 NN X ﬁ/FO -t ~ I FO/HO
< szzwr?’(ro)*( - ) (F-F'R) (ViV} —E(V.V)) F'RR' = —¢{ (A.61)
i=1 6=1 j=1
! L eby 00y 1 [ F/FO R op) oo FUe
/ — ! ! K3
+ | warTEr ;;;ww% () < | (F-FR) (VoV} ~E(V.V)) F'RR'=_~ (A.62)

=1 ¢=1 j5=1

B = !
| (f‘ - FOR), (V,V, —E(V,V)) F'R (F 7 FOR) ©

N N N F'FO -t / (F*FOR) HO
i N3/2T3/2ZZZ“’”FO/ oy ( ) (F—FOR) (VeVi = E(ViV)) F'R-——————](A.63)

ShRbY 07 /~r0 F'FO
T N3/2T3/2 ZZZwUI‘ "(r?) < 7

T

3y PR\ |E R SN (VeV, —E(V,V))) FO
SN al T lee)™ =1 (VeVy f A.64
_N;;mij<>nKT>‘ = .
5 [|FOYHO 0
| .
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—1
F'F° —F°R N (Vo V, —E(V,V))F°
LSS I x| ‘( ) [ RN N
=1 j=1
2 F\/; (A.67)
1 LY o Fro\ ||||F - FOR SN (VV, —E(V,V))) FO
4= ST | ] ()~ =1 ¢ £ A.68
¥ 2 Xl I o ||‘( ) T (A9
—~ I
(F—FOR) HO
x Rl 7 9l (A.69)
1 L 0 FEO\ ||| - FOR|| | SN, (VV, — E(V,V)) FO
4= ST || ()~ =1 ¢ £ A.70
¥ 2 Xl I ) ||‘( ) AT (70
—~ !
(F—FOR) &
<RI ~—F—— (A.71)
=0, (51:7%1)
by Lemma A.1l (a), Lemma A.2 (i) and Lemma A.4 (a) (e) (i).
ICs.5.4ll (A.72)
N N N EN -1
F/FO ~ / R FO/HO
< | s o 20 Do w T (X <T> (F-FR) (ViV;—E(V,V)) (F-F'R)R'=———¢!|  (AT3)
i=1 (=1 j=1
1 N N N f"FO -1 N ’ R FOe,
|| 2o 2 D wi LY () ( - ) (F-F'R) (VoV, - E(V,V)) (F-F'R) R'=— (A.74)
i=1 (=1 j=1
N N N 1 (A OR)/HO
1 FFO\ /o / - F-F
+ Ng/ng/gZZZwurﬁ’(TO)‘l( 7 ) (F-F'R) (Vv —E(V,V)) (F-F'R) )
i=1¢=1 j=1
/
1 LAY Fro\ / R ~FR) ¢
T || NERTR ZZZ“’UF?,(TO)1< T ) (F_FOR) (VeVy —E(VVY) (F—FOR)( T )
i=1¢=1 j=1
1 e & FE\ [N, (VoV, - E(VeVY)
<\/T7 i FO/ TO —1 s - (=1 4 4 A.76
VT3S b I H‘( ) HH Vi) e
F - F'R FOHO
[ |2 am
1 LY o FEO\ ||, (Vv — E(VeV)))
L i 0 -rO -1 (=1 £ L A.7T8
el I e |( L Vi am
~ 2
F - F°R 2 || F%;
R A.79
| | . (A.79)
+ﬁiii|w__|ur()/“H(To)—1H P\ |||, (Vv - E(vevy) (A.50)
N=a R T VNT
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5 2 F or) 1o

F_FOR (F-FR) H

—=|| IRl ~—"—||ll# A8
7 H IRl T l&? (A.81)
Ly / - PEO\ |2, (Vv - E(V,V))

STt (5 H R as

~ 2 - 0 !

F_FOR (F-FR) e

—7 || IR A.83
VT H IR T (A.83)

=0, (VT/53%)

by Lemma A.1 (a), Lemma A.2 (n) and Lemma A .4 (a) (e) (i). Thus we conclude C5 = O,, (ﬁ/é;&) + 0, (T*1/2) as
required.]

Lemma A.8 Under Assumptions A to D, we have

1 N N N F/FO
or 0y—1 /
N3/2T3/2 Zzzwufj (x’) < T ) F'E(V/Vy) Mzu;
i=1 ¢=1 j=1
N N N -1
1 0/ jmp0r—1 [ FVFO or y 1 VN
T N3/273/2 Zwijrj (") FVE (V,V)) Mpou; +Op | —= | + Op | -
N3/2T3/ i=1 (=1 j=1 r VT T
if T/N* = 0 as N, T — oco.
Proof of Lemma A.8. Note that by Assumptions B5, we have
|E(Vevi) Mgui|| < s (B(VeV) M| < € )
and
HIE (VV)) (Mf _ MF) W] < fimax (B (VeVY)) H (Mf _ MF) w
<O Mg — Mo | s} = Oy (653 ]
In addition,
Fro\ (FO’F°>_1 Fo '’ F/FO F'O(FE0\ F 'P
o o F )
T VT T T T VT T JT ¥
-1 / -1 (Qx 0 !
FF'\ F F'FO (F -FR F'FO F - F'R .
= —= Mpo | = Mpo|| < = 0, (651)
T VT T VT T JT
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By substracting and adding terms, we have

1 N N N B0 1A
szzwww( 7 ) F'E (V, V) Mg
i=1 ¢=1 j=1
1 N N N FORON
— Nz 2o 0 > wi Ty () ! FUE (V,V}) Mpou,
NET i=1 =1 j=1 T
N N N ~ -1 .

1 O 1mnOn 1 F/FO ~ FOURO o )
> 3) 3 Lo P e B vivy M
N/T/ =1 ¢=1 j5=1 T T

1 N N N FO/FO -1
e R L Lt ()R (e M)
i=1 =1 j=1

which are bounded in norm by

N N N ~ -1

\/> ZZZWMHHI‘OH HE(VKVQ)Mfui (F/FO> F' (FYF° i H (x|
TN VT T JT T
=1 j=1 /(=1

N
~2 Jwig [[T5]]
PRI %
~ -1 ~
N N F/FO F/ FO/FO -1 FO/ B
S\/; Z < T) \/T<T) 77 ()~
1 N1 L FOFO
g Erm )

B VN
O (w)

by the above three facts and Lemma A.4 (d). This completes the proof. O

Mz
M™M= ;

@

E (V[V%) (M’P: — MF()) u; || FO/FO > _

N
I
—

J

wij| T

HMZ

2 \

T

TO)*lH
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Lemma A.9 Under Assumptions A to D, we have

— — — — —
8 Q ) = S

=
2| =

= S
= S
zl= z2l=

A
~.
=

=2~

2= =z~

2=

M= M= M= M= IM= 1=

©
I
-
.
I
—

2=

2=

M= 1M 1M

N
Il

-
<
Il

-

NE HMZ an ”MZ HMZ uMz

g

M= 1=
T =

M-

ww‘

ww |

w” ‘

wu |

ww |

g

el

=viE|letl =0,

‘\FV’FO 2] = 0, (1)

‘\FVIFO HeFO =0,(1)

| l7 @) e o (7)

v [ (- ww) e <o, ()
(F F'R )‘HsO?H—Op((;]lVT)

2y (- R) et =0, ()

i (- m) |7 - m) o] -0 ()

Proof of Lemma A.9. With Assumption Bl and Lemma A.2 (f), we can easily prove parts (a)-(d) by following the proof

of Lemma A.4 (a).

Parts (e) and (f) can be proved similar to the proof of A.4 (i).
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Consider (g). With the equation (A.1), we have

1 N N
szwwmﬂ [ (F-Fm)|

ZF‘)F@V'F: !

N N
ZZ il [l ?
=1j=1

ZVZFQ/FO/F— 1

.7 NT2 J NT2

1 N N _
+ N ;; wz]' ||‘PZ H NT2 ZVZVZFH 1
1 1 N N
= ~ i OV, FO| IR |2~
7 (F E | Frvie] ) | revie it
o (St | v ) | A v [ (B em) 1=
VNT \ N & =™ el 77 Vs “” JT
11 N N
.. ! 07 ,_._1
+NN;;|“}”|“% ZlﬁszrZ ’fH 1=
1 1L E N
[ ;i O V/V V/V 1-\0/ ,_71
+ NTN;;WJIH% ; - 0) Nl
11 & ol F—F'R
TEN i (VeV)) g
+ﬁN;;w1|H% fg Vol |7 | 157
1 1y al F-FR|,__,
—_—— ; — VoV, —EV V| |——=—|| |
+mN;;%Wz e vl | E R
11 N N
+TNZZ wl]|||801“ NTZVE VKVZ)FO ”RH H:—l”
i=1 j=1
1 1L N
U 2 2l ek Zvew E(VV)IF|| R &7
2.2 T2

- /
by Lemmas A.1 (i), (m) and (n) and Lemma A.9 (a). In the proof of (i), we replace ¢, by T! (F - FOR) i, and use
Lemma A.9 (e) and Lemma A.9 (f). This completes the proof. O

Lemma A.10 Under Assumptions A to D, we have

WV’M u;

M= 1M
Mz T\Mz

/
ijVjMFO u;

FOFON 1 VNT
Wi JNT ZV rYy(r%-1 ( 7 ) F'q; + O, <5NT> +0, (63
1 NT

Proof of Lemma A.10. Since Mg —Mpo = —T~'(F = F'R)R'F” - T-'F'R(F - F'R)' — T~ (F - F'R)(F - F'R)’ —

1

A2

<.
Il

<
Il

1
llj
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T7UF (RR! — (T7'FVF) ') F, we have

1 N N
AV (Mg M)
NT i=1 j=1
N N —1
1 / 1 —1 0 FOIFO 07
- > wi Vi=(FR™ —F )( Fu;
NT =1 j=1 T
N N
1 1 FYFO
- = SO> wiyVy T(FR 1 FY <RR’ ( > > Fu;
i=1 j=1
1 L& 1 1
- SO wi Vi~ FOR(F F'R)'u; w; F F'R)(F — F°R)'u
z] ) y—— L_]
NTi:lj:l T NTz 1g=1
N N —1
1 1 FYFY
- wi; V. =F" | RR/ — Fy,
o <T>> :

=Dy + D3 + D3 + Dy + D5

We first consider the last four terms. By Lemma A.1 (f) and Lemmas A.9 (g), (h), we have

N N FO/FO -1
D = TZZ ”V’ (F —F'R)R™" RR’—< - ) Fou;

NN OO\ ~
St v OHH | (FTF) )
=1 j=1
N FO/FO
+\F><ZZ|w”|‘ V'F F'R HH RR’—( 1|
=1 j=1
VNT
—0, .
NT
For D3, we have
” 3H_ wz F FOR)I (HOQO?+€Z)
LN
= wi] Vi MHH @ - Ry R)
N;; I,
+\ﬁx—ZZ|w”| V’FO H (F —F°R)'e;
i=1 j=1
VN
(%)

by Lemmas A.1 (b), (d) and (e) and Lemmas A.9 (b), (c) and (f).

24



For D4, we have

N N
D4 SVNT x ZZ |wig |

’ V/(F - F°R HH%HH (F - F°R)'H°

+VNTX%ZZ|’LU”‘

i=1j=1
VvNT
NT

l ' _ 0 l’\_ 0P/
‘TV]-(F FR)HHT(F F'R)e

by Lemmas A.1 (b), (d) and Lemmas A.9 (g), (h) and (i).
For D5, we have

IDsll = || = 3OS vy L RRI<F°’F°)‘1 B (500 4 <)

51 — N gt T ‘PZ 1
N N —

1 FO/FO

ZZwUI‘V’FO lled|l HTFO'HO |RR/< - >
N N -1

N FO/FO
\/T vyl el e - (57)

VN
(%)

by Lemma A.1 (f) and Lemmas A.9 (b), (c) and (d).
Now we consider the term D;. With (A.1), we can decompose the term D; as follows

N N —1
1 1~ FYFO
T INT > D wiVim(FR™ —F) ( ) Foy;
i=1 j=1
N N N 1
o 1 Y ]. o/ 0y—1 FO/FO or
- NTZZU)”VJNT thrh(T ) T Fu;
i=1 j=1 h=1
N N & - 1
1 1 ~ [ FUF FYFO
_ V/ FOFOV/ F TO 1 FOI i
R LV S FTRY ooyt (22
N N N -1
1 1 / R FUF 0y—1 FUF° (0]
- ;;wj T3 };E (ViVy) V,F ( (Y0 FOu,
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We consider the last three terms D 5, Dq .3, and D 4. For D 5, we can derive that

N N A\ —1 1
1 FO/F FO/FO
Dl = || 73 223w V/NTQZFOFOV/F< T ) o (B)

N N A\ 1 -1
1 FO/F FOIFO
| V) FT)V,F'R | —— o)t F%u;
- NT Z Z J NT2 Z T ( ) T u

= Wi 5 NT2 hz:lE V/ Vh) V/ (F FOR)
N N

N
_ ]{[TZ Wi ZE (ViVi) Vi, (F - F'R)

+ ;{Tiﬁ;w Vi NT2 ZFOI‘OV’ (F FOR) (F;F>_1(T0)—1 (F(;FO> _1F0'ui
ST 59 DU M []] SR (FTF) (=) = e nm
i1 =
+;;§:§:w”| Vi’ FO/E’ HFZFOV’FO (F;F>_1 H(FO;FOyl )R]
==
\fm =) e Il
fZZ" 5 [ ] () I ””RH e
0 (5r)
by Lemmas A.1 (a), (b), (c) and (d).
For D3, we can decompose it as follows
S S S avie (TF) o (T e
= Zl\fTééw”Nsz ZE (ViVy) V,F'R (F;F>l (Yo%)t (FO;FO)IFO’W
;[Tii leTQ ZN:E (ViVi) Vi, (F FOR) FOTI,ﬁ)_l (Y0)~! (FO;FO)_lFO’ ;
—_ ;VTi_V;iV: wij NT2 ZE (ViVy,) V,F'R (F;F (r0)—1 (FO;FO)lFO’H%?
o "\ N o
—Wg; ) FY;
N
> (
(

e ZE (V/Vi) ViF'R (FTF> - (BF
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which are bounded in norm by

1 1 NN X 1 V! FO FOf -1 FURO -1 FO,HO
NN Jwigl [ ||E (V’-Vh> ’H L N —— ) (o)1
1 1 N N N € 1 V/ FO FO/F -1 FO/FO —
A S S e Gl m () 1) e
w2 2 2l (v IR 7 7 I —%
T 1 N N 1 F FOR FO/F FQ/FO —1 FO,HO
AT S S et (i) || Y \]( HH ) iy
i=1j=1h=1
T1 NN X i F_ FOR FOF FQ/FO -1 )
fr S S|l G 2 (52 Iy Tl e
i=1j=1 h=1

With the fact that ||]E (T’1V;Vh) || < &, by Assumption B3, the above terms can be further bounded in norm by

N N
ZZZW’W‘ ||‘Pz |Ujh

v, FO

N
N x Op(1)
N i=1 j=1h=1 \/T P
N N N -
NN wis| || == Fin || L= x Op(1)
\/>N ;;; J JT p
T1 LY (A.84)
e wisl 2] 71 H (i)
T N N N 7 v .
WZZZM| %] 0, (L)
i=1 j=1 h=1 NT
Easily, we can show that
LSS ol el [ £
N lwij| ||¢7 || Tin ’_0(1)
N i=1 j=1 h=1 Y B VT P
since
1 N N N V/hFO 1 N N N V;LFO
;;}; |wij| ||| 75n ol | N;;’; lwij| ||€?]| 55n =

N NN V! FO 2N NN 2NN N
SN NICEFIECEE 3) ) SITIEES % 9L  olt)
i=1 j=1h=1 i=1 j=1 h=1 j=1h=1 i=1

3 N N
e 9) St
Jj=1h=1
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Similarly, we can show that

LSS S e [V = 0,00
AT w; Pill Ojn 1
Ni:lj:lh:l ’ ’ vT !
1 LAY € V! FO
~ lwij| || —=|[ 70 | —L=|| = Op(1)
N;;}; J \/T J \/T P
i iii |wij H‘P?H Tjh VhH =0y (1)
Ni:lj:lh:l VT

N N N
1 - v
N 22X el | ain || 2 = 0 (1)

Combining the above equations and the equation (A.84), we can derive that

o) ) ) )

For Dy 4, it can be decomposed as

1 L - (PR (FYFON\ T
! ! ! — /
_ NiT;];w” T2 Zl(vjvh—]E(Vth))VhF< 7 ) (Y°) ( - ) F'y,
N N N L\ -1 =
1 1 FOF FO/RO
=7 Wi (V’»Vh —E (Vlzvh)) VI, F'R () (x%)-t < ) FO'y,
N N N L\ -1 =
1 1 ~ FYFR FO/ R0
A e Y v E v (Fwm) (5F) e (B) T
i=1 j=1 h=1
N N N L\ —1 =
1 1 FO/F FOIFO FOIHO
= = o > (ViV, —E(ViV,)) VI F'R 0 1( > 0
S Sy S v v view (T ) o ()R
N N N L\ —1 1
1 1 FUE FORO
- —— w; (ViV, —E(V,V,)) V,F'R < ) (x~* ( ) F;
N N N LN\ -1 1
1 1 N FO/F FO/FO FO/HO
AL Sy v vi () () () TR
i=1 j=1 h=1
N N N L\ -1 =
1 / ! / 0 FUF 0y—1 | 0r ..
_\/W;; ”NTthl ViV, —E(VjVi)) Vi, (F - FR)( — ] @97 (—F—) %

=141 + D142 +Dig3+Dig4.
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2
Consider the term Dy 4.;. With Lemma A.2 (f), we have N~} Zthl E HT‘1/2 Zstl V£

< C. In addition, we have

2

N N T

DD @ @ wij (vievhy — E(Viiviy))

2
N N T

DT> wiiel @ vee (virvi, — B (vjivh,))

1
VvVNT
L ] X NI
N D> E JNT Z Z > vee (wiyp) ® (viiviy — E(v;ivy,))
b
vVNT
] X NI
UNT ZZZU’ZJS‘% (Vhe @ Vje — E(Vae @ V1))

1
1 N N N N N T T
:N2T Z Z Z Z Z Zzwhhwlwz ‘Pigl‘Pgl) X tr (cov (Vps ® Visss Vit @ Vj1t))

h=11i1=1j1=142=1jo=1s=1t=1
1 N N N N N 1 T T
LSS T S i lhwnnl (LIl 7) 7 % YGZZWW@WM@WM

h=1 11:1 j1:1 12:1 jg:l

c N N N NN | T
SEPIDY Z 2 D fwnpllwisial | 75D D 00V (Vs © Vs Vi @ V)| < C°
h=141=1j1=142=1 jo=1 s=1t=1
Then we can derive that
1N ;] NoNT 1 X
El|l— —_— V'@ w; (vigvh, —E (Vi) — v fY
93| T %) 9 SEETHPE RN S aee:
L XN ;] NoNT 1z
=— El||l— i @ wi; (Vv E (vjv — v fB'
2 (| A e o vt Bt | | 7
= i=1 j=1t= s=
N N N T 2 T 2\ /2
1 1 1 (A.85)
<— E V@ wig (vipvy, — E(vipv), E|— v Sff/
th:l NTZ;X;;‘P i (Vitvie — E (Vje Vi) \/TZ; h
= 1 J S=
2 1/2 2 1/2
X 1 X . X ] NNT .
!/
< NZ]E \/Tzvhsfs N ZE NT ZZZ‘Pz ® wij (Vjevy, — E(vjevy,))
h=1 s=1 h=1 i=1j=1t=1
<C
Then from the equation (A.85), we have
X ] NN 1 Z
0r ! ! 0/
— @, @wy; (virviy —E(vavi )| |l—= Y vaste || = Op(1)
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by Markov inequality. Thus, for the term ID; 4.1, we can derive that

Dyl
1 N N N 1
= ||vecC Tﬁ Z \/t Z Z 7] V/ Vh —E (V;Vh)) X (\/TV;lFO)
A\ —1
FVF
(

FOIFO FOIHO
o (5F) R )|

T

i=1j=1t=1
/

N
L\ —1
oo . /FYFO 1 porggo 1 &
X (R( T) (X% 1( i > 7 @Ik | X vec ﬁ;vhﬁfgl

f Z thf()/

1 1 N 1 N N T
=l 7w 2 | 7 2o 2 2 PV @y (Vi — B (Vi)
F

h=1 i=1 j=1t=1
FOF FO/FO FO/HO
<R ( 7 ) |H ()| H ) ]
1 N 1 N N T
=0, <f) N; W;;;% ® wij (Vjevie — E (Vjeviy)) ths

o (77)

with the above equation, where the third and the fourth equations use the fact that vec (ABC) = (C’ ® A)vec(B) for any
comfortable matrices A, B and C. Similarly, we can show that the term Dy 42 is O, (T‘1/2).
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For the term Dy 4.3, we have

N N N ~
1 1 VvV, F -F'R
sl = fvee [ 23" LSS, (vivi— £ (vvi)) Y
NI VNT j=1 vT VT
y FO/F ( O)—l FOIFO -1 FO/HO
T T T ¢
L | N NT
= 72 ZZZ‘P?/(@U’%J (VitVhe — E(Vjeviy))
N NT = o=
_ =1 =1 t=

~ N —1 /

F - F°R [F"F FUFO\ ~" FOHO 1
left. YO -! 1 Bl V4
efx(ﬁ(T)”(T) T ®(ﬁ)

N N N .

1 1 1 F - F'R
S*Z ZZZ(p?’@wij (VjtV%t_E(VjtV;zt)) th H
NI |VNT J=1t=1 vT VT

N -1
FUF FOUFO FO/HO
X ( T ) 1)~ H( ) I |

[l
sdO
[«%)
&)=
N——
Z| =
Mz
2
~

N N T | L 1/2
333t 0w (it - savia| (1 2ol
s=1

i=1 j=1t=1

since
L ;] N NI | 1/2
0 / / 2
=Y =D @V @ wij (vievh — E(vieviy) < > vl ) =0, (1)
N 1 VINT 4 T =1

The equality can be proved similar to the equation (A.85).
Similarly, we can derive that the term D 4.2 and Dy 4.4 are O, (61}}) Combining the above terms D 4.1 to Dy 4.4, we
derive that Dy 4 = O, (6;,71«) This completes the proof. [J

Proof of Proposition 3.1. With the definition of 22-, we have

LSV N S M
VAT Qi1 D=1 WisX;Mgpu
1

1 ~
oo E 1 Zu; = 1 Z-IlN i,_le_lui (A.86)
1= /
INT Dz XZ-MFul

By Norkute et al. (2020), we have

N
\/Jl\TT >ic1 Xi 1 Mpo u; n [T (bis " [N (bay +o,(1)
T SN X Mpou; N \bis T \bzs i
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where

/_V _ F .F_ _1F/ ;
b= 303 ¥ty (P )

= 13 1 T T
1 \VAYS o FUFO\ ! ROy,
by = 30> Wy ey (7
N =1 j=1 T
. (A.87)
b2p =— LZFO’(IO)*1 USLE) 71F’ > Mpo u
22 — NT 4 T —14—1 FU_1 )
=1
N —1
_ 1 07 0y—1 FO/FO 0r
bos = — ﬁ;n (r°) T FYSMgou;

with 2; = X;— 4 S0 X DY (Y010, Xy 1 =X, — & S X DY (X)) 70, vV = V=2 S0 VoY (x0) -y,
Vi1 =V — 230 Ve IY(X) ', ¥ = NOUY Y I In addition, £ = N7UYY E(VeV)) and By =
N7t El]\il E (Ve,—lsz,_l

Combining Lemmas A.5, A.6, A.7, A.8 and A.10, we can derive that

1 N N
INT > wiXMgu,
i=1 j=1
1 N N 1 N N N
:7NT Z ZwijV;MFoui — 7N3/2T1/2 Z Z Z wijrg’(ro)*lr‘gVEMpoqu
i=1 j=1 i=14=1 j=1
N N —1
1 O/ 0 FO/FO o
S D W W (Ol P,
NT i=1 j=1 NT h=1 T
N N —1
T 1 ViV o o1 {FYFO° Fu;
ESS 9 et TS ES R R0t e
NNi:l j=1 =1 h=1 T T
1 N N N 0/ o FO,FO o
7WZZZ wi; T (XY)~ ( 7 > FYE (V,V)) Mgou; + 0, (1)
i=1 ¢=1 j=1
1 L 1 L 1 FOFO\
S S e LSSy L S v (B e
NT =1 j=1 NT =1 j=1 NT h=1 T
1 & 0r 0\—1 FOIFO - 07 /
_szzmjl‘j (X%~ ( 7 > FYE (V,V}) Mgou; + o, (1)
i=1 =1 j=1
1 L [T /
_WZZwZJXJMFoui Nbll—’_ b21+0p (1)
i=1 j=1
where
N N N / —1
1 ViV FYF0 Foy;
bu=- 3 X3 Y wp o) (S
i=1 j=1 h=1
N ey (A.88)
/ —
bm_—ﬁzzwijrj ') ( T ) FYSMpou;
i=1 j=1
Combining the terms C1, Co and C3, we have
- 1 [T [N
NT; ’Lu NT; (3 N 1 T 2 Op( )
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where Z; = (Zf:  wi;Mpo X ;, Mo lxi,,l,MFoxi), by = (b}y, by, bl3) and by = (bl bhy, bhs). This completes the
proof. O

Proof of Theorem 3.1
We have

N
. N1 1 .
VNT (9-6)=(AB'A) AB'—— Y Zu.
v A
By Lemma A3, A—A 2 0and B-B % 0, and B~! — B '2o by continuous mapping theorem, thus, A'/B—1A —
1 1 ~ ~ ~\"1 < <
AB 'A % 0. Under Assumption F A'B "A is positive definite which implies <A’B*1A) A'B7! = 0, (1). By

Proposition 3.1 ﬁ Zfil Zéul = ﬁ Zfil Z; (H@? + &;) + y/£Db1 + 1/ Zbs + 0, (1). First, due to the independence

between €; and Z;, a suitable central limit theorem ensures that \/;TT Zf\; Ze; = O, (1). Consider the first component of

i L ZHY. Recalling Z; = (7L wiMroVs, MpoMgo Vi, 1, MpoV; ) where Vi = Vi~ S0, VoI9 (10) '

79

A , Zi wijv;F 1170
Vio1=V; 1 — % Eévzl Vg,_ll"g’('ro)_ll"?, and noting Mpo = My = Fqu , \/11\[7 Zf\il 23*1\/? F}{ ¢ =0, (1) due

. . . N o
to the independence between V; and F and cross-sectional independence between ) =1 Wij V; and Y. In a similar manner,

we can show that other components in \/]1\[7 Zil ZH ! and the bias terms by and boare O, (1). Together with the

condition N/T — ¢ where 0 < ¢ < 0o as N, T — oo, we have v NT (5 - 0) = O, (1) as required. O
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Online Appendix B: Proofs of the main theoretical results for
the two-step IV estimator

Let = be ry x r, diagonal matrix that consist of the first r, largest eigenvalues of the 7' x T' matrix (NT')~! ZN L U,
Then by the definition of eigenvalues and H, HE = (NT)~! Zfil u;u,H. It’s easy to show that = is invertible following
the proof of Proposition A.1 (i) in Bai (2009) given the covergence rate of 8 to @ is v NT. Then

H-H'R

LS ci(0-)(o-0) o= Li c. (0 0) wiis—" +12N:u»(0—9)'0’ﬁ=—1

NT ST T TN & T NT & e (B.1)
N

+ﬁl 1H0900€/H+7TZEZSDWH0/H—’ 1+7Z€15H

where R = 1= Zl 15 goO’HO’H—' !, Following the proof of Proposition A.1 (i) in Bai (2009), we can show that R is
invertible.

Lemma B.1 Under Assumptions B to D, we have
(a) T Hﬁ - HO’RH2 =0, (652) ,
() T (A~ HOR)' H' =0, (333) T~ (H - H0R>/ FO =0, (032) ,
() T (H - HO’R,)/IA{ — 0, (632)

() E=0,(1) ,R=0,(1),E'=0,(1),R"'=0,(1) .

HO/HO>—

(/) RR' - (
(9) Mg —Mpo = Oy (657)

(h) W%Tgwe; (A-HR) =0, (ﬁ) +0, (gg) :

N
(4) | \/JiVT};(EhEh —E(ene,)) H || =0,(1),

N
(J) H ;VT};HOI(EhE' —E(ere,)) H H O, (1),

1 N
(m) HN T;E(eﬁz) =0(1),
1 N

(n) NTZ[EZ&‘Z E (ecep)] = Op(1)

Proof of Lemma B.1. We can follow the way of the proof of Lemma A.1 to prove this lemma. Thus, we omitted the
details. OJ

Lemma B.2 Under Assumptions B to D, we have

N N
~ ~ 1 _
T 2 ZMGZi — % § Z;MoZ; = O, (557)

34



Proof of Lemma B.2. With Lemma B.1 (g), we can follow the way of the proof of Lemma A.3 to prove this lemma.
Thus, we omitted the details. [

Lemma B.3 Under Assumptions A to D, we have

1 N
(@ NZZI%I vl =0,
1 ;[ ]; 1 1 N N
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N N )
~ ; V/H H H-H'R) &) =0 ()
N;z::wj| ‘\f ( ) avs
1 N N 1 1 R , .
N i —V/F° H H-H'"R il =0 <>
N;;hﬂj‘ VT 7 T( )E " 512VT
1 N N 1 / 0 ]_ ~ 0 I - 1
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1 Al Lew| | (-mor) | -0, (1
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0 3o ) ) -0 (1)
i=1 j=1 3
N N
1 ) 0 (H HR)sz o L
0 23t | B o, ()
N N
0 | oYy <o, )
¢=1 h=1

Proof of Lemma B.3. Following the proof of Lemma A.9 (a), (b) and (d), we can easily prove parts (a)-(c), respectively.
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Consider (d). Since

HR ! - H°
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We have
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i=1j=1 =1
:Op(éz;%)

by Lemma A.1 (a) and A.1 (e), Lemma A.4 (c), (e), (g) and (h). Similarly, we can prove (e).
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Consider the first result in (f). We have

1 N N 1 R
N ;; |wij | HQO? fV;- (H — HO’R,) H
1 N N N R
<5 2> lwigl [l NT2 ZCZ (0-8)(0-0) cifi=
i=1 j=1
1 L _
+ 7 22 2wl 7]l JNTQZCe(o 6) iz
i=1 j=1
| NN . ) N
+NZZ wu\H‘P H INT? Zw (0—0) CH=E
i=1 j=1
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Ak etz
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Il
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Il

-

|
Q

=

N

(o)

= 5~
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by Lemmas A.1 (i), (m) and (n) and Lemma B.3 (a). The other variant is derived in a similar manner.

Replacing ¢ by = ( HOT\’,) i, with Lemma B.3 (d) and (e), we can prove (g). Following the way of proof of
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Lemma A.4 (i), we can prove (h). Now consider (i).

1 N N T
DD IRV (Vqut - E(wtvgt))r,‘;’

=1 h=1t=1

1
=|~7 e
1 N N 1 1 N N
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N

1 LY 1/2 cX
E (NZZIIFAIIIF ||aeh> < 22 (EITIPEITRP) " om < >0 D om < C°

=1 h=1 (=1 h=1

—_

by Assumption B3.

Lemma B.4 Under Assumptions A to D, we have

N N N N
1 , 1 ) 1 VNT
E— E E ’LUijVjM’\Mﬁui = — E E wijVjMFOMHoei + Op <> + Op <3>
VNT = = F VNT = = ONT Onr

Proof of Lemma B.4. Since Myou; = Myog; and

M/F\‘Mﬁ — MgpoMpo = Myo (Mﬁ — MHO) + (Mf — MFO) Mo + (M/F\‘ — MFO) (Mﬁ — MH0>

we have
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A~ ~

Now we consider the term H;. Since Mg — Mpo = —T7'(H - H'R)R'H” - T"'H'R(H - H'R)' — T-'(H —
HOR)(H — HOR) — T~ 'HO (’R’R’ - (T‘lHO’HO)_1> H", we have
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Ly V/E? (FUFY) PO L HOR(H - HOR)
+W;.le” ;E (EVEY) 7HRH-HR)u;
=1 97=
1 N N )20 (00 —1 o L 5 0 ~ O s
s 2o 2w ViEC (FUFY) R S (H - HOR)(H - HOR)'w,
i=1 j=1
N N 1
1 -1 1 HYHO
t 7 w;; ViF (FYF°) F"—H RR'—< ) H"y,
NT ;jzl iViF( ) T T

=Hi +Hio+His+Hi s +His+Hig+Hi 7 +Hig+Hio

We first consider the terms Hj o to Hj 9. Note that u; = Hoap? + €;. For H; 5, we have

1 R 1o~ ) . (HUYHO\ TN
Hy || = || —— wi Vi =(H-HR)R [ RR' — H"u,
Bl = | o 3wV ) (57"

1 LY 1o, =~ - oL sorero . (HYHO\ Y,
SVRT =30 | ‘ij(H_H ’R)HH%HHTH H ’R’R—( ! ) =
i=1 j=1
1 L 1., ~ 1 HOHO\ ! _
+ VN x N;;|w”| ’TV;-(H—HOR)HH\/THO/Q RR/—< ) HR 1H
(%)
:Op 637
NT

by Lemma A.1 (f) and Lemmas A.9 (g), (h).
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For H 3, we have
T 1 R
[Hy sl = YD wiViZHR(H - H'R) (H'¢ + &)

1
—V'H°
‘\/T !

+\/7X—ZZ\1UZJ|
=1 j=1
VN
(%)

by Lemmas A.1 (b), (d) and (e) and Lemmas A.9 (b), (c¢) and (f).
For H; 4, we have

1 ~
e s T

ViH' IRl

1 ~
—(H-H"R)¢;
T(

v

N N
1
[Hial| <VNT X szmiﬂ

1, = 1,
‘Tvg(H - HO’R)H 9l HT(H - HOR)’HH

i=1 j=1
LA
/ 0 0
+\/NTXN;;|U)”| ‘TV (H-H'R H H (H—-H'R)'s;
_Op 3
)
NT
by Lemmas A.1 (b), (d) and Lemmas A.9 (g), (h) and (i).
For H 5, we have
N N -1
_ 1 r Loro / H"H" 07 (§70, ;0
5] = W;;wijijH (RR - ( T H" (H'¢] + )
N N —1
L 1 370 oy || L gg0rgg0 / H"H°
<VN x N;g wyj| ’V H HgoiHHTH HY| |RR — —
N N -1
N 1 HO/HO
+4/ 7 X NZZ wij| ‘\FV’HO HH%Z RR’—( ) ‘
_o, (YN
p 512VT
by Lemma A.1 (f) and Lemmas A.9 (b), (c) and (d).
For H; g, we have
1 v IR0 (F0r 0 ol 1 HO/HOloxoo
[Hyel = ﬁzz i ViF° (F F) F (HR H) HY (H¢] + &)
i=1j=1
N N / |0 - -1
V'F FOFO0 FYHR ' - H)
< J v
CRRS W o] s n%an( =) ;
+ \/W « iii\w | V/FO HO' FU(HR ™' — HO)|| || (FF° HUHO\
T N&= T T
N
=0p (f)
)
NT
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by Lemma B.1 (b), Lemmas A.9 (b)-(c) and Lemma B.3 (c). Similarly, we can show that H; 7 = O, (\/Nég,%) and
Hio = 0, (VN6R})

For the term H g, we have

N N
1 _ 1 N
sl = || —nem D 3wy ViF® (FUFO) T FY HOR(H — HOR)' (HO%{ + 1)
i=1 j=1
1 N N V’FO FOIFO FOHO (I/-\IfHOR)’HO
<V xS leal | et x| (B ) [ ey | LR
=1 j=1
N N 1 10 -
1 V.F 1 ~ FOR0 FUYHO
N x = il == || =(H - H'R)’ R
Vx2Sl ||| ved < || (5 ) ||
VN
6NT

by Lemmas A.9 (b) and (c), Lemma B.3 (e). Similarly, we can show that H; g = O, (\/N(S;,%)

Now we consider the term Hy ;. Since

HR ' - H°

N N -1
1 1 o HH? o

=— ]{]Tﬁ;é JNTZEh‘P (HO;HO>1HO/UZ,
ztrTi_Vé; JNTQZHO (H;H> (%) 1<HO;HO>_1H0' i
B ;Jﬂééw” iNT2 hzjlehshH (H;H) (r2)-1 (HO’TH0>1 HOw,
;Tiéw Vi NT2 Zch (0 0) (9 0) C.H <H0/H> () (HO;HO) .
S (o () o (M) e
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We consider the last five terms Hj 1.5 to Hy 1.¢. For Hj 1.2, we can derive that

N N A —1 1
L 3 Z HH _, (HYHC
||H1‘1~2H = m wij j NT2 HO hEhH < T ) (T?p) ! ( T ) HOIui
—

N N A -1 -1
1 / 1 0 0 HOIH 0y—1 HO/HO (V)
< WZZw V' NTQZH hehH’R< - () - H"u;

et o) (5] ()
<1T}Vii|w| ML lewigo : (HTH H H T e
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R V’;” ‘ng || i¢ (H) [ | [T

by Lemmas A.1 (a), (b), (c) and (d).
Consider the term H; ;3. With the fact that E (V;eh) = 0, following the way of the proof of the term D, 4, we can

show that H1,143 = Op (5;77{)
For the term Hj ; 4, we have
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o)l % H I =7 =
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3
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+
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HO/EZZ' Ch
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For the term H; ; 5, we have
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1 N N HOIHO -1
" NT;; jNTZCh(a 0) el rs)” ( T ) e
N N HYH -1
+ ]1VT Z wa J NT Z Ch (0 0) ehH ( ) (Tg)_lso?
i=1j=1 h=1
N N N R 0 -1 0. 0o\ —1
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For the term H; ; ¢, we have

1 LN / N00 N O’H_lo_lo
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s
VT
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Combining the above terms, we can show that

1 N N
By = ——= ;;ww JNT Zsmp

T

Now we consider the term Hp. Since Mg —Mpo = —T_l(IT1 —
FOR)' — 7-'F° (RR' — (T"'F"F’) ") F¥, we have

F'R)R'FY — T-'F'R(F —
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by Lemma B.3 (e). In similar manner,
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V/ FOR FOR)/H HYHO\ ~ HO/€'
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VNT
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“I(F - F°'R)R'F”Myoc;

“I(F - F'R)R'F"¢,

L(F - F'R)R'FVH (HVH?) " H"¢,
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by Lemma B.1 (b) and Lemma B.3 (e) (g).

N N
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1 N N
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1 N 1 1
e 2 2w VT (RR/ — (1~'F”F") ") FVH® (HVH®) " H:; (B.20)
i=1 j=1
N N ' 70
N1 ViF 1 [|FYe;
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TN'L:I j=1 \/T
N N
N 1 , 00 FO/HO HO/HO HO/é.i
?NZZ g ||| e ‘RR FOR) H (B.22)

by Lemma B.1 (f) and B.3 (c). To sum up, ||Hz| = O, ((ﬂﬂ) +0, ( V[séVT).
NT NT
Now we consider the term Hs. Using
Mg—Mypo = ~7 - (F-F'R)R'F T~ 'F'R(F-FR)" 7~ (F-F'R)(F-F'R)' -7~ 'F* (RR' — (T"'FF’) "' ) F"
and Mg~ Mo = ~7 1 (H-H'R)R'HY -7~ 'HR (H-H'R) T~} (H- H'R)(H-H'R) -7 'H° (RR’ - (T"'HH’) ")

we have
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i=1 j=1
1 N N R R
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by Lemma A.1 (f), Lemma B.1 (f) and Lemma B.3 (b) (c).
Combining the above terms Hs 1.1 to Hs 4.4, we derive that Hz = O, (\/ NTéx,%).
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This completes the proof. O

Lemma B.5 Under Assumptions A to D, we have
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Proof of Lemma B.5. We can follow the way of the proof of Lemma A.5 to prove this lemma. Thus, we omitted the
details. OJ

Lemma B.6 Under Assumptions A to D, we have
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Proof of Lemma B.6. We can follow the way of the proof of Lemma A.7 to show that
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Since
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by Lemma A.1 (m) and Assumption B3. Then we have
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and we conclude Hy ;1 = O, (%) Next, in a similar manner we obtain
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Similar to Hy 1 we can show that
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so that Hy o = O, (%) In a similar way to Hy 2, we can show Hy 3 and Hy 4 are O, (%) Combining the above facts, we
derive that Hy = O, (%) , which completes the proof. [
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Lemma B.7 Under Assumptions A to D, we have
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Proof of Lemma B.7. We can follow the way of the proof of Lemma A.6 to show that
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Now we consider the first term on the right hand side in (B.114). Note that Mgou; = Myoe; and Mgpo —Mg = P5—Pro.
We can derive that
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We first consider the last three terms. Consider the term I. By Lemmas A.1 (b) and (d), Lemmas A.4 (a), (b) and (i),
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we can derive that
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by Lemma A.1 (f) and Lemma A.4 (d).
We consider the term I;. We have
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For the term I 1.1, we have
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For the term I 1 3, with the fact that E (ehs%) = O’?IT, we can decompose it as
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For the term I 1 5, with the fact that |[MgoCpl|| < ||Ch||, we have
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given the facts that
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by Assumption B3.
Combining the above terms, for the first term on the right hand side in (B.114), we can derive that
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Next, we consider the second term on the right hand side in (B.114). It can be written as
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=T + Is.

Using
M —Myo = —7~}(H-HOR)R'H”~T~'H'R(H-H"R) ~T~(H-H"R)(H-H"R) ~T~'H" (RR' - (T—1H0'H0)‘1) HY,
we have

N N N N —1
_ T1 0/ (~~0 1 OVth 07 0y—1 FFY —210/ (13 0 1py0/
Hﬁfw/NN%jijijr (Y°) ( DIV ry ) () () T7°F (HfH R)RH w;, (B.119)

{=1 h=1
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T1 LI 1 LXK Vv, FOFON . '
v o D DT (= >0 Ty ) () ( - > T-2FYHOR (H7H0R> w (B.120)
i=1j=1 ¢=1 h=1
N N N N —1
T 1 1 ViV FORO .
w2 D w )T (NZZFQZT’“T?L’> (Y%)~! < - ) T*ZFO’( HOR) ( HOR) {#3.121)
i=1 j=1 (=1 h=1
N N —1 —1
T 1 1 / FO/FO HO/HO
R LSS (NZZFQWTV hr2'> 0 (Fp) TR (RR -(%77) )<H°rm>
i=1 j=1 =1 h=1
=1I61+ 162+ 1635+ Is.4.
N N —1
T 1 1 A\YAY FYFO ~
HHG 1” S H N ZZU}”I‘O/ TO <N Z ZF?—ZCT th’) (TO)—l ( T ) T_QFO/ (H _ HOR) R/HO/HO(’D?
=1 j=1 =1 h=1

N N -1
T1 o0 [ 1 onVh 0r 0y—1 FUF° —2107 (17 0 1570/
Nszwnn@zzpzTnla> ) e (- poR) R,

i=1 j=1 £=1h=1
T 1 N N V/V} FO/FO -1 FOI (ﬁ—HOR>
g 51 10%) ) ¥y oo (5F) ||
N;;] ;; T T T
HYH°
IR EEE et
N N [ E (8 - 0w "
o 0)-1 o ViVh o 0\—1 FOF° ( ) R HY¢,;
\fN;;wmnr e zz AGVIIIES ||‘( ] . R |2

T 1
“%@N&J

by Lemma A.4 (a) (b) (e), Lemma B.1 (b) and Lemma B.3 (i).

N N N -1
T _ 1 V/V B FO/FO B =N ,
H]IG 2” H [ § : 1-\0/(-!-0) 1 <N E E I‘gljﬂhr}ol/> (TO) 1 < 7 ) T 2F0/H0R (H — HOR) HOSOZ

N N N N " oo\ —1
n ﬁézzwijrg/rg <]1VZZZF;?V@TV hr?f) (x©)~! (FTF ) TFVHOR (H - HOR) <
i=1 j=1 =1 h=1
T1 LI 1 XX vV FOEON FO’H0
< S Sl e | oS ey e | () I~
=1 j=1 ¢=1 h=1
A
(H—H ) HO
x T ]
710X V'V FOFON ~1 FO/HO (ﬁ—HOR)Ial
¥ 2 2 bl [ e zzpoewmwwwM(T) Il | —
i=1 j=1 ¢=1 h=1

T 1
“%@N&J
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by Lemma A.4 (a) (b), Lemma B.1 (b) and Lemma B.3 (h) (i).

N N -1
ZZ ero/ o)~ <NZZ OVZVhFO/> (Y0 <F0;FO) T’2F0/<A HOR)( HOR)

[Te.3]| <

N N N N -1
Z% ; > wi )T <zlv PIPMY: 2 FO/) (r%)~! (FOTFO) TF (F-HR) (A - HR) ¢

i=1 j=1 =1 hei
T 07 0\—1 1 NN Ovevh o 0 . FYFO -1 FY (ﬁ—HOR)
S ST CERI RO S RO (TSR] (G | B
i=1j5=1 (=1 h=1
o~ !
(H—HOR) HO||
X T [zl
T 1 N N - VIV B FOFO0 1 7Y ﬁ—HOR
e EL S St [ 553 r¥aren e | ey | )
i=1j=1 N=ia

(Fi- HOR) < '

)(—

o (Vxaz)

by Lemma A.4 (a) (b), Lemma B.1 (b) and Lemma B.3 (h) (i).
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< ZZ“’U ()~ (Nii ngVh I‘%’) () (F(;FO>_1T2FO’H° (RR’ <H0/H0> ) —_—
i=1j=1 (=1 h=1
ZZ z]1“0’1“0< izjv: vahr“’) (xh-t <FO;F0>_1T2FO’HO <RR’ HO'HO )H%,
i=1 j=1 1 he1

< NZZN: g [T 1) ii OVZVhI\O/ ot H FO/FO> FO/HO ||RR’ <H0'H0) HOHO
i=1 j=1 z: h=1

+V§$§§3wuwww%- ey | () W“°%w (B e
=1 j=1 =1 he

~o,(y2:)

by Lemma A.4 (a

)
we conclude Ig = O, (637). Next

(b) (e), Lemma B.1 (f) and Lemma B.3 (i). Therefore, noting that 7'/N tends to a finite positive constant

N N 0o\ 1
il = | [EL 3 ) ( 23T VMF%/) () T
i=1 j=1 £=1h=1
or 0 S OVVh 0 0 FUF P
fNZmeum v (7)1
1=1j5=1 £=1 h=1
N N -
\AY FO’FO FUHC ||| (HYHC HY,
eSS wTAEIICIRI ES s sraat [Tl (GO 7)1
=1 j=1 {=1h=1
=0, (N712)

by Lemma A.4 (e) and Lemma B.3 (i). Thus, the second term on the right hand side in (B.114) is O, (Tl/QN_l/Qég,%). Consequently,

with (B.115), we complete the proof. [
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Lemma B.8 Under Assumptions A to D, we have

1
ZI‘O’FO’IMA Mgu;
NT i=1
1 0 0\—1
~ T N32TL2 ZZF (T0) TV, - 1Mz Mgu,
=1 /=1

-1
F FY ~ T
07 0 —1+ -1 —2
-t o () R v Mg 0, 659+ 0u (1)

i=1 ¢=1

Proof of Lemma B.8. First, we have
N A~
—— > TV(FY, —-F R )Mp Mgu,

N N
1 1 _
== 7 > r?’ﬁ > RVELFL, V, TFY My Mjw
i=1 (=1
o L (% 1

VNT & " NT

N 1 N
Z ?N—Zm—l’”—lF’ Ve 1V Mg Mpu,
+J3

N
~Um—17 0 Ox//
§ jm =, 'FL P TV, My Mgu,

N N
1 X 1
— N, VIV m’WE FY,V,_TY + E_j(F |~ F ) VT
=1 (B.123)

Z
O (¢11v7> o <\/N1512VT>
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Note that that MﬁH0 = Mg (HO - I/-\I’Rfl). Given the equation (B.123), we can derive that

N

~ ~ /
1321l = ZﬁfllalellveﬁlF?/ (F(ll -F_R 1) Mz Mgu,

R

/!
07 1 —1gv o (g0 _ R -1 = =R 0 _fp-1 0
§||\/ﬁ§ I WE RVELFL, Ve Ty (F2, - Fm) Mg Mg (H - HR ™) ¢}
i (=1

H° - HR !
VT

FO, —F_m\!
VT

N N N N P

Z w7 Zm—“E;lFLlw,,lr‘g’ (FO, - F7') Mg Mge;
N 1 N
2 N7 2 FaVeT!
i=1 NT /=1

| H%n) o) =z 1||\

(ee(lieh

ZHFOII H (F, - ) e,

)=
)

)= |2 (2,5 on) R

1 1 , T
by Lemmas A.1 (b), (c) and (d) and Lemmas A.4 (a), (b), (c) and (i). If T/N3 — 0 as N,T — oo, then

J1 =0,(1).
With the definition of R, J2 can be reformulated as

1 N
N7 > F Ve Iy
(=1

1 =~ N\~
HT (F‘l1 _F_ R 1) F,

NT ZF’_lw Y

F(
+VNT
\UNT
F_,P
VT

(
T (53

:\/JWOP (5;/%)

H

[+
1;

1
T

H
F LV, T —
NTZ Lret VT

N N
Jo = —NT3PTIEN N T (X)) TV L My Mw,
i=1 ¢=1

and J3 can be written as

J3 = —N—3/2p=3/2 Z Z rY(r°)- 1F/ )71FL1V6,—1V27_1M'§71Mﬁui
i=1 4=1

Combining the above three terms, we can complete the proof. [J

Lemma B.9 Under Assumptions A to D, we have

N N
1 0 0y— 0
- AT ZZri'(r ) 11“¢V@7_1M§71Mﬁui
=1 4=1
N N
- 1 07 (mr0y — 1O/ 1 VT
=~ AT ;;r (X*) 7Ty ViMyo Mivei + Op  5— ) + 0, 7
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Proof of Lemma B.9. Note that Mgoe; = Mygou;, we can derive that

N N N N
_ N3/721T1/2 ; 5:21 rg/(ro)—lrgvgﬁle_lMﬁui - <_N3/21T1/2 ; ezzl I‘?’(TO)—ll"?V’e’1MF01MH052‘>
N N

Z Z Fg/(TO)*lI‘(gVZ_l (Mi?\,l — MF31> Miog;

i=1 4=1

1 N N

07 0\—1 0y s/
- 2; ;:I‘Z- (YO)"'TYV)_ Myo_ (Mﬁ - MH) w;
=1 4=1

1
T ON3/271/2

N N
1 0r 0\—1 0y’
T N3RTIR eri (") I‘evé,_l (Mf,l — MFQI) (Mﬁ — MHr)) u;
i=1 =1

=K1 + Ky + K3

Now we consider the term K;. Then

1 J—
- NB/2T1/2 Z Z F?’(TO) 1F2V2,71(Mf,1 - MFEI)MHO&'
=1 ¢=1
1 N N R
=g 2 2 TV () TIV] (o — B )R FY Mo,
i=1 =1
1 N N
* N2 Z ZI‘OI (YO)'TYV) _ FO M(F_y — FO 0) Mppe;
1 N N R R
t N ZZFO/ () TV, (F1 — FL,R)(Fy — F2 %) Mpoe;
) v
+ s 2o 2 TV (X0 TITV B (R — (T EY, )T FY, Myoe;

i=1 (=1
=K1 +Ki2+Kiz+ Ky

The term K; ; is bounded in norm by

F_,-F° R FY Mppoe;
RS oLl Lo w o |l T
=1
1 1 F_, - F' m -
sy 2 I Hﬁzrm_l 1ﬁl||ll‘ﬁllH(T°) '
;(HF%S% FO/1F0 FO/FO FOIEl F(illHO HO/HO/ - H0/8i
> =) )

-0 (5)

Similarly, with the fact that rgvg,leO_l = 0,(1), we can show that K4 = O, (T~Y/267).

1 N
TVT 2t
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For the term Kj 5, we have

.
2R ]| (x®) ]

/
- F(ll?)%) Mpyoe;

1 N 1 N
IKizll < < > 3| == F?VZ_ FO
N ; ﬁ; 1¥ 1
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FOIFO
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. N N =
Replacing Hﬁ SN I‘?VLIF%H by Hﬁ Y rgvg’le HF_1 - F(lel
Op (T*?657) + Op (9n7)-

of Ky 2 to show that K; 3 = O, (T1/25N%). Thus, the term K; =

Now we consider the term K5. Then

(]/:—‘\‘_1 — Fg%m) FO FO/FO -1
T

FO/HO

|| HO/H0/>

, we can follow the proof

1
- N38/2T1/2 ZZFO/ (x%)~'ry V(’ _1Mpo (Mﬁ - MHo) u;
14=1
1 N N R
T N32TL2 Z ZFOI p ol VA 1Mpo — (H - HO'R) R'H"y;
i=1 ¢=1
1 _ 1 . ,
t NsRTI2 Z ZF?’(T ")7'IYV, Mo ZHR (H-H'R) u
=1 /=1
1 N N 1 R ~ l
+ s 2 2 TV (X TIV, My, - (- H'R) (H-H'R) u
=1 ¢=1
1 N N 1
+ i 2o 2 TV (X0 IV, My - H
=1 4=1

=Ks31 +Ks2+Ks3+Ks4

Following the proofs of the terms I; to I, we can show that Kj

For the term K3, we have

N N
1 07 0\—10y77/
HWZZE S VA (Mfil - MFL) (Mﬁ - MHO) €
i=1 =1

!
V| [ Mg - Mo,

| X
S\/TXN;|
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This completes the proof. [
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Lemma B.10 Under Assumptions A to D, we have

_3/2T_3/2ZZF?/(TO)_l(T_lﬁilF(il)_1§L1V4,71V2’,1M§_1Mﬁ11i
i=1 {=1
=0, (05%) + O (NV2632) 4+ 0,(TV?632)

Proof of Lemma B.10. Following the way of the proof of Lemma B.6, we can prove this lemma. Thus, we
omit the details. [J

Lemma B.11 Under Assumptions A to D, we have

N N
1 ; - / 1 JNT
VM M = S Viae M0, () +0n

Proof of Lemma B.11. Following the way of the proof of Lemma B.4, we can show that

N N
1 1 1 VvVNT
—— ) VIMs Misu, = —— Y ViIMs Mpyog; +0, [ — Op | ——
3 Ve M = SVt M 0, () 0, (35T )
Then, similar to the proof of the term Hs, we can prove that

N N
1 / 1 , \/ﬁ
TR X ViMe Muves = S Vi Muve, -0, (T

This completes the proof. [
Proof of Proposition 3.2. The term N~1/27-1/2 Zil ZgMﬁui, is equal to

N-12p-1/2 5 12j y wi X MaMgu;
N-Ll/2p-1/2 Zz: Xé,—le,lMHul (B.124)
— — N
NP2 T XIMMgu;

Consider the first term in (B.124). By Lemmas B.4, B.5, B.6 and B.7 and the fact that MpgoX; = Mgo'V,
we can derive that

1 N N
~ z; > wi X, MpMgu;
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1 VNT
Zzwwro/ (Y IT9V, Mgoe; +0, <5> +0, ()
NT

1 0=1j=1
where X; = X; — & S0 X, 0Y/(Y%)'r9.
Consider the second term in (B.124). By Lemmas B.8, B.9, B.10 and B.11, we have
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Similarly, for the third term, we can show that
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then
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by Assumptions B3 and E3. Then, we can derive that
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Similarly, we can show that \/% Ziil Z;V=1 w;; ViPhoe; = O,(T~'/2). Then
N N
D> wiXMe,

N N N
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D w
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Following the way of the proof of the above term, we can prove that
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With the above proof, we can also show that
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This completes the proof. [
Proof of Theorem 3.2. Substituting y; = C,;0 + u; into ¢, and multiplying by v NT we have

N
P _(A'R-1AV-1A/']R—1 —1/2p—1/2 7
VNT(0 - 6) =(A'B™'A)'A'B™' - N'V2T7 12N " Zi Mg, .
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With Lemmas A.3 and B.2, we have
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N N N N N
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Since Zl = (Zjvzl wijMFOXj7MFCllXi,—lyMFOXz’); we have
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The first block in the above matrix is Op(Tfl/ 2), since it is bounded in norm by

N N N N
INT'TES TN w ViProCil| + INT'TH Y 0 " wi; ViPro Gy

i=1 j=1 i=1j=1
N N
STV NS S g [T AR TR AR )|
i=1 j=1
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with the similar argument, the other blocks can be proved to be Op(T_l/ 2). Then

N
N7y ZiProC; = O0,(T'/?). (B.126)
=1
A similar derivation gives
N
N7V ZiProZ; = O,(T'/?). (B.127)
i=1

By Proposition 3.2, (B.125)(B.126), and (B.127), we obtain

N
VNT.(0—0) = (A'BT'A)'A'B™! - N7V2T7V2N " Zle; + 0, (01) + Op(N'2T25).

i=1
As N, T — oo with N/T? — 0 and T/N? — 0, the central limit theorem of the martingale difference in
Kelejian and Prucha (2001) can be applicable. Then
VNT(6 — 0) -4 N(0,%).
With the equation (B.125), it’s sufficient to prove G2 is the consistent estimator of o2. Note that

0) — 0 0,.0
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The first term can be easily shown both to be O,(dx7). The last term is O,(N~1/27~1/2). Since MﬁHO =
M (H - HR ™), the second term is bounded in norm by

N
NI ITTECHlllN - T2~ HR (6 — 8] = Op(N V2T 725 51) + Op(dy7)

i=1

74



the fourth term is bounded in norm by
N A~
N ed 1?72 E = HR Y|P = 0p(657)
i=1
the fifth term is bounded in norm by

N
2N IT eIl - ITTAH — HR Y| = 0y(6y1) -

i=1

The third term is bounded in norm by

N
INTIT ST RC T e |- 18 - 8] = 0,(N V2T 2) + 0,(553).
i=1

the sixth term is bounded in norm by

N N N
NN e < NS TP R NI Y e TR - HOR)
i=1 i=1 i=1

which is O, (6;,%) Collecting the above terms, we have 52 — o2 = Op(ég,%). Thus, we complete the proof. [J

e ~ N & ~ N &
Proof of Theorem 3.3. Notingu ; = u;—C; (9 — 0) we have ﬁ Y oic1 Z;Mﬁui = \/11\]7 D oict ZgMﬁui—

AVNT (’é - 0) . Since vNT (6 - 9) = (AB7'A) " A/B~ L Y Z!Miypoe; + 0, (1) by Proposition
. — o-1/2 A—1/2

3.2 and defining L = Q A we have (2 T

with My = I, — L (L'L) "' L/ whose rank is v = 3k — ( k + 2), which yields

= Zfil ﬁ/Mﬁzifl;,T Zfil ngﬁﬁ KA X2 as required. Thus, we complete the proof. [J

N 7 ~ — N
>isi ZMn; = M2 S ZiMoe; + 0, (1)
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Online Appendix C: Simulation results

Table C.1: Baseline DGP. Simulation results for p =04, 7, =1/4

v QMLE
Case I: N = 1007, T = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .010 .057  .068 1.00 .398 .004 483 139 1.00
2 .400 .004 .008 .058 1.00 .399 .002 181 101 1.00
4 .400 .002 .007  .052 1.00 .400 .001 099 112 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .008 .010 .099 1.00 .400 .003 .085  .082 1.00
2 .400 .004 002 .068 1.00 .400 .002 .043  .053 1.00
4 .400 .002 .004 .065 1.00 .400 .001 015  .066 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .008 021 .075 1.00 .399 .003 195 .098  1.00
2 .400 .004 011 .058 1.00 .400 .002 .089  .070 1.00
4 .400 .018 002 .053 1.00 .400 .001 035 .070 1.00

Notes: The data generating process is y;; = 1 Z;vzl wijyjt—l—ai—l—pyit,l—l—zgzl BoTpit+Ust, Uiz = 23:1 7o o+
Eity Toit = Mei + Zi:l 'ygsifgt 4+ v £ = 1,2, 1 = 1,..,N;t = —50,..,T and the first 50 observations are
discarded; [ = profo 1 + (1= p3)"?Cety Gt ~iid.N(0,1), 4% ~ ii.d.N(0,1) for s = 1,2,3, &5 =
ceoitleir — 1)/V2, € ~ di.d.x? with o = mip, mi ~ i.i.d.x3/2, and ¢, = t/T for t = 0,1,...,T and
unity otherwise; 79y, = py1579 + (1= p2 1) %610, Vi = pri2sn% + (1= 02 29)2E0si, Eesi ~ 10.d-N(0, 1),
Vet = PoeVeit—1 + (1 — p%l)l/zwm, Wit ~ i.i.d.N(O,qgaz_J“), 0;“ ~ .i.d.U[0.5,1.5] for £ = 1,2, s = 1,2.
We set {p, 1, 01, B2} = {0.4,0.25,3,1}. In addition, we specify prs = py,2s = pu,e = 0.5 and p,,15 = 0.0 for
all ¢, s. Case I specifies N = 1007 and T' = 257 for 7 = 1,2,4. Case II specifies N = 257 and T' = 1007 for
7 =1,2,4. Case III specifies N =T = 507 for 7 = 1,2,4.

Table C.2: Baseline DGP. Simulation results for ¢ = 0.25, 7, = 1/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .011 .009 .059 1.00 .250 .013 .054 .109 1.00
2 .250 .005 .020  .040 1.00 .250 .006 .090 .069 1.00
4 .250 .002 .024  .055 1.00 .250 .003 .052  .065 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .010 .020  .068 1.00 .250 .015 069 220 1.00
2 .250 .004 .020 .071 1.00 .250 .006 045 128 1.00
4 .250 .002 .010 .051 1.00 .250 .003 .006 .081 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .010 .087 .078 1.00 .250 .013 .020 .119 1.00
2 .250 .013 011 .057 1.00 .250 .006 .043  .098 1.00
4 .250 .002 011  .063 1.00 .250 .003 .003 .055 1.00

Notes: See notes of Table C.1.
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Table C.3: Baseline DGP. Simulation results for 5, =3, 7, = 1/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .032 022 .055 .872 3.00 .032 .064 .108 .871
2 3.00 .014 .010 .058 1.00 3.00 .014 .041  .069 1.00
4 3.00 .007 .008 .056 1.00 3.00 .007 .018 .063 1.00
Case II: N =257, T'= 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .030 .013  .105 .866 3.00 .034 236 189  .847
2 3.00 .015 003 .179 .957 3.00 .015 016  .112 1.00
4 3.00 .007 011  .060 1.00 3.00 .007 .006 .075 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .030 .006 .063 .880 3.00 .030 .043 102 917
2 3.00 .013 .002 .058 1.00 3.00 .015 .029  .088 1.00
4 3.00 .007 002 .052 1.00 3.00 .007 .004 .067 1.00

. . N 2 3
Notes: The data generating process is ;e = ¥ D) WijYje+Qi+pYie—1+D g BeTeie+Uit, Uir = Doy o %+

€ity, Teit = Mo + Zi:l fy?sifgt 4+ v £ = 1,2, 4 =1,..,N;t = —50,..,T and the first 50 observations are
discarded; f& = prof% 1 4+ (1 — p3)?Caty Cat ~iid.N(0,1), 7% ~ i.i.d.N(0,1) for s = 1,2,3, ey =
cooit(eir — 1)/V2, € ~ did.x} with 02 = 04, mi ~ d.4.d.x3/2, and ¢, = t/T for t = 0,1,...,T and
unity otherwise; 19y, = py,1579; + (1= P2 1) %610y Vs = pr2s7% + (1= 3 25) €25, Epsi ~ 1.0.d.N(0, 1),
Veit = PueVeit—1 + (1 — p%j)lmwm, Wit ~ i.i.d.N(O,gga?w_l), U?Z,M ~ 1.i.d.U[0.5,1.5] for £ = 1,2, s = 1,2.
We set {p, ¥, p1, 82} = {0.4,0.25,3,1}. In addition, we speéify Pfs = Pvy2s = pue = 0.5 and py 1, = 0.0 for
all ¢, s. Case I specifies N = 1007 and T' = 257 for 7 = 1,2,4. Case II specifies N = 257 and T' = 1007 for
7 =1,2,4. Case III specifies N =T = 507 for 7 = 1,2,4.

Table C.4: Baseline DGP. Simulation results for g, =1, 7, = 1/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .033 .034 .065 .861 1.00 .032 206 113 912
2 1.00 .014 .016 .058 1.00 1.00 .014 .070 .083 1.00
4 1.00 .007 .008 .055 1.00 1.00 .007 .040  .061 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .029 013 .094 912 1.00 .034 781 182  .852
2 1.00 .013 .030  .058 1.00 1.00 .015 065 .116 1.00
4 1.00 .007 .001  .057 1.00 1.00 .007 .007 .074 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .029 121 074 928 1.00 .030 232 117 933
2 1.00 .013 .018 .058 1.00 1.00 .013 .081  .069 1.00
4 1.00 .007 015  .056 1.00 1.00 .007 .002 .070 1.00

Notes: See notes of Table C.3.
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Table C.5: DGP with spatial-time lag. Simulation results for p = 0.4.

Panel A v QMLE

Ty = 1/4 Case I: N = 1007, T' = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 401 .014 .087 .058 1.00 .398 .004 1461 134 1.00

2 .400 .007 117 .054 1.00 .399 .002 174 .098 1.00

4 .400 .003 .058 .052  1.00 .400 .001 .095 104 1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .400 .013 .050 077 1.00 .400 .004 .074 111 1.00

2 .400 .006 .021  .064 1.00 .400 .002 .032  .055 1.00

4 .400 .003 .018 .049 1.00 .400 .001 .012 .056 1.00
Case III: N =507, T = 501

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .400 .014 .067 .062 1.00 .399 .004 181 106 1.00

2 .400 .007 .018 .055 1.00 .400 .002 .090 .071 1.00

4 .400 .003 .001 .058 1.00 .400 .001 .031 .057 1.00

Panel B v QMLE

Ty = 3/4 Case I: N = 1007, T = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 401 .018 .014 .066 1.00 .390 .014 2.40 338 1.00

2 .400 .008 103 .060 1.00 .396 .006 1.03  .259 1.00

4 .400 .004 .056 .054 1.00 .398 .003 531 262  1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .400 .016 .032 .088 1.00 401 .009 184 169 1.00

2 .400 .007 .010 .062 1.00 .400 .004 .057  .098 1.00

4 .400 .004 .012  .050 1.00 .400 .002 .073  .078 1.00
Case III: N =507, T = 507

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .400 .017 .006 .078 1.00 .397 .010 836 .158 1.00

2 .400 .008 .002 .059 1.00 .398 .005 486 .119  1.00

4 .400 .004 .008 .051 1.00 .399 .002 211 .094 1.00

Notes: The data generating process is y;; = 9 Z;V:;L Wi Y5t + Y1 Zj\;l Wi Yjt—1+ G+ pYir—1 +Z§:1 BeToit +uis,
Ujp = 23:1 YOI + ety Toie = pi + E§:1 Vol +veir £ =1,2;0i=1,..,N;t = —50,..,T and the first 50
observations are discarded; f, = pfsfgt,l—l—(l—p?cs)l/%st, Cst ~i.4.d.N(0,1),7% ~ i.i.d.N(0,1) for s = 1,2, 3,
it = seoit(€r — 1)/V2, € ~ i.i.d.x? with o2 = nipr, ni ~ i.i.d.x3/2, and ¢, = t/T for t = 0,1,...,T and
unity otherwise; "Y?si = Pw,ls’Ygi + (1 - P»%,m)lmflsiv Vi = P’y72s’72i + (1 — 03,23)1/25231', §esi ~ 1.4.d.N(0,1),
Vesp = pv,mit_l+(1—p3¢)1/2wm, @it ~ -1.d.-N(0,6%02,, ), 02, ~ii.dU[0.5,1.5] for £ =1,2,5 =1,2. We
set {p, ¥, Y1, B1, P2} = {0.4,0.25,0.20,3,1}. In addition, we specify prs = py,2s = po,e = 0.5 and p,,1, = 0.0
for all ¢, s. Case I specifies N = 1007 and T' = 257 for 7 = 1,2,4. Case II specifies N = 257 and T" = 1007

for T =1,2,4. Case III specifies N =T = 507 for 7 = 1,2,4.
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Table C.6: DGP with spatial-time lag. Simulation results for v = 0.25

Panel A 1A% QMLE

Ty = 1/4 Case I: N = 1007, T' = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .250 017 .070  .047 .998 .250 011 .087  .105 1.00

2 .250 .009 .046  .058 1.00 .250 .005 .015  .064 1.00

4 .250 .004 .052  .058 1.00 .250 .002 .046  .067 1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 251 017 219 .083  .998 .250 .012 045  .177  1.00

2 .250 .008 .041  .063 1.00 .250 .005 .008 .120 1.00

4 .250 .004 .071  .061 1.00 .250 .002 .011  .077 1.00
Case III: N =507, T = 507

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .251 .017 264  .064 .999 .250 .011 .010 .114 1.00

2 .250 011 104  .058 1.00 .250 .005 .016  .088 1.00

4 .250 .004 .013  .063 1.00 .250 .002 .004 .052 1.00

Panel B v QMLE

Ty = 3/4 Case I: N = 1007, T' = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .250 .024 158 .055  .984 .249 .022 341 145 1.00

2 .250 .012 .046  .065 1.00 .250 .009 .094  .085 1.00

4 .250 .006 074  .049 1.00 .250 .004 109 .073  1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .251 .023 248  .089 .975 .250 .031 131 382 1.00

2 .250 011 .034 .062 1.00 .250 .013 .162 233 1.00

4 .250 .006 .093  .060 1.00 .250 .005 .001  .132 1.00
Case IIT: N =507, T = 507

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 .251 .023 394 .076  .983 .250 .023 .018 .196 1.00

2 .250 .011 .009 .063 1.00 .250 .010 .051  .127 1.00

4 .250 .006 .040  .061 1.00 .250 .005 .009 .070 1.00

. . N N
Notes: The data generating process is y;; = ¢ ijl Wi Y¢+ Y1 Zj=1 wijyjtflﬁ-ai'f‘Pyitfl"‘Z?:l Bexpit +uit,

Ujp = 22:1 VO fY + Eity Toir = poi + 25:1 Vosifor T veie £ =1,2; 0 =1,.,N;t
+(1_p?5)1/2<5t7 Cst ~ ZZdN(Oa 1)7 ’YSZ
git = o€ — 1)/V2, € ~ iid.x3 with 02, = nipy, m; ~ i.i.d.x3/2, and ¢y

observations are discarded; f5, = pgs fO_,

0

= —50,..,7 and the first 50
~ 4.i.d.N(0,1) for s = 1,2, 3,
=t/T fort =0,1,...,T and

unity otherwise; v, = py,1575 + (1 — P3,15)1/2§1si, Vs = Py2sVY + (1 — p3,25)1/2§25ia s ~ 1.1.d.N(0, 1),

_ 2 1/2 . 2 2
Vpit = Pv,ﬂ)litfl'k(l—pv,e) / TOpit, Wit ~ 'L.’L.d.N(O,gUUw[Yi

We,i

~.4.d.U[0.5,1.5] for £ =1,2,s=1,2. We

set {p, ¥, Y1, 1, B2} = {0.4,0.25,0.20,3,1}. In addition, we specify pss = py,2s = pue = 0.5 and py 15 = 0.0
for all ¢, s. Case I specifies N = 1007 and T = 257 for 7 = 1,2,4. Case II specifies N = 257 and T = 1007

for 7 =1,2,4. Case IlI specifies N =T = 507 for 7 = 1,2, 4.
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Table C.7: DGP with spatial-time lag. Simulation results for ¢; = 0.20, =, = 1/4

v QMLE

Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .200 .023 223 .056 .988 201 .008 421 106 1.00
2 .200 .011 179 .053  1.00 .200 .003 139 .007  1.00
4 .200 .006 .043  .046 1.00 .200 .002 145 .072  1.00

Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .196 .021 264 .073  .986 .200 .008 .045 143 1.00
2 .200 .011 .055  .063 1.00 .200 .004 .015  .107 1.00
4 .200 .006 123 .062  1.00 .200 .002 .020 .061 1.00

Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .196 .021 257 061 .989 .200 .007 138 111 1.00
2 .200 .011 .094  .057 1.00 .200 .003 .108  .079  1.00
4 .200 .006 .041  .061 1.00 .200 .002 .025  .055 1.00

Notes: The data generating process is y;; = 9 Zjvzl Wi Yt +U1 Z;\Ll WijYjt—1+ i+ pYit—1 —1—2521 Bexpir +uis,
Ui = Z§=1 VO fY + eir, Toie = poi + Z§=1 'ygsifgt 4o £ =1,2;1=1,..,N;t = —50,..,7 and the first 50
observations are discarded; f9, = Pfsfgt_1+(1—,0?c5)1/2<st, Cst ~ 1.4.d.N(0,1), 9% ~ i.i.d.N(0,1) for s = 1,2, 3,
it = seoit(€r — 1)/V?2, €4 ~ ii.d.x? with o2 = nigs, i ~ ii.d.x3/2, and ¢y = t/T for t = 0,1,...,T and
unity otherwise; 19y, = py,1579; + (1= P2 1) %610y W5 = pr2s7% + (1= 3 25) €25, Epsi ~ 1.0.d.N(0, 1),
Ve = pv,gv&-tfl—|—(1—p%75)1/2wm7 wpip ~ 1.1.d.N(0, g?,o?v“), o?vu ~1.4.d.U[0.5,1.5]for £ =1,2,s=1,2. We
set {p, ¥, Y1, b1, B2} = {0.4,0.25,0.20,3,1}. In addition, we specify pss = py,2s = pu,e = 0.5 and py 15 = 0.0
for all ¢, s. Case I specifies N = 1007 and T = 257 for 7 = 1,2,4. Case II specifies N = 257 and T" = 1007

for 7 = 1,2,4. Case III specifies N =T = 507 for 7 = 1,2, 4.
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Table C.8: DGP with spatial-time lag. Simulation results for 5, =1

Panel A 1A% QMLE

Ty = 1/4 Case I: N = 1007, T' = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.00 .040 .169 .052  .738 1.00 .032 .202 A17 0 .912

2 1.00 .018 .033  .048 .997 1.00 .014 .064  .082 1.00

4 1.00 .009 .027  .054 1.00 1.00 .007 .038  .060 1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.00 .022 .050  .073 .757 1.00 .034 312 181  .850

2 1.00 011 .034 .063  .998 1.00 .015 .061 117 0 1.00

4 1.00 .006 .003  .062 1.00 1.00 .007 .007  .071 1.00
Case III: N =507, T = 507

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.00 .036 102 .08 .780 1.00 .030 230 115 .933

2 1.00 .018 .022  .054 .998 1.00 .013 .080 .073 1.00

4 1.00 .009 .022  .052 1.00 1.00 .007 .003  .069 1.00

Panel B v QMLE

Ty = 3/4 Case I: N = 1007, T' = 257

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.01 .069 950 110 .339 1.06 .093 6.40  .406 .352

2 1.00 .025 .083 .051 .982 1.01 .029 1.34 141 981

4 1.00 .012 .037  .054 1.00 1.00 .012 374 .079  1.00
Case II: N =257, T = 1007

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.00 .049 .008 .083 .531 1.07 118 7.07 .24 176

2 1.00 .025 .051  .072 .968 1.02 .040 1.81 .303 .876

4 1.00 .012 .004 .063 1.00 1.00 .014 .359 134 1.00
Case IIT: N =507, T = 507

T Mean RMSE ARB Size Power Mean RMSE ARB Size Power

1 1.00 .050 2210 .063 .528 1.05 .086 5.16 .371 .313

2 1.00 .024 .013  .055 .985 1.01 .028 1.15 157 .987

4 1.00 .012 .027 .050 1.00 1.00 .012 .225 .092  1.00

. . N N
Notes: The data generating process is y;; = ¢ ijl Wi Y¢+ Y1 Zj=1 wijyjtflﬁ-ai'f‘Pyitfl"‘Z?:l Bexpit +uit,

Ut

observations are discarded; f5, = pgs fO_,

— 22:1 VO fY + Eity Toir = poi + 25:1 Vosifor T veie £ =1,2; 0 =1,.,N;t
+(1_p?5)1/2<st7 Cst ~ ZZdN(Oa 1)7 ’YSZ

e = seoilen — 1)/V2, € ~ ivi.d.x with o, = nipy, i ~ i.i.d.x3/2, and @
unity otherwise; 7[931' = p'y,lspygi + (1 - pgﬂls)l/2§15i> 7851 = p"/,28’750vi + (1 - p%,2s)1/2§2siu gési ~ deN(()? 1)7

Veit = pvyﬂ)zitfl+(1_P12),g)1/2w£1‘t, TIpit ™~ ’L’LdN(O, §12)0',_2?[Yi), UfQDz,L' ~ 1.1.d.U [057

—50,..,T and the first 50
~ 4.i.d.N(0,1) for s = 1,2, 3,
=t/T fort =0,1,...,T and

1.5]for¢=1,2,s=1,2. We

set {p, ¥, Y1, 1, B2} = {0.4,0.25,0.20,3,1}. In addition, we specify pss = py,2s = pue = 0.5 and py 15 = 0.0
for all ¢, s. Case I specifies N = 1007 and T = 257 for 7 = 1,2,4. Case II specifies N = 257 and T = 1007
for 7 =1,2,4. Case IlI specifies N =T = 507 for 7 = 1,2, 4.

L
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Table C.9: DGP with endogenous covariate. Simulation results for 5, =3, 7, = 1/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .055 .089  .058 .514 3.63 .634 21.0 1.00 .724
2 3.00 .025 .025  .046 .968 3.60 .602 20.0 1.00 .990
4 3.00 .012 .012  .048 1.00 3.59 .590 19.6  1.00 1.00
Case II: N =257, T'= 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .049 .020 .077 .564 3.54 .545 17.9  1.00 .448
2 3.00 .025 015  .073 .970 3.54 .546 18.1 1.00 .812
4 3.00 .012 .020 .063 1.00 3.56 .566 18.8 1.00 .972
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .050 .032  .064 .780 3.58 578 19.1 1.00 .518
2 3.00 .026 .001  .068 .998 3.58 576 19.2  1.00 .952
4 3.00 .013 .018  .055 1.00 3.57 571 19.0 1.00 1.00

Notes: The data generating process is y;; = v Z;V:1 Wi Yjt+1 Ejvzl Wi Yji—1+ +pYi—1 —|—Z?:1 BeToit +uiz,
Uy = Z§:1 VO f0 + eiry Toie = pes + 23:1 Vo fS + v £ = 1,2; i = 1,..,N;t = —50,..,T and the first
50 observations are discarded; f8 = prsf9_ 1 + (1 — p?s)l/%st, (st ~.0.d.N(0,1), 7% ~ 4.i.d.N(0,1) for
s = 1,2,3, g = ceoulesr — 1)/V2, € ~ ii.d.x? with 0% = mips, M ~ ii.d.x3/2, and ¢, = t/T for
t =0,1,..,7 and unity otherwise; v0.. = py1575 + (1 — ,03713)1/25151', Vi = prast + (1 — p’zy,2s)1/2€28i7
i.i.d.N(0,1), vige = pou1viie—1 + (1 — 03,1)1/2w1it + 0.5, Voir = pu2v2i—1 + (1 — 012;,2)1/2732# and
), 02~ i.i.d.U[0.5,1.5] for £ = 1,2,

We,i

5@51' ~

Uit = Po,3U3it—1 + (1 — pi’g)l/wa, with @ ~ i.i.d.N(0,s202

VT Wi

s = 1,2,3. x3; = ps; + v1it + pusi, where @ is set such that the correlation between (vq;; + 0.5¢;) and

(vist + pvsit) equals 0.5. We specify prs = py,2s = pu,¢e = 0.5 and p, 15 = 0.0 for all £, s.

Table C.10: Size and power performance for the J test statistic, 7, = 1/4

Panel A Panel B Panel C
size power size
T I II 111 I 11 111 I 11 II1
1 .056 .098 .079 264 .351  .309 .055  .091 .067
2 .057 .065 .067 .821  .897 .889 .051 .066 .057
4 .052 .048 .051 1.00 1.00 1.00 .050 .052 .050

Notes: The data generating process is y;; = v Z;V:1 WY+ Zj\[:l Wi Yji—1+ G+ pYir—1 —l—zz:l BeToit + sz,
Uy = 23:1 VOO + ity Toir = pi + Zi:l Voo fo% +veir £ = 1,23 i = 1,.,N;t = =50,..,T and the first
50 observations are discarded; f% = pssf9_ 1 + (1 — p?s)l/zcst, (st ~i.i.d.N(0,1), 7% ~ 4.i.d.N(0,1) for
s = 1,2,3, ey = coulenr — 1)/V2, ey ~ ii.d.x? with 0% = mips, M ~ ii.d.x3/2, and ¢, = t/T for
t = 0,1,..,T and unity otherwise; 0y, = py,157% + (1 = p2 1) %100, Wei = Pr27% + (1= P2 20) " *60si,
&tsi ~ 1.0.d.N(0,1), v13t = poiviie—1 + (1 — P%,1)1/2wlit + 0.5eit, V2t = pu,2v2it—1 + (1 — P%,z)l/zw%t and
V3it = Pu3Vsi—1 + (1 — p%’g)l/ngit, with g ~ i.i.d.N(O,gﬁaéM), a;“ ~ 1.0.d.U[0.5,1.5] for £ = 1,2,
s = 1,2,3. x3i = ps; + vt + pusi, where @ is set such that the correlation between (v1;; + 0.5¢;) and
(v1st + pvsit) equals 0.5. We specify prs = py.2s = poe = 0.5 and p, 15 = 0.0 for all ¢, s. Case I specifies
N = 1007 and T = 257 for 7 = 1,2,4. Case II specifies T = 1007 and N = 257 for 7 = 1,2,4. Case III

specifies N =T = 507 for 7 = 1,2, 4.
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Table C.11: DGP with normal and homoskedastic errors. p = 0.4, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .022 265 .064 .994 373 .031 6.65 .694 .886
2 .400 .010 .049  .049 1.00 391 .011 232 .520 1.00
4 .400 .005 .037  .055 1.00 .396 .005 1.02  .438 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .400 .020 036  .090 1.00 .396 .012 1.08 .152 1.00
2 .400 .010 067 .077 1.00 .398 .005 443 074 1.00
4 .400 .005 .047  .056 1.00 .399 .003 252 .096 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .399 .020 140 062 .998 .392 .015 2.06  .228 1.00
2 .400 .010 .080 .062 1.00 .396 .006 1.03 .154 1.00
4 .400 .006 067  .052 1.00 .398 .003 484 150 1.00

Notes: The data generating process is y;; = 1 Zjvzl WiYjt +oz,;+pyit_1+Z§:1 BoTgiz+ Ui, Uip = 23:1 v o+
Eity Toit = Me; + Zi:l 'ygsifgt 4+ £ = 1,2, 1 = 1,..,N;t = —50,..,T and the first 50 observations are
discarded; f% = ppsfo_, + (1 — pfcs)l/Q(Sh Cst ~ i.0.d.N(0,1), 4% ~ i.i.d.N(0,1) for s = 1,2,3, £y = Gc€it,
€ir ~ 1.1.d.N (0, 1); 72%‘ = Pv,ls%?i + (1 - p3,15)1/2€15i7 W’gsi = Pv,zs’)’gi +(1 - P%,zs)l/zfzsm esi ~ 1.1.d.N(0,1),
Veit = PueVeit—1 + (1 — pil)l/me, Wit ~ i.i.d.N(O,ggafw)i), U?DM ~ 1.0.d.U[0.5,1.5] for £ = 1,2, s = 1,2.
We set {p, ¥, b1, B2} = {0.4,0.25,3,1}. In addition, we specify prs = py,2s = puve = 0.5 and py.15 = 0.0 for
all ¢, s. Case I specifies N = 1007 and T = 257 for 7 = 1,2,4. Case II specifies N = 257 and T' = 1007 for
7 =1,2,4. Case III specifies N =T = 507 for 7 = 1,2,4.

Table C.12: DGP with normal and homoskedastic errors. v = 0.25, 7, = 3/4

v QMLE
Case I: N = 1007, T = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .026 134 064 .964 247 .034 1.19 172 .792
2 .250 .012 .048  .062 1.00 .250 .015 .010 .104 1.00
4 .250 .005 .045  .055 1.00 .250 .007 079  .084 1.00
Case II: N =257, T = 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .250 .024 398  .098 .978 .248 .039 2.11  .264 .710
2 .250 .011 .048 .076 1.00 .249 .016 540 174 1.00
4 .250 .005 036  .056 1.00 251 .008 203 106 1.00
Case III: N =507, T =507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 .249 .024 354 067 .984 .249 .034 303 218 .816
2 .251 .011 192 058  1.00 .250 .015 140 100 1.00
4 .250 .005 016  .052 1.00 .250 .007 .019 .108 1.00

Notes: See notes of Table C.11.
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Table C.13: DGP with normal and homoskedastic errors. §; = 3, m, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .080 .006 .071 .218 3.01 .089 455 200 .232
2 3.00 .038 .006 .060 .753 3.01 .040 476 132 .794
4 3.00 .018 .008 .056 1.00 3.00 .018 187 .088  1.00
Case II: N =257, T'= 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 077 024 .096 .223 3.00 .098 122286 .182
2 3.00 .037 .008 .070 .864 3.00 .040 067 170 .736
4 3.00 .018 019  .063 1.00 3.00 .018 045 104 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 3.00 .075 037 074 .263 3.01 .093 161 240 917
2 3.00 .037 004 .059 .773 3.01 .037 175 114 1.00
4 3.00 .017 .004 .049 1.00 3.00 .017 .094  .082 1.00

. . N 2 3
Notes: The data generating process is ;e = ¥ D) WijYje+Qi+pYie—1+D g BeTeie+Uit, Uir = Doy o %+

€ity, Teit = Mo + Zi:l fy?sifgt 4+ v £ = 1,2, 4 =1,..,N;t = —50,..,T and the first 50 observations are
discarded; f9 = prsfO_1 4+ (1= pF )" *Cots Cat ~ i0.d.N(0,1), 7% ~ i.i.d.N(0,1) for s = 1,2,3, e3¢ = €41,
€ir ~ 1.0.d.N(0,1); 73y, = P%ls’Ygi +(1- 93,15)1/251% Vosi = ﬂ%Qs’Ygi +(1- 93,25)1/25251', Eesi ~ 1.1.d.N(0,1),
Vet = PoueVeit—1 + (1 — p%ve)l/zwm, Wit ~ i.i.d.N(O,gga;“), a;“ ~ 1.i.d.U[0.5,1.5] for £ = 1,2, s = 1,2.
We set {p, ¥, 51,82} = {0.4,0.25,3,1}. In addition, we speéify Pfs = Pv,2s = Pue = 0.5 and p,,1, = 0.0 for
all £, s. Case I specifies N = 1007 and T' = 257 for 7 = 1,2,4. Case II specifies N = 257 and T = 1007 for

7 =1,2,4. Case III specifies N =T = 507 for 7 = 1,2,4.

Table C.14: DGP with normal and homoskedastic errors.8; = 1, 7, = 3/4

v QMLE
Case I: N = 1007, T' = 257
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.01 .078 1.13 076 .263 1.05 .104 5.14 312 318
2 1.00 .036 031  .063 .801 1.02 .041 1.62 .150 .810
4 1.00 .016 019  .054 1.00 1.00 .017 397 .086 1.00
Case II: N =257, T'= 1007
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .069 .102 091 .271 1.05 .109 5.07 368 212
2 1.00 .033 .008 .058 .864 1.01 .040 1.07 .168 .808
4 1.00 .016 .006 .053 1.00 1.00 .017 370 .082 1.00
Case III: N =507, T = 507
7 Mean RMSE ARB Size Power Mean RMSE ARB Size Power
1 1.00 .072 115 .085  .928 1.05 .100 5.02 .296 .258
2 1.00 .033 .002 .058 1.00 1.02 .041 1.52 160 .820
4 1.00 .016 017  .058 1.00 1.00 .016 298  .082 1.00

Notes: See notes of Table C.13.
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Online Appendix D: Additional results for the applica-
tion in Section 5

Table D.1 reports results in terms of different specifications and/or different estimation approaches. In
particular, Column (1) reproduces Column “Full” in Table 5.1 and is included for ease of comparison. Column
(2) treats INEFF as strictly exogenous with respect to the idiosyncratic error. Therefore, INEFF is
instrumented by the defactored value of the same variable. It is clear from the p-value of the J-test that this
particular identification strategy is not valid, an outcome which confirms that INEFF is subject to reverse
causality. Hence, an external instrument is required for consistent parameter estimation. In comparison to
Column (1), major discrepancies in Column (2) include: (i) the estimated autoregressive coefficient appears
to be biased upwards, with the difference being statistically significant; (ii) the coefficient of operational
inefficiency is not statistically significant, which is counterintuitive. This finding shows the importance of the
ability of our approach to potentially allow for general forms of endogeneity.

Column (3) reports results from running an IV regression using the same instruments as in Column (1)
but without controlling for a common factor component. That is, essentially in this case Mg = Mf_l =
Mg = Ir. As expected, the model is rejected based on the J-test. Inconsistency of parameter estimation
manifests mainly via the estimated autoregressive and spatial lag coefficients, both of which appear to be
biased in opposite directions. This bears important implications for long-run direct and indirect estimated
effects. Thus, allowing for unobserved common factors appears to be crucial in this application.

Column (4) reports results from a “naive” model based on two-way fixed effects estimation without spatial
effects and common factors. In this case, the magnitude of the estimated autoregressive coeflicient is more
than twice as much as that in Column (1), which implies that bias exceeds 100%. Moreover, the estimated
coefficient of operational inefficiency appears to have a negative sign, which is also indicative of large bias due

to reverse causality.
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Table D.1: Additional results on bank risk-taking model (full sample)

(1) (2) (3) (4)
5 (AR parameter) 0.405%** 0.541 %" 0.654*** 0.829%**
p P (0.060) (0.067) (0.045) (0.004)
7 (spatial parameter) 0497 0.382%"* 0.301%** B
(0.104) (0.089) (0.044)

B, (incfficiency) 0.331%** 0.486 0.352%%* -0.095***
! Y (0.086) (0.331) (0.106) (0.027)
~ 0.011** 0.011** 0.010** 10,1225+
B2 (CAR) (0.005) (0.006) (0.005) (0.021)
B, (size) 0.031 0.021 0.027 -0.011
3 (0.072) (0.048) (0.062) (0.019)
5 -0.033** -0.016** -0.021** 0.124%**
Ba (buffer) (0.015) (0.012) (0.011) (0.021)
N . -0.002 -0.004** -0.006 0.010
Bs (profitability) (0.002) (0.002) (0.002) (0.011)
% (quality) 0.224%** 0.226*** 0.237%%* 0.213%**
6 \qualtty (0.035) (0.045) (0.032) (0.015)
3, (liquidity) 1.438"* 0.838*** 0.671%** 481+
7 Hlquidity (0.213) (0.188) (0.157) (0.061)
B (inst. pressure) -0.022 0.044 0.033 0.071%**
§ \tst. presst (0.041) (0.041) (0.041) (0.024)
Y 1 1 0 =
T 2 2 0 -
Ttest 28.649 44.401 58.677 -

[0.156] 0.003] 0.000]

Notes: Column (1) presents results on the full model, as documented in Section 5.1. In column (2) INEFF
is treated as strictly exogenous with respect to the idiosyncratic error and therefore it is instrumented by
the defactored value of INEFF. Column (3) reports results obtained by running IV estimation using the
same instruments as in (1) but without allowing for a common factor component. That is, in this case
Mg =Mz |
spatial effects and common factors. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

= Mg = Ir. Finally, Column (4) reports results from standard fized effects estimation without
p-values in square brackets.

Table D.2 below reports further results on the bank risk-taking model. In particular, Column (5) corre-
sponds to the same model as that in Column (1) except that the spatial weighting matrix is computed based
on dividend yield as opposed to debt ratio. As we can see, the results are very similar across all coefficients,
which indicates that the choice of the spatial weighting matrix is not crucial in this application. Clearly, this
is a desirable outcome.

Column (6) adds a spatial-time lag to the specification of the model. The corresponding estimated
coefficient, 1&1, is not statistically significant at the 10% level. Moreover, the sum of 1/3 and 1/31 approximately

equals 0.351, which is not statistically different from the spatial coefficient reported in Column (1). This
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indicates that, conditional on a spatial lag, there is no evidence for a spatial-time lag effect (diffusion).
Finally, Column (7) proxies profitability using the return on assets (ROA), which is defined as income

after taxes and extraordinary items (annualized), expressed as a percentage of average total assets. The

results between Columns (1) and (7) are almost identical, except this time the effect of profitability appears

to be statistically significant at the 5% level.

Table D.2: Further results on bank risk-taking model (full sample)

(1) (5) (6) (7)
5 (AR parameter) 0.405*** 0.403*** 0.413** 0.399***
p b (0.060) (0.059) (0.062) (0.057)
7 (spatial parameter) 04497 0.446*** 0.667*** 0.450***
patialb (0.104) (0.104) (0.247) (0.102)
B, (inefficiency) 0.331%* 0.330** 0.217 0.322%*
! o (0.086) (0.086) (0.138) (0.083)
- 0.011** 0.011%* 0.010** 0.011**
B2 (CAR) (0.005) (0.004) (0.004) (0.004)
B, (sine) 0.031 0.033 0.056 0.038
3 (0.072) (0.073) (0.074) (0.072)
= -0.033** -0.033** -0.031** -0.031**
Ba (buffer) (0.015) (0.015) (0.014) (0.015)
- . -0.002 -0.002 -0.002 -0.056**
Bs (profitability) (0.002) (0.002) (0.002) (0.025)
% (quality) 0.224** 0.224*** 0.221%%* 0.194**
6 (quatty (0.035) (0.035) (0.035) (0.038)
3, (liquidity) 1.438" 1.440" 1.430% 1.455%
7 ity (0.213) (0.214) (0.211) (0.214)
B (inst. pressure) -0.022 10.022 -0.021 -0.025
8 (mst- p (0.041) (0.041) (0.040) (0.041)

121 (spatial-time lag) — — (_0050146)

7 1 1 1 1

P 2 2 2 2
et 28.649 28.051 30.290 28.937
[0.156) 0.174] [0.035] [0.147]

Notes: Column (1) reports results on the full model, as documented in Section 5.1. Column (5) corresponds to
the same model as that in Column (1) except that the spatial weighting matriz is computed based on dividend
yield as opposed to debt ratio. In Column (6) we added a spatial-time lag into the baseline model. Finally,
Column (7) prozies the capital adequacy ratio with another variable, defined as the total risk based capital
expressed as a percent of risk-weighted assets. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, *

p < 0.10. p-values in square brackets.
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