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Abstract

A general Markov-Switching autoregressive conditional mean model, valued in the

set of nonnegative numbers, is considered. The conditional distribution of this model is

a finite mixture of nonnegative distributions whose conditional mean follows a GARCH-

like dynamics with parameters depending on the state of a Markov chain. Three

different variants of the model are examined depending on how the lagged-values of

the mixing variable are integrated into the conditional mean equation. The model

includes, in particular, Markov mixture versions of various well-known nonnegative

time series models such as the autoregressive conditional duration (ACD) model, the

integer-valued GARCH (INGARCH) model, and the Beta observation driven model.

Under contraction in mean conditions, it is shown that the three variants of the model

are stationary and ergodic when the stochastic order and the mean order of the mix-

ing distributions are equal. The proposed conditions match those already known for
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Markov-switching GARCH models. We also give conditions for finite marginal mo-

ments. Applications to various mixture and Markov mixture count, duration and

proportion models are provided.

Keywords: Autoregressive Conditional Duration, Count time series models, finite

mixture models, Ergodicity, Integer-valued GARCH, Markov mixture models.

1 Introduction

Nonnegative time series generally refer to: i) (0,∞)-valued data such as durations and vol-

umes, ii) integer-valued series, namely count and binary data, and iii) bounded-valued obser-

vations including proportions, indices, probabilities and rates. Numerous models have been

introduced in recent years to model nonnegative time series, according to the Fisher principle

that data are better described in their ”natural habitat” (cf. Fisher, 1953; Jorgensen, 1997).

They specifically aim to reproduce data in their actual type, without transforming them

to be modeled by linear or Gaussian ARMA-like models. Adopting the Generalized Linear

Model (GLM, Nelder and Wedderburn, 1972) approach which proposes a unified framework

to deal with a vast class of non-Gaussian data using exponential distribution family (cf. Mc-

Cullag and Nelder, 1989), recent time series models aim to go beyond the independent-data

assumption (Benjamin et al, 2003) or/and the exponential family framework (Zheng et al,

2015).

For positive real (0,∞)-valued time series, one of the first and best known time series

model is the autoregressive conditional duration (ACD) introduced by Engle and Russell

(1998). Although designed to rather model the conditional mean, the ACD model, in its

original form, has a similar multiplicative error model (MEM, Engle, 2002) structure as the

GARCH (generalized autoregressive conditional heteroskedastic) equation, and therefore its

ergodic properties are obtained in the same way through the stochastic recurrence equation

theory (SRE, Bougerol, 1993). The MEM form of the ACD is, however, quite restrictive

since the conditional variance must be proportional to the squared conditional mean and the

innovation term must be independent of past observations (Aknouche and Francq, 2020). In
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particular, MEM cannot accommodate certain interesting distributions that do not belong

to the exponential family, such as the Gamma distribution with time-varying shape param-

eter (Zheng et al, 2015; Bhogal and Variyam, 2019). To avoid the constraints imposed by

the MEM form, extensions of the ACD model have been defined through the specification

of a positive-valued conditional distribution whose mean depends on past values (Creal et

al, 2013; Harvey, 2013; Zheng et al, 2015; Aknouche and Francq, 2020). The study of the

ergodic structure of such an extended ACD via the SRE theory is however not obvious be-

cause the model is not explicitly defined by means of an iid (independent and identically

distributed) white noise. The same issue arises for the integer-valued GARCH model (IN-

GARCH, Rydberg and Shephard, 2000; Heinen, 2003; Ferland et al, 2006) which has the

same structure as the extended ACD model, but where the conditional distribution is dis-

crete. A large amount of effort has been executed recently to study the ergodic properties

of INGARCH models and their various extensions (e.g. Fokianos et al, 2009; Gonçalves et

al, 2015; Davis and Liu, 2016). Aknouche and Francq (2020) proposed ergodicity conditions

for a general positive conditional mean model which includes in particular the ACD and

INGARCH models and whose conditional distribution belongs to a vast class of distribu-

tions for which the (conditional) stochastic and mean orders are the same. Such a class

encompasses the one-parameter exponential family and other interesting distributions with

time varying shape, scale or rate parameters. Recently, Gorgi and Koopman (2020) adopted

a similar approach to establish the ergodicity of a Beta observation-driven process which is

conditionally Beta distributed with a time-varying mean having a similar ACD (and thus an

INGARCH) equation.

Since the pioneering work by Hamilton (1989), the Markov Switching (MS) formulation

has been integrated into many real-valued time series models (e.g. ARMA, GARCH and

bilinear time series models) in order to take into account certain specific observed facts,

namely recurrent changes in regime, multimodality, and heavy-tailness of the marginal dis-

tribution (see e.g. Hamilton and Susmel, 1994; Bauwens et al, 2010; Francq and Zakoian,

2019 and the references therein). The MS device for a given equation consists in considering

3



time-varying parameters depending on the state of a finite stationary and ergodic Markov

chain. In the context of positive data, various Markov switching ACD (MS-ACD) mod-

els have been introduced to model realized volatility in microstructure markets (e.g. Hujer

et al, 2002, 2003; De Luca and Zuccolotto, 2006; Hujer and Vuletic, 2007; Hautsch, 2012;

Chen et al, 2013). Recently, Markov-switching INGARCH (MS-INGARCH) models have

also been introduced in the context of count time series (Zhu et al, 2010; Berentsen et al,

2018; Lee and Hwang, 2018; Doukhan et al, 2018; Aknouche and Demmouche, 2019). The

Markov switching count and duration models have a similar conditional mean specification

as MS-GARCH models, but unlike the latter, they are generally not MEM and therefore

their ergodic properties are not easily obtained using the SRE theory. In spite of the various

existing MS-ACD formulations it seems that no stationarity and ergodicity results have been

established. For count time series, stationarity and ergodicity of MS-INGARCH models with

independent switching has been studied by Aknouche and Demmouche (2019), Doukhan et

al (2018), and Mao et al (2019). These results were based on the weak dependence approach

of Doukhan and Wintenberger (2008) which only works for iid switching. In addition, the

ergodicity conditions proposed are generally not necessary and may therefore be refined.

In this paper we propose stationarity, ergodicity and finite moment conditions for a

unified class of Markov switching positive conditional mean models in which the coefficients

of the conditional mean equation are allowed to depend on the state of a finite unobserved

stationary and ergodic Markov chain. The corresponding mixing distributions are assumed to

belong to the class of equal conditional stochastic and mean orders introduced by Aknouche

and Francq (2020). Three different formulations are considered, differing in the way the

past and present of the regime variable is integrated into the conditional mean dynamics.

The first one we call past-regime dependent switching considers the lagged values of the

conditional mean depending on the lagged values of the regime variable (e.g. Aknouche and

Demmouche, 2019; Doukhan et al, 2018; Mao et al, 2019). This resembles the formulation

by Francq and Roussignol (1998). In the second one, which is named the present-regime

dependent switching and is inspired by Fong and See, (2001), Hujer and Vuletic (2002) and
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Haas et al (2004), the lagged conditional mean values are governed by the present of the

regime variable (see Diop et al, 2016-2018; Berentsen et al, 2018 for MS-INGARCH models).

In the third one we call present-regime mean-dependent switching, which is similar to the

earlier formulation proposed by Gray (1996) for MS-GARCH models, the lagged values of the

time-varying parameter depends on the present conditional mean of the model (see also Hujer

and Vuletic, 2007 for an MS-ACD model and Lee and Hwang, 2018 for their MS-INGARCH

model).

The rest of this paper is organized as follows. Section 2 reviews the general formula-

tion of finite mixture and Markov mixture models, and propose the three versions of the

Markov-switching positive conditional mean model. Ergodicity and finite moment condi-

tions are given in Section 3 for the past-regime dependent switching, in Section 4 for the

present-regime dependent switching and in Section 5 for the present-regime mean-dependent

switching. Applications to existing specific Mixture and Markov count and duration models

are provided. Section 6 compares the theoretical means that we obtained with empirical

means of Monte Carlo simulations and Section 7 concludes, while the proofs of the main

results are left to the Appendix.

2 Markov-switching positive conditional mean models

Let N ⊂ [0,∞) be a subset of nonnegative real numbers which may refer to [0,∞) itself, to

the set of positive real numbers (0,∞) = R+, to the set of integer numbers N = {0, 1, ...},

or to any bounded interval [a, b] of the real line (0 ≤ a < b), where a special case is played

by the simplex [0, 1] interval. In the sequel, all observable stochastic processes of interest

are defined on a probability space (Ω,F , P ) and valued in N . Let Fλ be a cumulative

distribution function (cdf) indexed by the mean λ =
∫ +∞

0
xdFλ (x) > 0 with support N . A

stochastic process {Yt, t ∈ Z} (Z = {...,−1, 0, 1, ...}) is said to be a positive linear conditional

mean (POLI) model if its conditional distribution is Fλt
, that is

Yt | Ft−1 ∼ Fλt
(2.1)
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with conditional mean satisfying

λt = ω +

q
∑

i=1

αiYt−i +

p
∑

j=1

βjλt−j, (2.2)

where p and q are nonnegative integers, and Ft denotes the information set available at time

t, i.e. the sigma-field generated by {Yu, u ≤ t}. To ensure the positivity of the conditional

mean we take ω > 0, αi ≥ 0 and βj ≥ 0 (i = 1, ..., p, j = 1, ..., q). The POLI model (2.1)-(2.2)

reduces to the extended ACD model (Aknouche and Francq, 2020) when Fλ has as support

N = (0,∞) or [0,∞)1, to the INGARCH(p, q) model (Rydberg and Shephard, 2000; Heinen,

2003) when Fλ has a discrete support N = N, and to a bounded-valued GARCH model when

N = [a, b]. See e.g. Gorgi and Koopman (2020) for the Beta observation driven model with

Fλ being the beta distribution and N = [0, 1]. The POLI model also includes positive-

valued versions of the generalized autoregressive score (GAS) model of Creal et al (2013)

and Harvey (2013).

Assume the cdf Fλ belongs to the class F of distributions with equal conditional stochastic

and mean orders (cf. Aknouche and Francq, 2020) which satisfies the following property

λ ≤ λ∗ ⇒ F−

λ (u) ≤ F−

λ∗(u), ∀u ∈ (0, 1), (2.3)

where F−

λ is the quantile function (generalized inverse) associated to Fλ. This rich class of

distributions whose stochastic order is driven by the mean includes in particular the one-

parameter exponential family. Important distributions that do not belong to the exponential

family, such as the negative binomial distributions with time-varying numbers of failures,

the Gamma distributions with time-varying shape parameters, the Beta distribution with

time varying parameters, and the zero-inflated Poisson distribution, are also in F.

We now consider three Markov-switching generalizations of the POLI model. Let a

positive integer S. The process {Yt, t ∈ Z} is said to be a switching (or mixture) POLI

model if its conditional distribution given the past information is a mixture of distributions,

Yt | Ft−1 ∼ π1tF1,λ1t + · · ·+ πStFS,λSt
, (2.4)

1In particular when Fλ satisfies: Fλ (x) = F1 (x/λ) for all x, the POLI model reduces to the standard

ACD (Engel and Russell, 1998).
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where πst ≥ 0,
∑S

s=1 πst = 1 (t ∈ Z), and Fλ = Fs,λ belongs to the class of distributions

F given by (2.3). Three dynamics for λst (1 ≤ s ≤ S) are to be considered below. The

subscript s in (2.4) denotes the regime and S stands for the number of regimes. It is not

necessary that all mixing distributions Fs,λst
be the same across s. For instance, in the

mixture INGARCH model, we can for example mix the Poisson and the negative binomial

distributions. Let a stationary regime sequence {∆t, t ∈ Z} be defined on (Ω,F , P ) and

valued in the set {1, ..., S} with

πs = P (∆t = s) and πst = P (∆t = s | Ft−1) , 1 ≤ s ≤ S. (2.5)

where πs ≥ 0,
∑S

s=1 πs = 1. Any dependence structure assumed for {∆t, t ∈ Z} determines

a specific type of switching. The sequence {∆t, t ∈ Z} may be iid, a case we refer to as the

iid switching (or iid mixture) for which (2.5) simply writes

πs = πst 1 ≤ s ≤ S, t ∈ Z.

It may also be a stationary and ergodic Markov chain with transition probability

pij = P (∆t = j | ∆t−1 = i) , i, j ∈ {1, ..., S} .

In such a case, we call the model Markov-switching (or Markov mixture) POLI (MS-POLI)

where πst can be obtained in terms of (pij) and (πs) (e.g. Hamilton, 1994). In the latter

cases, the sequence {∆t, t ∈ Z} is generally assumed unobservable. Another notable but

degenerate case is the threshold mixture in which ∆t is observable and depends on Ft−1.

Denote by Fa
t the ”complete” (or augmented) information set, the sigma-field generated by

{Yu,∆u+1, u ≤ t}. The conditional distribution in (2.4) can be rewritten in term of ∆t

Yt | F
a
t−1 ∼ F∆t,λ∆t,t

. (2.6)

The specification of a dynamics for λ∆t,t in (2.6) is an issue when λ∆t,t has to be lagged

as it happens for MS models with moving average or GARCH-like components (e.g. Gray,

1996; Fong and See, 2001; Klaassen, 2002; Francq and Zakoian, 2001, 2008; Haas et al, 2004).
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A natural specification for the conditional mean mixture is

λ∆t,t = ω∆t
+

q
∑

i=1

α∆t,iYt−i +

p
∑

j=1

β∆t,j
λ∆t−j ,t−j, (2.7)

where ωs > 0, αsi ≥ 0 and βsj ≥ 0 (1 ≤ s ≤ S). A more general specification has the form

λt = g∆t
(Yt−1, . . . , Yt−q, λt−1, . . . , λt−p), (2.8)

where the functions gs for 1 ≤ s ≤ S are valued in [0,∞) and λt = λ∆t,t.

The lagged values of λ∆t,t in (2.7) thus depend on the lagged values in same order

of the regime variable ∆t (see also Francq and Zakoian, 2005 for the MS-GARCH). For

MS-INGARCH models with independent switching, representation (2.7) was considered by

Aknouche and Demmouche (2019), Doukhan et al (2018), and Mao et al (2019). The

likelihood of (2.6)-(2.7) based on a series Y1, ..., Yn is not easy to compute because it depends

on the whole path history of ∆t. To remedy this drawback, one can consider the following

specification due to Hujer et al (2002) and also introduced by Fong and See (2001) and Haas

et al (2004) in the context of the real-valued MS-GARCH model

λst = ωs +

q
∑

i=1

αsiYt−i +

p
∑

j=1

βsjλs,t−j, 1 ≤ s ≤ S (2.9)

or more generally

λst = gs(Yt−1, . . . , Yt−q, λs,t−1, . . . , λs,t−p), 1 ≤ s ≤ S (2.10)

for some [0,∞)-valued functions gs, 1 ≤ s ≤ S. Differently from (2.7), the specifications

(2.9) and (2.10) are such that all lagged values of λ∆t,t are governed by the present regime ∆t,

i.e. λ∆t,t is a function of λ∆t,t−1, ..., λ∆t,t−p for all fixed ∆t ∈ {1, ..., S}. Thus (2.9)-(2.10) are

useful for expectation-maximization likelihood purposes (Hamilton, 1989, 1994, Haas et al,

2004) but in some respects they seem artificial in describing regime switching. In particular,

with this model it seems difficult to guarantee strong persistence of the conditional mean.

Suppose for instance that the regime ∆t = 1 corresponds to a low level of conditional mean

and that the regime ∆t = 2 corresponds to a high level of conditional mean: 0 ≃ λ1,t << λ2,t.
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If at time t− 1 the actual conditional mean was high (λt−1 = λ2,t−1 >> 0) and if the regime

changes at time t, then λt cannot remain at a high level, even if the ”persistence” parameter

β is close to 1, because λt depends on the ”virtual” past value of the conditional mean

λ1,t−1 ≃ 0, and not on its actual past value λt−1.

A similar representation to (2.9) based on Gray (1996) assumes that

λst = ωs +

q
∑

i=1

αsiYt−i +

p
∑

j=1

βsjE (Yt−j | Ft−j−1) , 1 ≤ s ≤ S, (2.11)

where E (Yt | Ft−1) is the conditional mean of the model. The specification (2.11) has been

proposed by Hujer et al (2002, 2003) for their MS-ACD models and adopted by Lee and

Hwang (2018) in their MS-INGARCH model. Following Klaassen (2002) in the MS-GARCH

case, we replace all cases of E (Yt−j | Ft−j−1) in (2.11) by E
(

λ∆t−j ,t−j | ∆t = s,Ft−1

)

, leading

to

λst = ωs +

q
∑

i=1

αsiYt−i +

p
∑

j=1

βsjE
(

λ∆t−j ,t−j | ∆t = s,Ft−1

)

. (2.12)

Klaassen (2002) argued that the analog specification of (2.12) in the MS-GARCH case allows

a better multi-step ahead forecasting performance, simplifies the computation implied by the

specification (2.11) of Gray (1996) and is more flexible in generating persistence. An extension

of (2.12) to nonlinear forms is

λst = gs(Yt−1, . . . , Yt−q, µt−1, . . . , µt−p), 1 ≤ s ≤ S, (2.13)

where

µt−j = E
(

λ∆t−j ,t−j | ∆t = s,Ft−1

)

, j = 1, ..., p

and gs (1 ≤ s ≤ S) is defined as above.

We refer to (2.7), (2.9) and (2.12) as, respectively, the past-regime dependent switching,

the present-regime dependent switching and the present-regime mean-dependent switching.

These various specifications are adaptations of the ones proposed for the Markov-switching

GARCH models. Due to the non-multiplicative error form of the general MS-POLI model

(2.6) with dynamics (2.7), (2.9) or (2.12), its ergodic structure is more difficult to reveal

than MEM-like MS-GARCH models. Sections 3, 4 and 5 aspire to solve this problem.

9



In the sequel, (∆t) denotes an irreducible, stationary and ergodic Markov chain with

finite state space {1, 2, . . . , S}. Let p(l)ij = P (∆t+l = j | ∆t = i) be the l-step transition prob-

abilities, and p
(1)
ij = pij. The processes (Yt) and (λt) that we will consider are causal functions

of (∆t) and of another latent process (Ut) that is assumed to be independent of (∆t). Under

this assumption, denoting by It the sigma-field generated by {Us,∆s : s ≤ t}, the variable

∆t contains all the information of It that is useful to predict the future values of the chain,

in the sense that

A1 P (∆t = s | ∆t−1 = τ , A) = P (∆t = s | ∆t−1 = τ) for all event A ∈ It−1.

3 The past-regime dependent switching

We give stationarity and ergodicity conditions for the past-regime dependent MS-POLI

model given by (2.6) and (2.7). We also study the existence of marginal moments in the

case p = q = 1. Specific conditions when (∆t) is iid are obtained and illustrations of the

general results on MS-ACD and MS-INGARCH models are provided. We then extend the

stationarity results to the nonlinear conditional mean form (2.8).

3.1 The linear conditional mean case

Define the S × S matrix M (l) for l = 1, ..., r = max (p, q) by

M (l) (i, j) = p
(l)
ji (αil + βil) , i, j ∈ {1, ...S}

with obvious notations. For instance,

M (1) =

















p11 (α11 + β11) p21 (α11 + β11) · · · pS1 (α11 + β11)

p12 (α21 + β21) p22 (α21 + β21) · · · pS2 (α21 + β21)
...

...
. . .

...

p1S (αS1 + βS1) p2S (αS1 + βS1) · · · pSS (αS1 + βS1)

















.

A similar matrix has been introduced for the first time by Francq and Roussignol (1998)

in the context of MS-GARCH models. See also Francq and Zakoian (2001) for Markov
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Switching ARMA (MS-ARMA) models. Denote by ρ (A) the spectral radius of the matrix

A (i.e. the maximum of eigenvalues of A in modulus) and define the block-matrix Ω by

Ω =























M (1) M (2) · · · M (r−1) M (r)

IS 0S×S · · · 0S×S 0S×S

0S×S IS · · · 0S×S 0S×S

...
...

. . .
...

...

0S×S 0S×S · · · IS 0S×S























, (3.1)

where 0S×S and IS denote respectively the S×S null matrix and the S×S identity matrix.

The following result gives a necessary and sufficient ergodicity condition for the MS-POLI

model given by (2.6) and (2.7).

Theorem 3.1 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3). There exists a stationary and ergodic sequence (Yt) such that

P
(

Yt ≤ y | Fa
t−1

)

= F∆t,λt
(y), (3.2)

where λt satisfies (2.7) if

ρ (Ω) < 1. (3.3)

Conversely, if there exists a solution of (3.2) such that EYt < ∞ and the irreducible, sta-

tionary and ergodic Markov chain (∆t) satisfies A1 then (3.3) holds.

When p = q = 1 the condition (3.3) reduces to

ρ
(

M (1)
)

< 1.

Under the latter condition, the unconditional mean of the process is given by

EYt = 1⊤
(

IS −M (1)
)−1

d (3.4)

where d = (π1ω1, ..., πSωS)
⊤ and 1 =(1, ..., 1)⊤ is a S-vector with unit components.

Remark 3.1 (POLI-X: POLI with exogenous variables). Consider the following

MS-POLI-X extension of (2.7) with covariates

λt = ω∆t
+

q
∑

i=1

α∆t,iYt−i +

p
∑

j=1

β∆t,j
λt−j +ϕ⊤X t−1, (3.5)
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where the components of the covariate X t = (x1,t, ..., xu,t)
⊤ are nonnegative numbers and

ϕ = (ϕ1, ..., ϕu)
⊤ ≥ 0 component-wise. If {(X t,∆t)} is stationary and ergodic then the

conclusions of Theorem 3.1 hold true for model (3.5). This is not surprising since (3.5)

replaces the constant intercept by a stationary intercept ωt = ω+ϕ⊤X t−1 and we have seen

that the stationarity condition does not depend on the intercept. See also Francq and Thieu

(2019) and Aknouche and Francq (2020).

Assume now the switching sequence (∆t) is iid with πs = P (∆t = s). We call the

model mixture POLI (M-POLI) in reference to mixture INGARCH models (Aknouche and

Demmouche, 2019; Doukhan et al, 2018; Mao et al, 2019) in which (∆t) is assumed iid.

Remark 3.2 When (∆t) is iid and p = q = 1, the matrix Ω given by (3.1) reduces to

Ω =M (1) =

















π1 (α11 + β11) π1 (α11 + β11) · · · π1 (α11 + β11)

π2 (α21 + β21) π2 (α21 + β21) · · · π2 (α21 + β21)
...

...
. . .

...

πS (αS1 + βS1) πS (αS1 + βS1) · · · πS (αS1 + βS1)

















with identical columns. Thus rank(Ω) = 1 and by the rank-nullity theorem (e.g. Horn

and Johnson, 2013, p. 6) the dimension of the kernel space corresponding to Ω is S − 1.

Therefore, 0 is an eigenvalue with multiplicity S − 1, and the Sth eigenvalue is the trace
S
∑

s=1

πs (αs1 + βs1) of Ω which, by the non-negativity of the parameters, coincides with ρ (Ω).

The condition (3.3) thus reduces to
S
∑

s=1

πs (αs1 + βs1) < 1. For general p and q the latter

condition writes as follows.

Proposition 3.1 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be cdf ’s on N satisfying (2.3).

There exists a stationary and ergodic sequence (Yt) satisfying (3.2), where λt := λ∆t,t satisfies

(2.7) with (∆t) iid, if
S
∑

s=1

πs

(

q
∑

i=1

αsi +

p
∑

j=1

βsj

)

< 1. (3.6)

Conversely, if there exists a solution of (3.2) such that EYt = m < ∞, where (∆t) is iid

and is independent of Ft−1, then (3.6) holds.

A proof of Proposition 3.1 is given in the supplement to this paper. Under (3.6) the mean
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of the process is given by

EYt =

∑S

s=1 πsωs

1−
∑S

s=1 πs

(

∑q

i=1 αsi +
∑p

j=1 βsj

) . (3.7)

Example 3.1 (Poisson MS-INGARCH(p, q)). Consider the following Poisson MS-

INGARCH(p, q) model given by Yt | F
a
t−1 ∼ P (λ∆t,t) where λ∆t,t is given by (2.7) and P (λ)

stands for the Poisson distribution with parameter λ. The Poisson distribution is a member

of the class F given by (2.3). Thus a necessary and sufficient condition for the stationarity

and ergodicity of (Yt) is that (3.3) holds. If in particular (∆t) is iid the stationarity and

ergodicity condition (3.3) reduces to (3.6). Such a condition is clearly sharper than the ones

proposed by Aknouche and Demmouche (2019), Doukhan et al (2018) and Mao et al (2019)

for the Poisson mixture INGARCH model. �

Example 3.2 (Negative Binomial MS-INGARCH(p, q)). A random variable Y

follows a negative binomial, Y ∼ NB (υ, p), of parameters υ > 0 and p ∈ (0, 1) if

P (Y = k) = Γ(k+υ)
k!Γ(υ)

pυ (1− p)k , k ∈ N.

(i) Assume that Yt | F
a
t−1 ∼ NB

(

υ∆t
,

υ∆t

υ∆t
+λ∆t,t

)

where υs > 0 for 1 ≤ s ≤ S and λ∆t,t is

given by (2.7). We call this model NB2-MS-INGARCH. Since the latter distribution satisfies

(2.3) (Aknouche and Francq, 2020), a necessary and sufficient condition for stationarity and

ergodicity of (Yt) is that (3.3) is satisfied. When (∆t) is iid the corresponding stationarity

and ergodicity condition (3.6) is sharper than the condition provided by Aknouche and

Demmouche (2019) for that model with p = q = 1.

(ii) Now let the NB1-MS-INGARCH model defined by Yt | F
a
t−1 ∼ NB

(

υ∆t
λ∆t,t,

υ∆t

υ∆t
+1

)

.

Aknouche and Francq (2020, Lemma 2.1) showed that such a distribution also satisfies (2.3).

Therefore, a necessary and sufficient condition for stationarity and ergodicity of (Yt) is given

by (3.3) for the general Markov case and by (3.6) when (∆t) is iid �

Example 3.3 (Mixed MS-INGARCH). Let S = 3 and Yt | Ft−1 ∼ F∆t,λ∆t,t
, where

λ∆t,t satisfies (2.7), F1,λ1t ∼ NB
(

υ1λ1t,
υ1

υ1+1

)

, F2,λ2t ∼ NB
(

υ2,
υ2

υ2+λ2t

)

and F3,λ3t ∼ P (λ3t)

with υ1, υ2 > 0. Since the three mixing distributions belong to the class F, a necessary and

sufficient for the above model to be stationary and ergodic is that (3.3) holds true. �
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Example 3.4 (Multiplicative MS-ACD). Aknouche and Francq (2020, Section 2.2)

showed that the conditional distribution of any standard multiplicative ACD model of the

form Yt = λtzt, where λt satisfies (2.3), belongs to the class of equal-stochastic mean order

distributions given by (2.3). By the positive homogeneity of the quantile function F−

∆t,λ∆t,t

and in view of (2.3), the conditional distribution of any multiplicative MS-ACD of the form

Yt = λ∆t,tzt (3.8)

with λ∆t,t satisfying (2.7), also belongs to the class F in (2.3), where (zt) is an iid sequence

of positive random variables with E (z1) = 1. Therefore, a necessary and sufficient condition

for stationarity and ergodicity of (3.8) is given by (3.3) for a general irreducible stationary

and ergodic Markov chain (∆t) satisfying A1 and by (3.6) when (∆t) is iid. In particular, the

latter result holds for the Gamma MS-ACD model given by Yt | F
a
t−1 ∼ Γ (a∆t

, a∆t
λt), where

λt satisfies (2.7), as > 0 for all 1 ≤ s ≤ S, and Γ (a, λ) stands for the Gamma distribution

with shape parameter a > 0 and rate parameter λ > 0. �

Remark 3.3 (Link with the ergodicity of multiplicative MS-ACD and MS-

GARCH). It is easily seen that the square of the MS-GARCH process (Xt) of Francq and

Zakoian (2005) is a multiplicative MS-ACD of the form X2
t = λ∆t,tzt where λ∆t,t satisfies

(2.7) and zt is defined as in Example 3.4. Using the result of Example 3.4 the conditional

distribution of Y 2
t thus satisfies (2.3). Therefore, when Yt in Theorem 3.1 is the square of an

MS-GARCH whose squared volatility λ∆t,t follows (2.7) we find the well known result that

an MS-ACD is stationary with finite first-order moments (or a MS-GARCH is stationary

with finite second-order moments) if and only if (3.3) holds true (e.g. Francq and Zakoian,

2008). �

Turn now to the existence of moments for the MS-POLI(1,1) model. In Theorem 3.1 it has

been shown that, provided the mixing distributions of the MS model satisfy the stochastic-

equal-mean order property (2.3), the precise form of such distributions is not important for

the strict stationarity and ergodicity. For the existence of moments, the next Theorem shows

that the form of the conditional distribution influences indeed the ergodicity conditions. The

same holds for the POLI model (2.1)-(2.3) (cf. Aknouche and Francq, 2020). For simplicity
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of notation, we write αs and βs instead of αs1 and βs1.

Theorem 3.2 Let Fλ = Fs,λ (1 ≤ s ≤ S, λ > 0) be a cdf on N satisfying (2.3) and

Xs ∼ Fs,λ(x). Assume that, for some integer ℓ ≥ 2, there exist nonnegative coefficients

asj(0), asj(1), . . . , asj(j) for all j ≤ ℓ such that

EXj
s =

j
∑

i=0

asj(i)λ
i, j = 1, . . . , ℓ, 1 ≤ s ≤ S. (3.9)

Under (3.3), let (Yt) be a stationary sequence such that P
(

Yt ≤ y | Fa
t−1

)

= F∆t,λt
(y), where

λt := λ∆t,t satisfies (2.7) with p = q = 1 and (∆t) fulfills A1. Then EY ℓ
t < ∞ if and only

if

ρ (Mℓ) < 1, (3.10)

where Mℓ is a S × S-matrix defined by

Mℓ (s, τ) = pτs

ℓ
∑

j=0

as (j)

(

ℓ

j

)

αj
sβ

ℓ−j
s , s, τ ∈ {1, ...S} (3.11)

with as(0) = as(1) = 1 and as(j) = asj(j) for j ≥ 2 (1 ≤ s ≤ S).

The matrix Mℓ in (3.11) can be explicitly written as follows

Mℓ =

























p11
ℓ
∑

j=0

a1 (j)
(

ℓ

j

)

αj
1β

ℓ−j
1 p21

ℓ
∑

j=0

a1 (j)
(

ℓ

j

)

αj
1β

ℓ−j
1 · · · pS1

ℓ
∑

j=0

a1 (j)
(

ℓ

j

)

αj
1β

ℓ−j
1

p12
ℓ
∑

j=0

a2 (j)
(

ℓ

j

)

αj
2β

ℓ−j
2 p22

ℓ
∑

j=0

a2 (j)
(

ℓ

j

)

αj
2β

ℓ−j
2 · · · pS2

ℓ
∑

j=0

a2 (j)
(

ℓ

j

)

αj
2β

ℓ−j
2

...
...

. . .
...

p1S
ℓ
∑

j=0

aS (j)
(

ℓ

j

)

αj
Sβ

ℓ−j
S p2S

ℓ
∑

j=0

aS (j)
(

ℓ

j

)

αj
Sβ

ℓ−j
S · · · pSS

ℓ
∑

j=0

aS (j)
(

ℓ

j

)

αj
Sβ

ℓ−j
S

























.

For ℓ = 1, the latter matrix reduces to M (1) in (3.1). When (∆t) is iid, in view of Remark

3.2, the result of Theorem 3.2 reduces to the following.

Corollary 3.1 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a cdf on N satisfying (2.3)

and Xs ∼ Fs,λ(x). Assume that, for some integer ℓ ≥ 2, there exist nonnegative coefficients

asj(0), asj(1), . . . , asj(j) for all j ≤ ℓ such that EY j
s has the form (3.10). Under (3.6), let

(Yt) be a stationary sequence such that P
(

Yt ≤ y | Fa
t−1

)

= F∆t,λt
(y), where λt := λ∆t,t
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satisfies (2.7) with p = q = 1, and (∆t) is iid with πs = P (∆t = s) for all 1 ≤ s ≤ S. We

have EY ℓ
t <∞ if and only if

S
∑

s=1

πs

ℓ
∑

j=0

as (j)

(

ℓ

j

)

αj
sβ

ℓ−j
s < 1, (3.12)

where as(j) (0 ≤ j ≤ ℓ, 1 ≤ s ≤ S) is given by (3.12).

Example 3.1 (Continued) It is well known that if Ys ∼ P (λs) then E
(

Y ℓ
s

)

satisfies

(3.9) with asj(i) =
{

j

i

}

being the Stirling number of the second kind. Since asj(j) = 1 for

all j, condition (3.10) becomes ρ (Mℓ) < 1 where

Mℓ =

















p11 (α1 + β1)
ℓ p21 (α1 + β1)

ℓ · · · pS1 (α1 + β1)
ℓ

p12 (α2 + β2)
ℓ p22 (α2 + β2)

ℓ · · · pS2 (α2 + β2)
ℓ

...
...

. . .
...

p1S (αS + βS)
ℓ p2S (αS + βS)

ℓ · · · pSS (αS + βS)
ℓ

















. (3.13)

If in particular (∆t) is iid then the ℓ-th moment condition (3.12) reduces to

S
∑

s=1

πs (αs + βs)
ℓ < 1. � (3.14)

Example 3.2 (Continued). (i) The first two moments of a random variable Ys following

the NB (υs, υs/(λs + υs)) distribution are given by EYs = λs and EY
2
s = λs +

1+υs

υs
λ2s. Thus

(3.9) holds with as(2) =
1+υs

υs
(1 ≤ s ≤ S) and the matrix Mℓ for ℓ = 2 writes

M2 =

















p11((α1 + β1)
2 +

α2
1

υ1
) p21((α1 + β1)

2 +
α2
1

υ1
) · · · pS1((α1 + β1)

2 +
α2
1

υ1
)

p12((α2 + β2)
2 +

α2
2

υ2
) p22((α2 + β2)

2 +
α2
2

υ2
) · · · pS2((α2 + β2)

2 +
α2
2

υ2
)

...
...

. . .
...

p1S((αS + βS)
2 +

α2
S

υS
) p2S((αS + βS)

2 +
α2
S

υS
) · · · pSS((αS + βS)

2 +
α2
S

υS
)

















.

In particular, when (∆t) is iid the moment condition (3.12) reduces to

S
∑

s=1

πs((αs + βs)
2 +

α2
s

υs
) < 1.

Conditions for the existence of the third and fourth moments are obtained accordingly; see

Aknouche and Francq (2020) for the POLI model corresponding to S = 1.
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(ii) It is easily seen that the moments EY ℓ
s of the NB (υsλs, υs/(1 + υs)) distribution

satisfy (3.10) with as(j) = asj (j) = 1 for all j and s (Aknouche and Francq, 2020). Therefore,

the necessary and sufficient condition for the NB1-MS-INGARCH model is given by (3.13)

for the general Markov case and by (3.14) when (∆t) is iid. �

Example 3.3 (Continued). For Example 3.3, the matrix Mℓ for ℓ = 2 is given by

M2 =











p11 (α1 + β1)
2 p21 (α1 + β1)

2 p31 (α1 + β1)
2

p12((α2 + β2)
2 +

α2
2

υ2
) p22((α2 + β2)

2 +
α2
2

υ2
) p32((α2 + β2)

2 +
α2
2

υ2
)

p13 (α3 + β3)
2 p23 (α3 + β3)

2 p33 (α3 + β3)
2











.

�

3.2 Extension to nonlinear conditional mean forms

We extend Theorem 3.1 to the case where the conditional mean λt satisfies the more general

specification (2.8). Assume that the functions gs(y1, . . . , yq, λ1, . . . , λp) (1 ≤ s ≤ S) in (2.8)

are Lipschitz in the sense that, for all (yi, y
′

i), i = 1, . . . , q and for all
(

λj, λ
′

j

)

, j = 1, . . . , p,

there are positive constants αsi and βsj such that

∣

∣gs(y1, . . . , yq, λ1, . . . , λp)− gs(y
′

1, . . . , y
′

q, λ
′

1, . . . , λ
′

p)
∣

∣ ≤

q
∑

i=1

αsi |yi − y′i|+

p
∑

j=1

βsj|λj − λ′j|.

(3.15)

Theorem 3.3 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3) and gs(y1, . . . , yq, λ1, . . . , λp) (1 ≤ s ≤ S) be S Lipschitz functions satisfying (3.15).

Let the matrix Ω be defined as in (3.1) where the coefficients (αsi, βsj) are those in the right-

hand-side of the Lipschitz inequality (3.15). There exists a stationary and ergodic sequence

(Yt) such that the distribution of Yt conditional on Fa
t−1 is F∆t,λt

, where λt satisfies (2.8)

with (∆t) a stationary and ergodic Markov chain, if ρ (Ω) < 1.

If the mixture sequence (∆t) is iid with πs = P (∆t = s) then Theorem 3.1 becomes.

Proposition 3.2 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N sat-

isfying (2.3). Assume that the functions gs(y1, . . . , yq, λ1, . . . , λp) (1 ≤ s ≤ S) satisfy (3.15)
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and that (∆t) is iid. If
S
∑

s=1

πs

(

q
∑

i=1

αsi +

p
∑

j=1

βsj

)

< 1 (3.16)

then there exists a stationary and ergodic sequence (Yt) such that the distribution of Yt

conditional on Fa
t−1 is F∆t,λt

, where λt satisfies (2.8).

The proof of Proposition 3.2 is given in the supplement to this paper.

Remark 3.4 (Exogenous variables) If we consider the following specification

λt = g∆t
(Yt−1, . . . , Yt−q, λt−1, . . . , λt−p) + h(X t−1)

instead of (2.8), where h is a positive function and X t−1 is defined as in Remark 3.1, then the

conclusions of Theorem 3.3 remains unchanged. Here again the integration of covariates in

the general specification of the conditional mean, as an additive function, does not influence

the stability conditions.

4 The present-regime dependent switching

In this Section we give stationarity and ergodicity conditions for model (2.6) when the

specification of λ∆t,t is governed by (2.9) or (2.10). We first consider the linear conditional

mean case (2.9). Particular equivalent conditions when (∆t) is iid are obtained. We then

extend the result to the more general specification (2.10).

4.1 The linear conditional mean case

Denote by diag (a1, ..., aS) the diagonal matrix whose diagonal elements are a1, ..., aS in this

order. Set αi = (α1i, ..., αSi)
⊤ , (1 ≤ i ≤ q), βj = diag

(

β1j, ..., βSj

)

, (1 ≤ j ≤ p) and let the

S-vector 1s defined by 1s (τ) =







1 if τ = s

0 otherwise
(1 ≤ τ ≤ S). Consider the S2 ×S2-matrix
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D(l) (l = 1, ..., r = max (p, q)) given by

D(l) =











D
(l)
11 · · · D

(l)
1S

...
. . .

...

D
(l)
S1 · · · D

(l)
SS











and D(l)
τs = p(l)sτ

(

αl1
⊤

s + βl

)

, τ , s = 1, ..., S.

Let also

D =























D(1) D(2) · · · D(r−1) D(r)

IS2 0S2×S2 · · · 0S2×S2 0S2×S2

0S2×S2 IS2 · · · 0S2×S2 0S2×S2

...
...

. . .
...

...

0S2×S2 0S2×S2 · · · IS2 0S2×S2























. (4.1)

A similar matrix has been earlier proposed by Abramson and Cohen (2007) in the real-valued

MS-GARCH case.

Theorem 4.1 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3) and assume that (∆t) in (2.6) is a stationary and ergodic Markov chain. There exists

a stationary and ergodic sequence (Yt) satisfying (2.6), where the λst’s satisfy (2.9), if

ρ (D) < 1. (4.2)

Conversely, if there exists a solution of (2.6) and (2.9) such that EYt < ∞ and (∆t) is

irreducible and satisfies A1 then (4.2) holds.

For example, when p = q = 1 and S = 2, condition (4.2) reduces to ρ
(

D(1) < 1
)

where

D(1) =

















p11 (α11 + β11) 0 p21β11 p21α11

p11α21 p11β21 0 p21 (α21 + β21)

p12 (α11 + β11) 0 p22β11 p22α11

p12α21 p12β21 0 p22 (α21 + β21)

















.

Let ⊗ be the Kronecker product and denote by V ec (A) the stacking vector operator for a

matrix A. Under ρ
(

D(1)
)

< 1 the mean of the stationary solution is given by

EYt = V ec (IS)
⊤
(

IS2 −D(1)
)−1

π ⊗ ω (4.3)

19



where ω = (ω1, ..., ωS)
⊤ and π = (π1, ..., πS)

⊤.

Remark 4.1When p = q = 1, it may be possible to use a representation similar to that of

Liu (2006) for the MS-GARCH(1, 1) model. Let (Ut) be an iid sequence of random variables

uniformly distributed in [0, 1], independent of the sequence (∆t). Define the S-vectors λt =

(λ1t, ..., λSt)
⊤, 1[∆t] =

(

1[∆t=1], ..., 1[∆t=S]

)⊤
and F−

λt
=
(

F−

1,λ1t
(Ut) , ..., F

−

S,λSt
(Ut)

)⊤
. Assume

that

Yt =
S
∑

s=1

1[∆t=s]F
−

s,λst
(Ut) (4.4)

which is a particular form of (2.6), where λst satisfies (2.9) with p = q = 1. Then model

(4.4) can be written in the following vector form

λt = ω + α11
⊤

[∆t−1]
F−

λt−1
+ β1λt−1,

where α1 and β1 are defined as in (4.1). Hence, by A1 and Lemma 3 in Francq and Zakoian

(2005), we get

πsE (λt | ∆t−1 = s) = πsω +
(

α11
⊤

s + β1

)

S
∑

τ=1

pτsπτE (λt−1 | ∆t−2 = τ) .

In view of the latter equality and using similar techniques as above, a sufficient condition for

the model given by (4.4) and (2.9) with p = q = 1 to have a stationary and ergodic solution

is that

ρ (C) < 1,

where

C =











C11 · · · CS1

...
. . .

...

C1S · · · CSS











and Cτs = pτs
(

α11
⊤

s + β1

)

, τ , s = 1, ..., S.

For S = 2 the above matrix is explicitly given by

C =

















p11 (α11 + β11) 0 p21 (α11 + β11) 0

p11α21 p11β21 p21α21 p21β21

p12β11 p12α11 p22β11 p22α11

0 p12 (α21 + β21) 0 p22 (α21 + β21)

















.
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Under the condition ρ (C) < 1, the unconditional mean of the stationary solution is given

by

EYt = V ec (IS)
⊤ (IS2 − C)−1 π ⊗ ω. (4.5)

For the iid switching case we use an equivalent but simpler representation than (4.1).

Assume now that (∆t) is iid. In the INGARCH case, a similar model was considered by

Diop et al (2016) when the conditional distribution is a Poisson mixture and by Diop et al

(2018) for a negative binomial mixture. These authors studied stationarity in mean of the

models but without considering strict stationarity and ergodicity. Let

A(l) = αlπ
⊤ + βl

=

















α1lπ1 + β1l α1lπ2 · · · α1lπS

α2lπ1 α2lπ2 + β2l · · · α2lπS

...
...

. . .
...

αSlπ1 αSlπ2 · · · αSlπS + βSl

















, 1 ≤ l ≤ r,

and

Σ =























A(1) A(2) · · · A(r−1) A(r)

IS 0S×S · · · 0S×S 0S×S

0S×S IS · · · 0S×S 0S×S

...
...

. . .
...

...

0S×S 0S×S · · · IS 0S×S























. (4.6)

Theorem 4.2 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3). A sufficient condition for the existence of a stationary and ergodic sequence (Yt) with

conditional distribution of the form (2.6), where λst satisfies (2.9) and (∆t) is iid, is that

ρ (Σ) < 1. (4.7)

Conversely, if there exists a solution to (2.6) and (2.9) such that EYt < ∞ and (∆t) is iid

with ∆t is independent of (λst)s then (4.7) holds.
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For the particular case p = q = 1 the matrix Σ given by (4.6) reduces to

A(1) =

















α11π1 + β11 α11π2 · · · α11πS

α21π1 α21π2 + β21 · · · α21πS

...
...

. . .
...

αS1π1 αS1π2 · · · αS1πS + βS1

















.

Under (4.7) with p = q = 1 the mean of the process has the following expression

EYt = π⊤
(

IS − A(1)
)−1

ω. (4.8)

4.2 Nonlinear conditional mean

Theorem 4.1 can be extended to the case where the mixing conditional means (λst)s have

nonlinear specifications of the form (2.10). Berentsen et al (2018) proposed a Markov-

switching INGARCH model, a particular case of (2.10), but they do not study its ergodic

properties. Theorem 4.3 below give an answer to that question. Let the matrix D be defined

as in (4.1) while replacing the coefficients (αsi, βsj) by those of the Lipschitz inequality (3.15).

Theorem 4.3 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3). Assume that the functions gs(y1, . . . , yq, λ1, . . . , λp) (1 ≤ s ≤ S) satisfy the Lipschitz

condition (3.15). If ρ (D) < 1 then there exists a stationary and ergodic sequence (Yt) such

that the distribution of Yt conditional on Fa
t−1 is F∆t,λ∆t,t

(y), where λst satisfies (2.10) and

(∆t) in (2.6) is a stationary and ergodic Markov chain.

When the regime sequence (∆t) is iid, the following result simplify the condition of

the latter theorem and at the same time generalizes Theorem 4.2 to the case where the

specification of the conditional mean is given by the general form (2.10).

Theorem 4.4 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.3). Assume that the functions gs(y1, . . . , yq, λ1, . . . , λp) (1 ≤ s ≤ S) satisfy the Lipschitz

condition (3.15). Let Σ be defined as in (4.6) but whose coefficients are those of the Lipschitz

representation (3.15). If ρ (Σ) < 1 then there exists a stationary and ergodic sequence (Yt)

such that the distribution of Yt conditional on Fa
t−1 is F∆t,λ∆t,t

(y), where λst satisfies (2.10)

with (∆t) iid.
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The proofs of Theorem 4.2 and Theorem 4.4 are available in the supplement to this paper.

5 The present-regime mean-dependent switching

This Section deals with the MS-POLI model (2.6) with mixing conditional means satisfying

(2.12). The mean stationarity of an MS-GARCH analog to (2.6) and (2.12) was studied by

Klaassen (2002) when p = q = 1 while the strict stationarity and ergodicity were investigated

by Abramson and Cohen (2007). We thus give a necessary and sufficient ergodicity condition

for (2.6) and (2.12) provided the corresponding mixing distributions satisfy the stochastic-

equal-mean property (2.3). Ergodicity conditions for the extension (2.13) are also provided.

Let Ω be the matrix defined by (3.1).

Theorem 5.1 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satis-

fying (2.3) and assume that (∆t) is a stationary and ergodic Markov chain. There exists a

stationary and ergodic sequence (Yt) satisfying (2.6), where λst is given by (2.12), if (3.3)

is satisfied.

Conversely, if there exists a solution of (2.6) and (2.12) such that EYt < ∞ with (∆t)

an irreducible stationary Markov chain satisfying A1, then (3.3) holds.

When p = q = 1, the ergodicity condition of model (2.6) and (2.12) is ρ
(

M (1)
)

< 1 where

M (1) is given by (3.1). Under the latter condition, the mean of the stationary solution is

given by

EYt = 1⊤
(

IS −M (1)
)−1

d.

The latter result is the same unconditional mean formula given for the past-dependent regime

case. It is also similar to the unconditional variance expression for the MS-GARCH(1,1)

model of Klaassen (2002, equalities (25)-(27)).

Let us finally generalize Theorem 5.1 to the case where the conditional mean regimes are

given by the general nonlinear form (2.13).

Theorem 5.2 For s = 1, ..., S let Fλ = Fs,λ (λ > 0) be a family of cdf ’s on N satisfying

(2.6). Assume that the functions gs(y1, . . . , yq, µ1, . . . , µp) (1 ≤ s ≤ S) in (2.13) satisfy the
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Lipschitz condition (3.15). Let Ω be defined as in (3.1) but whose coefficients are those of

the Lipschitz representation (3.15). If (3.3) is satisfied then there exists a stationary and

ergodic sequence (Yt) such that the distribution of Yt conditional on Fa
t−1 is F∆t,λ∆t,t

, where

λst satisfies (2.13).

6 Monte Carlo approximations of expectations

The aims of this short section are to: 1) compare the theoretical expectations of the different

MS-POLI models with their empirical counterparts; 2) check numerically that the different

expressions of a same expectation (such as (4.3) and (4.5)) coincide; 3) see the effect of the

regime switching mechanism on the marginal expectation. Note that 1) will serve as an

indirect validation of our theoretical calculations. Note also that 2) is useful because, in

particular, we have not been able to directly prove that (4.3) and (4.5) provide the same

value although the matrices D(1) and C are not the same.

For the conditional distribution (2.6) we first consider a continuous ACD type model

Yt = λ∆t,tzt where (zt) is iid with exponential distribution of mean 1, and is independent of

(∆t). We also consider an integer-valued conditional distribution, more precisely a negative-

Binomial Yt | Fa
t−1 ∼ NB

(

1, 1
1+λ∆t,t

)

. For the distribution of (∆t) we also consider two

cases. First a Markov switching with 3 regimes and transition probability matrix

P =











0.1 0.1 0.8

0.1 0.1 0.8

0.8 0.1 0.1











(so that π1 = 0.429..., π2 = 0.1, π3 = 0.470...),

and secondly an iid sequence with π1 = π2 = 0.1 and π3 = 0.8. For convenience we refer

to (2.7), (2.9) and (2.12) as Type I, II, and III regime switching, respectively. The other

parameters are fixed to ω = (1, 2, 3), p = q = 1, α1 = (0.05, 0.1, 0.1) and β1 = (0.5, 0.6, 0.7).

We end up with a set of 12 models. For example, NB-MS-II denotes an INGARCH model,

with conditional negative-Binomial distribution of mean satisfying the present-regime mean-

dependent switching (2.9), in which the Markov chain ∆t has transition probability matrix
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Table 1: Marginal mean of the model when the Markov chain ∆t is independent (IID) or

not (MS), and as function of the regime switching type (ACD and NB, as well as Type I

and III, have same mean)

MS Type I MS Type II IID Type I IID Type II

6.137017 7.764563 11.48936 12.45823

P . Table 1 provides the theoretical means of these models, obtained from (3.4) for Type I

or Type III and from (4.3) for the regime switching of Type II. We verified that (4.3) and

(4.5) always give the same result, and that (3.4) and (3.7), and (4.3) and (4.8), coincide

when (∆t) is iid. Note also that, as expected, the mean of the process depends of its regime

switching mechanism. We then simulated N = 100 independent replications of simulations

of length n = 1000 of each of the 12 models. Figure 1 shows that the empirical means

are in accordance with the theoretical ones. Similar results were obtained for other sets of

parameters, which leads us to consider that our theoretical calculations are plausible.

7 Conclusion

We proposed stationarity and ergodicity conditions for a vast and flexible class of Markov

switching autoregressive conditional mean models. Such a class includes in particular count,

duration and proportion models without imposing the MEM constraint while having a similar

dynamics for the conditional mean as the MS-GARCH models. The switching sequence can

be iid or a stationary and ergodic Markov chain. In addition, the mixing distributions

are not constrained to be equal across regimes but should belong to the class of equal

stochastic and mean orders, which includes the one-parameter exponential family and other

interesting distributions. Three variants of the model differing in the way the regime sequence

is integrated in the conditional mean dynamics have been considered. We also proposed for

the case p = q = 1 conditions for finite moments when the conditional mean specification

is governed by the past of the regime sequence. The stationarity conditions match those
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Figure 1: Boxplots of N = 100 empirical means of simulation of length n = 1000 of 12

MS-POLI models (the theoretical means of Table 1 are indicated by dotted lines).

26



known for similar MS-GARCH models irrespective of the choice of mixing distributions.

However, finite moment conditions heavily depend on these mixing distributions. Numerous

extensions can be considered. In particular, it would be interesting to extend our results to

multivariate versions of the MS-POLI model.

A Proofs

Lemma A.1 Let A be a (component-wise) nonnegative r× r-matrix (r ∈ {1, 2, ...}), and b

a positive vector in R
r. If there is a positive vector c ∈ R

r such that

b = Ab+ c

then ρ (A) < 1.

Proof Under the assumptions of the lemma, it follows that

Ab < b

(component-wise) so the result follows from Corollary 8.1.29 of Horn and Johnson (2013). �

Proof of Theorem 3.1 If there exists a solution of (3.2) such that EYt = Eλt <∞ for

all t, then for all 1 ≤ s ≤ S

E (Yt | ∆t = s) = E
(

E
(

Yt | F
a
t−1

)

| ∆t = s
)

= E (λt | ∆t = s) .

Under A1, using Lemma 3 in Francq and Zakoian (2005) we thus get

πsE (λt | ∆t = s) = πsωs + πs

r
∑

l=1

(αsl + βsl)E (λt−l | ∆t = s) , 1 ≤ s ≤ S

= πsωs +
r
∑

l=1

S
∑

j=1

(αsl + βsl) p
(l)
jsπjE (λt−l | ∆t−l = j) . (A.1)

Taking hs = πsE (λt | ∆t = s), h = (h1, ..., hS)
⊤, h =

(

h⊤, ..., h⊤
)⊤

rS×1
, d = (π1ω1, ...,

πSωS)
⊤, and d =

(

d⊤, 0⊤S×1, ..., 0
⊤

S×1

)⊤

rS×1
, equality (A.1) can be rewritten in a block-matrix
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form h = d+ Ωh, which entails

hS = dS + ΩhS with hS = ΩS−1h, dS = ΩS−1d.

Therefore, by the positivity of the coefficients of hS and dS and Lemma A.1, condition (3.3)

should be satisfied.

Conversely, assume (3.2) holds. Let (Ut) be an iid sequence of random variables uniformly

distributed in [0, 1], independent of the sequence (∆t). Let also Y
(k)
t = λ

(k)
t = 0 for k < 0,

and when k ≥ 0,

Y
(k)
t = F−

∆t,λ
(k)
t

(Ut), λ
(k)
t = ω∆t

+

q
∑

i=1

α
∆t

,iY
(k−i)
t−i +

p
∑

j=1

β
∆t

,jλ
(k−j)
t−j . (A.2)

For k ≥ 2, we have

λ
(k)
t = ψk(Ut−1, . . . , Ut−k+1; ∆t, ...,∆t−k+1),

where ψk : [0, 1]k−1 × {1, ..., S}k → [0,∞) is a measurable function. Therefore, for any k,

the sequences
(

λ
(k)
t

)

t
and

(

Y
(k)
t

)

t
are stationary and ergodic. Let also Fa(k)

t−1 and F∗

t−1 be

the sigma-fields generated by
{

Y
(k−i)
t−i ,∆t−i+1, i > 0

}

and {Us,∆s+1, s < t}, respectively. We

have

E
(

Y
(k)
t | Fa(k)

t−1

)

= E
(

Y
(k)
t | F∗

t−1

)

= λ
(k)
t ,

P
(

Y
(k)
t ≤ y | Fa(k)

t−1

)

= P
(

F−

∆t,λ
(k)
t

(Ut) ≤ y | F∗

t−1

)

= F
∆t,λ

(k)
t

(y).

To show the existence of a solution to (3.2), with Fa
t−1 replaced by F∗

t−1, it is sufficient to

show that

λt = lim
k→∞

λ
(k)
t exists almost surely (a.s.) in [0,+∞). (A.3)

Taking the limit as k → ∞ in both sides of the equalities in (A.2), the solution will be then

given by Yt = limk→∞ Y
(k)
t = F−

∆t,λt
(Ut) a.s. Note that the distribution of Yt given F∗

t−1 is

the same as that of Yt given Fa
t−1 since λt is F

a
t−1-measurable.

We now show (A.3) under (A.2). We first prove that, for all positive integer k,

0 ≤ λ
(k−1)
t ≤ λ

(k)
t a.s. (A.4)
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and

E
(

Y
(k)
t − Y

(k−1)
t

)

= E
(

λ
(k)
t − λ

(k−1)
t

)

∈ [0,∞). (A.5)

When k ≤ 0, it is clear that (A.4) and (A.5) hold true. Assume (A.4) is satisfied up to

k. In view of (2.3)

λ
(k)
t = ω∆t

+

q
∑

i=1

α∆t,iF
−

∆t−i,λ
(k−i)
t−i

(Ut−i) +

p
∑

j=1

β∆t,j
λ
(k−j)
t−j

≤ ω∆t
+

q
∑

i=1

α∆t,iF
−

∆t−i,λ
(k+1−i)
t−i

(Ut−i) +

p
∑

j=1

β∆t,j
λ
(k+1−j)
t−j = λ

(k+1)
t .

Therefore (A.4) and (A.5) follow by induction. Note that EY
(k)
t = Eλ

(k)
t exists for any fixed

k, and for all positive parameters. Now from (2.3), (A.2), (A.4) and (A.5) we have

E
(∣

∣

∣Y
(k)
t − Y

(k−1)
t

∣

∣

∣
| ∆t = s

)

= E
(

Y
(k)
t − Y

(k−1)
t | ∆t = s

)

= E
(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

and

πsE
(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

=
r
∑

l=1

πs (αsl + βsl)E
(∣

∣

∣
λ
(k−l)
t−l − λ

(k−l−1)
t−l

∣

∣

∣ | ∆t = s
)

=
r
∑

l=1

S
∑

j=1

p
(l)
js (αsl + βsl) πjE

(∣

∣

∣
λ
(k−l)
t−l − λ

(k−l−1)
t−l

∣

∣

∣ | ∆t−l = j
)

,

(A.6)

for all 1 ≤ s ≤ S. In the case p = q = 1, the equality (A.6) reduces to

πsE
(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

=
S
∑

j=1

pjs (αs1 + βs1) πjE
(∣

∣

∣
λ
(k−1)
t−1 − λ

(k−2)
t−1

∣

∣

∣
| ∆t−1 = j

)

,

and can then be rewritten

h(k) =M (1)h(k−1),

where h(k) =
(

h
(k)
1 , ..., h

(k)
S

)⊤

and h
(k)
s = πsE

(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

. More generally,

(A.6) can be embedded in a block-matrix form

h(k) = Ωh(k−1), (A.7)
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where h(k) =
(

h(k)⊤, ..., h(k−r+1)⊤
)⊤

. Under (3.3), h(k) → 0 exponentially fast as k → ∞ so
(

λ
(k)
t

)

k
converges in L1 and a.s. Moreover, since

λt = ψ(Ut−1, Ut−2, . . . ; ∆t,∆t−1, ...),

where ψ : [0, 1]∞×{1, .., S}∞ → [0,∞) is a measurable function, the sequence (λt) is ergodic

and so is (Yt). �

Proof of Theorem 3.2 Set msℓ = E
(

Y ℓ
t | ∆t = s

)

and µsℓ = E
(

λℓt | ∆t = s
)

(1 ≤ s ≤

S) when the moments exist, and bs(ℓ) =
∑ℓ−1

i=0 asℓ(i)E
(

λit | ∆t = s
)

. Then (3.9) entails

msℓ = E
(

E
(

Y ℓ
t | Fa

t−1

)

| ∆t = s
)

= as(ℓ)E
(

λℓt | ∆t = s
)

+ bs(ℓ). (A.8)

Let us show that EY 2
t <∞ iff (3.10) holds with ℓ = 2. For all 1 ≤ s ≤ S we have

πsµs2 = πsE
(

(

ω∆t
+ α∆t

Yt−1 + β∆t
λt−1

)2
| ∆t = s

)

= πsα
2
sE
(

Y 2
t−1 | ∆t = s

)

+ 2πsαsβsE (Yt−1λt−1 | ∆t = s)

+πsβ
2
sE
(

λ2t−1 | ∆t = s
)

+Ks (A.9)

where

Ks = 2πsαsωsE (Yt−1 | ∆t = s) + 2πsβsωsE (λt−1 | ∆t = s) + πsω
2
s.

On the other hand, by (A.8),A1 and Lemma 3 of Francq and Zakoian (2005), E
(

Y 2
t−1 | ∆t = s

)

in (A.9) can be rewritten as follows

πsE
(

Y 2
t−1 | ∆t = s

)

=
S
∑

τ=1

pτsπτE
(

Y 2
t−1 | ∆t−1 = τ

)

=
S
∑

τ=1

πτpτsmτ2

=
S
∑

τ=1

πτpτs (aτ (2)µτ2 + bτ (2)) . (A.10)

Similarly,

πsE (Yt−1λt−1 | ∆t = s) =
S
∑

τ=1

pτsπτE (Yt−1λt−1 | ∆t−1 = τ) =
S
∑

τ=1

pτsπτµτ2
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and

πsE
(

λ2t−1 | ∆t = s
)

=
S
∑

τ=1

pτsπτµτ2.

Substituting (A.10) and the two next equations into (A.9), we get

πsµs2 =
S
∑

τ=1

pτs
(

as(2)α
2
s + β2

s + 2αsβs

)

πτµτ2 +K ′

s

where

K ′

s = Ks + πsα
2
sbs(2) > 0.

Letting µ2 = (π1µ12, π2µ22, ..., πSµS2)
⊤ and K′ = (K ′

1, K
′

2, ..., K
′

S)
⊤, the latter equality can

be embedded into the following equation

µ2 =M2µ2 +K′

with K′ > 0 component-wise. Therefore, in view of Lemma A.1, EY 2
t <∞ entails (3.10) for

ℓ = 2.

We now show that (3.10) is also sufficient. From Theorem 3.1 we know that

Yt = lim
k→∞

↑ Y (k)
t .

To prove that ms2 exists, it thus suffices by the monotone convergence theorem to prove that

limk→∞m
(k)
s2 is finite for all s, where m

(k)
su denotes E

(

Y
(k)u
t | ∆t = s

)

which is finite for all

u ≥ 0 and k. Letting µ
(k)
su = E

(

λ
(k)u
t | ∆t = s

)

, and b
(k)
s (ℓ) =

∑ℓ−1
i=0 asℓ(i)E

(

λ
(k)i
t | ∆t = s

)

we have

πsµ
(k)
s2 = as(2)m

(k)
s2 + b(k)s (2)

=
S
∑

τ=1

pτs
(

aτ (2)α
2
s +

(

2αsβs + β2
s

))

πτµ
(k−1)
τ2 +K(k)′

s

where

K(k)′
s = 2πsαsωsE

(

Y
(k−1)
t−1 | ∆t = s

)

+ 2πsβsωsE
(

λ
(k−1)
t−1 | ∆t = s

)

+ πsω
2
s + πsα

2
sb

(k)
s (2)

→ K ′

s a.s.
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as k → ∞ because it can be shown from Theorem 3.1 that E(Yt−1 | ∆t = s) = limk→∞E(Y
(k)
t−1 |

∆t = s) and E(λt−1 | ∆t = s) = limk→∞E(λ
(k)
t−1 | ∆t = s). We thus have K

(k)′
s < cK ′

s

for all k ≥ 0 and some c > 0. Letting µ
(k)
2 =

(

π1µ
(k)
12 , π2µ

(k)
22 , ..., πSµ

(k)
S2

)⊤

and K(k)′ =

(K
(k)′
1 , K

(k)′
2 , ..., K

(k)′
S )⊤, we get

µ
(k)
2 =M2µ

(k−1)
2 +K(k)′ ≤ cK ′

s

∞
∑

i=0

M i
2.

It follows that µs2 = limk→∞ ↑ µ(k)
s2 < ∞ and then ms2 = limk→∞ ↑ m(k)

s2 < ∞ under (3.10).

The proof of Theorem 3.2 is complete in the case ℓ = 2. The general case is shown by

induction as for ℓ = 2. �

Proof of Theorem 3.3 Using the argument of Theorem 3.1 define Y
(k)
t as in (A.2). Let

λ
(k)
t = 0 if k ≤ 0 and for k > 0

λ
(k)
t = g∆t

(Y
(k−1)
t−1 , . . . , Y

(k−q)
t−q , λ

(k−1)
t−1 , . . . , λ

(k−p)
t−p ).

Similarly to the proof of Theorem 3.1, to show the existence of a stationary solution it suffices

to show the almost sure convergence (A.3) of λ
(k)
t as k → ∞. In view of (2.3) we have

E
(∣

∣

∣Y
(k)
t − Y

(k−1)
t

∣

∣

∣ | λ
(k)
t , λ

(k−1)
t ,∆t = s

)

= E
(∣

∣

∣λ
(k)
t − λ

(k−1)
t

∣

∣

∣ | ∆t = s
)

.

Therefore

E
(∣

∣

∣Y
(k)
t − Y

(k−1)
t

∣

∣

∣
| ∆t = s

)

= E
(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

. (A.11)

In view of (2.8), (3.15) and (A.11), we have

πsE
(∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
| ∆t = s

)

≤
r
∑

l=1

πs (αsl + βsl)E
(∣

∣

∣λ
(k−l)
t−l − λ

(k−l−1)
t−l

∣

∣

∣
| ∆t = s

)

=
r
∑

l=1

S
∑

j=1

p
(l)
js (αsl + βsl) πjE

(∣

∣

∣
λ
(k−l)
t−l − λ

(k−l−1)
t−l

∣

∣

∣
| ∆t−l = j

)

.

(A.12)

Inequality (A.12) can be embedded into the following matrix inequality (element-wise)

h(k) ≤ Ωh(k−1),
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where h(k) is defined as in (A.7). Thus, under ρ (Ω) < 1, h(k) → 0 as k → ∞ and
(

λ
(k)
t

)

k

converges in L1 and a.s. �

Proof of Theorem 4.1 If there exists a solution to (3.2) such that EYt < ∞ for all t

and λst satisfies (2.9) then for some s, τ ∈ {1, .., S},

E (λst | ∆t = τ) = ωs +

q
∑

i=1

αsiE (Yt−i | ∆t = τ) +

p
∑

j=1

βsjE (λs,t−j | ∆t = τ) . (A.13)

Under A1, Lemma 3 of Francq and Zakoian (2005) entails

E (λs,t−j | ∆t = τ) =
S
∑

s′=1

P (∆t−j = s′ | ∆t = τ)E (λs,t−j | ∆t = τ ,∆t−j = s′)

=
S
∑

s′=1

p
(−j)
τs′ E (λs,t−j | ∆t−j = s′)

=
S
∑

s′=1

πs′

πτ
p
(j)
s′τE (λs,t−j | ∆t−j = s′) , j = 1, ..., p, (A.14)

and

E (Yt−i | ∆t = τ) =
S
∑

s′=1

P (∆t−i = s′ | ∆t = τ)E (Yt−i | ∆t−i = s′) ,

=
S
∑

s′=1

πs′

πτ
p
(i)
s′τE (λs′,t−i | ∆t−i = s′) , i = 1, ..., q. (A.15)

Thus equality (A.13) can be written as follows

E (λst | ∆t = τ) = ωs +
r
∑

l=1

S
∑

s′=1

πs′

πτ
p
(l)
s′τ [αslE (λs′,t−l | ∆t−l = s′) + βslE (λs,t−l | ∆t−l = s′)] .

(A.16)

Letting wsτ = πτE (λst | ∆t = τ), w = (w11, w21, ..., wSS)
⊤, w =

(

w⊤, ..., w⊤
)⊤

rS2×1
, ω =

(ω1, ..., ωS)
⊤, ̟ =

(

π1ω
⊤, ...,πSω

⊤
)⊤

S2×1
, and ̟ = (̟⊤, 0⊤

S2×1, ..., 0
⊤

S2×1)
⊤, (A.16) can be cast

in the following block-matrix form

w = ̟ +Dw.

Therefore, in view of Lemma A.1, condition (4.2) holds.
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To show the sufficiency of (4.2), let (Ut) be defined as above and set Y
(k)
t = λ

(k)
t = 0

when k ≤ 0, and for k > 0

Y
(k)
t =

S
∑

s=1

1[∆t=s]F
−

s,λ
(k)
st

(Ut) , λ
(k)
st = ωs +

q
∑

i=1

αsiY
(k−i)
t−i +

p
∑

j=1

βsjλ
(k−j)
s,t−j . (A.17)

It can be shown by induction using the above arguments that conditionally on ∆t = s ,

0 ≤ λ
(k−1)
st ≤ λ

(k)
st 0 ≤ Y

(k−1)
t = F−

s,λ
(k−1)
st

(Ut) ≤ Y
(k)
t , 1 ≤ s ≤ S

so the sequences (λ
(k)
st )k and (Y

(k)
t )k are non-decreasing for all 1 ≤ s ≤ S. Moreover, similarly

to (A.14) and (A.15), it can be seen that

E
(∣

∣

∣Y
(k−i)
t−i − Y

(k−i−1)
t−i

∣

∣

∣
| ∆t = τ

)

=
S
∑

s′=1

p
(−i)
τs′ E

(∣

∣

∣λ
(k−i)
s′,t−i − λ

(k−j−1)
s′,t−j

∣

∣

∣ | ∆t−i = s′
)

, i = 1, ..., q,

E
(∣

∣

∣
λ
(k−j)
s,t−j − λ

(k−j−1)
s,t−j

∣

∣

∣
| ∆t = τ

)

=
S
∑

s′=1

p
(−j)
τs′ E

(∣

∣

∣
λ
(k−j)
s,t−j − λ

(k−j−1)
s,t−j

∣

∣

∣
| ∆t−j = s′

)

, j = 1, ..., p.

Therefore

πτE
(∣

∣

∣λ
(k)
st − λ

(k−1)
st

∣

∣

∣ | ∆t = τ
)

=

r
∑

l=1

S
∑

s′=1

πs′p
(l)
s′τ

[

αslE
(∣

∣

∣
λ
(k−l)
s′,t−l − λ

(k−l−1)
s′,t−l

∣

∣

∣
| ∆t−l = s′

)

+ βslE
(∣

∣

∣
λ
(k−l)
s,t−l − λ

(k−l−1)
s,t−l

∣

∣

∣
| ∆t−l = s′

)]

.

(A.18)

Setting w
(k)
sτ = πτE

(∣

∣

∣
λ
(k)
st − λ

(k−1)
st

∣

∣

∣
| ∆t = τ

)

, w(k) =
(

w
(k)
11 , w

(k)
21 , ..., w

(k)
SS

)⊤

, and w(k) =
(

w(k)⊤, ..., w(k−r+1)⊤
)⊤

, (A.18) can be stacked in the following linear system

w(k) = Dw(k).

It follows under (4.2) that w(k) → 0 exponentially fast as k → ∞, so (Y
(k)
t )k is a Cauchy

sequence in L1 and thus converges in L1 and a.s. �

Proof of Theorem 4.3 Define Y
(k)
t as in (A.17). Let λ

(k)
st = 0 if k ≤ 0 and when k > 0

λ
(k)
st = gs(Y

(k−1)
t−1 , . . . , Y

(k−q)
t−q , λ

(k−1)
s,t−1 , . . . , λ

(k−p)
s,t−p ), 1 ≤ s ≤ S.

34



By the same arguments used in (A.14), (A.15) and (A.18), it follows that

E
(∣

∣

∣λ
(k)
st − λ

(k−1)
st

∣

∣

∣ | ∆t = τ
)

≤

r
∑

l=1

S
∑

s′=1

πs′

πτ
p
(l)
s′τ

[

αslE
(∣

∣

∣
λ
(k−1)
s′,t−l − λ

(k−2)
s′,t−l

∣

∣

∣
| ∆t−l = s′

)

+ βslE
(∣

∣

∣
λ
(k−1)
s,t−l − λ

(k−2)
s,t−l

∣

∣

∣ | ∆t−l = s′
)]

.

The latter inequality can be embedded as follows

w(k) ≤ Dw(k),

where w(k) is defined in (A.18). Thus the conclusion follows under (4.2). �

Proof of Theorem 5.1 Let (Yt) be a solution of (2.6) with λst given by (2.12) such that

EYt <∞ for all t. For some s ∈ {1, .., S} we have

E (λst | ∆t = s)

= ωs +

q
∑

i=1

αsiE (Yt−i | ∆t = s) +

p
∑

j=1

βsjE
(

E
(

λ∆t−j ,t−j | ∆t = s,Ft−1

)

| ∆t = s
)

.

= ωs +

q
∑

i=1

αsiE (Yt−i | ∆t = s) +

p
∑

j=1

βsjE
(

λ∆t−j ,t−j | ∆t = s
)

. (A.19)

Under A1, using Lemma 3 in Francq and Zakoian (2005), it follows that

E
(

λ∆t−j ,t−j | ∆t = s
)

=
S
∑

τ=1

P (∆t−j = τ | ∆t = s)E (λτ ,t−j | ∆t−j = τ) . (A.20)

and

E (Yt−i | ∆t = s) =
S
∑

τ=1

P (∆t−i = τ | ∆t = s)E (Yt−i | ∆t−i = τ)

=
S
∑

τ=1

p(−i)
sτ

S
∑

s′=1

P (∆t−i = s′ | ∆t−i = τ)E (λs′,t−i | ∆t−i = τ)

=
S
∑

τ=1

p(−i)
sτ E (λτ ,t−i | ∆t−i = τ) . (A.21)

Substituting (A.20) and (A.21) into (A.19), we thus obtain

E (λst | ∆t = s) = ωs +
r
∑

l=1

S
∑

τ=1

p(−l)
sτ (αsl + βsl)E (λτ ,t−l | ∆t−l = τ)

= ωs +
r
∑

l=1

S
∑

τ=1

πτ

πs
p(l)τs (αsl + βsl)E (λτ ,t−l | ∆t−l = τ) ,
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which can be embedded into the following block-matrix form

v = d+ Ωv,

where v =
(

v⊤, ..., v⊤
)⊤

rS×1
, v = (v1, ..., vS)

⊤, vs = πsE (λst | ∆t = s), and d is defined in

(A.1). Therefore, Lemma A.1 and already given arguments entail (3.3).

For the sufficiency of (3.3), let Y
(k)
t = F−

∆t,λ
(k)
∆t,t

(Ut) and F (k)
t be the sigma-field generated

by {Y (k−u)
t−u , u ≥ 0}. Take λ(k)t = 0 when k ≤ 0 and

λ
(k)
st = ωs +

q
∑

i=1

αsiY
(k−i)
t−i +

p
∑

j=1

βsjE
(

λ
(k−j)
∆t−j ,t−j | ∆t = s,F (k−1)

t−1

)

, (A.22)

when k > 0. To compute the conditional expectation, we note that, by already given

arguments,

E
(

λ
(k−j)
∆t−j ,t−j | ∆t = s,F (k−1)

t−1

)

=
S
∑

τ=1

λ
(k−j)
τ ,t−jP (∆t−j = τ | ∆t = s,F (k−1)

t−1 )

and we adapt the algorithm of Hamilton (1994, p. 692-694) to compute recursively the

conditional probabilities. Using the above arguments, it is easy to show by induction that

the sequences (Y
(k)
t )k and (λ

(k)
st )k are nondecreasing for all 1 ≤ s ≤ S. Moreover, in view of

(A.22) we have

E
(∣

∣

∣
λ
(k)
st − λ

(k−1)
st

∣

∣

∣
| ∆t = s

)

=

q
∑

i=1

αsiE
(∣

∣

∣Y
(k−i)
t−i − Y

(k−i−1)
t−i

∣

∣

∣ | ∆t = s
)

+

p
∑

j=1

βsjE
(∣

∣

∣
λ
(k−j)
∆t−j ,t−j − λ

(k−j−1)
∆t−j ,t−j

∣

∣

∣
| ∆t = s,Ft−1

)

. (A.23)

Similarly to (A.20)-(A.21), the expectations in the right hand side of (A.23) can be rewritten

as

E
(∣

∣

∣
λ
(k−j)
∆t−j ,t−j − λ

(k−j−1)
∆t−j ,t−j

∣

∣

∣
| ∆t = s,Ft−1

)

=
S
∑

τ=1

p(−j)
sτ E

(∣

∣

∣
λ
(k−j)
τ ,t−j − λ

(k−j−1)
τ ,t−j

∣

∣

∣
| ∆t−j = τ

)

(A.24)

and

E
(∣

∣

∣
Y

(k−i)
t−i − Y

(k−i−1)
t−i

∣

∣

∣
| ∆t = s

)

=
S
∑

τ=1

p(−i)
sτ E

(∣

∣

∣
λ
(k−i)
τ ,t−i − λ

(k−i−1)
τ ,t−i

∣

∣

∣
| ∆t−i = τ

)

. (A.25)
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Therefore, substituting (A.24) and (A.25) into (A.23) we get

E
(∣

∣

∣
λ
(k)
st − λ

(k−1)
st

∣

∣

∣
| ∆t = s

)

=
r
∑

l=1

S
∑

τ=1

πτ

πs
p(l)τs (αsl + βsl)E

(∣

∣

∣
λ
(k−l)
τ ,t−l − λ

(k−l−1)
τ ,t−l

∣

∣

∣
| ∆t−l = τ

)

,

which can be embedded into the following system

v(k) = Ωv(k−1), (A.26)

where v(k)=
(

v(k)⊤, ..., v(k)⊤
)⊤

rS×1
, v(k) =

(

v
(k)
1 , ..., v

(k)
S

)⊤

, and v
(k)
s = πsE

(∣

∣

∣λ
(k)
st − λ

(k−1)
st

∣

∣

∣
| ∆t = s

)

.

Thus under (3.3), v(k) → 0 exponentially fast as k → ∞ so (Y
(k)
t )k converges in L1 and a.s.

�

Proof of Theorem 5.2 Let Y
(k)
t be defined as in (A.17) and λ

(k)
t given by

λ
(k)
st =







gs(Y
(k−1)
t−1 , . . . , Y

(k−q)
t−q , µ

(k−1)
t−1 , . . . , µ

(k−p)
t−p ) if k > 0

0 if k ≤ 0,

where µ
(k−j)
t−j = E

(

λ
(k−j)
∆t−j ,t−j | ∆t = s,Ft−1

)

. It can be easily shown by induction that
(

Y
(k)
t

)

k
and

(

λ
(k)
st

)

k
are nondecreasing. Moreover, similarly to (A.20)-(A.21) and (A.24)-

(A.25) we can write

E
(∣

∣

∣
λ
(k−j)
∆t−j ,t−j − λ

(k−j−1)
∆t−j ,t−j

∣

∣

∣
| ∆t = s,Ft−1

)

≤
S
∑

τ=1

p(−j)
sτ E

(∣

∣

∣
λ
(k−j)
τ ,t−j − λ

(k−j−1)
τ ,t−j

∣

∣

∣
| ∆t−j = τ

)

,

and

E
(∣

∣

∣Y
(k−i)
t−i − Y

(k−i−1)
t−i

∣

∣

∣ | ∆t = s
)

≤
S
∑

τ=1

p(−i)
sτ E

(∣

∣

∣λ
(k−i)
τ ,t−i − λ

(k−i−1)
τ ,t−i

∣

∣

∣ | ∆t−i = τ
)

.

Therefore, by the Lipschitz property (3.15) of the functions (gs)s, it follows that

E
(∣

∣

∣
λ
(k)
st − λ

(k−1)
st

∣

∣

∣
| ∆t = s

)

≤
r
∑

l=1

S
∑

τ=1

πτ

πs
p(l)τs (αsl + βsl)E

(∣

∣

∣
λ
(k−l)
τ ,t−l − λ

(k−l−1)
τ ,t−l

∣

∣

∣
| ∆t−l = τ

)

,

which can be cast in the following system of inequalities

v(k) ≤ Ωv(k−1),

where v(k) is defined as in (A.26). Thus under (3.3) it follows that v(k) → 0 exponentially

fast as k → ∞ so (Y
(k)
t )k converges in L1 and a.s. �
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Supplement to "Stationarity and ergodicity of Markov

switching positive conditional mean models"

Abdelhakim Aknouche and Christian Francq

Proof of Proposition 3.1

If there exists a stationary solution of (3:2) such that m = EYt = E�t > 0 then
 

1�
SX

s=1

�s

 
qX

i=1

�si +

pX

j=1

�sj

!!

m =
SX

s=1

�s!s:

Therefore, by the positivity of the parameters, (3:6) should be satis�ed.

Conversely, assume (3:6) holds and let (Ut) be an iid sequence of random variables uni-

formly distributed in [0; 1], independent of the sequence (�t). Let also Y
(k)
t and �

(k)
t (k 2 N)

be de�ned as in (A.2). To show the existence of a solution of (3:2) it is su¢cient to show

that

�t = lim
k!1

�
(k)
t exists almost surely (a.s.) in [0;+1):

By the same argument used in proving (A.4) and (A.5) we have for all k

0 � �
(k�1)
t � �

(k)
t a.s.

and

E
�
Y
(k)
t � Y

(k�1)
t

�
= E

�
�
(k)
t � �

(k�1)
t

�
2 [0;1):

Therefore, it follows under (3:6) that

E

����(k)t � �
(k�1)
t

��� =
SX

s=1

�s

rX

i=1

(�si + �si)E
����(k�i)t�i � �

(k�i�1)
t�i

��� � K�k; 8k � 1;

1



where K > 0 and � 2 (0; 1). This implies that
�
�
(k)
t

�

k
converges in L1 and a.s., establishing

the result. �

Proof of Proposition 3.2

Using the argument in Proposition 3.1 de�ne Y
(k)
t as in (A.2) and

�
(k)
t =

8
<

:
g�t(Y

(k�1)
t�1 ; : : : ; Y

(k�q)
t�q ; �

(k�1)
t�1 ; : : : ; �

(k�p)
t�p ; ��t) if k > 0

0 if k � 0:

As in the proof of Proposition 3.1, to show the existence of a stationary solution it su¢ces

to show the almost sure convergence of �
(k)
t as k !1. In view of (2:3) we have

E
����Y (k)t � Y

(k�1)
t

���
.
�
(k)
t ; �

(k�1)
t

�
=
����(k)t � �

(k�1)
t

��� .

Therefore

E

���Y (k)t � Y
(k�1)
t

��� = E
����(k)t � �

(k�1)
t

��� :

Under (3:15) and (3:3) it follows that

E

����(k)t � �
(k�1)
t

��� �
SX

s=1

max(p;q)X

l=1

�s (�sl + �sl)E
����(k�l)t�l � �

(k�l�1)
t�l

��� � K�k; 8k � 1

for some constant K > 0 and � 2 (0; 1). The proof of the existence of a stationary and

ergodic solution thus follows. �

Proof of Theorem 4.2

If there exists a solution of (2.6) such that EYt < 1 and E�st < 1 (1 � s � S) then

EYt =
PS

s=1 �sE�st and

E�st = !s +

qX

i=1

�si

SX

�=1

��E��;t�i +

pX

j=1

�sjE�s;t�j; 1 � s � S: (1)

2



Letting v = (E�1t; :::; E�St)
>, v =

�
v>; :::; v>

�>
rS�1

and ! =
�
!>; 0>S�1; :::; 0

>

S�1

�>
rS�1

, equal-

ity (1) can be embedded in the following block-matrix form

vS = !S + �vS

where vS = �S�1v > 0 and !S = �S�1! > 0. Therefore, by Lemma A.1, the condition

(4.7) should be satis�ed.

Conversely, let (Ut) be an iid sequence of random variables uniformly distributed in [0; 1],

independent of the sequence (�st). Let also Y
(k)
t = 0 = �

(k)
t when k < 0, and for k � 0,

Y
(k)
t =

SX

s=1

1[�t=s]F
�

s;�
(k)
st

(Ut) �
(k)
st = !s +

qX

i=1

�siY
(k�i)
t�i +

pX

j=1

�sj�
(k�j)
s;t�j : (2)

Conditionally on �t = s , it can be shown by induction that for all 1 � s � S,

0 � �
(k�1)
st � �

(k)
st ;

0 � Y
(k�1)
t = F�

s;�
(k�1)
st

(Ut) � Y
(k)
t ;

so the sequences (�
(k)
st )k and (Y

(k)
t )k are non-decreasing for all 1 � s � S. Since

E
����Y (k)t � Y

(k�1)
t

���
�
= E

����(k)st � �
(k�1)
st

��� ; 1 � s � S;

we then have

E

���Y (k)t � Y
(k�1)
t

��� = E
�
E

���Y (k)t � Y
(k�1)
t

��� j �t

�
=

SX

s=1

�sE

����(k)st � �
(k�1)
st

��� :

Therefore

E

����(k)st � �
(k�1)
st

��� =
qX

i=1

�si

SX

�=1

��E

����(k�i)�;t�i � �
(k�i�1)
�;t�i

���+
pX

j=1

�sjE

����(k�j)s;t�j � �
(k�j�1)
s;t�j

��� :

Letting u(k) =
�
E

����(k)1t � �
(k�1)
1t

��� ; :::; E
����(k)St � �

(k�1)
St

���
�>
, the latter equality can be cast

in the following block-matrix equality

u
(k) = �u(k�1); (3)

3



where u(k) =
�
u(k)>; :::; u(k�r+1)>

�>
. Therefore, under the condition (4.7)

u
(k) ! 0

exponentially fast as k !1. Hence (Y
(k)
t )k is a Cauchy sequence in L

1 and thus converges

in L1 and a.s. �

Proof of Theorem 4.4

Let Y
(k)
t be de�ned as in (2) and �

(k)
st (1 � s � S) be given by

�
(k)
st =

8
<

:
gs(Y

(k�1)
t�1 ; : : : ; Y

(k�q)
t�q ; �

(k�1)
s;t�1 ; : : : ; �

(k�p)
s;t�p ); if k > 0

0 if k � 0:

Using the above arguments it can be easily shown that

E
����Y (k)t � Y

(k�1)
t

��� j �(k)t ;�
(k�1)
t

�
�

SX

s=1

�sj�
(k)
st � �

(k�1)
st j;

where �
(k)
t =

�
�
(k)
1t ; :::; �

(k)
St

�0
. Therefore

E

���Y (k)t � Y
(k�1)
t

��� �
SX

s=1

�sE

����(k)st � �
(k�1)
st

���

and

E

����(k)st � �
(k�1)
st

��� �
qX

i=1

�si

SX

�=1

��E

����(k�i)�;t�i � �
(k�i�1)
�;t�i

���+
pX

j=1

�sjE

����(k�j)s;t�j � �
(k�j�1)
s;t�j

��� :

Using the same notations as in (3), the latter inequality becomes

u
(k) � �u(k�1);

(element-wise) from which the conclusion follows under the condition (4.7). �
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