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Summary

The national budget affects life and death via its allocations in areas such as traffic safety, flood control, public

health and the like. When the cost-effectiveness of an intervention is evaluated, common effect measures are the

number of lives extended (saved) and the expected life-years gained. The latter  are usually adjusted for quality

of life, giving QALYs, and discounted.  In models that support  decision making on the national aggregates, the

subjects  can  be  reduced  to  representative  agents that  are  scored  only on  these  dimensions. The  lives  extended

measure is  impartial  to  age  and  sex.  The  life-years  measures  however  are  biased  in  age  and  sex,  since  young

people have a higher life expectancy than the old and women have a higher life expectancy than men, and policy

advice might reflect that bias. It seems advisable to devise a measure that is more impartial and fair with respect

to the age groups and the sexes.  An alternative is to  value a single life at  100%, and to  measure the life-years

gain with respect  to that  100%. In addition,  rather  than fine-tune policy with interpersonal  utility comparisons,

one could choose a utility norm for the representative agent. A possible norm for time preference and diminish-

ing marginal utility of life is the square root. The square root is easier to communicate than logarithmic utility or

some rate  of discount,  but has comparable effect.  A life of  100 years then has value 10,  a  life of  25 years has

value 5, so that by age 25 half of life is passed. The considerations of both 100% range and square root utility

lead  to  the  following age  & sex  adjusted  gain  measure.  When  a  person  has  age  a,  experiences  an  event  (acc-

ident,  disease)  with a  life  expectancy of  d  years,  but  might have  an  intervention such  that  the  life  expectancy

could become e, then the current effect measures are the single life saved and the absolute life-years gain x = e -

d,  but the proposed  compromise gain measure is  g[x |  a,  d]  = x  /   a � d � x .  The  square  root  gives the

utility of the representative agent, g gives the impact for interpersonal comparison, and aggregate utility is found

by summing the gi  over the individuals i.  For example, saving (from acute death, d  = 0) a baby (a  = 0) has the

same value, namely 1, whether it is a boy (life expectancy at birth, x = 75.94) or girl (x = 80.71) (data Statistics

Netherlands 2002).  As another  example, let  the unit share s  =  x  /  (a  +  e)  be 25% for  one person and 81% for

another person so that the last person would weigh more than three times as much in this respect. For above gain

measure, g = s  and the weight ratio becomes 50% / 90%, so that the last person now weighs less than half so

that  there  is  more  equality.  The  paper  compares  various  gain  measures  within  the  context  of  social  welfare

maximization. The update in 2020 has a more explicit discussion of Fair Innings (FI) and Proportional Shortfall

(PS), and it is shown in a better manner that the UnitSqrt can be an acceptable compromise.

Keywords:  social  welfare;  decision  making;  risk;  health;  quality  of  life;  cost-effectiveness;  discounting;  fair

innings; proportional shortfall; unitsqrt

Note: This notebook is implemented in Mathematica, see Cool (2001a, 2020). The page numbers in the table of

contents in the update are off.
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1. Introduction

1.1. National budget allocations and their impact on life & death

The national budget affects life and death via its allocations in areas such as traffic safety, flood control, public

health and  the  like.  To  measure the  impact  of  interventions,  the  literature  recognises  the  following main mea-

sures for the value of life:

(1) The number of lives extended (saved), the NL measure, with the “rule of rescue” (ROR).

(2) The amount of life-years gained, the LY measure.

(3) The amount of quality adjusted life-years gained, the QALY measure.

(4) Discounted values of these, at different rates.

(5) Elaborations of above measures, which are the topic of this present paper. A derived measure is the average

life-years  gain  per  saved  person;  another  derived  measure  is  the  average  per  participating  person.  The  main

criteria are in Section 3.1. This update of 2020 now also includes Appendix G with a more explicit discussion of

the  “fair  innings”  (FI)  by Williams (1997)  and  the  “proportional  shortfall”  (PS)  by the  Dutch  national  health

insurance, see Van de  Wetering  et  al.  (2013)  and  in  Dutch ZIN (2018ab).  The  discussion of  these  alternative

measures was more implicit in 2003 and can better be made more explicit. The UnitSqrt measure combines the

best  features  of  FI  and  PS.  Thus  it  is  more  useful to  maintain the  body of  the  text  of  2003,  that  develops  the

notion of the UnitSqrt, and refer readers interested in the comparison with FI and PS to Appendix G.

The measures are distinguished by counting ("how many") and weighing ("how much"). Financial benefits and

costs  will  be  included  to  derive  the  (Incremental)  Cost-Effectiveness Ratio's  (ICER)  of  the  (net)  cost  per  life

saved or cost per life year gained. Gold et al. (1996) discuss these measures from the viewpoint of public health.

Jonkman et  al.  (2003)  give an overview for  e.g.  environmental risks,  industrial  accidents  and flood  risks.  The

Dutch environmental planning bureau RIVM report (2003) recalls the 1989 Dutch official risk target of at most

1  death  per  million per  year  (apart  of  crude  annual  mortality of  some 8800  per  million in  general)  and  it  dis-

cusses ways to deal with rising risks.

Since the measures of lives extended and life-years gained are different, they can cause different conclusions on

the priority of budget allocations. The two main dimensions where they differ are age and sex. The advantage of

the lives extended measure is that it seems neutral on age and sex, while the life-years gained measure is not. For

example, consider the situation of full recovery after the intervention, so that there is also no difference between

LY and QALY. Since the young have a higher life expectancy than the old, the LY measure will cause a bias to

the advantage of the young and the disadvantage of the old. Also, women live longer than men, on average, and

thus the use of the LY measure will cause a bias to the advantage of women and the disadvantage of men. Full

recovery is only an example, and the situation will differ per accident or disease, but it is clear that there could

be a bias. Indeed, if one chooses for the life-years measure, this bias is apparently the preferred one.

There  is  an  argument  that  the  life-years  gained  are  the  more  basic  measure  and  that  the  measure  of  the  lives

saved is only a proxy.  In some cases only the number of lives saved are  mentioned, but it  is often rather clear

what the implication would be for the number of life-years gained. For floods, for example, one would take the

average  life  expectancy,  and  multiply  this  with  the  number  of  lives  saved.  In  such  cases,  translations  can  be

made, at least in principle. This would suggest that the life-years gained measure is the more relevant effect. 

This argument that  selects the life-years gained as the basic  measure however runs counter  to the implied bias

for age and sex. It will be useful to give an example. In the Netherlands 2002,  life expectancy at birth is 75.94

years for boys and 80.71 years for girls (Statistics Netherlands 2002).  The difference between men and women

is reduced  when their  life  expectations  are  discounted,  but  still  remains sizeable,  especially  at  older  age  when

there  are  less  years  for  discounting.  The  following table  gives  some  key  data,  where  the  "average  person"  is

determined using population weights.
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Life expectancy At birth At 65

Sex Male Female Average Male Female Average

No discounting 75.94 80.71 78.35 15.78 19.3 17.61

At 3� 30.25 30.72 30.49 12.61 14.71 13.73

For  the  research  on  public  interventions,  the  table  has  the  implication that,  at  3% discounting,  a  male  baby is

30.25 / 12.61 = 2.4 times more important than a 65 old male. A programme of the same cost should save at least

2.4 male pensioners before it can outweigh a programme on saving male babies.

The following is the survival plot for Dutch men and women.
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Consider a theoretical example that highlights the issue. Suppose that 1000 men and 1000 women are screened

for some disease at age 65 with a test that costs $100 per person, and that 1 man and 1 woman are saved from

nearly immediate death, with full life expectancy restored. The discounted Cost-Effectiveness Ratio's in terms of

dollars per life year gained per man, woman and average person are:

100 * 1000 / {12.61, 14.71, 13.73}

�7930.21, 6798.1, 7283.32�

If the cut-off point is chosen between $6798 and $7930 per life year gained, then only women are treated.  The

health authority may try to  impose equality for  the sexes by various methods such as:  (a)  decide  on  the maxi-

mum, (b) use a different age cut-off point per sex, (c) compensate by tests on other diseases, (d) assign different

budgets,  (e)  impose  the  use  of  the  average  life  expectancy  and  forbid  the  distinction  by  sex  for  allocation

purposes. Precisely that such rules could be used, suggests that the life-years gained measure is not sufficient.

From the viewpoint of life-years, having the male sex is a serious disease that might warrant prenatal screening.

For biological reproduction only a small number of males needs to be born. For example, if 1 in a 1000 of births

were male, mankind still is not in danger of extinction, and this would add approximately 5 * 499 life-years per

1000  persons,  or  2.5  years per  person,  which would be  a  major  achievement in public  health  (as  measured by

life-years gained).  By  comparison,  Van  den  Akker-Van Marle  et  al.  (2002)  estimated that  total  elimination of

cervical cancer would yield a gain in life expectancy of 46 days per person (no discounting).

Conversely, could we find a measure such that this dramatic difference between the ages and sexes disappears,

so that neither age nor sex itself qualifies as a disease?

The QALY measure is intended for its own sake, namely quality adjustment of health (and not utility), but it is

also thought sometimes to provide a compromise between lives extended and life-years gained. Indeed,  having

more  measures  adds  to  the  richness  of  the  decision  situation,  but  may also  create  confusion  when conflicting

decisions  can  be  supported.  In  this  situation  the  QALY  measure  has  gained  some  prominence  as  the  single

compromise measure to use. However, Gold et al. (1996:8)  rightly remark: "To calculate the total health effect

of an intervention, analysts sum all quality-adjusted life-years. This simple addition implies that QALY's are of
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equal  value  no  matter  who  gains  them  or  when  they  occur  during  the  life  span.  Both  intuition  and  research

suggest that this is not the case and that deviations from this assumption are substantial and important". For the

present discussion it  is relevant that the QALY measure still appears  to be biased on age and sex as well. The

proposed  QALY  measures  try  to  incorporate  elements  of  age  and  sex,  for  example  by  scoring  subjects  "as

appropriate  for  a  person's  age"  (Gold  et  al.  (1996:128)),  but  there  still  remains the  overall  bias.  One  wonders

about a quality index that compares male and female life, and life at different ages. 

It may be noted that biasing one group via one programme will again increase their bias for other programmes as

well. This cumulating bias would only stop when the quality of life would diminish due to over-treatment. It may

be doubted whether this is the proper direction for public policy making.

1.2. The objective of this analysis

This paper considers the question whether we could find a reasonable balance between these measures, such that

we could use an age and sex adjusted measure of the (quality adjusted) life-years gain of the intervention. Such a

measure would correct the biases of the two original measures, and would absolve us from choosing the one or

the  other.  Clearly,  such  a  measure  involves  moral  choices,  but  it  must  be  noted  that  such  choices  are  made

anyhow, while the use of an intersubjectively accepted measure could streamline these discussions and decisions.

The issue is considered here from the viewpoint of modeling and decision making at the population level. Thus

we do not consider the alternative positions of the individual level (at bedside,  or clinical) or for health institu-

tions or for example insurance companies. Of course, there is the generally felt desire that the same measure of

success is used at all  levels, but  it  must also be  observed that  this goal  has some limitations. At the individual

level,  there  is  a  wealth  of  information  about  the  individual  person  so  that  subtler  moral  considerations  are

possible.  This  wealth of  information does  not  exist  at  the  population  level.  In  the  future,  with  the  advance  of

information  and  computer  technology,  and  in  a  perhaps  more  ideal  system  of  public  decision  making,  such

information could be accessible also for public planning. But in the current situation, planning at the population

level will have to use models of representative agents that rely on only a few characteristics. Indeed, in current

modeling,  the  representative  agent  is  reduced  to  sex,  age,  life  saved  and  life-years  gained.  With  such  limited

information, care  must still  be  taken to  prevent  biases.  This  paper  thus must be  seen in  the  modeling context,

without implications for  the  individual  level,  and  the  proper  question  considered  is  whether aggregate  validity

can be enhanced by better handling of the characteristics of the representative agent. 

Though much of the argumentation will be readily understood, such as the bias for age and sex, I have decided

to still write out the various smaller steps, so that clarity should be enhanced.

1.3. The context of public decision making

1.3.1. A reference model for utility maximization

In this discussion, there is a clear distinction between the private and public point of view. The situation can be

clarified  by  using  the  Lipscomb et  al.  (1996:236)  two-period  model,  where  an  individual  maximises utility  U

over health H and composite consumption X subject to a budget constraint of B with market rate of interest r:

max              U = U(H1, X1, H2, X2)

subject to      p1H1+ p '
1
X1 + (p2H2+ p '

2
X2) / (1+ r)  = B

For  twice  differentiable  utility  that  is  concave  in  each  argument  (see  Lipscomb  op.  cit.  for  other  caveats),  a

condition for the optimum is:

(
�U

� H1

/
�U

� H2

) = (1 + r) p1/ p2

Consider  now the  public  health  context,  however.  This  context  adds  other  constraints,  for  example to  warrant
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that a minimal level of health is attained, using minimum standards Ht, MIN as targets and subsidies S as means:

also subject to:  Ht �  Ht, MIN  &  St = pt Ht, MIN  &  replace B � B' = B + S1 + S2 / (1+ r) 

This example is  chosen such that  the public  health conditions can be  eliminated by substitution and relabeling

the variables into ht  = (Ht  - Ht, MIN), so that the problem takes public health efforts as given and concentrates on

health 'outside the system of public health'. 

With this extension, the model describes a game situation where both the individual and the public are deciding

on the individual's health. Typical public health considerations can be recognised here. When health is provided

within the  system, some people  may be  induced  to  risk  it  by  other  activities  outside  of  it.  If  the  public  health

authority would only hand out money to the poor so that they can acquire their own services in the market, then

there is the risk that the money is spent on other items than health, such as alcohol and drugs. Similarly, it might

be cheaper to compensate people for a loss of health rather than to prevent that loss, though that is not accepted

public health policy. 

1.3.2. Public and private decision making

The measures of effect and their evaluation, our question on finding a compromise and the approach for answer-

ing  it  are  best  understood  within  the  general  context  of  public  decision  making.  It  is  only  this  framework of

public decision making that makes it sensible to try to find a balance between a life and a (quality adjusted) life

year. In the other context of commercial decision making, this question loses most if not all of its relevance.

In  the  market  perspective,  the  value  of  life  is  a  residual  that  follows  from  other  decisions.  Each  individual

determines  the  value  of  his/her  life  him/herself,  determines  the  willingness to  pay  for  protective  and  medical

services, and tries  to find that service at  that  price.  The  market also  provides that  service as  long as  it  is  prof-

itable to do so. Equilibrium is defined in terms of price and marginal cost of service. Thus, demand and supply

concern health services, variable H above is well-defined in terms of health services rather than health itself, and

it is dubious whether health can be measured intersubjectively. The aggregate relation to the lives extended or

life-years  gained  is  only  a  statistical  result  and  not  a  primary  objective.  People  are  interested  in  their  own

particular  combination  of  life  saved  and  life-years gained,  the  market  average  is  a  mix of  all  these  individual

preferences, and this mix need not have a stable relation with the protective and medical services and their costs.

In  the  public  context,  the  objective  is  different.  It  is  to  maximise  an  effect  subject  to  a  given  budget.  The

marginal  value  of  a  life  or  life  year  follows  from  the  budget,  which  might  affect  the  decision  to  change  the

budget.  The  decisions involve interpersonal  comparison of  utility, and there  could be  norms that abstract  from

individual variation in order to arrive at impartiality. The objective could be for example that one maximizes the

life-years  of  the  most  disadvantaged  (which  would  follow  Rawl's  criterion).  In  the  theory  of  public  decision

making (see e.g. Mueller (1989)), there are two main reasons for collective allocation of funds:

(a) the good is a public good, i.e. without the possibility to discriminate between people,

(b) there are merit and demerit goods, generally causing taxes for the rich and subsidies for the poor.

These  two  theoretical  reasons  are  not  without  problems  for  practical  application.  For  flood  control,  it  seems

clear that a flood would affect all people indiscriminately in the flooded area, but on second thought one realises

that the rich may have boats or helicopters. For public health, an infectious disease affects all, but the rich might

still  pay  for  better  care.  What  transpires  from  these  theoretical  and  practical  points  is  that  one  can  always

recognize two levels in an implementation: (i) there is a basic infrastructure that applies to all and (ii) there is a

superstructure that allows for individual variability. Sometimes the infrastructure that applies to all has the form

of a provision for the poor only, but then the assumption is that the better-off provide for their own anyway. This

two-leveled structure is the main cause why QALY measurements enter the discussion: it is a method to handle

the basic infrastructure that is not part of the market mechanism.

Addendum 2020: Within the public sphere, there still remains the problem of “the cricket and the ant”. If there

would be an ideal scoring measure for ants, then what to do with a cricket that has been living irresponsibly and

that, facing disease or even death, wants to be treated like an ant ? The ideal measure would apply for a general
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class of  deserving persons,  consisting of  generally responsible  behaviour,  perhaps  in practice  calibrated  on the

lives of doctors and health workers. The class of ants can be extended with youngsters likely with a grace period

up to 25 years where youngsters might need to learn from accidents. Ants of all ages would also have an occa-

sional glitch, that would be regarded as insurable. Concerning the crickets, there seem to be no developed ideas

for  chronic  irresponsible  behaviour  of  the  25+  ages  who either  burden  the  public  health  system or  perhaps  at

times simply are neglected. It seems unavoidable that national insurance also develops a system that keeps track

of irresponsible behaviour, with bonus / malus categories. However, the latter discussion should not be confused

with the present topic of valuing deserving ant lives.

1.3.3. Social welfare theory

Any effort to find a proper  effect measure runs into the issue in Social Welfare Theory that relates to the 'non-

comparability  of  individual  utilities'  and  the  'impossibility  of  aggregating  preferences'.  Gold  et  al.  (1996:32)

remark: "A substantial literature,  spanning economics, philosophy, and political science, addresses the possible

specifications of the social welfare function and the ways that such a distributive scheme might be elicited from

the  views  of  members  of  society.  The  literature  suggests  that  there  is  no  consensus  on  the  specific  form  the

social  utility  function  should  take;  it  appears  to  be  impossible  to  select  a  specific  weighing scheme from any

universally  accepted  set  of  first  principles  (Sen,  1995).  Consequently,  much  of  the  economic  literature  con-

cerned  with  improvements  in  well-being  avoids  choosing  weights  to  be  attached  to  the  utilities  of  different

individuals."

It  appears,  however,  that  there  exists  a  common  misunderstanding  about  that  'impossibility  theorem',  and  it

appears that more is possible than commonly thought. This is discussed more extensively by Colignatus (2001b,

2014).  In summary, a society will always make a decision anyhow, and hence the moral and social objective is

to  find  a  decent  solution  that  can  be  substantiated.  It  is  better  to  define  'the  ideal'  as  something  that  can  be

realistically attained rather  than see the ideal  as  a  combination of  axioms that cannot be  combined anyway (as

happens  with the  axioms of  that  'impossibility theorem').  People  may not  agree  on  everything, but  they could

agree on what is workable. Hence, there is scope for an effort to find a measure for the value of life that would

work  in  practice.  When  it  can  be  shown  that  the  current  measures  of  lives  saved  and  life-years  gained  have

drawbacks that can be repaired, then there would be an advance in decision making.

1.3.4. The role of money

A  key  point  is  the  role  of  money.  It  actually  needs  an  explanation  why  money  is  not  a  generally  accepted

measure for the success of public health, traffic safety or flood control. For an economist, money is a medium of

exchange and store of value, and in principle it might be used as a measure of success. Money only tells that so

much of x trades for so much of y, and nothing else. When the payment for flood control or hospital bills or car

safety features buys additional years of life, then an estimate of the consumers' surplus in terms of money is an

implied measure of success, and it exists whether we think it morally suspect or not. Yet,  money is not a com-

monly  accepted  measure  of  effect.  Part  of  the  explanation  is  'paternalism'  ('merit  goods')  where  a  majority

decides  what  is  good  for  the  minority,  for  example  that  the  poor  should  not  simply  get  money  but  might  be

furnished with better  health.  Part  of  the  explanation however also  derives  from the need  to  account  for  public

funds. It requires a system of management to identify who are the true poor and who are only pretending to be

poor, and it requires a similar system of accountability to increase the likelihood that the subsidies are allocated

properly. This aspect of management and control is the main reason for the use of QALY's in the public domain.

Interestingly,  the  former  Dean  of  the  Yale  University  School  of  Medicine  remarked  in  a  speech  for  the  Aus-

tralian Society for Medical Research, Rosenberg (2002):

"First,  increases  in  life  expectancy  in  the  United  States  between  1970  and  1990  were  worth  roughly  US$2.8

trillion  dollars  a  year.  This  huge  sum represents  a  rate  of  return  on  the  research  investment of  greater  than  a

hundred to one! Second, reduced mortality from cardiovascular disease alone was estimated to be worth US$1.5

trillion  a  year.  Third,  improvements in  life  expectancy account  for  nearly  half  of  the  actual  gain  in  US  living

standards  during the past  50  years.  Fourth,  the likely returns from future medical research are  so high that  the

pay-off for  any plausible  portfolio  of  investments will  be  enormous.  For  example,  research that  would lead  to

reducing cancer deaths by as little as 10% would be worth US$4 trillion. I was stunned by these results." And: "I

was always taught to consider  these outcomes as incalculable.  To  have an economic value put on our  national
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investment and to find that it was so large was surprising and exhilarating."

1.3.5. Discounting

Since  we  deal  with  life,  we  also  deal  with  time,  time  preference  and  discounting.  Discounting  will  feature

strongly in  our  discussion.  Cohen (2003),  whose paper  is  by itself  advisable,  rightly calls  attention to  the  fact

that  the  reference  model  for  utility  maximization,  given  above  and  taken  from  Gold  et  al.  (1996),  has  been

formulated such  that  it  tends  to  imply discounting.  Above,  that  reference  model  was used  primarily  to  distin-

guish the private from the public context. It is not necessarily the right model to deal with time in that context. In

the discussion below, the suggestion arises  that  social  discounting (e.g.  at  the long run market rate  of  interest)

only applies to costs and that decisions on life could be done differently.

1.3.6. Solution approach

From these  considerations  it  would  seem to  follow that  the  effect  measures  have  only  limited  meaning at  the

aggregate  level.  This  insight  has  the  consequence  that  a  model  with  a  representative  agent  would  seem to  be

acceptable.  For  the  present  purposes,  it  could  suffice  to  simply  impose  a  norm  for  that  representative  agent

rather than develop a complete model that would capture all individual variability.

1.4. The structure of the argument

1.4.1. The proposed solution

The structure of the argument below can best be understood when also the structure of the proposed solution is

recognised. Let us first define the key parameters in the problem. Let a person have age a with a remaining life

expectancy of e[a] that is also sex dependent (but not put into formulas). At birth e* = e[0]. We can use symbol

y  to  stand  for  the  life-years,  either  expected  or  including  past  life.  When  the  person  becomes  ill  or  has  an

accident  with  a  life  expectancy  of  d  years,  there  might  be  a  treatment  or  intervention  such  that  the  life

expectancy could become e = d + x, possibly different from full recovery e[a], so that the LY effect measure is

the (expected) absolute gain x = e - d. The variable x can be seen as added to d or as taken away from e because

of the accident or disease. 

These variables can also be used to represent a burden of disease calculation. Namely, the burden of a particular

disease is the loss in life expectancy burden = e[a] - d = x, where d is the remaining expectancy after incurring

the disease. Prevention of the accident or disease can be seen as an intervention that “restores” the original life

expectancy that otherwise would have been lost. The present format is more general than for only e[a], since it

also allows for interventions that result in e rather than restoring e[a].

At  issue  is  now to  find  a  transform that  would  adjust  for  age  and  sex.  The  solution  approach  recognises  the

following steps:

(1) There is a measure for (quality adjusted) life-years y. (Life itself is implied by the existence of the person.)

(2)  The  representative  agent  has  utility  function  u[y]  that  applies  to  those  (quality  adjusted)  life-years  y.  The

model of such a representative agent is imposed by the public authority. The proposal is to use u[y] = y .

(3) There is a social gain function g[u, y] that applies to that utility (taking account of both life and life-years).

Society then maximises the sum of all individual gains, �i gi.  The proposed gain function is g[x | a, d]  = u[x] /

u[a + d + x]. With the square root as utility, the gain function will be called the "unit square root" (UnitSqrt).

(4)  When there  are  a-1  quality adjusted  years  with scores  0  	  qi  	  1,  then total  quality of  life  enjoyed  at  the

beginning of calendar age a is aq = 
 qi. A quality adjusted gain has g[xq | aq, dq], with eq = dq + xq the quality

adjusted expectation for the particular  intervention. Observe that aq can be found by simply adding the q’s for

the  relevant  calendar  age,  while  the  expectation  eq  tends  to  require  the  cohort  life  table  (for  the  population

average).

When the  agents  would be  altruistic  then the  gain  could  be  seen  as  full  part  of  individual  utility.  However,  it

suffices here to distinguish between individual utility and its impact on social welfare via the gain function and
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the  summation of  all  gains.  This  formulation neglects  interaction,  say between mother  and  child,  and  assumes

that  all  gains  can  be  assigned  to  individuals.  The  weight  of  an  individual  in  social  welfare  depends  upon  the

shape of the gain function.

In the following, we will discuss some utility functions, notably discounting, logarithmic utility and the square

root, and see what gain functions could be used. The combined criteria will be illustrated by graphs and numeri-

cal examples.

1.4.2. Individual discounting versus social discounting

Discounting will feature strongly in this discussion. The common assumption of diminishing marginal utility of

any consumption good also seems to apply to the length of life, and causes here the proposal of the square root

utility. This is similar to discounting of life-years gains, but this similarity needs to be discussed.

There is a difference between discounting for an individual and discounting over various individuals (over time).

Apparently,  already A.C.  Pigou warned that  discounting could define away our descendants.  F.P.  Ramsey, the

early theorist of dynamic consumption theory, was a strong proponent for a zero discount rate.  Hueting (1991,

1992)  restates  that  discounting implies a  zero  preference  for  environmental sustainability since  all  benefits  for

future  generations  are  basically  discounted  to  zero.  Hueting's  solution  is  to  impose  a  constraint  so  that  all

variables evolve subject to that constraint. Only the existing population is relevant, since our preferences for the

future generations enter our utility functions, and cause us to impose that constraint (or not), see Hueting & De

Boer (2019).

The proposed UnitSqrt measure has an individual and aggregate aspect.  The square root has the same effect as

discounting  the  life  expectancy.  Discounting  for  an  individual  seems  allowable,  since  it  applies  to  only  one

individual.  Interpersonal  comparison  of  utility  of  different  individuals  is  achieved  by  valuing  each  individual

total life at 100% each, and to value the extension of life by the UnitSqrt contribution to that 100%. Thus, time

preference and diminishing marginal utility are  associated  for  an individual,  but  there  is no such consideration

for a group of individuals. The idea then is that discounting for groups could be a category mistake.

1.4.3. Discounting and quality of life

The  issues  of  discounting and  quality  of  life  adjustment  complicate  the  discussion.  Note  how time preference

and diminishing marginal utility enter the discussion:

(i) diminishing marginal utility applies to the sum of life-years,

(ii) quality of life scores of the separate years could be discounted separately.

When there are n quality adjusted years with scores 0 	 qi  	 1, then total quality of life is y = 
 qi, the average

quality is y / n, and then the utility of the representative individual would at least be u[y, n, y / n]. Here y can be

both the expectation and realised life. Under the time trade-off interpretation of quality of life, y  is a sufficient

statistic that contains all relevant information on the other two variables, and then  u[y, n, y / n] collapses to u[y]

again.  However,  there  arises  a  difference  between  utility  and  discounting,  for  example  with  q1 � ... � qn

versus PV[{q1, ..., qn}, r] for rate of discount r. For example, the  square root utility of two periods {1, q} and

{q,  1} has 1 � q = q � 1 for some 0 < q  < 1, but this will not hold for discounting. Diminishing marginal

utility on how much the agent lives now differs from time preference on when the agent lives. When there is no

quality adjustment, i.e. when y = n, then a utility function with diminishing marginal utility and discounting are

comparable, but otherwise they differ.

The market and the public authority have different objectives here. 

(a) For the market, each decision would be taken with more knowledge about the individual characteristics than

would be available by other methods, at  least  in principle.  Consumers would willingly pay a  price for services

that they want, to avoid undesirable states of health. What is required is a clear  description of the health states

and information about the treatment and its likelihood of success. Quality of life measurement as the valuation

of the effect on a [0, 1] scale does not add information on the state itself. The price that equilibrates the market
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concerns the service that might cause that effect, but this is not the price of the effect itself. 

(b)  For  public  decision  making,  the  allocation  of  resources  concerns  public  goods  and  (de-)  merit  goods.

Something like a quality of life measurement might sometimes be feasible as a tool to decide on such allocation.

This  would  apply  in  particular  to  the  infrastructure  provided  for  the  poor  (since  the  richer  have  their  own

additional  market).  For  the  public  authority  who  uses  a  representative  agent,  diminishing  marginal  utility

(criterion (i) above) might suffice.

It follows that criterion (ii) seems to have less relevance. 

As Quality of Life might be based upon the Time Trade-Off approach, that issue is discussed in Appendix C. A

key point  may however  be  mentioned here.  A time trade-off  question  for  a  questionnaire  may run  like:  "How

many  calendar  years  of  your  disability  would  you  be  willing  to  sacrifice,  if  you  could  trade  with  one  year

without disability again ?" Such a question however is fraught with problems, since it implies the whole decision

problem that includes not only a "pure time trade-off" but also utility, risk, individual discounting, calendar time

issues, and personal circumstances such as family and income. MacKeigan et al. (2002) for example discuss the

possibility  of  double  discounting  in  such  QALY  measurements.  For  this  reason,  Appendix  C  will  employ  a

theoretical  "Degree  of  Living"  that  is  "pure  time  trade-off"  though  not  operationally  defined.  The  use  of  the

Degree of  Living concept  should clarify the point  that when Quality of  Life is  discounted,  at  the public  health

programming level, then this would likely not be based upon the Degree of Living content or "pure time trade-

off" in that Quality of Life but rather on additional utility considerations.

1.4.4. The appendices

The appendices discuss aspects that are relevant for this discussion but that stray from the main argument.

Appendix A discusses some general notions on social welfare.

Appendix B considers discounting when life is continuous and costs are discrete.

Appendix C considers discounting of degrees of living, i.e. the pure Time Trade-Off interpretation of Quality of

Life that is free from any consideration of utility.

Appendix D considers numerical examples. Our discussion is targeted at application at the population level, but

stylized examples of individual cases highlight some properties of the proposed effect measure.

Appendix E projects these numerical examples over time and age.

Appendix F discusses conditions for consistency.

Appendix G discusses the measures of Fair  Innings (FI)  and Proportional  Shortfall (PS)  more explicitly. Since

the UnitSqrt  measure combines the best  of  the features of  these  measures, the body of  this paper  provides  the

development of the main proposal of the UnitSqrt measure, and comparison with these alternative measures, as

already indicated in Section 3.1, can thus be developed more in this Appendix.

PM1.  For  the  graphs,  a,  d  and  x  generally  have  been  taken  as  variables  with the  origin  at  0,  which eases  the

interpretation.  The  life  extension  functions  have  been  defined  in  terms  of  x,  but  the  numerical  examples  in

Appendix D have been defined in terms of e.

PM2.  Before  we  consider  the  examples  below,  it  is  necessary  to  mention  a  point  of  psychology,  in  line  with

Kahneman  et  al.  (1982).  For  a  patient  who has  5  years  to  live,  it  (likely) matters  psychologically whether we

propose (i) to double the life expectancy, (ii) to add 5 years, (iii) to aspire at a total life expectancy of 10 years.

All  these  proposals  come  down  numerically  to  the  same  thing,  but  they  will  convey  different  psychological

messages, and  can  cause  different  responses.  The  first  conveys a  sense of  richness,  the  second  might be  most

neutral,  the  third  conveys  a  sense  of  poverty  ("Ten  year  max,  that's  it.").  Clearly,  these  connotations  require

some care when interpreting the examples. Again, the discussion in this paper properly concerns a representative

agent for aggregate modeling, and not a real individual person at the bedside.
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2. Utility functions for the representative  agent
The representative agent has time preference and diminishing marginal utility of living. What would be a good

function to express these? It is not trivial either what life-years y to take. The utility function of the representa-

tive agent might be taken as  u[a + e]  or  u[e]  or  even u[x],  since there is a  difference between expectation and

memory from the past. However, part of that issue can also be tackled by the social gain function, as for exam-

ple the proposed gain function g[x | a, d] = u[x] / u[a + d + x] imposes a reference point in total life expectancy.

For this section it then suffices to select u[.].

A common approach  in cost-effectiveness analysis for  public health is to discount the life-years. Alternatively,

Luenberger (1998), chapter 15, shows the relevance of logarithmic utility for investment theory. The logarithmic

scale however is less communicative, see also the Richter scale for earthquakes that takes some exercise to get

used  to.  Lack  of  communication  may  cost  lives  when  people  have  difficulty  to  judge  what  risk  they  will  be

exposed to. A more straightforward function is the square root,  since the value of 100  is easier to communi-

cate  than Log[100].  The  following plot  compares these functions.  The  unit Present  Value 
1�r�1�n

r
for  a  discrete

constant stream of one year of living per calendar year is given as a drawn line. The plot considers three rates of

discount, 1% (lowest drawn line), 3% (middle) and 5% (highest drawn line). Log[n] is the fine dashed line, and

n the  coarse  dashed  line.  All  functions  are  scaled  such  that  they  give  10  at  100,  so  that  we  actually  plot  A

PV[n, r] and B Log[n]. The scaling factors are irrelevant for applications at the public level since they apply to

all individuals. 

PVComparePlot[Sqrt, Log, {.01, .03, .05}, AxesLabel � {"Life Exp.", "Score"}]
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The conclusions from these graphs are (a) that the shapes are similar, (b) that the Log looks like 5% discounting

(an  estimate  that  minimizes  the  SSE  gives  r  =  7%)  and  (c)  that  the  square  root  is  between  1%  and  3%

discounting.

The  PV,  with  different  rates  of  discount,  seems  to  allow  for  more  variation  in  (individual)  time  preference.

However, this variability can be reproduced by the logarithm and square root by including a scaling factor. We

can test this property by looking at some examples. Consider two persons, one with a rate of discount of 5% and

the other with a rate of 25%. Their valuation of living an additional 20 years ranges from 12.5 (when r = 5%) to

4  (when r  =  25%).  The  following graph  compares  the  PV  with the  Log  and  the  square  root,  now scaling  the

latter to the associated PV. 
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PVCompare2Plot[.05, .25, 20, AxesLabel � {"Life Exp.", "Score"}]
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The general shape of the PV can thus be reproduced by both the Log and square root  if we apply an adequate

scaling factor. Where we said that the two persons had different discount rates, we could also have said that they

had different scaling factors. Indeed, the values differ, since the graphs don't overlap, but, given the uncertainties

involved, the differences are not that large.

What can we conclude from this comparison ? The point is that when a representative agent is modeled, then we

have to select one rate of discount or one scaling factor. Given the uncertainties involved, it would seem advis-

able to select the utility function that can best be communicated, the square root.

3. Possible criteria for the social gain function

3.1. Formula's for the criteria

What will be a fair social gain function g[x | a, d] ? Some formats are:

   Absolute     =  x = e - d

   Discounted =  PV[x, r] / (1+r)^d 

   Relative       =   x / (a+d) 

   Unit             =  x / (a+d+x)  

   Valued         =   u[x] / u[a+d+x]     

   Marginal      =  (u[e] - u[d]) / u[e] 

The absolute  measure gives the level  of  life-years gained  x  =  e -  d.  For  the example agents of  age 16  and 60,

with their addition of 6 years, there is an equal score, namely 6. The absolute measure does not explicitly refer

to the age of the person. In practice it relies on it, since often e = e[a].

The  discounted  value  of  x  is  the  present  value  of  the  constant  stream of  x  years,  PV[x,  r],  subsequently  dis-

counted for the period d that precedes it.

The  relative measure is  x  /  (a  + d).  The  relative measure has the  interpretation  that  a  person's life  expectancy

after  the  accident  or  disease  would  be  a  +  d  if  nature  had  its  course,  and  the  relative  increase  of  life  with  x

towards a + e  is  taken with respect  to  that  origin.  For  the  relative measure with d = 0,  an  increase of  6  years

involves a 37.5% increase for a 16-years old but only a 10% increase for a 60-years old. One 16-years old then

is about as much as four 60-years olds. The relative measure also implies a dependence upon sex, since women
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will tend to have higher percentage increases.

An approach is to take each life as a whole, and to allocate 100% to each life. The relative addition to each life,

or  the share of the gain in total  life, then is  the unit measure x /  (a + e),  where a + e  gives the individual life

expectancy. For example with d = 0, for the 16-years old the score is 6 / 22 = 27% and for the 60-years old the

score is 6 / 66 = 9%. 

The different denominators (a + d)  and (a + e)  depend  upon age and are  not  fixed at  birth.  This  is  especially

relevant since life expectancy tends to differ with age. One might want to impose a norm that the relative impact

of an intervention is related to the life expectation at birth e*, giving x / e*. This however has the consequence

that older people receive preferential treatment, since e* < (a + e[a]). Making the denominator dependent upon

the individual life, has the benefit of imposing more equality amongst the different ages.

Comparing these  measures, one  cannot  escape  the  impression that  the  unit measure still  is  too  sensitive to  the

young. Adding 6 years to a 60-year old or to a 16-year old is neutral when considering the absolute measure, but

is  highly  favourable  to  the  16-year  old  when  considered  relatively,  even  when  unitized.  The  absolute  and

relative measures do not yet account for the utility function u[.].

The  valued  measure  u[x]  /  u[a+d+x]  expresses  the  idea  that  one  refocuses  on  x.  The  numerator  values  the

addition to life in a way that is  independent of age,  while it  takes account  of diminishing marginal utility. The

denominator  values  the  total  duration  of  life.  This  approach  seems theoretically  most  satisfying. The  value  is

always in the range [0,  1].  With the square root,  the measure becomes x � �a�d � x�which is the square root

of the unit measure. This expression will be called the UnitSqrt measure. The UnitSqrt measure orders events in

the same manner as the Unit measure, but the relative differences are smaller. For x = 6 and d = 0, for the 60-

years old  the score  is  30% and for  the 16-years old  the score  is  52%.  The  age groups are  not  equal,  as  in the

absolute measure, but they are not so unequal as in the other measures.

The marginal addition to utility that is age-sensitive is (u[a+d+x] - u[a+d]),  and this measure is biased against

old  age  due  to  diminishing marginal utility. An application  is  in  “fair  innings”, see Appendix G. The unitised

measure, i.e. the addition as a share of the total, is (1 - u[a+d] / u[a+d+x]), and this enhances the bias since the

old age has a higher denominator. In case of the square root, the unitised measure is (1 - �a �d� � �a�d � x� )
and it seems much like the percentage increase. 

A  final  measure  of  success  to  mention  here  considers  only  the  remaining  life-years.  Any  memory  of  age  is

forgotten here, except for the lingering impact when e = e[a]. Rather than taking the increase e / d, it is useful to

be  more  sex-neutral  and  normalise  to  100%,  which gives  1  -  d  /  e  =  x  /  (d  +  x),  which measure  is  known as

“proportional  shortfall”,  see  Appendix  G.  It  is  more  general  to  incorporate  the  notion  of  marginal  utility and

time  preference,  which  gives  (1-  u[d]  /  u[e]).  The  measure  gives  the  utility  share  of  x  in  the  total  remaining

utility (assuming lack of memory of age). 

The table below collects some results for our examples. The main result are the ratio's of the scores of the 16-

years old and the 60-years old,  for d = 0 and a fixed gain of 6 years and the restoration to full life expectancy

e[a] (for an 'average person'). We can note that the different measures maintain the priority order (all ratio's are

greater or equal to 1), but they have a different impact in the number of 60-years olds that go into a 16-years old

(the A16/A60 column). The example of a fixed gain, our example of 6 years in the first three columns, can be

misleading, since restoration to normal life expectancy in the last three columns favours the 16-years old with 63

years and the 60-years old with 22 years, meaning that the young person weighs as much as 3 senior citizens, at

least according to the absolute gain measure. If we adopt the UnitSqrt measure, however, then it does not matter

much whether the gain is 6 years or life restoring, since in both cases one needs 1.73 numbers of 60-years olds

to compensate for a 16-years old. (That this outcome is exactly the same, is a matter of coincidence with respect

to the life expectancies in the Netherlands. Different outcomes arise for age 50 or age 70.)
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Age 16 Age 60 A16�A60 Age 16 Age 60 A16�A60

Fixed gain or e�a� 6 6 1 62.97 21.62 2.91

Relative 0.38 0.1 3.75 3.94 0.36 10.92

Unit 0.27 0.09 3. 0.8 0.26 3.01

UnitSqrt 0.52 0.3 1.73 0.89 0.51 1.73

From the evaluation above, it appears that the "valued" approach with the square root seems theoretically most

satisfying. Below,  the  various  measures will  be  investigated with both  plots  (main body of  the  text)  and  more

elaborate numerical examples (Appendix D). These sections all use the following function:

?LifeGain

LifeGain[a, d, x (, u) (, r) (, f)] for

a = age

d = the number of years to death due to a disease

x = the added life expectancy due to treatment

e = d + x = the life expectancy after treatment

u = utility (with default option Utility -> "Sqrt")

r = rate of interest (default taken from Options[LifeGain])

f = an age-dependent Life Expectancy function, such that e = f[a]

gives the treatment score according to the utility

"Absolute" = e - d = x

"Discounted" = PV[x, r] / (1+r)^d

"Relative" = (e-d )/ (a+d) = x / (a+d)

"Unit" = (e-d) / (a+e) = x / (a+d+x)

"Sqrt" = Sqrt[e-d] / Sqrt[a+e] = Sqrt[x / (a+d+x)]

"UnitLog" = Log[1+e-d] / Log[1+a+e] = Log[1+x] / Log[1+a+d+x]

"Marginal" = (u[e] - u[d]) / u[e] for default Utility

other "u" = u[x] / u[a+d+x] for u = ToExpression["u"]

When f is specified, then x is recalculated as Max[f[a] - d, x']

where x' is the original input (when left out, it will get default 0)

Note  that,  while  these  measures  are  defined  even  for  a  situation  of  death  from  accident  or  disease,  they  also

allow the determination of the value of life itself, when we substitute the age at birth  (a = 0), death at birth (d =

0),  and  the  treatment  "helping  at  birth",  all  with the  (arbitrary)  life  expectancy.  For  the  Valued  measures,  the

value of life is 1, which corresponds with 'one life' in general.

LifeGain[0, 0, any e, "Sqrt"]

1

A possible drawback of this method of valuing life is that advances in life expectancy seem not appreciated. For

example, when a future generation would live longer, then they still get a life value 1. The suggestion is that the

rise in life expectancy derives from the national outlays on protection of the currently living, rather than that it is

an explicit objective for future generations.

3.2. Graphical examples of the criteria

It will be instructive to consider the following situations:

(1) Fixed values for d and x, x small, for various ages

(2) Fixed values for d and x, x large, for various ages

(3) Fixed value for d, x dependent upon full recovery, x = e[a] - d, for various ages

(4) Fixed value for a and e, x dependent as x = e - d, for various years of death from disease
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(5) Fixed value for a and d, for various values of x.

The following graphs have this legend:

the Unit Sqrt gain measure: drawn (non-dashed) (purple) line

the Unit gain measure:  fine dashed (red) line

the Relative gain measure: coarse dashed (blue) line 

the Discounted gain measure: broken line, light blue

The  Absolute  measure  needs  no  plot,  since  the  plots  depend  upon  x  as  input.  The  behaviour  of  the  Absolute

measure  is  similar  to  that  of  the  Discounted  one,  and  has  a  similar  scale.  The  Discounted  measure  has  been

scaled by the rate of discount (default r = 3%) to put the result in the same range as the other [0, 1] measures.

As said,  the way to  read  these graphs  is  that  a  flat  profile  implies equality amongst the categories  considered,

while different ratio's would also be relevant if they would be the moral objective.

(1) For example, consider the person with d = 5, x = 5, and e = 10. Let us consider the measures for age 10 till

80. The relative measure gives most variation in the impact per age, the unit measure gives a medium amount of

variation,  and the  UnitSqrt  measure gives less  variation,  and of  course  the  constant x  and its  discounted  value

show no variation.

LifeGainPlot[a, 5, 5, {10, 80}]
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(2)  The  smoothing effect  is  rather  dramatic  when we consider  the  case  of  a  death  in  5  years  that  can  be  pre-

vented with an additional extension of 50 years, for a starting age range of 20 till 40 years (living up to at most

95). While the absolute gain measure x = 50 is constant, the other measures show an effect of the age.
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LifeGainPlot[a, 5, 50, {20, 40}, PlotRange � All, AxesOrigin � {20, 0.3}]
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(3) For fully cured persons,  the life expectancy will be that of normal healthy people  again, e  = e[a]. The next

plot gives the example for Dutch women, showing both e and a + e.

Plot[{fem[a], a+fem[a]}, {a, 0, 98}, PlotRange � {0, 100}, AxesLabel � 

{"Age", "e & a+e"}];
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The  subsequent  plot  shows  the  impact  when  we  assume  death  from  disease  in  5  years  while  full  recovery  is

possible. For example, when a precursor of cancer is diagnosed at age a, with a prognosis of death in 5 years, a

treatment could restore original life expectancy at age a. The relative gain measure is high for young ages, both

the other measures have a smaller range, and the UnitSqrt measure shows least variation.

LifeGainPlot[a, 5, fem[a]-5, {20, 80}, PlotLabel � "{Death � 5, Extension � 

f[a]}", 

PlotRange � All, AxesOrigin -> {15, 0}]
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The same plot for the Dutch males.
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LifeGainPlot[a, 5, mal[a]-5, {20, 80}, PlotLabel � "{Death � 5, Extension � 

f[a]}", PlotRange � All, AxesOrigin -> {15, 0}]
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The  plots  for  males  and  females  are  rather  alike.  The  argument  that  there  would  be  a  large  difference  was

relevant for the absolute life-years gain measure and not for the unitized measures. 

(4)  Consider persons  of age a = 30 with a given life expectation of an additional  e  =  30 years after  treatment.

Suppose that these persons have different prognoses of death without treatment. The following graph gives the

measures for d in the range [0,  20].  Though the absolute difference x = e -  d  thus varies in the range [10,  30],

and though the relative effect ranges from 33% till 100%, the Unit and UnitSqrt measures are more stable, and

the UnitSqrt is most stable.
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LifeGainPlot[30, d, 30 - d, {0, 20}]
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(5)  The  UnitSqrt  measure  tends  to  show  least  variation  in  the  graphs  above,  but  can  also  show  quite  some

variation. Consider persons  of age 30 with an expectancy of 5  years from disease,  but with varying life exten-

sions when subjected to treatment or intervention. The relative measure is proportional to the extension, the Unit

and  UnitSqrt  gain  measures  show  the  decreasing  marginal  utility,  but  the  UnitSqrt  measure  shows  a  strong

sensitivity to the lower values in the range. This  strong effect in the lower range also means less effect for the

higher range.
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LifeGainPlot[30, 5, x, {0, 30}]
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In summary, these graphs confirm the theoretical argument made before. Given the current practice of discount-

ing, let  us focus on comparing the performance of  the UnitSqrt measure with discounting. In the examples (2)

and (3) above, both functions track each other, but they differ in the other graphs. The following table reviews

the plots.

Discounting UnitSqrt

(1) Fixed d and x, x small Constant Higher value for young age

(2) Fixed d and x, x large Constant Limited variation

(3) Fixed d, x = e[a] - d Like UnitSqrt Like discounting

(4) Fixed a and e, x = e - d Value drops with d Value drops less strongly

(5) Fixed a and d, various x Slowly rising value Fast increase for low values

Where the UnitSqrt deviates  from discounting, it  deviates  in a  manner that is  attractive from the point  of fair-

ness. The UnitSqrt gain measure tends to smooth the impacts of age and life expectancy, and to emphasize the

life-years gain in the near future compared to the distant future. As such, it satisfies important considerations for

a compromise between the two original measures of 'lives saved' and 'life-years gained'. 

3.3. Numerical examples of the criteria

3.3.1. Two kinds of examples

The various measures can also be clarified by considering some more numerical examples. This paper provides

two kinds of examples.

3.3.2. Reminiscent of clinical application

The measure proposed here is intended for application at the population level. However, situations that remind

one of clinical application can clarify some of the effects. It will be useful to include also the 'cost of treatment'
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and the 'annual income after treatment' as variables, to provide a cost-effectiveness evaluation context. Since this

exercise does not add to the conclusions and only provides more clarification, it is put in appendix D. 
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3.3.3. A population in the steady state

The following calculations apply at the population level. The calculations use a survival function that generates

a population in the steady state.  When a population is saved from a flood,  the lives saved have an average life

expectancy  that  differs  from the  one  at  birth.  The  life  expectancy  at  an  age  can  be  weighted  by  the  numbers

surviving at  that  age  according  to  the  survival  function.  The  calculation  can  be  done  separately  for  men  and

women. 

For example, the life expectancy at birth for Dutch women is:

sex = Female;

lifeExpAtBirth = LExample[sex, 0]

80.71

This life expectancy is also found by numerical integration as the area under the survival curve for women.

NIntegrate[survival[sex, age], {age, 0, 103}] 

80.7096

To calculate the average life expectancy, we thus use the weights = survival / (life expectancy at birth):

AverageLE[sex_] := NIntegrate[survival[sex, age]*

            LExample[sex, age], 

            {age, 0, 98.5}] / LExample[sex, 0]

AverageLE[sex]

41.5777

The representative agent has a square root utility function, so that expected utility is:

AvSqrtLE[sex_] := NIntegrate[survival[sex, age]* 

           Sqrt[LExample[sex, age]], 

           {age, 0, 98.5}] /  LExample[sex, 0]

AvSqrtLE[sex]

6.15443

If the population is saved, for example from a flood that would have meant instant death, the life gain measure

would give:

AverageGain[sex_] := NIntegrate[survival[sex, age]*

              LifeGain[age, 0, LExample[sex, age], "Sqrt"], 

              {age, 0, 98.5}] / LExample[sex, 0]

AverageGain[sex]

0.678302

When we collect the results for men and women, and add a column for the percentage difference:

24 On the value of life



Sex Male Female
200 Female�Male

Female�Male

Life expectancy at birth 75.94 80.71 6.09001

Average life expectancy 39.365 41.5777 5.46736

Average LE 5.99993 6.15443 2.54223

Average Life Gain 0.680196 0.678302 �0.278868

Men  and  women  differ  6%  in  life  expectancy  at  birth  and  5.5%  in  average  life  expectancy,  but  the  average

UnitSqrt life gain from saving them differs only a quarter of a percentage, namely 0.28%, and the difference has

a reversed sign, so that it is more valuable to save the Dutch male population than the Dutch female population.

4. Quality of life and discounting
Above  discussion  is  relatively  simple  when  the  life-years  are  not  adjusted  for  quality  of  life.  The  problem

becomes more complex when there is adjustment for quality of life. The crux of the problem has already been

outlined in section 1.4.3. 

The  idea  of  the  quality  of  life  correction  is  that  it  only  affects  the  measure  of  health.  It  thus  should  not  be

confused  with  utility  considerations.  However,  in  combination  with  discounting,  there  could  be  moral  conse-

quences  that  make  the  QALY  adjustment  non-neutral,  so  that  the  original  suggestion  of  only  correcting  for

health might not be maintained.

Consider two agents who live one year of full quality 1 and another year of diminished quality q < 1. They only

experience this in different order, so that there are time series {1, q} and {q, 1}. Clearly, for all positive rates of

discount:

                    1 + 
q

1 � r
 >  q + 

1

1 � r

An individual with a positive rate of discount will prefer {1, q} above {q, 1}. However, a public authority who

has  to  choose  between  these  two  persons,  also  must  make  an  interpersonal  comparison  of  utility,  and  would

rather be indifferent, since both persons score equally, at 1 + q = q + 1. 

This is the way of discounting that is neutral to the order of events:

LifeGain[a, 0, 1 + q, "Discounted", r]

1 � �r � 1��q�1

r

This method of discounting compares to the UnitSqrt criterion. That has the advantage of including the age.

LifeGain[a, 0, 1 + q]

q � 1

a � q � 1

There is a  difference between an individual and the public authority. An individual is involved in time prefer-

ence,  but  the  public  authority  is  also  involved  in  interpersonal  comparison  of  utility.  Admittedly,  a  person

involved  in  time  preference  might  also  be  seen  as  comparing  two  ego's  along  two  different  time  paths,  but

comparing two different ego's is different from comparing two persons. Above example shows that a particular

method of discounting runs against equity, and it is an important counterexample against discounting in a blind

manner. For a public authority,  discounting annual costs separately is relevant for the financial aspect of cost-

effectiveness, but it is dubious with respect to the separate years of a life gain.

This  example  can  be  made  stronger  by  including  costs.  When  both  treatments  are  cost-effective,  then  the

morality of  an  equitable  choice  is  underlined.  Let  the  costs  for  the  first  agent  be  {c1,  c2}  and  for  the  second
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agent be {c3, c4}, let f  be the discount factor 1 / (1 + r), and let the discounted costs be equal c =  c1  + c2 f  = c3

+ c4  f . We can also impose unit cost equality in both years, to make a strong case. Then c1/ 1 =  c3  / q for the

first year and  c2  / q = c4  /  1 for the second year. Cost can be normalised by selecting c1  = 1.  These equations

solve into c3  =  q, c2  = q c4, and  c4  = 1 / f .  Thus, for every combination of q and r we can find a theoretical

case  with equal  unit  costs  per  period  such  that  the  discounted  costs  are  equal.  When the  discounted  costs  are

equal and the effect measures are equal at 1 � q then the two agents are basically the same. This enhances the

point that it is morally decent not to discount the outcomes separately.

We thus have to make a distinction between diminishing marginal utility of life and time preference, in relation

to  the  Time  Trade-Off  interpretation  of  quality  of  life.  This  suggests  the  conclusion  that  u[y]  and  g[u,  y]  are

preferably formulated for the sum y, regardless of whether the separate years are adjusted for quality or not.

This discussion on discounting causes a heightened awareness of problems with adjustment for quality anyhow.

Consider the representative agent's utility u[y, n, y / n] again. The time trade-off interpretation of quality of life

adjustment has some drawbacks. The calendar  time in the period  (y, n]  can contain events that  are unique and

that cannot take place in the period before y. The usual examples are milestone events such as anniversaries and

the like. Perhaps more importantly, there is always the probability that a treatment would be found such that a

longer life would be possible.  This aspect is necessarily linked to calendar time, and it is difficult to see how it

could  be  substituted  for  quality  of  life.  Similarly  for  mental  processes,  where  for  example  a  (longer)  sickbed

might help to  accept  death.  The  agent may well prefer  to live longer in calendar  time, even though the quality

adjusted amount of living does not change. Finally, there seems always to be some dependency on money. When

a person  with state  q1is  offered  some millions of  dollars  then the  state  may jump to  q2.  Is  this  sum of  money

only the cost  of  treatment or  is  there a  wealth effect?  Hence,  the time trade-off interpretation  of  the quality of

life meets with doubt. 

This paper  will not try to  solve this question of the adequacy of the time trade-off interpretation of  the QALY

measure. There however is a solution approach. (a) When the time trade-off interpretation is considered accept-

able, then use u[y] and g[u, y], with y taken as quality adjusted life-years. (b) When the time trade-off interpreta-

tion is considered inacceptable, then the calendar years are important, and then use u[n] and g[u, n] with calen-

dar  life-years n  rather  than y.  (c)  When  there  is  a  proportion  Π  in  the  population  for  which the  time trade-off

interpretation is acceptable, apply that interpretation for them, and subsequently don't apply that approach for (1

- Π).

This argument is embedded in some general notions. Appendix A collects the issues in social  welfare, Appen-

dices B and C collect issues on discounting.

5. Additional considerations

5.1. Other aspects to consider

The issue discussed here is rather complex, though the proposed solution seems rather simple. It will be useful

to indicate some other aspects to consider. Some of these aspects can be discussed at more length in the appen-

dices. 

5.2. Allocation over time

The  individual  scores  can  be  cumulated  over  the  periods  of  extended  living  (d,  e],  and  this  gives  the  total

distribution over time. Similarly, the individual scores can be cumulated over the ages of extended living (a+d,

a+d+x], and the sums per age give the age distribution. How this is done may be clear for discounting, as this is

the  more  conventional  method,  but  it  may be  less  clear  for  the  UnitSqrt  measure.  The  results  are  shown and

discussed in Appendix E.

Since discounting is piecewise linear, the method of 'first discounting per individual and then summing' will give

the same result as 'first summing per year and then discounting'. For the UnitSqrt, the total gain is the sum over
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the  individuals.  A gain can  be  spread  over  the  period  x  that  is  relevant  for  the  individual.  This  may be  stated

such that the first year has contribution 1 , the second year contribution 2 - 1 , the third year contribution

3 -  2 and  so  on  up  to  x -  x � 1 (or  its  integer  floor).  Perhaps  we  should  think  of  that  in  this  manner,

perhaps we should drop the notion of social discounting.

5.3. Conditions for consistency

The measures should be consistent under certain kinds of transformations. What happens when the person ages

to a  + �,  and the moment of death becomes d  - �,  assuming that x remains the same ? What happens when the

treatment is split  up into two steps,  first with extension Ξ  and subsequently at  age a  + Ξ  with extension x -  Ξ  ?

Appendix F discusses these questions, and shows that consistency requires proper accounting per person.

A person  can  have  various  treatments  over  his  or  her  life,  and  some have  more  treatments  than others.  These

treatments  can  be  for  flood  control,  heart  attacks,  etcetera.  For  single  treatments,  the  life  extension  measures

serve  well  to  judge  the  issue.  Adding  up  the  separate  scores  for  an  individual  however  is  another  issue.  The

absolute measure of the total life-years gain for the individual is by itself a meaningful figure. For the other gain

measures, the calculation of the total requires a choice on what would be the best approach, also in the light that

treatments can be multiplied by arbitrary division.

5.4. Stochastics

The  prognoses  d  and  x  are  only  expectations,  while  properly  there  would  be  a  distribution  with a  confidence

interval. Developing this angle leads too far now. Note that for example Gold et al.  (1996)  Chapter 8 contains

techniques  to  approximate  confidence  intervals.  Presently,  we  may  at  least  consider  minimum and  maximum

values of a range, with intervals [d�, d�] and [x�, x�] giving minimal and maximal gain measures g[d�, x�] and

g[d�,  x�].  For  example,  for  a  person  at  age  30,  when the  interval  for  d  is  [3,  7]  and for  x  is  [8,  12],  then the

various measures give these maximal and minimal ranges:

ForSet[{"Absolute", "Discounted", "Relative", "Unit", "Sqrt"}, c,

N[{c, {LifeGain[a, d+, x-, c], LifeGain[a, d-, x+, c]}, {LifeGain[a, d-, x-, c],

LifeGain[a, d+, x+, c]}} /.{a � 30, d- � 3, d+ � 7, x- � 8, x+ � 12}]]

Absolute �8., 12.� �8., 12.�
Discounted �5.70765, 9.10932� �6.42401, 8.09352�

Relative �0.216216, 0.363636� �0.242424, 0.324324�
Unit �0.177778, 0.266667� �0.195122, 0.244898�
Sqrt �0.421637, 0.516398� �0.441726, 0.494872�

Conclusion
We started  out  with the two main measures for  the success  of  an intervention,  namely lives  extended  and life-

years gained.  It  appears  possible to impose more impartiality with respect  to the impact of age and sex differ-

ences.  This  can  be  done  by  valuing  a  life  at  100%  and  by  adjusting  the  life  extension  for  the  diminishing

marginal  utility  of  living.  The  theoretical  argument,  the  graphs  and  the  numerical  examples  corroborate  the

impression that the particular choice of the UnitSqrt measure defined above is an appealing compromise. To be

sure, a balanced decision will always take all measures into account.

Some next steps for further research would be:

(1) Determine what the cost-effectiveness ratio's and frontiers would be in terms of this measure in comparison

with the existing measures, for some well-known interventions.
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(2) Show how decisions would be affected, depending upon the different effect measures.

(3) Inform other researchers about these results, and then do a systematic review of their views on the approach.

(4) See how the theoretical measure compares to preferences as shown by the general public, see Reckers-Droog

et al. (2019).

Appendix A: Some general notions in social welfare

Introduction

The following collects some angles from the viewpoint of social  welfare that would be relevant for the discus-

sion but that distract from the main line of argumentation above.

Equity and equality

The question of finding a balance between the two measures of lives saved and life-years gained touches some

deep roots. There are parallels in general notions of equality and equity. 

The  measure  of  lives  saved  can  be  associated  with  the  notion  of  equality.  An  example  of  equality  is  that  all

people have a vote. In the same manner, each life could be treated with the same sense of urgency. The fundamen-

tal  idea  is  that  society  makes  a  reasonable  effort  to  prevent  death  and  then  it  is  up  to  nature  how  long  one

survives. The second measure can be associated with the notion of equity or fairness - where people have a share

in the proceeds,  and are treated according to  that share.  For example, for a commercial company, the ordinary

stocks and shares that don't bear interest are straightforwardly called 'equity'. 

Cool  (2001b:185-191)  discusses  some  equity  rules  on  fairly  dividing  a  cake.  When  the  minimum is  also  the

proportional  share,  then all  should get  that  proportional  share,  so  that  all  are  at  the minimum. When the mini-

mum is  less  than  the  proportional  share  for  the  reason  that  some  agents  are  willing to  settle  for  less  than  the

proportional share, then the difference is immediately claimed by those who want more than the minimum.

The  equality  versus  equity  problem  has  roots  in  the  distinction  between  merely  counting  ('how  many')  and

weighing ('how much'). What  is  important  to  realise,  in  this  discussion,  is  that  there  will  always be  a  measure

that pertains to individuals, cq. the number of cases. The individuals namely provide the life-years. Not record-

ing the number of cases would be destruction of information. Similarly, whenever a medical docter has a patient

to treat, it is this patient that is in focus, whatever balance he or she tries to strike with the life-years gain mea-

sure in general.

Public Choice theory

Classic economic theory has only a limited scope. Its argument of diminishing marginal utility and time prefer-

ence is rather theoretical, applies only to a single person and does not allow interpersonal comparison of utility.

There  are  some  arguments from interpersonal  comparison  that  are  disregarded  but  that  might be  relevant.  An

older  person  with  much  personal  investment in  knowledge and  experience  might  be  considered  (with  a  'sunk

cost' argument) as having a higher priority than a youngster without such investments, even though the life-years

gained would favour the youngster. A pensioner might be able to pay for an intervention and make this invest-

ment worthwhile, but from the viewpoint of the pension fund any life saved only adds to the costs. In cases like

these, standard economics only helps to describe the situation, but little else.

Public Choice theory may have a wider scope, see Mueller (1989). In Public Choice, the hypothesis of individ-

ual utility maximization still is  relevant.  It  is not  sufficient to  simply assume that government officials or  even
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medical doctors are benevolent. What counts are the facts, that might be explained by individual profit seeking.

By describing how society arrives  at  interpersonal  comparisons of  utility, one can make forecasts  of  what will

happen.

With respect  to  the  market for  risk control  (floods,  traffic  safety, and  so  on),  its  demand and  supply and  their

regulation, it is necessary to be aware of all kinds of processes that deviate from naive assumptions. The princi-

pal (the national state) may formulate the objectives, but the agents that should implement these will have their

own goals.  Some  groups  may have  more  power  or  money than  others  and  may increase  their  priority.  At  the

smallest level of detail, for example concerning a slot in an operation schedule, decisions may be made that may

be dubious from another point of view.

It is important to be aware of these notions. In the mean time, it is important to note that the present discussion

concerns  a  measure  for  modeling  at  the  population  level,  and  that  it  is  far  removed  from application  in  other

domains.

On Nord (1992) on QALY and SAVE

Nord (1992) provides some strong points of critique on the QALY measure that are relevant for this discussion.

A point however is that Nord's paper seems to be targeted at the clinical level, while the present paper concerns

the aggregate modeling level. Let us consider some of the points however since they clarify our discussion:

(a)  "(..  A) life in a  wheelchair is  considered not only less healthy than a life without disability but also of  less

value"

My impression is that the point is different. People who are in a wheelchair just now, are certainly as valuable as

any  other  person.  Given  the  choice,  many  might  want  to  be  out  of  the  wheelchair,  however.  So,  if  we  can

prevent that new people will get into the wheelchair, then this is an advance. Treatments that end up with more

people  in a wheelchair then should be  weighted down compared to treatments that keep them up and walking.

This  'weighting  down'  does  not  necessarily  have  to  be  called  'quality  of  life'.  The  penalty  might  also  be

expressed  as  the  amount  of  money required  to  compensate  for  the  loss  (which amount  could  be  different  per

person).

(b)  "(the  QALY) disregards  the  starting point  and  end  point.  It  disregards  the  fact  that  a  small  but  significant

improvement for  a  person in a  bad  state  may be  preferred  by society to  a  more  substantial improvement for  a

person in a less severe state (...)"

The proposed UnitSqrt life gain measure reflects part of this phenomenon. Consider a child of 6 that might die

in 3 months, but that might live another 5 years with treatment. The child gets a higher score than a person of 30

who is prognosed to die in 10 years, and who might live another 15 years with treatment. However, a person of

30 who gains another 40 years, wins out again. 

{LifeGain[6, 0.25, 5., "Sqrt"],

LifeGain[30, 10, 15., "Sqrt"],

LifeGain[30, 10, 40., "Sqrt"]}

�0.666667, 0.522233, 0.707107�

The point  of  this paper  is  that  this outcome, though arbitrary,  may still  be  acceptable  for  a  modeling exercise,

since such an exercise deals with averages only and it does not deal with intangibles that cannot be resolved at a

high modeling level anyway. 

For example, one could say that above numerical result conforms with Nord's proposition,  but it  also might be

said that it shows both to be dubious. Life for the child might be psychologically bad, even though it would be in

excellent health for five additional years, and dying at age 11 might be a horrible prospect. The person of age 30

might be a young mother with dependent children, for whom the added 15 years would be crucial. Then again,

are children better off losing their mother directly or knowing that she will die in 15 years ?
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One returns to the general point that the proposed life gain measure is not intended for clinical application, but it

derives from some mathematical and ethical considerations on representative agents, and it  could be useful for

general decision making at the population level.

(c) "(...) also disregards the fact that if two patients are in the same state of dysfunction but differ with respect to

potential for improvement society may wish to give them the same priority, on the ground that they are equally

entitled to treatment"

In that case, apparently, 'satisfied entitlements' is the measure of success. This measure can be implemented for

cost-effectiveness studies. However, the point remains, to what extent does society provide entitlements ? Is that

not  linked  to  an  expectation  of  lives  saved  or  life-years  gained  ?  (Note  that  this  argument  is  different  in  the

market sector of insurance.)

(d)  "The  health services - as well as  politicians and the general public - are  concerned with providing care for

living, breathing, feeling and thinking individuals, not maximising numbers of abstract time entities."

The answer is the same general point, that these life gain measures are not intended for clinical application.

Nord then suggests the following denominator of value: "saving the life of a young person, and restoring him or

her  to  full  health.  This  particular  outcome  is  suggested  as  the  unit  of  measurement  on  the  ground  that  most

people will probably regard it as the maximum benefit that a single individual can obtain."

However, Nord himself gives the examples of entitlement or of 'significant improvement' that could well deserve

priority above this 'maximum benefit'.

In summary, Nord correctly points to weaknesses in the QALY measure, and some aspects find an answer in the

proposed  UnitSqrt  life  gain measure.  Differences  seems mainly caused  by the  difference  in  application,  either

the clinical level (Nord) or the population level (this paper).

On Bleichrodt and Johannesson (1997) on experimental results

Bleichrodt and Johannesson (1997) give an excellent theoretical review and application of the standard gamble,

time trade-off and rating scale interpretations, and subsequently the ranking properties of QALYs. It is very nice

to see how all these angles come together. 

My own earlier work, that has different roots, allows some comments that seem useful.

Cool  (2001a:327-351)  develops  a  general  concept  of  risk  when  there  are  more  than  one  possible  negative

outcomes, Ρ = -E[x; x < 0]. That discussion shows that the Von Neumann - Morgenstern approach of expected

utility doesn't apply for  practice.  The assumption of  independence is killed both  by risk asymmetry and by the

dependence  upon  the  level  of  income  (which also  can  be  an  explanation  for  the  Allais  paradox).  The  Arrow-

Pratt  measure  of  risk  aversion  is  rather  a  measure  of  diminishing marginal  utility  and  less  a  measure  of  risk

aversion.  An  alternative  approach  is  to  include  risk  (as  defined)  within  utility  as  a  separate  dimension.  My

impression at  this  stage is  that  there  is  room for  improvement in  the  standard  gamble estimates of  QALYs (if

QALYs are still seen as a proper approach). 

Colignatus (2001b:220-245,  2014) discusses the Elo-Rasch model for ratings. It is likely one of the better ways

of rating.  Aggregating individual  rating scores  by using the implied rankings will  run into  the problem known

from  Kenneth  Arrow's  Theorem  on  voting  and  aggregating  preferences.  Bleichrodt and Johannesson  (1997)

indeed  apply  both  Borda  and  Pairwise  voting  methods.  Colignatus  (2001b,  2014)  proposes  a  "Fixed  Point

Borda" as a compromise with attractive features.

On Ferrer Carbonell (2003)
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The interesting thesis by Ferrer Carbonell (2003) investigates, amongst others, also the rating system (grades on

a  report  card)  pioneered  by  Kapteyn  and  Van  Praag.  It  leads  too  far  to  go  into  that  now,  but  it  is  useful  to

mention it.

On the selection of the rate of discount

Under some conditions, the growth of capital is also the rate of return to capital, and this can be the market rate

of interest. Let K be the stock of capital and let output Y depend upon capital by means of a production function

f[K], and in particular (inversely) K = Κ Y, with Κ the capital coefficient that states how much capital is required

per unit of output.  Output is  equal to income and distributed between consumption and investment, Y  = C  + I.

The new stock of capital is K�1  = K + I. The rate of growth is g = K�1  / K - 1 = I / K. Output is also cost Y = W

+ P, with wage costs W and profits P = r K with r the rate of return on capital. If we assume for the steady state

that W = C, then P = I and r = g. The rate of interest (on money) would equal the rate of return on capital, and

then be equal to economic growth.

A reasonable value for the rate of discount could be average economic growth, about 2.5%.

It is useful to recall Luenberger  (1998),  Chapter  15,  and  in particular  page  421.  In a  single period  investment

decision, expected value maximisation tends to cause the decision to invest all capital. In a multi-period invest-

ment problem, the expected value is a less adequate guide, and it is better  to maximise capital  growth, causing

the decision not to invest all resources but to save some in order to be able to start again when the investment is

lost. The latter approach can be stated as expected utility maximisation with logarithmic utility. 

Via the link between logarithmic utility and growth and via the link between growth and the rate of interest, we

find a  link between logarithmic utility and  the rate  of  discount.  This  though differs from the  graph that  shows

that logarithmic utility and discounting have the same overall shape. 

The point remains that the square root is easier to communicate than the logarithm.

Appendix B: Discounting when life is continuous

Summary

Background.  In  cost-effectiveness  analysis  (CEA)  of  public  health  interventions,  a  frequently  used  Cost-

Effectiveness Ratio  (CER) gives the costs  per  life-year gained.  When calculating the ratio,  care  must be  taken

that  discrete  values  are  discounted  discretely  and  continuous  variables  are  discounted  in  continuous  manner.

Method.  Theoretical  exposition  with  graphical  and  numerical  examples.  Results.  Costs  can  be  continuous  or

discrete, but collected cost data normally come in discrete form and thus can be discounted discretely. Life is a

continuous  flow  and  hence  life-years  must  be  discounted  continuously.  The  difference  between  discrete  and

continuous discounting is given by a continuity correction factor. This factor is a linear term and the size of the

correction is about half the rate  of discount.  Conclusion.  With separable  utility, the priority order  in terms of

the CERs for the different alternative interventions is not affected. When utility is not separable, then the priority

order is affected.
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Introduction

The difference between discrete and continuous variables causes the difference between counting and measuring

or between 'how many' and 'how much'. Continuous variables can be made discrete, the simplest example is that

of  a  flow  of  water  from  a  faucet  measured  by  a  bucket  each  five  minutes.  This  method  of  quantification  is

alright, as long as that bucket is not perceived as being full during the whole five minutes.

In cost-effectiveness analysis (CEA) of public health interventions, the Cost-Effectiveness Ratio (CER) is often

chosen as the cost per  life year gained, see for example Gold et al. (1996).  Since life is a continuous flow, the

basic modeling strategy would be to model cost as a flow too, see for example the model by Manton & Stallard

(1988:36).  However, in practice,  costs are observed as discrete  sums, for example as budget expenditures,  and

the discrete approach seems to be the more common modeling method anyhow, even for human capital model-

ing, see Grossman (2000).  The difference between continuous and discrete models would seem to vanish if the

period is made small enough, but in practice the period is long, often a year, and then some continuity correction

would be  required.  The  objective  of  the  present  discussion  is  to  clarify  the  reason  and  size  of  that  continuity

correction. 

The issue of continuity correction is particularly relevant for discounting. Costs and life-years gained usually are

discounted,  and  common discount  rates  are  0,  3  and  5%.  Our  objective  then  is  also  to  clarify  the  distinction

between (a) discounting of values at specific moments, such as costs or bills that have to be paid at the end of a

year, and (b) discounting of continuous streams, such as the stream of life that occurs continuously. 

There are two main findings: 

(a) The continuity correction has the size of about half of the rate of discount. 

(b) The continuity correction factor only depends upon the discount rate, so that it is independent of the quality

of life that can vary over life.

The practical impact of our finding thus is modest. Other authors such as Johannesson (1992), Gyrd-Hansen &

Sogaard  (1998)  and  Cairns & Van der  Pol  (1997)  discuss  problems  in  discounting  that  cause  differences  of

much larger magnitude. Yet it is useful to have conceptual clarity.

There are two other residual findings that concern possible sources of confusion:

(i)  The  discount  factor  can  formulated  as  �1 � r��t  or  as  ��i t,  for  i  =  Log[1  +  r]  and  time  variable  t  and  the

natural  number  �  =  2.71828...  One  possible  source  for  confusion  can  be  clarified  immediately.  The  rates  of

discount of 0, 3 and 5% concern r and one must apply the transformation to find i. The use of ��i tonly derives

from mathematical convenience or convention as distinguished from computational convenience.

(ii)  There  is  a  particular  method  in  finance  and  banking,  namely  compounding  continuously,  that  is  a  more

serious possible cause for confusion. The terms discounting continuously  and compounding  continuously  seem

to convey the same idea, but it is important to avoid that confusion, as explained below.

Below,  the  concepts  of  discounting and  quality adjustment  are  accepted  without discussion.  It  is  useful,  how-

ever, to note that discussion still is possible, see e.g. Chapman (2002).

Definition of terms

Let y measure quality adjusted life-years, and let n be the associated calendar years (though alternatively months

or seconds - in general 'period'). With qualities of life q j  � [0, 1] in a calendar-sequence {q1, ..., qn}, we have y

= �j�1
n q j. For full quality life, we have q j  = 1, so that y = �j�1

n 1 = n. The size of the period can be adjusted to

get  a  natural  number  for  the  total  life.  For  a  less  than  full  quality  life,  we  get  y  <  n,  and  sometimes  this  is

expressed by saying that the 'time trade-off' (q) is less than calendar time (n). See e.g. Johannesson et al. (1994),

Lipscomb et al. (1996) and Bleichrodt & Johannesson (1997) for good discussions of these concepts. Figure 1 is

a typical example of an not-discounted 'time trade-off plot'  for a person with a sequence of 9 calendar years of
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varying quality so that the time trade-off 'normal time' is only 6 years. In graph (i) we see how the quality of life

is distributed over time, and in graph (ii) we see more clearly, by collecting the two categories, that the propor-

tion of 'lost time' is 3 out of 9 years.

Figure 1: A typical example of an not-discounted time trade-off plot, 

(i) over time, (ii) aggregation of normal time and lost time

TimeTradeOffPlot[{1, .8, .6, .4, 1, .5, 1, .4, .3}, AxesLabel � {"Years", 

"QoL"}];
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The q j  will generally be seen as flows. For example for the first year, the subject has lived zero years at t = 0,

has lived half a year at t = 1/2, and has lived one year at t = 1. Taking the integral of the flow of life will give the

completed life. The cumulation of Figure 1 is done in Figure 2.

Figure 2: Cumulated life-years

PlotLine[CumulateDuration[{1, .8, .6, .4, 1, .5, 1, .4, .3}], 

AxesLabel � {"Years", "Cum. QoL"}];
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Costs can also be continuous, such as electricity. The question arises how continuous variables can be translated

to discrete values, in the context of discounting.

Discrete versus continuous life

Let  the  discount  rate  be  r.  If  life  were  discrete,  the  q j  values  are  taken  at  specific  moments.  In  the  financial

practice of taking values at  the end of the year, the present value is PV[{q1,  ...,  qn}, r]  = �j�1
n q j  �1 � r� j .  In
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� �  � � �
the special case of a constant value of q j  = x for n calendar years then this expression simplifies to PV[n, r, x] =

1��1 � r��n

r
x.  The q j  values can also be booked at the beginning of the year as  expected life ei  for the next year

(note the difference between e and �). Then each discount factor is (1 + r) higher, giving PV* = (1 + r) PV. For

a constant periodic value of q j  = x for n calendar years we also may write PV* = x + 
1��1 � r��n�1

r
x = x + PV[n-1,

r, x]. 

The model changes when life is considered to come to us in a continuous stream. This experience of continuity

is  consistent  with the  phenomenon that  Figure  1  presents  surfaces.  We  collected  surfaces  to  identify the  total

time  trade-off.  The  figure  does  not  give  a  line  graph  with  values  at  specific  moments  in  time.  Note  that  the

continuous model is consistent with discrete values for integrals over subperiods, see the continuous formulation

of life and the calculation of the life expectation by Manton & Stallard (1988:20).  At issue is however how this

is affected by discounting.

When there is a constant flow with the rate of q[t] = x per time unit, then after T time units (e.g. T = n), the total

flow that has passed is X = �0
T

x � t = x T.  With r the discount rate, then the discount factor 
1

1 � r
 can be applied

between any two moments that are at a distance of one time unit. For moments at a distance of t time units, the

discount factor  1

1 � r
 t

applies. For example, multiplying the factors of subperiods t1  = 1/4 and t2= 3/4, gives the

factor for the total period again. Using i = Log[1 + r], the discount factor is also ��i t. Each instance of flow q[t]

is  at  distance  t  from 0,  so  that  its  discounted  value  at  0  is  q�t�  1

1 � r
 t

.   The  Continuous Present  Value  of  all

values between 0 and T  is CPV = �0
T

x  1

1 � r
 t � t = 

1��1 � r��T

Log�1 � r� x = 
1���i T

i
x.  The denominator of the CPV can be

written  as  i,  suggesting  a  discrete  PV  format,  but  the  numerator  also  gets  an  �-term,  destroying  that  formal

identity. The CPV differs from the discrete PV by a constant factor f  = CPV / PV = 
r

Log�1 � r�= r / i.  Note that i =

Log[1+r]  <  r  for  normal discount  rates  0  <  r  < 1,  so  that  f  > 1.  An important  conclusion is  that  this  factor  is

independent  from  the  level  of  the  (constant)  quality  of  life  and  the  number  of  periods.  When  discrete  life

expectancy is booked at the beginning of the period, then the factor is f* = CPV / PV* = f / (1+r), and f* < 1.

For values of q j  that differ per period, we find the same factors f and f*. The reason is that the factors hold for

each period  and  can  be  isolated  from the  summation. Alternatively, we can  discount  each  period  to  its  begin-

ning,  and  thereafter  discount  discretely.  The  factors  thus  hold  in  general,  independent  from the  quality  of  life

and  its  variation  and  the  number  of  periods.  It  essentially  concerns  a  correction  for  continuity  in  the  single

period. Thus in general, when a discrete present value has been given, then the proper continuous value can be

found by multiplying with correction factors f or f*.  Table 1 gives values for the common discount rates, using

six significant digits to allow for easier verification of the results.

Table 1: Correction factors for multiplication of 

 discrete present values, per discount rate

Rate Beginning End

3� 0.985365 1.01493

5� 0.975997 1.0248

10� 0.953824 1.04921

Conversely, when the true value is the continuous value, the discrete value gives an error. The error of booking

life at the end and then using the discrete PV must be measured with respect to CPV, and thus is (1/f - 1) * 100

percent.  Since  continuous  life  starts  immediately,  booking  life  only  at  the  end  gives  an  underestimation  of

discounted life. When life is booked discretely at the beginning, then the error factor is ((1+r)/f - 1) * 100, and

this  overestimates  life.  Table  2  gives  outcomes  for  common  discount  rates,  and  for  those  values  the  error  is

about the size of 1/2 of the discount rate.

Table 2: Error percentage compared to the true value of discounted life-years gain 

when discounting life discretely at either beginning or end of period, per discount rate

34 On the value of life



Rate Beginning End

3� 1.49 �1.47

5� 2.46 �2.42

10� 4.84 �4.69

Discrete versus continuous costs

We can repeat the same analysis to costs. The general approach is to make costs continuous by describing them

as services. Though capital outlays such as electricity plants are discrete,  their services are continuous. When a

customer buys a car or a can of biscuits, this can be described as buying the services of those products. 

When both costs and life-years are continuous, but are modeled as discrete, then there would be no need for the

continuity correction, since both would be corrected in the same manner and the ratio would remain the same.

In practice, however, costs are generally taken discretely. For example, the various costs per month are added to

give an annual total, or an average cost per patient is multiplied with the number of patients to arrive at the total.

It  could  already  be  an  advance  when costs  would be  discounted  at  the  market  rate  of  interest  to  arrive  at  the

annual total. In all practicality, costs are discrete.

With  costs  discrete  such  that  the  discrete  PV  applies  and  with  life  continuous  such  that  the  CPV  applies,  the

continuity correction factor would need to apply too.

Consequences for CEA

A central question is whether the priority order of the projects is affected, i.e. for the projects that are considered

in a cost-effectiveness analysis. In CEA, the ordering criterion is the CER, and then one considers the "increme-

ntal cost" / "incremental life year gain". Assume a CEA project that discounted costs and life-years in a discrete

manner. The assumption of discrete costs remains the same, but let us then apply the continuity correction to the

life-years. Assume that the same discount rate holds for all individuals. From the linearity of the transformation

of the denominator, it would follow that the order is not affected. 

The  curvature  that  expresses  the  dependence  upon  the  discount  rate  is  always  affected,  since  the  different

discount rates have different correction factors. This curvature however is not a separate decision criterion.

When the health-CER is affected but the non-health interventions are not affected (such as concerning consump-

tion and education)  then the priority  order  with respect  to  those other  interventions need not  be  affected when

the allocation is based upon other criteria.

Cost-effectiveness conclusions however are  affected when preferences  are  not  separable.  Chapman (2002:411)

uses the term "domain independence"  for  the possible  disagreement between health and money discount rates.

The  more  general  notion  is  separability,  as  e.g.  defined  by Barten  (1977:31):  "(...)  the  preference  ordering  is

separable into mutually exclusive groups of goods if the preference ordering of a certain group is independent of

what one consumes of the goods outside the group". For example, the consumer choice of the vacation country

(Greece or Mexico) can be separable from the choice of the new kind of car (Mercedes or Toyota). For medical

decision  making,  the  point  is  that  when  decisions  on  'quality  of  life'  cannot  be  separated  from  other  utility

aspects, such as the level of income and consumption, then discounting (or the time preference that it stands for)

could  well  affect  results.  This  holds  a fortiori when the  aggregate  choice  is  not  modeled  for  a  representative

agent only but is modeled by heterogeneous individual utility. When individuals have different discount rates so

that  their  curvature  is  affected,  then  their  individual  orders  need  not  be  affected,  and  if  the  aggregate  priority

depends upon individual order  only, then the aggregate need not be affected either.  However, when the aggre-

gate depends upon more than just order, then the aggregate priority is affected.
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Compounding continuously

The discussion about continuous discounting contains a possible point of confusion, and the above derivation of

the present value of a continuous flow has been stated more explicitly to prevent this confusion. 

The point  of  possible  confusion concerns the issue of  continuous  compounding  This  is  a  specific  technique in

finance  and  banking,  and  a  discussion  of  it  can  be  found  in  basic  textbooks  in  finance,  such  as  Luenberger

(1998:21) and Bodie & Merton (2000:108).  The above discussion concerns (i) a continuous flow and it uses (ii)

compound interest (i.e. interest on interest), but it is not necessarily a case of continuous compounding.  

The explanation of continuous compounding starts with the distinction between the nominal rate and the effec-

tive rate.  Let a  bank advertise  with a  nominal discount rate  of  R per  year  while it  actually compounds over  m

subperiods. That is, the bank applies rate 
R

m
 in each subperiod (for example m = 12 months), so that the effective

rate  per  year  is  r  =  1 � R

m
m � 1.  Some  customers  only  look  at  the  advertised  nominal  rate,  and  are  not  fully

aware  whether  the  bank  compounds  per  quarter  or  per  month  or  even  more.  By  taking  more  subperiods,  the

effective rate over the whole period rises. Taking an infinite amount of subperiods, m �  , then the situation is

called "continuous compounding", and the effective annual rate in this limit is r = �R � 1. 

Note that R = Log[1 + r], so that the term Log[1 + r] reappears,  and thus R = i when there is continuous com-

pounding. Note however the difference between the contexts of discussion.

For each rate of discount r (our discussion) there is an i = Log[1 + r], but this does not imply that actual banks

and other financial institutions indeed advertise with this R = i and apply continuous compounding with it. This

may be the case, but it may also not be the case.

When there is a nominal rate R (the finance discussion) but no continuous compounding, then the effective rate

follows as r = 1 � R

m
m � 1 and then there is an i = Log[1 + r] that would differ from R. 

Thus there is a distinction between continuous discounting and continuous compounding. Some research papers

in finance and economics assume a nominal discount rate R that is compounded continuously, and thus they may

try to avoid the confusion by making sure that i = R. However, this may also cause the confusion that it would

always be the case that i = R. It is more useful to work directly with the effective discount rate r and disregard

how banks arrive at it.

Conclusion

It  makes some difference  whether life  is  regarded  as  a  continuous stream or  as  a  sequence  of  discrete  events.

With  linearity  and  separable  utility,  the  priority  order  of  (quality  of)  life  interventions  is  not  affected.  When

utility is not separable, then the priority order would be affected. 

Appendix C: Discounting and degree of living

Introduction

We will use the term "degree  of  living" to express  a pure  time equivalent approach  or  "pure  Time Trade-Off"

that  abstracts  from  utility  considerations  and  such.  The  "degree  of  living"  will  be  a  purely  theoretical  term

without any operational  measurement, but it  has the advantage for  now that  at  least  our concepts  can be  clear.

Note  that  "quality  of  life"  has  met  with  various  interpretations  and  operational  measurements,  such  as  Time

Trade-Off, Standard Gamble and Rating Scale as used in the literature, so that there is some danger of confusion

with other elements.

Discounting of life is problematic and taking the square root seems acceptable, but the latter is similar, in some
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ways, to discounting. This situation is confusing. The discussion should give clarity however how the one differs

from the other.

Recall the definition that y = 
 qi, where y are life-years that can be realised or expected. If only years of living

fully are considered, qi = 1 except that the last qn  can still be a fractional year. (Alternatively, the period is taken

so small that  the life  duration can  be  approximated  by an  integer value.)  Consider  a  utility function U[y]  with

diminishing marginal utility, such that �y,y U �y� < 0, . Consider then the following utility functions:

(1) y = Sqrt[n] or y = CPV[n, r] = 
1��1 � r��n

Log�1 � r� using continuous discounting for the calendar years (or fully living

e.g. when y = n). The present value assumes values at the end of the period and discounts to the beginning of the

first period, following financial convention.

(2) y
!
 = Sqrt[y] and y

!
 = CPV[y, r] for the sum y, the life-years equivalent.

(3)  The  degrees  of  living  can  be  discounted  separately,  giving  y


 =  U �q1, ..., qn, r�  =  CPV[{q1,  ...,  qn},  r]  #
CPV[y, r] (though there is equality when y = n). Here is no analogue for the Sqrt.

(4) There is a social welfare function with a correction for age and sex such as the UnitSqrt transformation.

These  possibilities  cause various  indicators  for  time-equivalence. The  time T  of  a  (discounted)  full life  can be

found from solving T from y


 = CPV[T

,  r].  It  is  also  possible  to  express  the  time effect by a  ratio,  notably to

calendar time, thus y / n, y
!
 / y or y


/ y .

In (1) and (2) only diminishing marginal utility is used, and in that sense, the Sqrt can be compared to discount-

ing.  The  discounting  formula  may  also  be  more  flexible  since  it  contains  the  additional  parameter  r,  but  the

square root  can also be extended with a scale factor.  While  the discounting formula is used, the philosophy of

discounting however is not  fully applied,  since agents with profiles {1,  q} and {q,  1} are treated  equally, with

outcome U[1 + q]. 

In (3), the discounting philosophy is also applied, creating a difference between agents {1, q} and {q, 1}.

There thus is a distinction between preference for 'living' and preference for 'living when'. At the public decision

making level, the representative agent can be assumed to prefer a longer life, with a diminishing marginal utility

of living longer.  But it  is also useful to impose distributive justice,  and to let  society be indifferent as to when

this living occurs. Thus (3) is rejected, and (4) is applied to (1) or (2).

Degree of Living

The definition of a calendar sequence of degrees of living {q1, ..., qn} is that the scores only have meaning when

they allow us to say that a person will live less even though the calendar time runs faster. It is not quite a matter

of wanting to live shorter (that could involve a utility comparison), but of actually living less.

Consider a person with a sequence of 9 calendar years with various degrees of living.

degrees = {1, 1, .6, .4, 1, .5, 1, .4, .3};

The statistical accounting without discounting is straightforward.

TimeTradeOff[degrees]

�Time� 9, WeightedSum� 6.2, Time�Loss� � 2.8, DegreeOfLiving� 0.688889�

We can plot the situation in two ways: (a) the distribution over time, (b) the collection of all the 'time proper', as

opposed to the 'lost time'. In plot (b) we see the proportions more clearly.
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TimeTradeOffPlot[degrees];
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The summary statement for this agent is: "Given the current parameters, the best prognosis now is that you will

live 9 calendar years, but some of these at a lower rate, so that you will actually live only 6.2 full years. If there

would  be  a  medical  solution  to  let  you  live  fully  during  those  6.2  years  followed  by  sudden  death,  then  this

would be equivalent in terms of living as such." 

Note that this only defines the concept  of a degree of living but it  does not suggest that such a switch actually

can be  made or  be  made.  That  would be  a decision based  upon utility, that  also includes other  considerations.

Some might accept  the time trade-off,  but  others would prefer  calendar  time because some events are  causally

linked to calendar time. A state worse than death would not be indicated by a negative health value but by the

utility function too.

Discounting

There are two views on discounting:

(i) The degrees of living are merely counting, like calendar years are counting, and then there is no discounting

of separate values. 

(ii)  The  degrees  of  living  are  years  that  are  consumed  at  different  moments  in  time,  and  then  discounting  of

separate values might be warranted. 

Consider how life-years are added to a life: this happens incrementally and without discounting. Marginal utility

of  the life expectation applies to the sum, but this sum contains a memory how much has already been included.

Adding life-years is  ageing,  but  differs  from ageing in  the  sense  of  losing  quality.  This  loss  of  quality  due  to

ageing is modeled not necessarily by discounting.

Though the  technique of  discounting would be  feasible,  viewpoint (i)  above  seems more appropriate  theoreti-

cally. However, for Quality of Life measures that are not "pure Time Trade-Off" and that contain utility consider-

ations, discounting might be appropriate.

Approach (ii) leads to the following:

PV[degrees, r]

1

r � 1
�

1

�r � 1�2
�

0.6

�r � 1�3
�

0.4

�r � 1�4
�

1

�r � 1�5
�

0.5

�r � 1�6
�

1

�r � 1�7
�

0.4

�r � 1�8
�

0.3

�r � 1�9

For example with a rate of discount of 3%, we can find the following values. The label "Discounting" indicates

38 On the value of life



the discounted value y

,  the label  "DegreeOfLiving" indicates  the  ratio  of  this  to  the PV of  the calendar  years,

thus y

 / y, and the label "Time[Full]" indicates the solution of y


 = PV[T


, r].

TimeTradeOff[PV, degrees, .03]

�Discounting� 5.45808, Time� 9, PV�9, 0.03� � 7.78611,

DegreeOfLiving� 0.701002, Time�Loss� � 2.95041, Time�Full� � 6.04959�

In this example, the discounted degree  of  living (0.7)  is  larger  than the not-discounted value (0.689)  since the

disease years are at the end and weigh less.

Since living is continuous, we actually should use the continuous present value. The solution of the full time is

not different since the continuity correction applies to both sides of the equation.

TimeTradeOff[degrees, .03]

�Discounting� 5.53955, Time� 9, ContinuousPV�9, 0.03� � 7.90233,

DegreeOfLiving� 0.701002, Time�Loss� � 2.95041, Time�Full� � 6.04959�

Though method (ii) is feasible, it is not by itself convincing.

Using very short periods

The result of the continuous PV can be reproduced by the discrete PV when we take very short periods. In that

case, the rate of discount per period becomes very small so that the continuity correction approaches unity.

Take the example of a person who starts out with 30 years of living well, and who is struck by some disease with

various  states.  The  various  summary statistics  will  be  a  weighted sum based  upon the  {duration(i),  degree(i)}

states. 

dur = {{30, 1}, {0.5, 0.8}, {0.3, 0.6}, {4, 0.75}, {3, 0.4}, {0.5, 0.1}};

These scores disregard discounting yet.

TimeTradeOff[dur]

�Time� 38.3, WeightedSum� 34.83, Time�Loss� � 3.47, DegreeOfLiving� 0.909399�

TimeTradeOffPlot[dur];
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Discounting can be done by the continuous formula or by distinguishing subperiods using the Greatest Common

Divisor (GCD) and  then apply the  discrete  model (with subperiod  rate  of  discount).  The  discounted degree  of
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living appears to be higher than the undiscounted value, since the disease state consumes a shorter period at the

end. 

TimeTradeOff[dur, .03]

�Discounting� 21.6945, Time� 38.3, ContinuousPV�38.3, 0.03� � 22.9253,

DegreeOfLiving� 0.946313, Time�Loss� � 3.61762, Time�Full� � 34.6824�

TimeTradeOff[PV, dur, .03]

Period � GCD�
1

10
, Time� 383, PV�383, 0.00296025� � 228.915,

Time�Loss� � 36.1762, Time�Full� � 346.824, Discounting� 216.625, Time� 38.3,

PV�38.3, 0.03� � 228.915, DegreeOfLiving� 0.946313, Time�Loss� � 3.61762, Time�Full� � 34.6824

Appendix D: Numerical examples of the criteria

Some random cases

The  various  measures  can  also  be  clarified  by  considering  some  numerical  examples.  The  proposed  effect

measure of the UnitSqrt is intended for application at the level of national budget allocation, but some stylized

clinical examples will help to clarify the meaning. It will be useful to include also the 'cost of treatment' and the

'annual income after  treatment' as  variables,  to  provide  a  cost-effectiveness evaluation context,  so  that  one can

get an impression of the functioning of the proposed  index. The  following five cases are  basically random but

have been selected from some random runs for their contrast. Time is measured in years; and costs and income

are measured in thousands of dollars (of a base year).

rp = RandomPatient["Example"];

RandomPatient[Table, rp]

Sex Age Years to

Death

Life expectancy

after treatment

Treatment

Cost

Annual income

after treatment

1 Male 16.3 3.6 56.8 5.2 88

2 Female 12.6 6. 69.5 5.7 17

3 Male 26.2 3. 12. 3.7 34

4 Female 52.5 0.75 2. 8.4 50

5 Female 64. 9.9 20.9 2.5 53

Evaluation in terms of the criteria

The data on the cases can be evaluated in terms of the various criteria. The annual income after treatment can be

discounted  to  a  present  value  (PV),  and  a  measure  of  the  return  on  investment (ROI)  is  given  by  the  present

value divided by the cost of treatment. For the PV, the life expectancy after treatment can be used, counting only

the additional  years x  = e-d of income, but also discounting the d  years, and allowing for a pension of 70% at

age 65. The default rate of discount is 3%.

ap = AnalysePatient[rp];
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AnalysePatient[Table, ap]

Absolute Discounted Relative Unit UnitSqrt Marginal PV�Cost PV

1 53.2 23.749 2.673 0.728 0.853 0.748 393.372 2045.535

2 63.5 23.644 3.414 0.773 0.879 0.706 68.001 387.608

3 9. 7.125 0.308 0.236 0.485 0.5 65.477 242.263

4 1.25 1.183 0.023 0.023 0.151 0.388 7.039 59.132

5 11. 6.905 0.149 0.13 0.36 0.312 102.473 256.183

Note  that  the  coefficient  of  variation  of  the  UnitSqrt  is  amongst  the  smallest,  confirming  that  it  shows  less

dispersion in general.

AnalysePatient["Statistics", ap]

Absolute Discounted Relative Unit UnitSqrt Marginal PV�Cost PV

Mean 27.59 12.521 1.314 0.378 0.546 0.531 127.273 598.144

S 28.548 10.476 1.604 0.349 0.316 0.192 152.653 817.525

S�Mean 1.035 0.837 1.221 0.923 0.579 0.362 1.199 1.367

One possible approach is to treat the cases in order of their rank.

AnalysePatient[Table, RankOrder, ap]

Absolute Discounted Relative Unit UnitSqrt Marginal PV�Cost PV

1 4 5 4 4 4 5 5 5

2 5 4 5 5 5 4 3 4

3 2 3 3 3 3 3 2 2

4 1 1 1 1 1 2 1 1

5 3 2 2 2 2 1 4 3

Some observations are:

(1) Case 1 (a teenage boy) has a higher score on the economic criteria compared to case 2 (a teenage girl, likely

to be poor) but she has a higher score on all medical criteria except for discounted gain. Though the teenage girl

will likely be poor, she also will live longer, which improves her economic value.

It is actually clarifying to closer look into values for the discounted life-years gains. The girl is expected to live

at  least  10  years  longer,  but  this  has  little  effect,  giving the  small  values  of  the  discount  factors  so  far  in  the

future. There is a stronger immediate effect from the fact that the boy is expected to die within 3.6 years, while

she will only die  in 6  years.  When the discount rate  would be  2.90594%,  then they would both  have an equal

discounted life-years gain value, he wins for higher values, she wins for lower values. 

LifeGain[16.3, 3.6, 56.8 - 3.6, "Discounted", r] == 

LifeGain[12.6, 6,   69.5 - 6,   "Discounted", r]

1 � 1

r�153.2

r �r � 1�3.6
��

1 � 1

r�163.5

r �r � 1�6

FindRoot @@ {%, {r, .03}}

�r� 0.0290594�

(2) Case 4 (a middle aged rich woman) has the lowest score on all criteria (except the marginal increment), but

the intervention still is profitable from an economic point of view (PV / Cost > 1).

(3)  Case  5  (a  retiring  rich  lady)  scores  low  on  all  criteria,  but  her  economic  value  is  high.  Of  course,  if  her

pension would be counted as a cost, then she would score low on all counts.
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(4)  Case 3 (a  young man in his twenties, with a  middle income) has overall  middle scores,  and notably scores

less than case 2.

(5)  For  these  cases,  all  relative  measures  give  the  same rank  order,  and  they differ  slightly from the  absolute

rank  order.  In  absolute  terms,  case  5  would  get  priority  over  case  3,  but  in  relative  terms  case  3  would  get

priority over case 5.

Cost-effectiveness ratio's

Though all  interventions are  cost-effective from a financial point  of  view, since the PV of  each future income

outweighs the cost of each intervention, let us now disregard those PVs. Dividing the cost of the intervention by

the various life extension measures, gives the Cost-Effectiveness Ratio  or  the unit cost  per  life extension mea-

sure. The costs per UnitSqrt appear  to be less dispersed.  This also means that decisions might be less easier to

make if one wants to base decisions upon large differences.

apc = AnalysePatientCost[ap];

AnalysePatientCost[Table, apc]

Cost Absolute Discounted Relative Unit UnitSqrt Marginal

1 5.2 0.098 0.219 1.945 7.145 6.095 6.95

2 5.7 0.09 0.241 1.67 7.37 6.481 8.072

3 3.7 0.411 0.519 12.004 15.704 7.623 7.4

4 8.4 6.72 7.103 357.84 366.24 55.465 21.67

5 2.5 0.227 0.362 16.795 19.295 6.945 8.019

Remember that costs are in $1000. For example for case 1:

(a) the treatment costs $98 per additional life year

(b) the treatment costs $219 per additional discounted life year

(c) the treatment costs $19.45 for each % increase in life duration (the base taken at original moment of death)

(d) the treatment costs $71.45 for each % point increase in life duration (the base taken in whole life)

(e) the treatment costs $60.95 for each % point increase in Sqrt life duration (the base taken in Sqrt of whole life)

(f) the treatment costs $69.50 for each % point increase in Sqrt life addition (the base at the current moment).

We can determine the rank orders again.

AnalysePatientCost[Table, RankOrder, apc]

Cost Absolute Discounted Relative Unit UnitSqrt Marginal

1 3 2 1 2 1 1 1

2 4 1 2 1 2 2 4

3 2 4 4 3 3 4 2

4 5 5 5 5 5 5 5

5 1 3 3 4 4 3 3

For example, case 4 is the most expensive on all scores and there is not really a cheapest one. Case 1 is cheapest

in terms of the price per UnitSqrt. Given that the UnitSqrt smoothes, it helps when the absolute costs are low as

well.

Indeed,  if  we would order  the cases by minimal unit cost,  and  take a  cut-off point  at  a  budget  of  15  thousand

dollars,  then cases  1,  2  and  5  would be  selected,  with an  average  cost  of  $64.04  per  UnitSqrt  % point,  and  a

budget slack of still $1.6 thousand.
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PatientBudgetAllocation[UnitCost, 15, apc, 6]

�UnitCost�List� � �6.09546, 6.48126, 7.62276, 55.4654, 6.9454�, Order� �1, 2, 5, 3, 4�, Take� �1, 2, 5�,
Not� �3, 4�, BudgetUsed� 13.4, Rest� 1.6, Sum� 2.0925, UnitCost�Average� � 6.40381,

MarginalPatients� 4, MarginalCost� 8.4, PotentialBudgetOverrun� �6.8�

Note, however, that when we would allocate the whole budget and maximise the sum in UnitSqrts subject to that

budget  constraint,  then  the  optimal  solution  appears  to  consist  of  cases  1,  2,  and  3,  with  a  total  cost  of  14.6

thousand  dollar.  Perhaps  surprisingly,  case  5  drops  out,  even  though  she  is  cheapest,  both  absolutely  and  in

terms  of  unit  cost.  Her  bad  luck  is,  that  maximising the  sum of  UnitSqrts  subject  to  the  budget  constraint  is

something  else  than  requiring  efficiency  in  unit  cost,  since  the  budget  slack  can  be  used  to  introduce  some

inefficiency.

PatientBudgetAllocation[Budget, 15, apc, 6]

�UnitCost� �6.09546, 6.48126, 7.62276, 55.4654, 6.9454�, Take� �1, 2, 3�,
Not� �4, 5�, BudgetUsed� 14.6, Rest� 0.4, Sum� 2.21794, UnitCost�Average� � 6.58268,

MarginalPatients� �1, 4, 5�, MarginalCost� 1.5, PotentialBudgetOverrun� �1.1�

Cases versus values

At some basic level, our discussion refers to the difference between counting cases and weighing values. These

two approaches  are  linked  by  taking an  average  value.  Let  n  be  the  number  of  cases  and  v  be  the  sum of  all

values (scores) of these cases, then m = v / n is the average or mean value. Since Log[v] = Log[n] + Log[m], we

can  find  a  straight  line  contour  in  the  Log[n]  &  Log[m]  space  that  connects  all  points  with equal  total  value.

When  we  have  subgroups,  e.g.  men  versus  women,  then  we  can  determine  different  contour  lines,  and  the

absolute differences in logs allow a percentage difference interpretation of the levels.

Considering above set of 5 random cases,  we find that 2 are men and 3 are women, and we can determine the

subgroup total scores and averages.

sel[s_] := Select[rp , (First[#] === s) &]

sel[f_, s_] := Map[f, Transpose[AnalysePatient[sel[s]]]]

men = sel[Add, Male];

women = sel[Add, Female];

These give the total scores per subgroup:

AnalysePatient[Table, {men, women}]

Absolute Discounted Relative Unit UnitSqrt Marginal PV�Cost PV

1 62.2 30.875 2.982 0.963 1.338 1.248 458.849 2287.798

2 75.75 31.731 3.586 0.926 1.391 1.406 177.514 702.923

These are the average values:

AnalysePatient[Table,{men/2, women/3}]

Absolute Discounted Relative Unit UnitSqrt Marginal PV�Cost PV

1 31.1 15.437 1.491 0.482 0.669 0.624 229.424 1143.899

2 25.25 10.577 1.195 0.309 0.464 0.469 59.171 234.308

Let us take the UnitSqrt measure and determine the {Log[n], Log[m]} points of the two groups, and then show

the equal sum contours.
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points = Log[{{2, men[[5]] / 2}, {3, women[[5]] / 3}}]

log�2� �0.40161

log�3� �0.768694

EqualSumContour[points, AxesLabel � {Log[n], Log[m]}];
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The vertical  or  horizontal  distance  between the lines  is  about  0.04,  which means a  4% difference in sum total

values. If the averages remain constant, the number of men in the sample would need to rise with 4% to get the

same total value as the women. The random list of cases that we used actually seems typical, since the average

UnitSqrt life-years gain of men is larger than for women.

When  evaluating  various  treatments  or  programmes  of  intervention,  then  the  total  value  v  would  be  the  main

criterion for success. But as said,  one would never lose sight of the number of lives saved, n,  since these enter

via the average score per person saved, v / n. When the measure that is used is not adjusted for age and sex, then

the average becomes a more important factor in decision making. For example, for the absolute life-years gain, a

high  overall  score  can  be  caused  by  a  huge  value  for  a  few  individuals  or  by  a  meagre  average  for  a  large

number, and likely the latter  would be more interesting (unless the average becomes imperceptible).  When the

measure of success however has been adjusted for age and sex, such as is the case for the UnitSqrt measure, then

one would be less sensitive to this composition effect, since there already has been a correction.  However, the

number of cases does not disappear even then, and still can be included as a separate factor in decision making.

Appendix E: Distributions over time and age
Consider the numerical examples of the cases discussed in Appendix D. Their life gain scores can be assigned to

different  moments  in  time  and  age.  Collecting  these  scores  then  gives  distributions  over  time  and  age.  The

distribution over time is related to the discussion about discounting.

When we take the various UnitSqrt scores of the cases and allocate them evenly over their individual periods of

extended living [d+1, e], then we can sum these scores per year, which gives the distribution over time. 

res = PatientToTimeAxis[rp, "Sqrt"];
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PlotLine[res, AxesLabel � {"Time", "Sum Score"}];
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The  scores  can  also  be  added  over  the  whole period  without additional  discounting,  since  the  UnitSqrt  values

already  include  time  preference.  An  alternative  plot,  not  shown here,  would be  to  take  the  values  1 ,  ( 2 -

1 ), ( 3 - 2 ), ..., all divided by the same a � e . 

We  can  also  plot  the  absolute  gain.  We  recognise  the  same  features  in  the  graph,  but  the  proportions  are

different.

resAbs = PatientToTimeAxis[rp, "Absolute"];

PlotLine[resAbs, AxesLabel � {"Time", "Sum Score"}];
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The absolute scores neglect time preference. With social discounting using the discrete method, we get:

disAbs = Discounting[resAbs, 0.03];
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PlotLine[disAbs, AxesLabel � {"Time", "Sum Score"}];
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When we allocate the scores evenly over their individual ages of extended living [a+d+1, a+e], then this gives

the age distribution.  We again compare the two main contenders.  Again the features of  the graphs are  similar,

but the relative heights differ. The age distribution created in this manner is flatter for the absolute measure and

more pronounced for the UnitSqrt measure. 

resAge = PatientToTimeAxis["Age", rp, "Sqrt"];

PlotLine[resAge, AxesLabel � {"Age", "Sum Score"}];
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absAge = PatientToTimeAxis["Age", rp, "Absolute"];
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PlotLine[absAge, AxesLabel � {"Age", "Sum Score"}];
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Appendix F: Conditions for consistency
Suppose that  a  subject  is  given two interventions, one for  flood control  and one for  a  heart  attack.  Part  of  the

effects will overlap,  since both  interventions are  required  to  keep the subject  alive.  Some will not  overlap,  for

example when flood control comes first, adds 10 years of life expectancy at that age, and when the other is later,

say after five years, and secures more life expectancy at that age. 

In the context of Public Choice, it is also possible that a treatment is split up in two separate treatments, suppos-

edly  with the  argument of  specialisation,  but  perhaps  with the  objective  to  generate  more  income or  UnitSqrt

score-points for the services provided.

Should we collect  all  interventions per  person,  or  can we trust  that  interventions are  defined by themselves or

that the market works properly ?

Two conditions for consistency can be mentioned. 

The first is whether the same results arises when the age rises to a + �, and the moment of death then becomes d

- �, assuming that x remains the same.

ForSet[{"Absolute", "Relative", "Unit", "Sqrt"}, c,

LifeGain[a, d, x, c] == LifeGain[a + �, d - �, x, c]]

�True, True, True, True�

Another issue is what happens when the treatment with effect x, say x = 10, is split up in separate steps. Consider

a patient of age 30 who is likely to die in 5 years, and split  the treatment into two steps,  first with extension Ξ
and subsequently, after  5  years,  with extension x  -  Ξ.  There  now are  two separate  UnitSqrt  scores,  and  adding

them could increase the total  score  for the patient.  This does  not happen for the absolute  gain measure, that  is

neutral to such splitting. But the other measures are sensitive to it. We can investigate this split-up effect without

worrying about the age effect, since there is no separate influence here as shown above. 

split[x_, Ξ_, c___] := {LifeGain[30, 5, Ξ, c], LifeGain[35, Ξ, x-Ξ, c]}

The UnitSqrt scores at the borders are 0.47, showing that there are two ways to reach age 45 in maximal man-

ner.  Inbetween  values  of  Ξ  show a  reduction  of  the  score,  when these  cases  would  be  considered  as  separate

patients.
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split[10, Ξ, "Sqrt"]


Ξ

Ξ � 35
,

10 � Ξ
3 5



Plot @@ {split[10, Ξ, "Sqrt"], {Ξ, 0, 10}, AxesLabel � {Ξ, "Score"}};
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When these scores are added, we see a top at Ξ = 5. Thus, when the patient is treated at 30 with a life extension

of 5, and is treated again at 35 with another life extension of 5, then the sum of the separate life gain measures is

highest, and higher than 0.47. The average effect (dividing by 2), though, is lower than 0.47.

Plot @@ {{tot = Add[split[10, Ξ, "Sqrt"]], tot/2}, {Ξ, 0, 10}, AxesLabel � 

{Ξ, "Score (Sum)"}};
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This  property  that  the  total  can  be  so  large  seems  contradictory  to  requirements  of  consistency,  but  closer

reflection shows that this need not be the case. 

(a)  If  we assume that  the gain measure is  applied  at  the clinical level,  which is not  intended but might help to

clarify the implications, and if the score on each single event would be relevant for the priority of a treatment,

then there would be a  danger of  arbitrarily splitting up of treatments.  However, if the arbitrary splitting up of

the treatment would also increase the total cost of the treatment, then there would be some check on this. 

(b) If we return to the domain of national policy making, for which the UnitSqrt measure is intended, there is the

design  of  intervention  programmes,  and  there  the  scores  indeed  might  be  split  up  and  summed.  Using  the

UnitSqrt  score,  and  allowing  the  multiple  entry  of  individuals,  an  intervention  programme  with  intermediate

treatments would then indeed look more effective than a programme with only one treatment. Again, fixed costs
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per treatment would penalise this effect.

It  follows that the application of  the UnitSqrt  measure requires  careful definition of the treatment, and records

must be kept per individual. For the other life gain measures the same arguments for consistency hold. The main

criterion  for  consistency appears  to  be  that  one  tries  to  avoid  multiple  entries  per  individual.  However,  when

there are really different treatments, such as one for flood control and one for treatment of heart disease, then the

decision on the separate issues would be based upon the separate UnitSqrts.

Appendix G: Comparing Fair Innings, Proportional 

Shortfall, UnitSqrt

LifeGain function

The LifeGain function in The Economics Pack collects the various measures in a uniform format.  This has the

advantage  that  outcomes  for  particular  cases  can  be  compared  without  uncertainty  about  the  input  and  the

calculation. 

The  LifeGain  function  has  been  formulated  in  terms  of  an  intervention  that  causes  recovery.  With  age  a  and

remaining  life  expectancy  d  because  of  an  accident  or  disease,  then  the  intervention  would  recover  life

expectancy with an additional x to the value e = d + x. The variable x can be seen as added to d or as taken away

from  e  because  of  the  accident  or  disease.  We  can  distinguish  the  average  age-specific  expectation  e[a]  and

some other value e due to treatment.

The LifeGain format thus can also represent a burden of disease calculation. Namely, the burden of a particular

disease is the loss in life expectancy burden = e[a] - d = x, where d is the remaining expectancy after incurring

the disease. Prevention of the accident or disease can be seen as an intervention that “restores” the original life

expectancy that otherwise would have been lost. The LifeGain format is more general than for only e[a], since it

also  allows  for  interventions  that  have  an  effect  x  =  e  -  d,  that  differs  from  e[a]  -  d,  namely with  a  new life

expectancy e = d + x.

Criteria considered in this Appendix

This Appendix discusses the following criteria for allocation of resources for treatment.

- The “Rule of Rescue” (ROR) or the “lives saved” (extended) measure. Patients are ordered on values of d, and

those  with the  lowest  values  of  d  are  selected.  These  cases  can  be  described  as  “most  urgent”  but  it  is  rather

tautological that the urgency follows the selection rule.

-  The  “prospective  health”  criterion  gives  priority  to  patients  for  who the  potential  improvement x  is  highest.

This value of x is called “absolute shortfall”.

- The “proportional  shortfall” (PS) criterion,  which is the prospective health but relative to what is possible in

the future,  giving x /  (d  + x).  This  neglects  the  age of  the  patients  (i.e.  what already has  been achieved  in  the

past).

- The “fair innings” (FI) that uses a norm for what a decent duration of life would be. Williams (1997) selects 61

years of age, adjusted for quality of life. In its discussion of “fair innings”, ZIN (2018a) selects 85 years of age,

presumably also with quality adjustment. 

- The Unit(Sqrt) measure takes each life as 100%, no matter its duration.

Sometimes  it  is  stated  that  the  patients  can  be  helped  with  “the  worst  health”.  This  term  however  requires

interpretation.  In  the  perspective  of  prospective  health  a  case  might  be  seen  as  “worst”  when  the  shortfall  is
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largest, but in the perspective of fair innings a lower life expectancy would be seen as worst, which might come

with lower values of the absolute shortfall.

The  purpose  of  this  Appendix  is  to  clarify the  relations  between these  measures.  This  paper  “On the  value  of

life”  and  its  UnitSqrt  measure  originated  as  Colignatus  (2003),  independently  from  the  “fair  innings”  (FI)

argument by Williams (1997),  and independently from the “proportional  shortfall” (PS) measure, as chosen by

ZIN (2018ab)  for  national  health  insurance  in  Holland.  The  2003  version  already  included  or  indicated  these

alternative  measures  by  their  structural  form  but  not  by  these  particular  names  and  uses.  It  is  useful  now  to

discuss  them explicitly.  The  PS  measure  was already  developed  in  the  1990s  and  has  been  in  use  since  then,

when ZIN was called CZV, see Van de Wetering et  al.  (2013).  The  ZIN (2018a)  report  can be  much appreci-

ated.  Its  appendix  (2018b)  allows for  a  perspective  on  such thinking in  Holland  since  it  collects  responses  by

Dutch health research institutes. Since the measure of proportional shortfall has been in use for such a long time,

those researchers have been acquainted with the measure, and their commentary might not be as critical as might

be  possible  from a  fresh  consideration.  Reckers-Droog  et  al.  (2019)  compare  the  official  criterion  of  propor-

tional shortfall with preferences amongst the general public, and they conclude:

“Our results indicate that the public prefers prioritising relatively more severely ill patients when patients’ ages

are equal and younger patients when patients’ disease severity is equal. The latter preferences were found to be

irrespective  of  patients’  severity  levels  in  the  current  design.  Our  results  suggest  that  the  public  considers

patients’  age  to  be  highly  important  in  setting  priorities.  Current  decision-making  frameworks  do  not  reflect

these preferences.”

For the complexity of evaluation of national resource allocation see e.g. also Paulden & Culyer (2010).

Quality of Life adjusted variables 

An  improvement  upon  the  2003  version  of  this  paper  is  that  this  present  version  better  clarifies  how  the

UnitSqrt[a,  d,  x]  measure   must  be  applied  to  quality  of  life  adjusted  variables:  see  Section  1.4.1  for

UnitSqrt[aq, dq, xq]. (PM. The 2003 version was at risk of using UnitSqrt[a, dq, xq].)

See  Gold  et  al.  (2002)  for  the  comparison  of  HALYs,  QALYs  and  DALYs,  and  see  Murray  (1994)  for  the

adjustment for disability. DALYs are determined by health experts and are related to ICD-10 categories,  while

QALYs  tend  to  be  based  upon  patient  questionnaires  and  allow  for  a  population  average.  The  latter  is  the

preferred approach here. (PM. The ZIN (2018a:7) characterisation of DALY and QALY is not convincing.) The

LifeTable  routine  in  The  Economics  Pack,  see  Cool  (2001a,  2020),  now  includes  UnitSqrtLE  and

UnitSqrtQALE  for  the  scenario  of  an  accident  or  disease  with  instantaneous  death  and  an  intervention  with

recovery  to  the  (quality  adjusted)  age-specific  life  expectancy.  Thus  UnitSqrtLE[]  =  UnitSqrt[a,  0,  e[a]]  and

UnitSqrtQALE[] = UnitSqrt[aq[a], 0, eq[a]] indexed by calendar age a.

The  functions have  the  same structure  for  both  adjusted  and  unadjusted  variables.  While  it  is  understood  that

input variables best be adjusted for quality of life, we may still use unadjusted variables in the following, namely

for ease of writing and reading single-character variables.

Inclusion of FI and PS in the LifeGain format

For reference, it is useful to restate the UnitSqrt measure of performance:

LifeGain[a, d, x, "Sqrt"]

x

a � d � x

When the intervention restores the original age-specific life expectancy e[a] then x = e[a] - d, and the measure

of performance is:
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LifeGain[a, d, e[a] - d, "Sqrt"]

e�a� � d

e�a� � a

In  the  WHO  Global  Burden  of  Disease  study,  a  disability  factor  dis  is  determined  per  disease  and  age  group

with life years LY, so that the burden = dis LY, and then the disease- and age-specific DALY follows as DALY

= (1  -  dis)  LY.  When this  is  related  to  the life  expectancy then the burden  = e[a]  -  d.  When this is  related  to

quality of life and the QALE then the burden = eq[a] - dq, in which the calendar age a has the role of an index.

ZIN (2018ab) uses the term “burden” (Dutch “ziektelast”) but also uses QALE rather than DALE.

The  LifeGain  function  has  now  been  extended  with  the  "fair  innings"  (FI)  and  "proportional  shortfall"  (PS)

measures, see their definitions below. Fair Innings requires an age norm which can be entered via Options[Life-

Gain], so that the overall input structure is not affected.

Level and proportional shortfall

The level shortfall was already given in 2003 as follows.

LifeGain[a, d, x, "Absolute"]

x

The  proportional  shortfall  (PS)  was  already  identified  in  the  2003  version  of  this  paper  as  the  “marginal”

approach.  It  doesn’t include the age a or aq in the denominator. ZIN (2018a:12):  “However a point  of discus-

sion about this method is that there is no distinction in prioritising different age-groups.” 

PS thus is  calculated as burden /  expectation.  For unadjusted variables  it  is (e[a]  -  d)  /  e[a]  = x /  (d + x).  For

quality of life adjusted variables it is (eq[a] - dq) / eq[a] = xq / (dq + xq), in which calendar age a functions as

an index. 

We have the following input formats that actually do the same.

LifeGain[a, d, x, "PrShortfall"]

x

d � x

LifeGain[a, d, x, "Marginal", Utility � Identity]

1 �
d

d � x

LifeGain[a, d, e[a] - d, "Marginal", Utility � Identity]

1 �
d

e�a�

PrShortfall[a, d, e - d]

1 �
d

e

ZIN (2018a:10)  gives  this  example of  proportional  shortfall:  “A loss  of  5  QALYs given an  expectation  of  10

QALYs gives the same proportional shortfall as a loss of 20 QALYs given an expectation of 40 QALYs.”
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Given the distinction between x = e[a] - d and x’ = e - d, or that a treatment might not succeed in fully recover-

ing  the  average  life  expectancy,  we  can  also  imagine  a  “shortfall”  measure  x ’  /  e[a].  However,  there  is  no

discussion of this by ZIN (2018a) and we leave it be.

? PrShortfall

Symbol

PrShortfall�a, d, x� is LifeGain�a, d, x, "Marginal", Utility �� Identity�

Fair innings

Williams  himself  refers  to  John  Harris  (1985:91-94)  "The  Value  of  Life"  (Routledge  and  Kegan  Paul).  This

reference indicates  that  there  is  a  general  reservoir  for  notions of  fairness,  so  that  the reader  might understand

that  I  arrived  at  the  UnitSqrt  measure independently from these  authors.  In  2020,  the  SARS-CoV-2 pandemic

caused me to return to the issue, see Colignatus (2020ab).  The ZIN (2018ab)  report  on allocation within Dutch

national health insurance alerted me to their "proportional shortfall" approach and the "fair innings" by Williams

(1997). This Appendix has been written to include these measures and to make comparisons.

A  remarkable  point  in  Williams  (1997)  is  his  focus  on  differences  in  life  expectancy  due  to  the  social  and

economic status (SES) of cases. It makes sense to calculate values conditional to SES, namely for the evaluation

of how society is performing. It is another issue to use these outcomes for the allocation of resources. On equity

considerations, one would tend to allocate national resources for the group of all men and all women separately,

not distinguished by SES. At the individual bedside level, the SES would help estimate the life expectancy, but

then there are more criteria to allow for a more informed decision. To allocate national resources using the SES

conditionality would require additional arguments, that likely go beyond the use of the current variables a, d and

x.

Williams (1997) observes that the UK Social Classes SC1&2 have a life expectancy at birth of 72, and SC4&5

of  67  years.  The  QALE values are  66  and  57.  Subsequently, Williams finds:  “Even a  man in  SC4  and  5  will

eventually  achieve  the  ‘fair  innings’,  here  supposed  to  be  61  QALYs,  [ftnt]  by the  time he  is  64  years  old.”

While it is dubious to make national allocation conditional on SES, it can be observed that the distinction allows

Williams to find an age norm for the notion of fair innings. However, such a norm might also be found by taking

population weights and then find the average life expectancy at birth for all men. ZIN (2018ab)  raises the norm

to 85 years, presumably with quality adjustment. However, life expectancy at birth for Dutch males however is

around 80 and quality adjusted around 65 . We take FI as indifferent to sex, so these norms may also be taken

for females. Thus we have the option FairInnings � {80, 65}.

With  a*  the  age  norm for  fair  innings,  then  x’  =  Min[a*,  a  +  d  +  x]  -  Min[a*,  a  +  d]  is  the  scope  for  a  FI-

acceptable gain in life expectancy, which can be labeled as “FI Level”. ZIN (2018b:8)  confirms: "After 85 the

burden  of  disease  becomes  zero.  This  is  the  consequence  of  fair  innings,  and  also  its  limitation that  does  not

conform to social preferences. This is also the reason to advance PS [Proportional Shortfall]." 

A relative format may be "FI  Ratio"  = x’ / a*.  Relevant is also "FI Unit" = x’ /  Min[a*, a + d + x]. For some

cases  the  latter  has  a  lower  denominator  and  thus  a  higher  outcome,  which  seems  more  appropriate  for  the

philosophy of Fair Innings. QALE formats require input of aq, dq,  xq and aq*. 

LifeGain[a, d, x, "FI Unit"]

min�80, a � d � x� �min�80, a � d�
min�80, a � d � x�

The drawback of the FI exposition by Williams (1997)  is that it  requires the additional  parameters a* and aq*

which are  also  dependent  upon  time and  location.  He  might have  been  open  to  the  notion  that  the  Unit(Sqrt)
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measure takes each life as 100%, so that all are treated equally in this respect, and so that there is no need for an

additional  parameter.  However,  Williams  (1997)  explicitly  argued  that  “fair  innings”  “(...)  reflects  the  feeling

that everyone is entitled to some ‘normal’ span of health (usually expressed in life years, e.g. ‘three score years

and ten’) and anyone failing to achieve this has been cheated, whilst anyone getting more than this is ‘living on

borrowed time’.” Thus, a proper presentation of “fair innings” (as seen by Williams) cannot avoid such a norm

for  what  would  be  a  “normal  span”.  While  the  Unit(Sqrt)  measure  conveys  many aspects  of  a  notion  of  fair

innings,  we  still  must  adopt  the  formulation  by  Williams  (1997)  as  a  codification  of  his  proposal  of  “fair

innings”. A rejection of Williams’ implementation is not a rejection of a notion of fair innings (100% could be

fair too, as it allows each life to run its course) but only a rejection of Williams’s particular implementation. It

may well be that the Unit(Sqrt) measure better captures what Williams (1997) was after, and that he merely did

not develop this at the time. It is a pity that the 2003 paper did not reach him (Alan Williams (1927 - 2005)) and

that I was unaware at the time of his work.

? FairInnings

Symbol

FairInnings �� �norm LE, norm QALE�, in Options�LifeGain�,

gives the norm of what would be a fair duration of life,

taken as the �quality adjusted� life expectancy at birth.

Special formats for LifeGain�a, d, x, string� are, and write FI or FI QALE:

"FI �QALE� Level" gives Min�a	d	x, norm� � Min�a	d, norm�

"FI �QALE� Ratio" gives �Min�a	d	x, norm� � Min�a	d, norm�� 
 norm

"FI �QALE� Unit" gives 1 � Min�a 	 d, norm� 
 Min�a 	 d 	 x, norm�

Cases mentioned by Van de Wetering et al. (2013) and ZIN (2018a:13)

Van de Wetering et al. (2013) compare a 70-year-old, who loses 1 of remaining 5 years, with a 30-year-old, who

loses 1  of 40  years due to lack of treatment. (i)  Williams’s implementation of fair  innings has 1 /  a* for  both,

with both ages below a* = 80. (ii) Proportional shortfall favours the elderly person, who gets to live to 75. (iii)

UnitSqrt favours the younger person who gets to live to (only) 70.  The FI Unit measure also indicates that the

youngster makes a better contribution to fair innings (because the final age of 70 is below the other’s 75).
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lis = {"Sqrt", "PrShortfall",

"Absolute", "FI Level", "FI Ratio", "FI Unit", "Rescue"};

TableForm[{

LifeGain[70, 4, 1, #] & /@ lis,

LifeGain[30, 39, 1, #] & /@ lis} // N // Transpose,

TableHeadings � {lis, {"Old", "Young"}}]

Old Young

Sqrt 0.11547 0.119523

PrShortfall 0.2 0.025

Absolute 1. 1.

FI Level 1. 1.

FI Ratio 0.0125 0.0125

FI Unit 0.0133333 0.0142857

Rescue 4. 39.

ZIN (2018a:13)  mentions two example  cases  that  can  be  reproduced  here  as  far  as  possible.  The  ZIN[2018a)

example  of  Fair  Innings  takes  the  norm as  85,  which  doesn’t  fit  the  Dutch  situation,  so  that  we  adapt  to  our

choice of parameters.

(i) An old person, with a loss of 1 QALY, given an average expectation of 2 QALYs.

(ii) A young person, with a loss of 30 QALYs, given an average expectation of 60 QALYs.

Unfortunately these values don't allow a numerical distinction between d and x. We have set the FI norm at 80

years of age, and take 75 as the old age (since any value � 80 gives x’  = 0).  Let the youngster be 20 years of

age. 

lis = {"Sqrt", "PrShortfall",

"Absolute", "FI Level", "FI Ratio", "FI Unit", "Rescue"};

TableForm[{

LifeGain[75, 1, 1, #] & /@ lis,

LifeGain[20, 30, 30, #] & /@ lis} // N // Transpose,

TableHeadings � {lis, {"Old", "Young"}}]

Old Young

Sqrt 0.113961 0.612372

PrShortfall 0.5 0.5

Absolute 1. 30.

FI Level 1. 30.

FI Ratio 0.0125 0.375

FI Unit 0.012987 0.375

Rescue 1. 30.

The ZIN (2018a:13)  example with a* = 85  presumably has their  “old person”  also at  that  age a = a*.  Subse-

quently they have the formula (85 - (85 - 1)) / 85. Apparently they subtract the burden of disease from a*, giving

a* - d, and then they apparently determine the gain as x = a* - (a* - d). It is hard to say since they took x = d. If

their  token  age  really  is  a  =  a*  then  their  formula  conflicts  with  the  earlier  statement that  there  would be  no

advancement beyond a*.  I do not understand what formula they apply for this particular example. The formula

implemented in The Economics Pack uses their formula in their Table 2 in ZIN (2018a:11) while also including

the maximum condition on a*, which gives x’ = Min[a*, a + d + x] - Min[a*, a + d].
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