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Abstract

To explore the relationship between spatial location and quality differentiation, we build a

dataset of over 30,000 restaurants rated by TripAdvisor, across large UK cities. Whereas

top-rated restaurants tend to locate close to other top restaurants, bottom-rated restaurants

tend to locate away from each other and closer to top ones. Our theoretical model can

explain the main features of observed spatial patterns. We find that an increase in the

population density in the city center reduces the spatial dispersion of both top and bottom

restaurants but this reduction is larger in magnitude for top restaurants. Also, a larger quality

difference between top and bottom restaurants increases both the absolute and relative

dispersion of top restaurants.
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1 Introduction

The restaurant industry in the United States generated over USD 800 billion in sales in 2019. In

fact, restaurants have become so widespread that the National Restaurant Association reports

that nearly 6 in 10 adults have worked in the restaurant industry at some point during their lives.1

The trend is similar in other western countries. In the United Kingdom, eating out is so popular

that the revenue from restaurants and other food services constitutes the largest share of the

leisure sector revenue.2 Restaurants have now become something much more than simply a

place to eat and are part of busy modern life, thus constituting an important component of urban

*This research made use of the Rocket High Performance Computing service at Newcastle University.
aKyungpook National University, Korea, and CORE, Université catholique de Louvain, Belgium. Email:

pmossay@outlook.com.
bNewcastle University Business School. Email: Jong.Shin@newcastle.ac.uk.
cCorresponding Author. Address: Newcastle University Business School, 5 Barrack Road, Newcastle upon

Tyne, NE1 4SE, United Kingdom. Email: Grega.Smrkolj@newcastle.ac.uk.
12019 Restaurant Industry Factbook, accessed January 25, 2020, http://restaurant.org.
2“Restaurant industry in the United Kingdom (UK) - Statistics & Facts”, Statista Research Department,

September 3, 2018, accessed January 25, 2020, https://www.statista.com/topics/3131/restaur

ant-industry-in-the-united-kingdom-uk/.
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amenities. Nowadays, to stay competitive, restaurants need to do their best to provide a unique

dining experience and many of them now offer a wide range of food and beverages, from coffee

and cocktails to salads and healthy eating options. Taking care of their online reputation has

become crucial for restaurant owners. Not only does a majority of consumers consult online

reviews3 but more than one in three consumers would also generally not eat in a restaurant

rated below 4 stars on online review sites like TripAdvisor and Google.4 Among various new

sources of differentiation, location still plays an important role. According to the National

Restaurant Association, 56% of consumers would choose a restaurant within a walking distance

over another.

Given the intrinsic importance of location and product differentiation, the restaurant industry

is a natural choice to study the relation between these two factors affecting competition. In this

study, we explore whether there are any systematic differences in the location of top- and bottom-

rated restaurants. In other words, we study the spatial competition among quality-differentiated

firms, where quality is that perceived by consumers. To do this, we build a unique, hand-collected

dataset, which maps over 30,000 restaurants listed and rated on TripAdvisor’s online review

site, across cities in England and Wales. We find that top-rated restaurants tend to be spatially

more concentrated than bottom-rated ones and locate closer to the city center. Whereas top-rated

restaurants tend to locate closer to other top-rated restaurants, bottom-rated ones tend to locate

away from other bottom-rated restaurants and closer to top-rated ones. Moreover, bottom-rated

restaurants tend to be less clustered than top-rated restaurants.

The spatial concentration of companies and firm clustering have attracted great attention

both from a theoretical perspective (e.g., Krugman, 1991; Porter, 2000) and an empirical

research perspective (Duranton and Overman, 2005; Marcon and Puech, 2003, and numerous

others). Of particular interest is the question about which parameters determine the formation of

clusters. Gordon and McCann (2000), for instance, compare the advantages and disadvantages

of geographical proximity as perceived by business leaders in different sectors and conclude

that agglomeration advantages usually far outweigh the disadvantages of increased competition.

We contribute to this extensive literature with a novel study on the potential relation between

quality differentiation and the spatial clustering of firms (restaurants) in cities.

The empirical literature on restaurants typically focuses on the impact of competition (e.g.,

an increase in the number of firms) on prices and on the relation between prices and quality.

For instance, De Silva et al. (2016) recently show that competition does not decrease but rather

increases restaurants’ prices. Due to agglomeration economies, restaurants benefit from positive

externalities in denser, well-served restaurant areas, which attract more consumers. They also

show a positive relationship between the prices charged by restaurants and their quality.

In cities, population density affects the variety of available products. Schiff (2015) shows that

a higher population density increases the diversity of cuisines and the range of restaurant quality

levels in cities. In high-density areas, consumption benefits are large because consumers can

3“Over three-quarters of UK consumers check online reviews, with TripAdvisor 2.5 times more influential than

Google,” Uberall press release, June 26, 2019, accessed January 25, 2020, https://uberall.com/en-gb/

company/press-releases/over-three-quarters-of-uk-consumers-check-online-re

views-with-tripadvisor-2-5-times-more-influential-than-google.
4“5 Industries Impacted by Online Reviews”, accessed January 25, 2020, https://onlinegeniuses.c

om/5-industries-impacted-by-online-reviews-infographic/.
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visit more restaurants they prefer. Couture (2016) estimates the average household’s willingness

to pay to move to a denser area. Both of these studies reemphasize the role of cities as centers of

consumption (see Glaeser et al., 2001).

Our analysis focuses neither on the relationship between quality and price nor on quality

competition. Rather, we contribute to the literature by exploring the relationship between restau-

rant quality and spatial clustering that we observe in the data. We also propose a competition

model between restaurants that can explain the main properties of spatial patterns observed in

our sample. Our model builds on models of imperfect competition among firms à la Hotelling.

Four restaurants are competing in terms of price and location for consumers distributed along a

line segment. As in the standard Hotelling duopoly model, the subgame perfect equilibrium in

price and location is obtained by backward induction. Whereas the locations are chosen in the

first stage of the game, the prices are set in the second one.

In the literature, few theoretical results exist about multiple-firm Hotelling models. Brenner

(2005) analyzes a multi-firm Hotelling model under quadratic transport costs. He shows that in

the second stage of the game, a price equilibrium exists and is unique for any number of firms.

However, due to the analytical complexity related to the number of firms, Brenner relies on

numerical computations to determine the location equilibria in the first stage of the game for up

to nine firms. The multi-firm Hotelling model under linear transport costs was studied earlier by

Economides (1993). In contrast to the model with quadratic costs by Brenner (2005), only part

of the market is served in equilibrium.

In our model, unlike in the traditional Hotelling model, consumers also have idiosyncratic

tastes about restaurants. This means that they visit and buy from all restaurants with a positive

probability. The logit Hotelling model with multiple firms under linear transport costs was

studied by de Palma et al. (1985). They show that if consumer taste heterogeneity is high enough,

a single location equilibrium is obtained, in which all firms locate in the city center. In the case

of three firms, de Palma et al. (1987) show that lower heterogeneity levels lead firms to disperse

along the line segment and multiple location equilibria can emerge.

In our model, firms are differentiated by location but also by the quality of the good they serve

to consumers. Like Tseng et al. (2010), we assume that the qualities of goods are exogenous

(i.e., related to long-term decisions), whereas firms’ locations are endogenous (i.e., a short-term

choice). Tseng et al. (2010) show that spatial dispersion (resp. concentration at the center)

occurs if the difference in quality is small enough (resp. large enough). However, our model

is quite different from theirs as it involves two firms of each quality type, meaning that both

inter- and intra-type competition is present. Moreover, unlike in Tseng et al. (2010), consumer

heterogeneity in our model results from idiosyncratic tastes about restaurants rather than from

differences in consumers’ willingness to pay for quality.

As in Brenner (2005), our multi-firm model admits a unique price equilibrium in the second

stage of the game. However, here, in addition to having multiple-firms as in the oligopoly

model by Brenner (2005) or the logit oligopoly model by de Palma et al. (1985), the quality

difference between top and bottom restaurants introduces additional complexity. Our model can

only be solved using a numerical approach. We develop a numerical algorithm that relies on

a state-of-the-art nonlinear solver to find both symmetric and asymmetric equilibria, of which

there can be many. As in the triopoly model of de Palma et al. (1987), a lower level of consumer
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taste heterogeneity fosters spatial dispersion and induces the emergence of multiple location

equilibria in the first stage of the game.

In contrast to the literature focusing on the effect of competition (e.g., the number of

competitors in the market or the level of transport costs) on price and quality (see, e.g., Ma

and Burgess, 1993), we focus on explaining properties of spatial patterns of top and bottom

restaurants (e.g., their absolute and relative spatial dispersion) in relation to their quality.

When consumer taste heterogeneity is relatively low, transport costs play a prominent role in

buying decisions. The city center attracts top restaurants, as it provides them with the best access

to the customer base. Top restaurants are able to drive bottom restaurants away from the center

through quality competition. The latter ones then disperse around top restaurants, primarily

serving customers living outside the city center. However, when consumer taste heterogeneity is

relatively high, buying decisions appear as rather random to restaurants. Consequently, the city

center offers relatively little advantage in terms of access to the customer base. As competition

is fiercer between top restaurants than bottom ones, top restaurants disperse more.

We also model non-uniform spatial densities of consumers. For a two-firm model, Anderson

et al. (1997) have shown that tight density functions constitute an agglomeration force leading

to lower prices. Considering quality-differentiated firms, we show that the magnitude of the

quality difference between top and bottom restaurants qualifies this result. Although a larger

concentration of consumers in the center attracts both types of restaurants, a larger quality

difference increases the competition between top restaurants, forcing them to move apart. The

relative magnitude of these two effects determines which restaurant type locates closer to the

center.

We derive a number of testable predictions from our model regarding the spatial dispersion

of top and bottom restaurants and the effect of quality. In turn, we run regressions to test these

hypotheses and are able to validate most of them. We find that an increase in the population

density in the city center reduces the spatial dispersion of both top and bottom restaurants but

this reduction is larger in magnitude for top restaurants. A larger quality difference between top

and bottom restaurants increases both the absolute and relative dispersion of top restaurants.

The rest of this paper is organized as follows: In Section 2, we describe the data and explore

the spatial patterns of restaurants to establish some new stylized facts. In Section 3, we present

a stylized model that is able to reproduce them and examine the relative spatial distribution

of restaurants under different parameter configurations. In Section 4, we empirically test our

model’s predictions and outline those that leave room for further study. Section 5 concludes.

2 Spatial Analysis

2.1 Data

We built our dataset from four main sources.5

1. Data on restaurants and their quality

5All data were obtained and used in accordance with The Copyright and Rights in Performances (Research,

Education, Libraries and Archives) Regulations 2014, UK.
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First, we chose a set of over 100 of the largest cities in the UK by population in 2017.6 We

then listed for each city all the restaurants ranked on ©TripAdvisor’s website from January

25 to February 14, 2018, using a restaurant search by city. We chose the restaurant rankings

of TripAdvisor, as it is by far the most widely used review site for restaurants.7

We take a restaurant’s ranking according to the TripAdvisor Popularity Index as an indicator

of its overall quality perceived by customers. The index is calculated by a proprietary

algorithm and is usually updated weekly. The index considers quantity, quality, and recency

of reviews to determine reviewers’ overall satisfaction with a restaurant. An online tracking

system, as well as a “dedicated team of investigators,” is employed by TripAdvisor to prevent

and remove fake reviews.

TripAdvisor’s list of restaurants by city often includes restaurants located in nearby cities and

towns. Moreover, some restaurants have no ranking and/or addresses. These observations

were dropped from the sample.

2. City boundaries

City boundaries in the form of geometric polygons with GPS coordinates were obtained

from ©OpenStreetMap8 and MapIt.9 These maps did not always clearly distinguish between

the city and its suburbs. We analyzed only cities that were clearly demarcated and matched

closely TripAdvisor’s definition of them.

3. GPS locations of restaurants

Restaurants’ mailing addresses, obtained from TripAdvisor, were converted to GPS coor-

dinates via APIs provided by Google Maps™ and Bing Maps™. After geocoding, a few

restaurants could not be located within relevant city boundaries. When addresses resulted in

invalid GPS coordinates (e.g., towns in other countries), observations were dropped from the

sample. We also excluded London as it is an outlier in terms of both the area and the number

of restaurants.

4. Population data

The UK does not have a central population registry. Unlike England and Wales, Scotland and

Northern Ireland collect separate population data. For consistency, we decided to restrict our

sample to the cities in the England and Wales as most of the largest UK cities are located

62017 World Population Review, “Population of Cities in United Kingdom (2017),” accessed January 25, 2018,

http://worldpopulationreview.com/countries/united-kingdom-population/citi

es.
7A TripAdvisor-sponsored survey among its 9,500 registered consumers in the US and EU in 2018 claims that

it is by far the most widely used and trustworthy restaurant review website. In the UK, 87% of all respondents

agreed that online reviews influence their dining decisions. Moreover, 64% of respondents said they prefer to

use TripAdvisor (Google 22%, Facebook 8%) while at home and 70% while traveling (Google 21%, Facebook

5%); 93% of UK respondents agreed that TripAdvisor’s reviews matched their dining experiences (TripAdvisor,

“Influences on Diner Decision-Making,” accessed November 20, 2018, https://www.tripadvisor.com/

ForRestaurants/r3227). Our own research confirms that TripAdvisor is the most comprehensive guide for

the UK. For instance, the combined number of reviews for the five highest-rated restaurants in Newcastle upon

Tyne was 125 on Yelp, 1, 837 on Google, and 2, 581 on TripAdvisor (data accurate as of July 4, 2020).
8Data is available under the Open Database Licence, http://www.openstreetmap.org/copyright.
9MapIt contains Ordnance Survey data ©Crown copyright and database rights 2010-17, which is licensed

under the Open Government Licence v3.0.
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Table 1: Descriptive statistics

mean sd min max

# top 82.44 70.23 18 374

# bottom 82.74 70.22 19 375

area (km2) 207.91 340.75 10.64 2224.19

population (in 1000) 215.84 151.72 26.80 1073.05

Observations 96

in those two countries. Our population data are sourced from the 2011 Census for England

and Wales.10 England and Wales are divided into 181,408 geographical units called Output

Areas (OAs), the lowest geographical level for which census estimates are available. The

average number of residents living in an OA was 309 in 2011. We allocated OAs to cities in

the sample by using their population-weighted centroids with GPS coordinates.

Our final sample for our empirical analysis consists of 31,715 restaurants across 96 large

cities in England and Wales (for the list of cities, see Appendix A).

2.2 Spatial Analysis

This analysis aims to explore the location differences between “good” and “bad” restaurants. To

this end, we rank restaurants in each of the 96 cities in the sample from best to worst using the

TripAdvisor Popularity Index. Next, all restaurants below the 25th percentile (the 1st quartile) of

the ranking are labeled Top and all restaurants at or above the 75th percentile (the 4th quartile)

are labeled Bottom.11 Table 1 provides basic summary statistics of our dataset.

In the following, we investigate several differences in the location of top and bottom

restaurants such as i) spatial dispersion, ii) spatial centricity, and iii) spatial dependence.

2.2.1 Spatial dispersion

We first examine whether top (T ) and bottom (B) restaurants disperse differently across the

city. To this end, we calculate the average distance of restaurants in each group from that

group’s geometric centroid (respectively dTi and dBi ) for each city i, i ∈ [1, 96]. All distances are

calculated as great-circle distances.12 Figure 1 shows the location of top and bottom restaurants

in two sample cities—Newcastle and Liverpool. In both cities, bottom restaurants are more

dispersed than top ones.13

10The Office for National Statistics licensed under the Open Government Licence v3.0.
11Our results are robust to restaurant classifications based on different percentiles. See Appendix B for various

robustness checks.
12The “great-circle” distance is the shortest distance between two points on the spherical earth (i.e., as the crow

flies).
13Maps of other cities in the sample are available on the corresponding author’s website.
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top

bottom

(a) Newcastle (b) Liverpool

Figure 1: Location of top and bottom restaurants in Newcastle and Liverpool. The dashed (blue)

circle has a radius equal to the average distance of bottom restaurants from their geometric

centroid (indicated by a blue dot). The solid (red) circle has a radius equal to the average distance

of top restaurants from their geometric centroid (indicated by a red square).

We use the ratio rdi = dBi /d
T
i as a measure of relative dispersion of top versus bottom

restaurants in city i. See Figure 2a for this measure of relative dispersion for all cities ranked

by total area from the smallest to the largest. The correlation between the average distances of

restaurants from their group’s geometric centroid and the city area is positive and significant,

although modest, for both top (r = 0.239, p = 0.019) and bottom (r = 0.391, p = 0.000)

restaurants. However, the relative dispersion between top and bottom restaurants does not vary

with city size (r = 0.008, p = 0.936)—the points in Figure 2a are uniformly scattered along the

horizontal axis. In most cities, bottom restaurants seem relatively more dispersed: 64% of all

points lie above the horizontal line rdi = 1.

We formally test the null hypothesis of no difference in the spatial dispersions between the

two groups of restaurants by using Anderson’s (2006) distance-based multivariate generalization

of Levene’s test for homogeneity of variances.14 In Figure 2a, the filled circles indicate the cities

for which the dispersion difference between the two groups is significant at the .05 level. The

dispersion difference is significant in 41 out of the 96 cities. In all but 5 significant cities, bottom

restaurants are relatively more dispersed than top ones.

2.2.2 Spatial centricity

While the above test reveals that bottom restaurants tend to be more dispersed than top ones, it

does not tell us whether they potentially locate in different places, in particular, whether one

14Specifically, we use a principal coordinate transformation of the dissimilarity matrix based on great-circle

distances between restaurants to calculate the ANOVA F-statistic. We execute the more robust version of Levene’s

test and calculate deviations of group members from the group’s spatial median based on principal coordinate axes

without making any assumptions about the distribution of distances. Accordingly, we obtain the p-value by 9,999

permutations of the least-absolute-deviation residuals. The test was executed using the R package vegan 2.5-3

(Oksanen et al., 2018).
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Figure 2: Relative dispersion (a) and relative centricity (b) between bottom and top restaurants

across 96 cities in England and Wales. Cities are ranked by total area from the smallest to the

largest.

group is more concentrated in the city center than the other. For this, we first need to define

the city center. The literature documents many proxies that serve this purpose (e.g., a city map

center point, main railway or bus station, main post office), of which none has a clear advantage.

For our research, we define the city center as the geographic centroid (center of gravity) of

all restaurants in the city, which can be intuitively interpreted as the city’s dining center. As

restaurants tend to concentrate in places where people spend time together, our center should

indicate where the average individual shows up when going out for dinner.

For each group of restaurants, we calculate the average distance of restaurants to the city

center (respectively cTi and cBi ) and then use the Mann–Whitney–Wilcoxon two-sided test to

decide if the difference between groups is significant. Figure 2b shows the relative average

distances (cBi /c
T
i ) of top and bottom restaurants across all cities ranked by area. The filled

circles indicate cities for which the test is significant at the .05 level. In 61 out of the 96 cities,

top restaurants are on average located closer to the center (cBi /c
T
i > 1), but the difference is

significant for only 34 of them. However, out of the latter, in all but four cities, top restaurants

are located closer to the center.

Overall, based on the two tests in Figure 2, we conclude that top restaurants tend to be

spatially more concentrated than bottom ones and locate closer to the city center.

2.2.3 Spatial dependence

Our next question is whether restaurants of a certain type tend to be surrounded by restaurants

of the same or another type. To answer this, we use Ripley’s bivariate K function (see, e.g.,

Baddeley et al., 2015; Dixon, 2002), which corresponds to the expected number of type j

restaurants within a distance r of a typical type i restaurant, standardized by dividing by the
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density (number per unit area) of type-j restaurants (λj):

Ki,j(r) =
1

λj

E[number of type j restaurants within a distance r

of a randomly chosen type-i restaurant].

(1)

For a city map of area A with ni type-i restaurants and nj type-j restaurants, an estimator of

the above function is

K̂i,j(r) =
(

λ̂iλ̂jA
)

−1
ni
∑

k=1

nj
∑

l=1

I(dik,jl ≤ r)e(ik, jl), (2)

where λ̂i = ni/A and λ̂j = nj/A are the observed densities of type-i and type-j restaurants,

respectively; dik,jl is the distance between the k-th restaurant of type i and the l-th restaurant

of type j; I(z) is an indicator function that takes 1 if z is true and 0 otherwise; and e(ik, jl) is

an edge correction weight. The latter is employed to reduce the estimation bias due to the fact

that restaurants outside the city boundary are not counted even though they are within a distance

r. We therefore use the isotropic correction method, in which e(ik, jl) is the reciprocal of the

fraction of the circumference of a circle centered at the k-th restaurant of type i with radius dik,jl
that lies inside the city boundary. As the variance of the estimator increases with distance r, we

apply Ripley’s rule of thumb and take as its maximum value one quarter of the shortest side of

the rectangle enclosing the city polygon (for details, see Baddeley et al., 2015).

Under the null hypothesis of random labeling, the type of each restaurant (top or bottom)

is determined randomly, independently of other restaurants, so that KT,B(r) = KB,T (r) =

KT,T (r) = KB,B(r) = K(r). We examine departures from random labeling using three

pairwise differences between bivariate K functions: KT,T (r)−KT,B(r) and KB,B(r)−KB,T (r)

to evaluate whether restaurants tend to be surrounded by restaurants of the same or the other

type, and KT,T (r)−KB,B(r) to evaluate whether restaurants of one type cluster more or less

than those of the other type.

We make inferences based on a permutation test, fix the number of observed restaurants of

each type and their spatial locations in a city accordingly, and then randomly permute the types

(labels) of restaurants. For each of 999 randomly permuted datasets, we then evaluate three

pairwise differences between the K functions and compute their pointwise envelopes by finding

for each distance r their 25-th largest and 25-th smallest values among all simulated values

(upper and lower 2.5% quantiles). For a given distance r, the test rejects the null hypothesis of

random labeling if the empirical estimate of the relevant pairwise difference lies outside the

envelope limits at the (25 + 25)/(999 + 1) = 0.05 significance level.

All tests and simulations in this section were executed using the well-known spatstat

(Baddeley et al., 2015) package for spatial point pattern analysis, written in R. As the pertinent

K functions are based on Euclidean distances, all GPS locations of restaurants were projected

using the British National Grid projection (OSGB36).

Figure 3 shows the results for a city in our sample, Newcastle upon Tyne, which is the most

populous city in North Eastern England. In Figure 3a, the null hypothesis would be rejected at

the 5% significance level for any choice of distance r. Positive deviations of K̂T,T (r)− K̂T,B(r)

9
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Figure 3: Spatial dependence between restaurants in Newcastle. Solid line: empirical estimate

of pairwise differences. Dashed line: sample mean of simulations from the null hypothesis of

random labeling. Gray shading: pointwise 5% critical envelopes based on 999 simulations.

suggest that top restaurants are more likely to be found close to other top restaurants than if

the type of restaurant was randomly allocated.15 However, In Figure 3b, the deviations of

K̂B,B(r)− K̂B,T (r) are negative and below the 2.5% quantile for all distances above 0.5 km,

which suggests that bottom restaurants are more likely to be found close to a top restaurant. That

is, while top restaurants concentrate, bottom restaurants tend to disperse.16 Finally, in Figure 3c,

the deviations of K̂T,T (r)− K̂B,B(r) are positive and significant for all distances. This suggests

that top restaurants cluster more than bottom ones, which is in line with our findings in the

previous section.

Figure 4 summarizes the results for the entire sample of cities for a radius of up to 2 km.17

We observe that, for most cities with significant differences, top restaurants tend to locate closer

to other top restaurants (Figure 4a), while bottom restaurants tend to locate away from other

bottom restaurants and closer to top restaurants (Figure 4b). Also, bottom restaurants as a group

tend to be less clustered than the top ones (Figure 4c). For instance, at a distance of 1 km, the

difference K̂T,T (r)− K̂T,B is significant (and positive for all but one city) in 51 of the 96 cities.

Further, the difference K̂B,B(r) − K̂B,T is significant and negative in 36 cities. Finally, the

difference K̂T,T (r)− K̂B,B is significant and positive in 47 cities. Results for other distances

are similar.

Acknowledging the limitations of aggregating results for cities of different sizes, we present,

in Figure 5, the estimates of pairwise differences between pooled bivariate K functions, together

15In Figures 3 and 4, we replace K̂T,B(r) and K̂B,T (r) with a more efficient estimator, K∗

T,B(r) =
λ̂BK̂T,B(r)+λ̂T K̂B,T (r)

λ̂T+λ̂B

(Lotwick and Silverman, 1982).
16Note that our test is conditional on observed locations and thus valid despite the potential inhomogeneity of

λ (density of restaurants) across a city. However, as it is not conditional on spatial covariates, we are unable to

differentiate between co-location due to true dependence among restaurants and that due to exogenous features of

city territory. We can therefore discuss only unconditional or observed dependence. In our experience, analyses

based on spatial covariates are very sensitive to assumptions about the nature of interactions and the set of covariates

included; therefore, this paper does not pursue this line of research.
17Recall that, for result reliability, we impose an upper limit on the value of r for which K is calculated, so that

for distances above 1 km, smaller cities start to fall out of the sample.
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Figure 4: Spatial dependence between restaurants in England and Wales. Gray: observed

deviation from random labeling is not significant (ns); black: observed deviation is significant

and positive (+); white: observed deviation is significant and negative (-).

with pointwise 5% critical envelopes corresponding to the null hypothesis of random labeling.

We first use the ratio-of-sums estimator and calculate each pooled Ki,j as a weighted mean of

individual Ki,j estimates for the 96 cities with weights proportional to ninj .
18 In the next step,

we calculate the relevant pairwise difference using the pooled Ki,j estimates from the previous

step. To obtain the critical envelopes, we randomly relabel the restaurants in each city 999 times

and calculate a relevant pairwise difference between the pooled Ki,j functions each time. Out

of the 999 simulated pairwise differences, we select the upper and lower 2.5% quantiles. Our

conclusion is that, on average, top restaurants in England and Wales concentrate, while bottom

restaurants disperse (except for distances below 0.1 km). Top restaurants also cluster more.
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Figure 5: Pooled estimates for 96 cities in England and Wales. Solid line: pooled estimate of

the pairwise difference; dashed line: sample mean of simulations from the null hypothesis of

random labeling; gray shading: pointwise 5% critical envelopes based on 999 simulations.

18Observe that the estimator in (2) can be expressed as the ratio K̂(r) = Ŷ (r)/X̂(r), where the denominator

X̂(r) is the number of pairs ninj .
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3 Theoretical Analysis

In this section, we present a minimal model that can explain our stylized facts. To address the

relative dispersion of top and bottom restaurants, we need at least 2 firms of each quality type.

3.1 Model

The model is based on Hotelling’s paradigm of a linear city. Four firms (restaurants) sell

goods that are vertically differentiated by quality in a city that is defined as a unit interval

[0, 1]. Consumers are distributed on this interval according to the log-concave density f(y) ≥ 0,

y ∈ [0, 1], with their mass normalized to one. Each consumer buys a unit of the good provided

by the restaurants. The indirect utility of a consumer located at y and purchasing from restaurant

j = 1, ..., 4 is

uj(y) = qj − pj − (y − xj)
2 + σεj,y, (3)

where qj > 0 is the quality of the good,19 pj > 0 is its price, xj ∈ [0, 1] is the location of

restaurant j, and εj,y is an idiosyncratic preference shock. The latter describes the fact that

consumers differ in some dimensions that the restaurants cannot observe and, therefore, they

also cannot predict with certainty the decision of any particular consumer. The scale parameter

σ controls the degree of consumer taste heterogeneity. For σ > 0, there is always a positive

probability that any consumer will buy from any restaurant. The larger σ is, the less consumers

discriminate between restaurants and the more random their buying decisions appear. The

quadratic term captures the disutility incurred by consumers due to transport costs.20

Assuming that idiosyncratic shocks are independently and identically distributed according

to a type I extreme value distribution (the logit model), the probability that a consumer located

at y buys from restaurant j is

Pj(y;p,x) =
exp {(qj − pj − (y − xj)

2)/σ}
∑

4

k=1
exp {(qk − pk − (y − xk)2)/σ}

, (4)

where p denotes the price vector (p1, p2, p3, p4) and x the vector of restaurant location

choices (x1, x2, x3, x4).

Restaurants play a two-stage game. In the first stage, they select their location, whereas,

in the second one, they select the price they charge consumers. We assume that the quality of

19In our model, the quality of goods determines the utility consumers get from purchasing them. Such a general

concept of quality is better captured by restaurant rankings based on consumers’ ratings (e.g., TripAdvisor) than

rankings based on experts’ opinions (e.g., Michelin, Zagat), whose exquisite taste is not often perceptible to the

common eye (see O’Loughlin, Marina, “Is Zagat’s guide to London restaurants on another planet?”, The Guardian,

accessed July 4, 2020, https://www.theguardian.com/lifeandstyle/2012/sep/10/zagat-g

uide-london-restaurants.)
20These costs may include the value of the time spent in travel.
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restaurants is given and fixed.21, 22 The marginal costs of production are normalized to 0. The

profit of restaurant j, which is a continuous function of prices and location choices, is given by

Πj(p,x) = pj

∫

1

0

Pj(y;p,x)f(y) dy (5)

and is bounded below by zero.

3.2 Computation of equilibria

We search for subgame perfect Nash equilibria in pure strategies. To determine them, we proceed

with backward induction. We rely on a numerical algorithm consisting of two loops: the inner

one calculates the price equilibrium for any given set of firms’ locations, whereas the outer one

calculates all the location equilibria.

3.2.1 Price equilibrium

The inner loop takes a vector of given restaurant locations x̄ and calculates the price equilibrium

as a solution to the following system of four nonlinear equations (firms’ first-order conditions

for profit maximization):

∂Πj(p, x̄)

∂pj
= 0, j = 1, ..., 4. (6)

The equations above involve derivatives of integral functions that must be evaluated numerically.

We approximate these derivatives using centered finite difference schemes and compute the

integrals using MATLAB’s global adaptive quadrature method. The solution to (6) is then

obtained using the Artelys Knitro 12.0 solver.

Based on theoretical results from Caplin and Nalebuff (1991), the price equilibrium can be

shown to exist and be unique. The key argument for the existence of the equilibrium consists

of showing that a firm’s profit Πj(p,x) is quasi-concave in its own price, which is the case as

P−1

j (y;p,x) can be shown to be convex in the firm’s own price. The uniqueness of the price

equilibrium follows from the log-concavity of the density of consumers f(y). Note that the

uniqueness result was previously obtained by Anderson and de Palma (1988) for the duopoly

model but the general argument of Caplin and Nalebuff (1991) extends it to the case of more

firms. The uniqueness result is particularly important to us because it ensures that all firms have

a unique best response and that no other price equilibrium exists. Caplin and Nalebuff (1991)

21The assumption of exogenous quality can be interpreted as assuming that high quality restaurants do not

offer low quality services, whereas low quality restaurants do not have a capacity to offer high quality services.

In this sense, quality is related to a long-run decision. The owner’s business expertise can take a lifetime to build

and is often specialized and directed to a certain type of business and consumers. We are also not primarily

interested in quality choices, but rather in location differences between restaurants of different quality levels. As

the multiple-firm model with the multiplicity of equilibria is computationally demanding even with the assumption

of exogenous quality, we necessarily leave the possibility of endogenous quality, interesting in its own right, for

future work.
22Irmen and Thisse (1998) consider a model with strategic location and quality. Their model, in which two

firms compete in a multi-characteristic space, leads to maximum differentiation in one dimension and minimum

differentiation in all others.
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also show that the price equilibrium game is log-supermodular, which implies that the price

equilibrium vector is globally stable under many learning and adjustment processes. This makes

our algorithm suitable for finding the numerical solution in the inner loop.

3.2.2 Location equilibria

The outer loop solves the system of first-order necessary conditions for a location equilibrium

∂Πj(p
∗(x),x)

∂xj

= 0, j = 1, ..., 4, (7)

where p∗ is a vector of equilibrium prices for a given set of locations x. The Knitro solver

(knitromatlab lsqnonlin) starts at some initial point x0 and, using the interior-point algorithm,

attempts to find the minimum of the sum of squares of the functions that appear on the left-hand

side of equation (7), subject to the bounds 0 ≤ xj ≤ 1, ∀j = 1, ..., 4. During the search for the

solution x∗ to system (7), whenever any profit function needs to be evaluated, the outer loop

calls the inner loop to first calculate equilibrium prices for a given set of locations.

Usually, there are many candidates for an equilibrium satisfying the first-order optimality

conditions (7). To find all of them, we restart the algorithm from 1, 000 initial locations, obtained

by randomly drawing components of x0 from the interval [0, 1]. This process gives us a set

of solutions to the firms’ first-order conditions, which are only necessary but not sufficient

conditions for an interior equilibrium. In the second step, we then eliminate candidates that fail

to satisfy second-order conditions for a local maximum. Finally, in the third step, we check that

each remaining candidate actually satisfies global optimality. For this, we check that firm j’s

location choice is a global maximum given the location of all the other firms. In other words,

for each equilibrium candidate, we look for the location xj ∈ [0, 1] of firm j that maximizes its

profit function while the locations of other firms are kept fixed to their equilibrium value. To do

this, we restart the Knitro optimizer from 100 initial points to obtain the best feasible solution

for firm j on the interval. We repeat the exercise for all j = 1, ..., 4 and keep an equilibrium

candidate only if it is a global maximum for all firms. In general, we obtain several location

equilibria.

3.2.3 Stability

When dealing with multiple location equilibria, it is useful to distinguish stable from unstable

equilibria. In the literature, the latter are usually disregarded as they are considered not to be

sustainable in practice. This is because a small perturbation around an unstable equilibrium

will grow in size rather than diminish over time. When defining local stability, we follow Dixit

(1986) and assume that, for a given location vector x, each firm adjusts its location over time at

a rate proportional to the marginal profitability of the adjustment,

dxj

dt
= sj

∂Πj(p
∗(x),x)

∂xj

, (8)

where sj > 0 is the adjustment speed of restaurant j, j = 1, ..., 4. By performing a linear approx-

imation around the equilibrium x∗, a system of perturbation equations is obtained. Following
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the stability conditions in Dixit (1986), we require that all eigenvalues of the corresponding

4× 4 matrix Jij = ∂2Πi(p
∗,x∗)/∂xi∂xj for i, j = 1, ..., 4, have negative real parts.

3.3 Simulation results

In our baseline specification, we consider a uniform density of consumers (f(y) = 1 for

y ∈ [0, 1], and 0 otherwise) and assume that firms provide goods of the same quality (qj =

1, ∀j = 1, ..., 4). For a relatively high level of consumer taste heterogeneity (i.e., σ = 1), we

observe that, in equilibrium, all firms locate in the center (see Figure 6a). Lower values of

taste heterogeneity σ induce multiple equilibria23; however, only a single equilibrium satisfies

the stability condition. For σ = 0.1, we find 51 equilibria, most of which differ only in the

permutation of firm names. Among them, we identify 5 distinct types of equilibria, shown in

Figure 6b, of which only the last one—type 5, with two firms in the center and the other two

around it—is stable.24

When consumer taste heterogeneity σ decreases, the consumer’s choice of a restaurant is

guided more by the restaurants’ objective characteristics and less by his or her idiosyncratic taste.

This increases the competition among the restaurants. For σ = 0.08, the central agglomeration

equilibrium (type 1) disappears and types 2–5 remain. In turn, for σ = 0.06, the equilibrium

with 3 firms at the same place (type 2) also disappears and only types 3–5 remain. Then, for

σ = 0.05, the equilibria with two firms at the same place but outside the center (types 3 and

4) disappear, so only equilibrium type 5 remains. At the same time, a new type of symmetric

equilibrium (type 6) appears, where firms non-uniformly spread out throughout the city. Of

types 5 and 6, only equilibrium type 6 is stable (see Figure 6c). This stable equilibrium, with

firms spread out throughout the city, remains the only equilibrium when sigma approaches zero

(i.e., σ = 0.01 in Figure 6d).25 As in de Palma et al. (1987), a lower level of consumer taste

heterogeneity encourages the spatial dispersion of restaurants.

3.3.1 Equilibria with quality differentiation

To explore the effects of quality differentiation on the location of the restaurants, we consider

a model where 2 of the restaurants provide a high-quality good and the other 2 provide a

low-quality good. For convenience, we term the high-quality (top) restaurants firms 1 and 2, and

the low-quality (bottom) restaurants firms 3 and 4.

Solving the model over a wide range of parameter values, we observe that when the value of

consumer taste heterogeneity σ is high, a sufficiently large quality difference between top and

bottom firms is needed to relocate some firms away from the center. Moreover, intermediate

values of the consumer taste heterogeneity σ are needed to obtain (stable) equilibria in which

top firms are more spatially concentrated than bottom ones.

23This observation is similar to a result in de Palma et al. (1987), who consider symmetric equilibria in a 3-firm

logit model.
24Equilibrium types 2 and 3 in Figure 6b also have their mirror counterparts 1− x. Throughout the text, we

classify any such mirror equilibria as one single type.
25It is interesting to observe that equilibrium locations (0.124, 0.396, 0.604, 0.876), which we obtain for

σ = 0.01, are identical, to three decimal places, to those in Brenner (2005), who considers a n-firm Hotelling model

with homogenous consumers.
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Figure 6: Location equilibria for different levels of consumer taste heterogeneity (σ), when firms

provide goods of the same quality (q1 = q2 = q3 = q4 = 1).

When the value of consumer taste heterogeneity is high (for instance, σ = 0.2) and the quality

difference is small—e.g., (q1, q2, q3, q4) = (1.1, 1.1, 1, 1), which we shorten to (qT , qB) =

(1.1, 1)—in equilibrium, all firms locate in the center. For a larger quality difference, we obtain a

different equilibrium in which bottom firms locate in the center, whereas top firms locate around

them—for (qT , qB) = (2, 1), the equilibrium locations are (0.214, 0.786, 0.5, 0.5), with prices

(0.584, 0.584, 0.205, 0.205) and profits (0.2776, 0.2776, 0.0051, 0.0051), respectively. For an

even larger quality difference, the top firms move even farther away from the center (and from

each other).

For intermediate values of the consumer taste heterogeneity σ, we are able to find top firms

relatively closer to the center, as long as the quality difference between top and bottom firms is

not too large. For instance, consider σ = 0.1 with a small quality difference, namely, (qT , qB) =

(1.1, 1). There are now four types of equilibria (compared to Figure 6b): i) top firms together at

one place and bottom firms together at another place, (0.546, 0.546, 0.312, 0.312); ii) top firms

in the center, (0.5, 0.5, 0.256, 0.744), iii) bottom firms in the center, (0.370, 0.630, 0.5, 0.5);

and, iv) all firms spread out, with top firms closer to the center, (0.406, 0.594, 0.301, 0.699).

However, only the last equilibrium is stable. Note that, for a larger quality difference, namely,
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(qT , qB) = (1.2, 1), the first equilibrium above disappears. There are three types of equilibria

left, of which only the last one is stable: (0.5, 0.5, 0.208, 0.792), (0.369, 0.631, 0.5, 0.5), and

(0.37, 0.63, 0.317, 0.683). For an even larger quality difference, namely, (qT , qB) = (1.3, 1),

the equilibrium with the top firms in the center disappears and the following two equilibria

remain: the unstable one with the bottom firms in the center (0.347, 0.653, 0.5, 0.5) and the

stable one with all the firms spread out (0.346, 0.654, 0.386, 0.614). Finally, for a very large

quality difference, namely, (qT , qB) = (1.4, 1), the only equilibrium left, which is stable, shows

that bottom firms locate in the center, (0.320, 0.680, 0.5, 0.5).

Top restaurants’ higher (relative) quality increases their market power but also the com-

petition among them. This drives top restaurants to locate farther from one another. This is

especially visible when we compare the stable equilibria at different levels of quality differences

in Figure 7. When the quality difference is small, (qT , qB) = (1.1, 1), the top firms locate close

to the center as well as to each other, whereas the bottom firms locate around them (Figure 7a).

As the relative quality of the top firms increases (Figure 7b–7c), the top firms start moving apart,

whereas the bottom ones are increasingly attracted to the center. When the quality difference is

large, namely, (qT , qB) = (1.4, 1), in Figure 7d, the initial situation is completely reversed—it

is now the top firms that locate around the bottom firms, both of which are in the center. In all

these equilibria, the top firms charge higher prices and realize larger profits than the bottom

firms (compare pT and ΠT with pB and ΠB, respectively, in Figure 7).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) (qT , qB) = (1.1, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) (qT , qB) = (1.2, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) (qT , qB) = (1.3, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) (qT , qB) = (1.4, 1)

Figure 7: Stable equilibria for different levels of quality difference between top (red) and bottom

(blue) restaurants; σ = 0.1.

Discussion. We can interpret the results of stable equilibria for different levels of consumer

taste heterogeneity as follows. When consumer taste heterogeneity is relatively high, buying

decisions appear rather random to restaurants. Consequently, the city center offers relatively

little advantage in terms of access to the customer base. As competition is fiercer between top

restaurants than bottom ones, top restaurants disperse more. However, when consumer taste

heterogeneity is relatively low, transport costs play a prominent role in buying decisions. The

city center attracts top restaurants, as it provides them the best access to the customer base. Top

restaurants are able to drive away bottom restaurants in the center through quality competition.

The latter then disperse around top restaurants, primarily serving customers living outside the

city center. When the quality difference between restaurant groups increases, it results in fiercer
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competition between top restaurants, which forces them to move apart.

Here, we see that our model is able to produce stable equilibria in which top restaurants are

concentrated, whereas bottom ones are dispersed, thereby establishing the link with our stylized

facts. Further, our model predicts that top restaurants become relatively more dispersed when

the quality difference between top and bottom restaurants increases.

The analysis above assumes a uniform distribution of consumers. In reality, city centers

attract businesses due to the high concentration of consumers and, therefore, the high demand

available at these locations. Higher consumer densities in city centers are the rule rather than the

exception.26 Therefore, in the next section, we introduce a non-uniform density of consumers.

3.3.2 Equilibria with a non-uniform density of consumers

We assume that the density of consumers f(y), y ∈ [0, 1], is given by a normal distribution

truncated over the city interval [0, 1]. For its mean, we take the city center (µ = 0.5). We

then vary the standard deviation of the parent normal distribution (ω) to see how the degree of

consumer concentration in the city center affects the (relative) location of restaurants.

When the values of the other parameters are kept fixed, a relatively larger mass of consumers

in the center (lower ω) calls for a larger quality difference to create equilibria in which any

of the firms locate away from the city center. It also induces firms in any non-agglomeration

equilibrium to locate closer to the center than they would if ω was higher. These results were

expected. More interesting is the observation that the magnitude of the quality difference

between the top and bottom restaurants plays a crucial role in how consumer density influences

their relative locations.

In Figure 8, we illustrate this for σ = 0.1. We focus on stable equilibria. In the first column,

the quality difference is small, (qT , qB) = (1.1, 1). When the relative mass of consumers in the

center increases (ω falls), the top firms move closer to the center. Although this leads to a lower

price due to the increased competition, the market size effect dominates. Although bottom firms

are also attracted to the center, they remain separated and farther from the center than the top

ones, except in the case of a very densely populated center (ω = 0.2), where all the firms locate

in the center.

The situation is very different when the quality difference is larger. In the second column of

Figure 8, (qT , qB) = (1.2, 1). A lower value of ω attracts both types of restaurants to the center

(compared to the case of the uniform distribution of consumers in the first row of Figure 7)

but the effect is stronger for bottom restaurants. When ω = 0.4, the latter are already closer

to the center than top restaurants. When the quality difference is large, the bottom restaurants

are inferior rivals and competition exists mostly between the top restaurants. This increased

competition between the top restaurants makes them relatively less willing to locate close to

each other. Specifically, the closer top restaurants are to each other, the more consumers’ choices

are guided by prices, which drives both prices and profits down.

26Our data confirm this for population densities. See footnote 27.
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Figure 8: Stable equilibria for varying values of consumer dispersion (ω). The quality difference

is small in the first column and large in the second one. In all the plots, σ = 0.1

4 Regression Analysis

The analysis of our theoretical model in the previous section allows us to develop empirically

testable behavioral predictions as indicated below.

Behavioral Predictions:

1. An increase in the population density in the city center reduces the spatial dispersion of

both top and bottom restaurants.

2. When the quality difference between top and bottom restaurants increases,

(a) the absolute spatial dispersion among top restaurants increases,

(b) the relative spatial dispersion between top and bottom restaurants increases, and

(c) the absolute spatial dispersion of bottom restaurants decreases.

To test these predictions, we construct a dataset by combining the city-level spatial statistics

reported in Section 2 with the data on different city characteristics obtained from the Office for

National Statistics. Table 2 presents the summary statistics for the key variables.
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4.1 Description of variables

Geographical dispersion of restaurants. Measures of restaurants’ geographical dispersion

are our dependent variables. Here, we use TdistC and BdistC, which are the average distances

of “top” and ‘bottom” restaurants, respectively, from the city center (see Section 2.2.2). Based on

Box-Cox tests, we take the logarithmic transformation of these variables to form lnTdistC and

lnBdistC, respectively. To test Behavioral Prediction 2(b) concerning the relative dispersion of

the restaurants, we use lnTBdistC = lnTdistC − lnBdistC.

Population dispersion. The variable PD corresponds to the population density in the city

center relative to that in the surrounding area. Specifically, we measure this non-parametrically

using PDX1−X2
= den(X1)− den(X2), for X1 < X2, where den(X) is the population density

within an X-kilometer radius of the city center, expressed as thousands of people per km2. To

obtain an estimate of the total population living within the circle of the X-kilometer radius, we

count the number of people living within the OAs whose centroids lie inside the circle. We

report the results for PD2−4 = den(2)− den(4).27, 28

Restaurant quality dispersion. We use the overall rating of each restaurant to construct

quality dispersion measures that are comparable across different cities.29 We compute two

alternative measures. The first one is σQ, which is the standard deviation of the overall rating

for all the restaurants in the city. Our theory in Section 3 relies on two types of restaurants.

However, in reality, when deciding where to locate, a new restaurant would take into account the

location of all types of restaurants. As a robustness check, we also use dQ, which is defined as

the difference between the average overall rating of the top and bottom quartiles of restaurants

in the city. This measure is more closely related to our theoretical model, but potentially ignores

the effect of restaurants of intermediate quality.

Control variables. Our theoretical model is based on a city whose geographical size is

normalized. Since two of our dependent variables, TdistC and BdistC, represent physical

distances in kilometers, it is possible that these measures reflect, to some extent, the effect of the

geographical size of cities. Similarly, it is possible that the average distance of restaurants is

influenced by tourist activities and the total number of restaurants. To address such concerns, in

a robustness check, we use the logarithm of city area (lnArea), the logarithm of the number

of restaurants (lnNR), and the dummy variable Tourist as our control variables. The variable

Tourist takes the value 1 if, between 1999 and 2018, the city was mentioned at least once on

27 We observe that PD2−4 is positive for 90 out of 96 cities in our sample.
28For robustness, we also tried alternative sets of distances, such as PD1−3 = den(1)− den(3). The results

are qualitatively similar and available upon request.
29Overall rating is a raw score based on reviewers’ overall assessment of the restaurant, which ranges from 1

(terrible) to 5 (excellent). As such, it captures the cardinal dimension of restaurant quality, whereas TripAdvisor’s

popularity ranking is an ordinal measure that takes into account overall ratings as well as other information, such as

the recency and number of reviews. TripAdvisor recommends the use of the popularity ranking for its recency and

consistency of information instead of, for example, the overall rating. However, the dispersion of ordinal measures,

such as popularity rankings, is not informative.
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the list of 20 most visited towns and cities by overseas visitors according to the “inbound town

data” released by the Office for National Statistics. Otherwise, it takes the value 0.

4.2 Empirical Results

To empirically test our behavioral predictions, we run cross-sectional regressions of the restau-

rants’ geographical dispersion measures on the dispersion of the population and restaurant

quality. Table 3 reports the results based on ordinary least squares.

The estimated coefficients for PD2−4 in columns (1)–(4) and (9)–(12) are all negative and

significant. This is in line with Prediction 1—the geographical dispersion of both types of

restaurants is smaller when the population density in the city center is relatively larger. Note that

our theoretical model does not give clear predictions about the relative geographical dispersion

of top and bottom restaurants. In columns (5)–(8), the coefficients for PD2−4 are also negative,

although not always significant. Hence, the effect of the population density in the city center

appears stronger for top restaurants than for bottom ones.

In columns (1)–(4), σQ and dQ are all positive and significant. This finding supports

Prediction 2(a) about the effect of quality difference on the absolute dispersion of top restaurants.

A larger quality difference between top and bottom restaurants increases the distance between

top restaurants.

The positive and significant coefficients for σQ and dQ in columns (5)–(8) present some

evidence supporting Prediction 2(b) concerning the effect of quality difference on the relative

dispersion of the two groups of restaurants. However, Prediction 2(c) about bottom restaurants

is not adequately supported by our data. The only negative point estimate is nonsignificant,

whereas others are positive and all, except one, are nonsignificant. Here, it emerges that our

stylized logit Hotelling model does not work well.

The effects of the control variables can be found in the even-numbered columns. As

anticipated, the geographical dispersion of both restaurant types is larger in cities with larger

areas and more restaurants. A city’s being an important tourist destination reduces the dispersion

of both restaurant types in it. This is in line with the fact that city centers usually exhibit the

highest concentration of visitor-related facilities and services. Importantly, the inclusion of

various control variables does not qualitatively affect our key findings.

To provide a further robustness check, we also redo our analysis using spatial regression

methods. In the first set of analyses, we model spatial dependence through the error terms

and estimate the models using the generalized spatial two-stage least squares. Following the

spatial regression literature, we assume that spatial effects decay with distance and use the

inverse distance weighting matrix, where the distance between cities is measured as the distance

between their city centers.30 The results are reported in Table 4, which shows that our key results

are unaffected. Using the same weighting matrix, we also perform a spatial regression analysis

30The estimated model is y =
∑K

k=1 βkxk + u, u = ρWu + ǫ, where y is a vector of observations of the

dependent variable, xk a vector of observations of the k-th covariate and βk is the corresponding regression

parameter. The errors u are spatially autoregressive. W is a spatial weighting matrix, ρ is the spatial autoregressive

coefficient, and ǫ is a vector of innovations that are assumed to be independent but heteroskedastically distributed,

with heteroskedasticity being of unknown form. This model addresses the possibility that unobserved variables

affect nearby cities.
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Table 2: Summary statistics for variables used in the empirical analysis (N = 96)

mean sd min max Remarks

TdistC 1.760 0.845 0.348 4.347 Average distance of top restaurants from the city center (in km)

BdistC 1.890 0.798 0.620 4.970 Average distance of bottom restaurants from the city center (in km)

PD2−4 1.315 0.924 -0.789 5.152

Dispersion of population density in the city (Population density within a two-km radius

of the city center minus population density within a four-km radius)

σQ 0.770 0.083 0.601 1.032 Standard deviation of TripAdvisor’s “overall rating” for all restaurants in the city

dQ 1.346 0.200 0.861 2.053 Difference in TripAdvisor’s average “overall rating” between the top and bottom groups

Area 207.911 340.746 10.635 2224.189 Area of the city (in km2)

NR 330.365 280.912 74.000 1498.000 The number of restaurants in the city (according to TripAdvisor)

Tourist 0.219 0.416 0 1

The dummy variable takes the value 1 if the city appears at least once on the list of 20

most visited cities between 1999 and 2018, and 0 otherwise.
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based on a model that allows for spatial dependence through both the dependent variable and the

error terms.31 We present the estimates in Table 5. Again, we find our results remain unchanged

under this alternative estimation strategy.

5 Concluding remarks

This study explores the location of restaurants, grouped into top- and bottom-rated restaurants

based on TripAdvisor’s ratings, across large cities in England and Wales. Using a unique dataset,

we find that in many cities in the sample, there exist significant differences in the way top-

ranked and bottom-ranked restaurants locate. Top restaurants tend to be less spatially dispersed

throughout the city and locate relatively closer to the city center than bottom ones. We also

explore the spatial dependence between restaurant types and find that in the majority of cities,

top restaurants locate closer to their own type and are, as a group, more clustered than bottom

restaurants. For bottom restaurants, meaningful patterns are comparably less frequent but when

they occur, they involve bottom restaurants usually locating away from their own type and closer

to top restaurants.

To explore location incentives theoretically, we extend the standard logit Hotelling model

to 4 firms by introducing both vertical differentiation of goods and a non-uniform density of

consumers. We develop a numerical algorithm to find both symmetric and asymmetric equilibria

and distinguish stable from unstable ones. Our theoretical model is able to produce stable

equilibria in which top restaurants are concentrated, whereas bottom ones are dispersed. We

find a relatively higher concentration of top restaurants when consumer taste heterogeneity is

sufficiently low and the quality difference between both restaurant groups is not “too large.”

A larger quality difference, ceteris paribus, increases competition between top restaurants and

induces them to move apart, whereas bottom restaurants are increasingly attracted to the void

left in the center.

Our regression analysis shows that cities with a relatively larger population density in the

center and those that are important tourist destinations experience a higher concentration of

restaurants in the center. A large quality difference leads to the dispersion of top restaurants, as

predicted by the model. However, the data does not confirm our prediction according to which

a larger quality difference would pull bottom restaurants toward the center. The stylized logit

model does not perform well in this case. This means that, in practice, some additional factors

are likely to affect location decisions. We see this as an interesting direction for future research.

Several other possible directions for future work emerge following our analysis. In practice,

restaurants are also differentiated by the type of food they offer (Italian, vegan, etc.). A more

complex model could explore how product characteristics interact with quality differentiation

for location decisions, both in theory and practice. Another interesting direction is about the

inclusion of the time dimension, especially the entry and exit times of different restaurant types

and the evolution of their location over time. Richer data might also enable one to perform a

31The estimated model is y =
∑K

k=1 βkxk + λWy + u, u = ρWu+ ǫ, where λ is the spatial autocorrelation

parameter corresponding to the spatial lag of the dependent variable Wy (denoted by “Spatial DV” in Table 5). In

addition to the autocorrelation in the error term, the current model also allows for outcomes of nearby cities to be

interdependent.
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Table 3: Regression analysis of the spatial dispersion of restaurants (OLS)

lnTdistC lnTBdistC lnBdistC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PD2−4 -0.180∗∗ -0.168∗∗ -0.191∗∗ -0.178∗∗ -0.068∗ -0.021 -0.077∗ -0.028 -0.112∗∗ -0.148∗∗ -0.114∗∗ -0.150∗∗

(0.04) (0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

σQ 1.823∗∗ 1.661∗∗ 1.216∗∗ 1.018∗∗ 0.606 0.642+

(0.66) (0.48) (0.40) (0.32) (0.52) (0.37)

dQ 0.446+ 0.441∗ 0.457∗∗ 0.354∗∗ -0.012 0.087

(0.24) (0.19) (0.17) (0.13) (0.19) (0.14)

lnArea 0.218∗∗ 0.221∗∗ 0.083+ 0.086+ 0.135∗∗ 0.135∗∗

(0.05) (0.06) (0.05) (0.05) (0.04) (0.04)

lnNR 0.320∗∗ 0.328∗∗ -0.102+ -0.098 0.422∗∗ 0.427∗∗

(0.10) (0.11) (0.06) (0.06) (0.06) (0.07)

Tourist -0.421∗ -0.434∗ -0.233∗ -0.232∗ -0.188+ -0.202+

(0.18) (0.19) (0.10) (0.10) (0.10) (0.11)

const. -0.731 -3.339∗∗ 0.087 -2.699∗∗ -0.967∗∗ -0.651+ -0.635∗ -0.370 0.236 -2.688∗∗ 0.722∗∗ -2.329∗∗

(0.51) (0.61) (0.31) (0.55) (0.32) (0.37) (0.24) (0.32) (0.40) (0.40) (0.26) (0.36)

# obs. 96 96 96 96 96 96 96 96 96 96 96 96

Adj. R2 0.161 0.466 0.110 0.426 0.097 0.295 0.083 0.276 0.065 0.563 0.049 0.547

Notes: Robust standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 4: Regression analysis of the spatial dispersion of restaurants (Spatial model I)

lnTdistC lnTBdistC lnBdistC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PD2−4 -0.185∗∗ -0.176∗∗ -0.184∗∗ -0.182∗∗ -0.068∗ -0.020 -0.075∗ -0.024 -0.107∗∗ -0.144∗∗ -0.105∗∗ -0.148∗∗

(0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

σQ 1.962∗∗ 1.724∗∗ 1.246∗∗ 1.012∗∗ 0.556 0.707+

(0.64) (0.44) (0.39) (0.31) (0.52) (0.38)

dQ 0.398+ 0.456∗ 0.429∗ 0.324∗ -0.038 0.097

(0.24) (0.19) (0.17) (0.13) (0.19) (0.14)

lnArea 0.213∗∗ 0.220∗∗ 0.083+ 0.086+ 0.138∗∗ 0.136∗∗

(0.05) (0.06) (0.05) (0.05) (0.04) (0.04)

lnNR 0.313∗∗ 0.328∗∗ -0.102+ -0.096+ 0.421∗∗ 0.425∗∗

(0.10) (0.10) (0.06) (0.06) (0.06) (0.07)

Tourist -0.423∗ -0.437∗ -0.234∗ -0.232∗ -0.186∗ -0.199+

(0.17) (0.18) (0.10) (0.10) (0.09) (0.10)

const. -0.829+ -3.301∗∗ 0.134 -2.704∗∗ -0.989∗∗ -0.649+ -0.605∗ -0.360 0.270 -2.766∗∗ 0.744∗∗ -2.348∗∗

(0.49) (0.54) (0.31) (0.52) (0.31) (0.36) (0.24) (0.32) (0.40) (0.41) (0.27) (0.36)

Spatial Error -0.309 -0.526 0.248 -0.217 0.723 0.174 0.816 0.421 0.501 0.887+ 0.610 0.819

(0.57) (0.71) (0.41) (0.62) (1.05) (0.58) (0.87) (0.47) (0.55) (0.46) (0.50) (0.52)

N 96 96 96 96 96 96 96 96 96 96 96 96

Pseudo R2 0.179 0.493 0.129 0.456 0.116 0.332 0.102 0.314 0.084 0.586 0.069 0.570

Notes: Spatial heteroskedasticity robust standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 5: Regression analysis of the spatial dispersion of restaurants (Spatial model II)

lnTdistC lnTBdistC lnBdistC
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PD2−4 -0.153∗∗ -0.145∗∗ -0.144∗∗ -0.138∗∗ -0.070∗ -0.029 -0.081∗∗ -0.035 -0.102∗ -0.127∗∗ -0.092∗ -0.124∗∗

(0.04) (0.04) (0.05) (0.04) (0.03) (0.02) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

σQ 1.770∗∗ 1.323∗∗ 1.127∗ 0.790∗ 0.524 0.572

(0.66) (0.49) (0.45) (0.35) (0.54) (0.40)

dQ 0.383 0.317+ 0.413∗ 0.258+ -0.054 0.055

(0.24) (0.18) (0.19) (0.14) (0.20) (0.15)

lnArea 0.204∗∗ 0.206∗∗ 0.067 0.069 0.139∗∗ 0.137∗∗

(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)

lnNR 0.303∗∗ 0.313∗∗ -0.138∗ -0.133∗ 0.431∗∗ 0.435∗∗

(0.10) (0.10) (0.06) (0.06) (0.06) (0.06)

Tourist -0.434∗ -0.457∗ -0.214∗ -0.215+ -0.199∗ -0.215∗

(0.17) (0.18) (0.11) (0.11) (0.09) (0.10)

const. -0.923∗ -3.084∗∗ -0.185 -2.624∗∗ -0.795∗ -0.065 -0.441 0.184 0.252 -2.891∗∗ 0.632∗ -2.572∗∗

(0.46) (0.52) (0.30) (0.45) (0.40) (0.44) (0.29) (0.36) (0.40) (0.40) (0.29) (0.36)

Spatial DV 0.444∗ 0.334∗ 0.673∗∗ 0.492∗∗ 1.064+ 1.336∗ 1.335∗ 1.530∗∗ 0.074 0.318 0.239 0.377∗

(0.21) (0.16) (0.21) (0.14) (0.62) (0.53) (0.59) (0.50) (0.31) (0.19) (0.30) (0.17)

Spatial Error -0.802 -0.907 -0.564 -1.044 0.080 -0.872 -0.037 -0.917 0.464 0.656 0.464 0.519

(0.60) (0.78) (0.62) (0.86) (1.24) (0.86) (1.23) (0.88) (0.59) (0.42) (0.57) (0.45)

# obs. 96 96 96 96 96 96 96 96 96 96 96 96

Pseudo R2 0.193 0.506 0.151 0.483 0.126 0.327 0.109 0.312 0.084 0.581 0.065 0.574

Notes: Spatial heteroskedasticity robust standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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firm-level analysis and control for spatial covariates, such as the location of shopping centers and

tourist attractions, so as to reach conclusions about the conditional spatial dependence between

restaurants. The generalization of our results to cities in other countries and a comparison with

results for quality-differentiated firms in other industries (e.g., hotels and hairdressing salons)

are also yet to be explored.

Appendices

A List of Cities

List of 96 cities in the sample, ordered alphabetically:

Basildon, Basingstoke, Bath, Bedford, Birkenhead, Birmingham, Blackburn, Blackpool,

Bolton, Bournemouth, Bradford, Brighton, Bristol, Burnley, Cambridge, Canterbury, Cardiff,

Carlisle, Chelmsford, Cheltenham, Chester, Chesterfield, Chichester, Colchester, Coventry,

Crawley, Croydon, Darlington, Derby, Doncaster, Dudley, Durham, Eastbourne, Enfield, Ex-

eter, Gloucester, Hereford, Lancaster, Leamington Spa, Leeds, Leicester, Lichfield, Lincoln,

Liverpool, Luton, Maidstone, Manchester, Mansfield, Middlesbrough, Milton Keynes, New-

castle upon Tyne, Newport, Northampton, Norwich, Nottingham, Nuneaton, Oldham, Oxford,

Peterborough, Plymouth, Poole, Portsmouth, Preston, Reading, Rochdale, Rotherham, Salford,

Salisbury, Sheffield, Solihull, Southampton, Southend on Sea, Southport, St Albans, Stevenage,

St Helens, Stockport, Stoke-on-Trent, Sunderland, Sutton, Sutton Coldfield, Swansea, Swin-

don, Telford, Wakefield, Warrington, Watford, Wembley, West Bromwich, Wigan, Winchester,

Woking, Wolverhampton, Worcester, Worthing, York.

B Robustness Checks

B.1 Different percentile groups

Table 6 shows that conclusions in Figure 2 are robust to changes in the percentiles used to split

restaurants into the top and bottom groups. For instance, even when the median is used to split

the restaurants (the last row), the dispersion difference is significant for 42 cities out of the 96

cities. In all but 8 significant cities, bottom restaurants are relatively more dispersed than top

ones. Likewise, the difference in the average distance from the city center is significant for 35

cities. Out of the latter, in all but 5 cities, top restaurants are located closer to the center.

B.2 Alternative ranking

As an alternative to TripAdvisor’s default Popularity Index, we calculate a simple overall rating,

which is based on reviewers’ overall assessment of restaurants. The latter has five possible

qualitative levels—terrible, poor, average, very good, and excellent—to which we assign the

scores from 1 (terrible) to 5 (excellent). We then obtain the overall rating for each restaurant as
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Table 6: Spatial dispersion and centricity for different percentiles used to

split restaurants into the top and bottom groups

dB/dT cB/cT

percentiles > 1 < 1 > 1 < 1

10th – 90th 64 (32) 32 (3) 62 (25) 34 (4)

20th – 80th 63 (35) 33 (4) 60 (32) 36 (3)

30th – 70th 65 (36) 31 (7) 63 (30) 33 (5)

40th – 60th 61 (35) 35 (7) 60 (30) 36 (6)

50th – 50th 62 (34) 34 (8) 62 (30) 34 (5)

Notes: The number of significant cities in parentheses (n = 96). All restaurants

below the first stated percentile of the ranking are labeled Top and all restaurants at

or above the second stated percentile are labeled Bottom.

a weighted average of the scores it received, where each score is weighted by the number of

reviewers that submitted it. For accuracy, we only consider restaurants with at least 5 reviews.

Unlike the Popularity Index, the overall rating does not favour restaurants with more recent

reviews or restaurants with a higher number of them.

When we rank the restaurants using the overall rating, our conclusions are fundamentally

the same. For instance, when we use the 25th and the 75th percentile to split the restaurants, like

in Figure 2, the ratio dB/dT is larger than 1 in 65 cities out of the 96 cities, but the difference in

dispersion is significant for only 25 cities. Out of the latter, in all but 4 cities, bottom restaurants

are relatively more dispersed than top ones. In 63 cities out of the 96 cities, top restaurants are

on average located closer to the city center, but the difference is significant for only 19 cities.

Out of the latter, in all but 2 cities, top restaurants are located closer to the center.

B.3 Controling for horizontal differentiation

When we only compare top and bottom restaurants of the same cuisine type (e.g. British, Italian),

we obtain similar conclusions about their relative dispersion and centricity as in Figure 2.

Likewise, our conclusions about spatial dependence appear quite robust. For instance, Figure 9

differs from Figure 3 in that it considers only restaurants serving British food and still leads to

qualitatively identical conclusions.
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Figure 9: Spatial dependence between British restaurants in Newcastle.
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