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Abstract

The paper examines the utility function representability of the lexicographic pref-

erences over multiple attributes. A sufficient and necessary condition is provided: a

lexicographic preference is utility function representable if and only if there is at most

one attribute with uncountable levels and when such an attribute exists, it is the least

important one. An auxiliary result of independent interest for general rational prefer-

ences is proved stating that the class of utility function representable sets is closed in

countable unions under some mild condition.
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1 Introduction

A lexicographic rule orders alternatives over attributes in the same way as a dictionary orders

words over letters. When using lexicographic rule to make decisions, an agent evaluates

alternatives first on the most important attribute, and if there are ties, on the second-most

important attribute, and so forth. There is good evidence that people use lexicographic

rules. Tversky et al. (1988) examine the rules that consumers use for choice and matching

tasks involving public policies, job applicants, and benefit plans. Yee et al. (2007) report

that approximately two-thirds of their subjects use lexicographic rules for evaluating Smart-

Phones.

Even though lexicographic rules occur in many decision-making scenarios, lexicographic

rules can not be represented by a function in general. A result known at least since Debreu

(1954) says that it is impossible to construct a utility function representing lexicographic

preferences over two or more real-valued attributes. However, lexicographic utility functions

can exist over discrete attributes. Substantial theoretical research has also examined condi-

tions under which continuous lexicographic utility functions can exist (e.g., Fishburn 1974,

1975), the possibility of representing such preferences by multiple functions (e.g., Bridges

1983, Chateauneuf 1987, Knoblauch 2000), and the formulation of models for probabilistic

lexicographic preferences (e.g.,Tversky 1972).

In this paper, we focus on the study of the utility function representation about lex-

icographic preferences under different scenarios. We find that the cardinality of different

attributes will determine whether the lexicographic preference can be represented by a util-

ity function. It is shown that a lexicographic preference is representable by a utility function

if and only if there is at most one attribute with uncountable levels and when such an

attribute exists, it is the last one, i.e., the least important one.

The intuition behind the results is that, if the lexicographic preference can be represented

by a utility function, the preference is determined by one-dimension information. When

compressing the preference information from multiple dimensions (i.e., attributes) to one

dimension (i.e., utility value) while preserving the order, if an attribute dominates some other

attribute(s), it must allow some utility space to accommodate the preference information

of the less important attributes. As will be shown in Proposition 2, if an attribute has

uncountable levels, any candidate utility function for that attribute has points in its range

that are not isolated, which means there is no place to embody preference information in

the less important attributes.

In order to prove the sufficient and necessary conditions for representability of the lexico-
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graphic preferences, we develop an auxiliary lemma that also applies for general preferences.

It describes a condition that guarantee a countable union of subsets on which a specific

preference has utility function representations is also representable by a function.

The remainder of the paper is organized as follows. Section 2 lays down a general frame-

work for studying the utility function representation problem of any rational preferences. Sec-

tion 3 provides the sufficient and necessary condition for the utility function representability

of the lexicographic preferences with at most one attribute with uncountable levels. Section

4 gives an auxiliary lemma that is useful for the proof of the main theorem and of indepen-

dent interest itself. Section 5 proves the main theorem according to whether the number of

attributes is finite or infinite. Section 6 concludes the paper.

2 Notations and Concepts

In this section, we give a general framework about the utility function representation. Con-

sider a set X of possible objects (i.e., alternatives ) that might be chosen by an agent who

has a preference relation <. Each alternative of X is characterized by n attributes, where n

can be finite or infinite. Denote N = {1, · · · , n} when n is finite; N = N when n is infinite.

Here, the attributes can be very general. For example, in the consumer theory, an attribute

can be a good, a combination of goods, a combination of goods and their characteristics,

etc. For any specific attribute i ∈ N , its domain is denoted by Xi which has at least two

distinct elements. Therefore, the set of all alternatives is denoted as X = ×i∈NXi and each

alternative is characterized by a vector (x1, · · · , xn) ∈ ×i∈NXi.

For any nonempty I ⊆ N , we denote XI = ×i∈IXi. For any x ∈ X and I ⊆ N , we denote

x = (xI , xN\I), where xI ∈ XI and xN\I ∈ XN\I . Furthermore, if I is a singleton, that is,

I = {i} for some i, we denote X−i = XN\{i} and x = (xi, x−i), where xi ∈ Xi and x−i ∈ X−i.

The agent’s preference on X is represented by a binary relation <, where x < y stands

for “the agent prefers x to y”. The corresponding strict preference is denoted as x ≻ y, i.e.,

x < y and not y < x. The indifference relation is defined as x ∼ y if and only if x < y and

y < x. Furthermore, for each attribute i ∈ N , the agent has a preference <i on Xi. All

these preferences, < and <i, i ∈ N are assumed to be rational, that is, they are complete

and transitive.

In this paper, the utility function representation problem of {X,<} with respect to {Xi,<i

}i∈N will be studied. The situation faced by the agent is summarized as {{Xi,<i}i∈N , {X,<}}.
For any preference relation {X,<}, it is utility function representable, if there exists a func-
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tion, which assigns each alternative x ∈ X a real number and keeps the order of the preference.

Definition 1. A preference relation {X,<} is utility function representable if there exists a

function u : X → R, such that for all x′, x′′ ∈ X,

x′ < x′′ ⇐⇒ u(x′) ≥ u(x′′).

When the above condition holds, we say that the function u(·) represents < over X.

Generally, there is no direct relationship between the utility function representability of

{Xi,<i} and {X,<}. Firstly, as shown by Debreu (1954) and/or Mas-Colell et al.(1995), it

is impossible to construct a utility function representing lexicographic preferences over two

or more real-valued attributes. Therefore the utility function representability of {Xi,<i} for

all i does not guarantee the utility function representability of {X,<}. On the other hand,

if there is no restriction on {X,<}, it can induce a preference on each component Xi other

than <i in an arbitrary way. In particular, even though for some i {Xi,<i} can not be

represented by a utility function, {X,<} may be representable by some utility functions as

shown in the following example.

Example 1. The set X = X1×X2 consists of possible objects that might be chosen, with each

object having 2 attributes. It is assumed that X1 = Y1×Y2, X2 = Y3, where Y1 = Y2 = Y3 =

R+. Furthermore, the preference relation <1 over X1 is a lexicographic preference and <2

over X2 is the ordinary ordering ≥ on R+. As for < over X, it is defined as (x′1, x
′
2) < (x′′1, x

′′
2)

if and only if y′1 + y′2 + y′3 ≥ y′′1 + y′′2 + y′′3 .

In Example 1, {X1,<1} can not be represented by any function, however, {X,<} can

be represented simply by u(·) = y1 + y2 + y3. Removing X2 will see the inconsistency of

< and <1. In order to make a meaningful connection between {X,<} and its components

{Xi,<i}ni=1, a basic condition is required.

Definition 2. {{Xi,<i}i∈N , {X,<}} is said to be consistent, equivalently, {X,<} is consis-

tent with {Xi,<i}i∈N , if for every i ∈ N and every x−i ∈ X−i,

x′i <i x
′′
i ⇐⇒ (x′i, x−i) < (x′′i , x−i).

The consistency condition says that the preference relation remains the same over any

specific attribute, whenever the other attributes are the same.

Since we aim to study the lexicographic preference on X and its utility function repre-

sentation problem, let us define the lexicographic preference over {Xi,<i}i∈N .
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Definition 3. Given {Xi,<i}i∈N , {X,<}, where X = ×i∈NXi, is a lexicographic preference

on X if for any x′ ̸= x′′ ∈ X,

x′ ≻ x′′ ⇔ x′j ≻j x
′′
j

here, j = min{i : i ∈ N and x′i ≁i x
′′
i }. Furthermore, if x′i ∼i x

′′
i , ∀i ∈ N , then x′ ∼ x′′.

As is easily seen, a lexicographic preference < on X satisfies the consistency property.

Thus for {X,<} to be representable by a utility function, it is necessary that the following

condition holds. This condition is assumed throughout the rest of this paper.

Assumption 1. For each i ∈ N , {Xi,<i} is utility function representable.

3 The main results

For the convenience of the statement and the proof of our main results, we assume that all

the involved preferences are antisymmetric. In other words, each element is equivalent solely

to itself. Recall that N = {1, . . . , n} for some n ∈ N or N = N (then we say n = ∞). Only

the former case admits the last element which corresponds to the least important attribute.

Now we present the main theorem of this paper as follows.

Main Theorem. Given consistent {{Xi,<i}i∈N , {X,<}}, where < is the antisymmetric

lexicographic preference on X, then {X,<} is utility function representable if and only

if there is at most one attribute with uncountable levels and when such an attribute

exists, it is the least important one.

Remark 1. The antisymmetric condition on < can be relaxed. In fact, let ∼ be the equiv-

alent relation related to <, i.e., x ∼ y if and only if x and y are indifferent. Without the

antisymmetric condition, we can consider the quotient space X̃ := X/ ∼. Then the preference

on X̃ induced by < (still denoted by <) is antisymmetric. The representability of the original

< on X is the same as the representability of < on X̃, with each equivalent class sharing a

common utility value. Note that without the antisymmetric condition, for each i, Xi can be

uncountable as long as Xi/ ∼i is countable when i < n.

As an example, let Xi = R for all i = 1, . . . , n. For i < n, xi <i yi if and only if [xi] ≥ [yi].

Here [a] stands for the largest integer not exceeding a ∈ R. For i = n, let xn <n yn if and

only if xn ≥ yn in R. Note that for i < n, xi ∼i yi if and only if [xi] = [yi]. Thus Xi/ ∼i

amounts to Z, the set of all integers with the ordinary order. Now that the lexicographic
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preference (with respect to the ordinary orders) on (×n−1
i=1 Z) × R is representable, so is the

non-antisymmetric lexicographic preference on ×n
i=1R (with respect to <i, i = 1, . . . n).

As a corollary to the main theorem, if we focus on the situation where Xi = Q or R, we

have the following.

Corollary 1. Given consistent {{Xi,<i}i∈N , {X,<}}, where Xi is either Q or R, with the

ordinary order in R, and < is the lexicographic preference on X = ×i∈NXi, then {X,<} is

utility function representable if and only if Xi = Q for all i < n.

We remark that in the above corollary n = ∞ is allowed, which corresponds to N = N.

The proof of the main theorem will immediately follow from the two theorems in section

5. For that purpose we introduce an auxiliary result on the class of subsets on which the

preference can be represented by utility functions.

4 An auxiliary lemma on representable class

To facilitate the further analysis, we introduce a class S of subsets of X such that restricted

to each set in the class the preference < can be represented by some utility function. Then

if {X,<} can be represented by some utility function, X belongs to the class. Thus whether

{X,<} can be represented by a utility function is reduced to check whether X ∈ S or

not. Such a class of sets is defined as the representable class of {X,<}. Before defining the

representable class, we need to define the restricted preference as follows.

Definition 4. For the preference relation < on X and a nonempty subset S ⊂ X, the

restricted preference <S on S ⊆ X is defined as, for any x′, x′′ ∈ S

x′ <S x
′′ ⇐⇒ x′ < x′′.

The restricted preference <S preserves the preference order when < is restricted on S. So,

if a function represents {X,<}, then the function restricted to S represents the corresponding

{S,<S}.

Definition 5. The representable class S of {X,<} is the set of all S ⊆ X such that {S,<S}
can be represented by some utility function. That is,

S = {S ⊂ X : S ̸= ∅, and ∃u : S → R, such that u(·) represents <S }.
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Obviously the representable class S contains every singleton of X. A natural question is

whether it is closed under countable unions. We will see in Example 3 that this is not true

in general. But under some extra condition the answer is yes. The following definition is

related to the extra condition.

Definition 6. For a subset S of X and the restricted preference <S over S that is repre-

sentable by a function u : S → R, we say x ∈ S is pseudo-continuous with respect to u

if

sup{u(s) : s ∈ S, s ≺ x} = u(x), inf{u(s) : s ∈ S, s ≻ x} = u(x),

and either one of the following conditions holds:

(i) there exists some x′ ∈ X \S such that x′ ≺ x and {s ∈ S : s ≺ x} ⊂ {y ∈ X : y ≺ x′};
(ii) there exists some x′ ∈ X\S such that x′ ≻ x and {s ∈ S : s ≻ x} ⊂ {y ∈ X : y ≻ x′}.
Here we notice that the concept of pseudo-continuity depends on both u and X. Function

u takes charge of the “continuous” part.1 Replacing u with some other u′ that also represents

S may be not “continuous” at the point studied. X corresponds to the “pseudo” part in

“pseudo-continuous”, because it has “gap” around the studied point from the perspective of

X. We can see this more clearly in the following example.

Example 2. Let X = R with the ordinary order <. Let S1 = (−∞,
√
2)∪{2}∪ (

√
2+2,∞)

and S2 = (−∞,
√
2) ∪ {3} ∪ (

√
2 + 2,∞). Define utility functions over them, respectively:

u1(x) =



















x if x <
√
2,

√
2 if x = 2,

x− 2 if x >
√
2 + 2;

u2(x) =



















x if x <
√
2,

√
2 if x = 3,

x− 2 if x >
√
2 + 2.

Obviously ui represents the restricted preference <Si
for both i in {1, 2}. It is easy to see

that x1 = 2 and x2 = 3 are pseudo-continuous points for S1 and S2, with respect to u1 and

u2, respectively.

Now we are ready to state the following lemma.

Lemma 1. Let S be the representable class of {X,<}, and for each k ∈ N, Sk ∈ S

and {Sk,<Sk
} can be representable by uk : Sk → R with at most countably many pseudo-

continuous points. Then ∪k∈NSk ∈ S .

1If X is endowed with the order topology induced by <, S with the induced topology, and R with the

usual Eaclidean topology, then u : S → R is indeed continuous at any pseudo-continuous point of S. Recall

that the order topology has a subbase consisting of the sets of the form {y ∈ X : y ≻ x} or {y ∈ X : y ≺ x}
for some x ∈ X.
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Proof. For each k ∈ N, Sk ∈ S implies that there exists a function uk : Sk → R

that represents < restricted to Sk. Let Qk ⊂ Sk be the countable set (maybe empty) of

pseudo-continuous points of the representing function uk on Sk.

Let M1,k = {z ∈ uk(Sk) : ∃a0 > 0, ∀a ∈ (0, a0), z − a /∈ uk(Sk)}, the set of all “locally

minimal” values of uk. And similarly, M2,k = {z ∈ uk(Sk) : ∃a0 > 0, ∀a ∈ (0, a0), z + a /∈
uk(Sk)}, the set of all “locally maximal” values of uk. Both M1,k and M2,k are countable.

Let Dk be an arbitrary countable and dense subset of uk(Sk), and Jk = Dk ∪M1,k ∪M2,k.

Jk is also a countable set. Let Ck = u−1
k (J) ⊆ Sk be the preimage of Jk under uk. Ck also

contains all “locally maximal” and “locally minimal” (with respect to <Sk
) points in Sk.

Take C = ∪∞
k=1(Ck ∪ Qk). It is a countable set since each Qk is countable by assumption.

So we can choose a positive valued real function g : C → (0,∞) with the property that
∑

x∈C g(x) < 1. Define u : ∪∞
k=1Sk → (0, 1) by

u(x) =
∑

c∈C,c4x

g(c).

Now if x < y in ∪∞
k=1Sk, then {c ∈ C, c 4 x} ⊇ {c ∈ C, c 4 y}. Consequently,

u(x) =
∑

c∈C,c4x g(c) ≥
∑

c∈C,c4y g(c) = u(y).

On the other hand, if x ≺ y in ∪∞
k=1Sk, we need show u(x) < u(y). Without loss of

generality assume x ∈ Sj and y ∈ Sk. From the definition of function u it suffices to show

that there exists some c ∈ C satisfying x ≺ c 4 y. This is trivially true if y is “locally

maximal” or “locally minimal”, for we can take c = y.

If y is neither “locally maximal” nor “locally minimal” in Sk, there exists some sequence

{yk,ℓ, ℓ = 1, 2, . . . } ⊂ Sk such that {uk(yk,ℓ)}∞ℓ=1 is a strictly increasing sequence converging

to uk(y) as ℓ tends to infinity. If x ≺ ŷ, for some ŷ ∈ Sk with ŷ ≺ y, by the construction of

Ck, we can find some z ∈ Ck and ℓ ∈ N such that ŷ 4 z ≺ yk,ℓ ≺ y. In such a case we can

take c = z. If no such ŷ exists, then y is pseudo-continuous with respect to uk. We can take

c = y.

Thus u represents <∪∞

k=1
Sk
. In other words, ∪∞

k=1Sk ∈ S . �

Lemma 1 tells us that when the utility function representability of the restricted pref-

erences is closed under countable unions. However, such a property can not extend to

uncountable unions. Otherwise, every rational preference would be represented by some

utility function, because each singleton can be represented by some utility function.

The condition of at most countably many pseudo-continuous points is crucial for Lemma

1. Without this condition the conclusion of Lemma 1 may be no longer true, as is shown by
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the following example. Let R and Q be endowed with the ordinary order ≥.

Example 3. The lexicographic preference on R×Q is not representable by any utility func-

tion. However, R × Q = ∪q∈Q(R × {q}) is a countable union of representable subsets, with

a common representing function u(r, q) = r on those subsets. The problem lies in that each

of these subsets, R × {q}, admits a continuum of pseudo-continuous points. In fact, every

point is pseudo-continuous.

Note that S is partially ordered with inclusion relation ⊆. Furthermore, S ∈ S is a

maximal element if there is no other S ′ ∈ S such that S ⊆ S ′.

Theorem 1. Let S be the representable class of {X,<}, then {X,<} can be represented by

a utility function if and only if S has a maximal element.

Proof. “Only if” part is obvious. As for the “if” part, suppose not. Then there ex-

ists some maximal element M of S that is different from X. First of all, because M

is an element of S , there exists u : M → R that represents preference < restricted to

M . Since a strictly monotone transform preserves the preference, we can assume with-

out loss of generality that u is valued in (0, 1). Next choose an arbitrary element x̄ ∈
X \ M . Define LM(x̄) = {x : x ∈ M,x ≺ x̄}, UM(x̄) = {x : x ∈ M,x < x̄}, and

a = 1
2
(sup{u(x) : x ∈ LM(x̄)}+ inf{u(x) : x ∈ UM(x̄)}+ 1). Here by convention sup ∅ = 0

and inf ∅ = 1. Now we define a function ū on M ∪ {x̄} by

ū(x) =



















u(x) if x ∈ LM(x̄)

a if x = x̄

u(x) + 1 if x ∈ UM(x̄).

It is straightforward to show that ū represents < onM ∪{x̄}, which contradictsM being

a maximal element of S . Therefore X ∈ S , which concludes the theorem. �

We remark that the results in Lemma 1 and Theorem 1 in fact hold for general rational

preferences on a general space X.

5 Proof of the main results

The main theorem will immediately follow from Theorems 2 and 3 below.

Firstly, let us reflect on the situation where each attribute has at most countable levels.

As is well known, if a set is at most countable, there exists a one-to-one function from it
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to integers. And, after the transformation, each point has a distance of at least 1 from

the other points. So, for each point, it has enough space to include more points, even an

interval. However, such transformations do not preserve the ordering, which is required by

the utility function representation. If the attributes are at most countable, does there exist

an order-preserving function which allows adding more points with each point? The answer

is affirmative as is shown by the following proposition.

Proposition 1. For any {X,<}, suppose X is at most countable. There exists a order-

preserving function u : X → [0, 1], such that ∀x ∈ X, d(u(x), u(X\{x})) := inf{|u(x)−u(y)| :
y ∈ X \ {x}} > 0.

Proof. Because X is at most countable, we can list all elements in X as {x1, · · · , xk, · · · }
and find a sequence of positive numbers µk > 0, k = 1, 2, · · · , with ∑∞

k=1 µk < 1. Now we

define u(·) by
u(xk) =

∑

x
k′
≺xk

µk′ +
1

2
µk, xk ∈ X.

The function u(·) defined above preserves the order on X and its range is a subset of (0, 1).

Furthermore, the distance from µk to {u(x) : x ∈ X \ {xk}} is at least µk

2
> 0, which

concludes the proposition. �

As is shown by the proposition above, if X1 is countable, we have an order-preserving

function from it to [0, 1] and each point has space to embrace an interval with it. To make

the thing clearer, we consider a simple situation where n = 2 and X1 = Q,X2 = R in the

following example.

Example 4. Take n = 2. Consider X1 = Q and X2 = R, with the ordinary order for

real numbers. The lexicographic preference defined on X1 × X2 is representable by a utility

function.

Proof. Analogously as in the proof of Proposition 1, we define u1(·) as

u1(xk) =
∑

x
k′
≺xk

µk′ +
1

2
µk, ∀xk ∈ X1

Now, for each xk, there is a “gap” of size µk from other point. These gaps allow us to

insert some compressed utility representation of {(xk, x) : x ∈ X2} for each k. That is, for

X2, we define function u2 =
ex

1+ex
− 1

2
on it. Then we can define function

u(x′, x′′) = u1(x
′) + µι(x′)u2(x

′′)
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Here, ι : X1 → N is an arbitrary bijection that assigns each x′ ∈ X1 its location in the list

{x1, · · · , xk, · · · }. It is easy to show that such a function can represent the lexicographic

preference defined with n = 2,X1 = Q,X2 = R. �

We can extend the Example 4 to more general cases. However, Proposition 1 does not

hold when there are uncountable levels in X, which means that for every order-preserving

function from X to R, there always exists at least one element in X which has no “gap”,

so there is no space to insert an interval the same as Example 2. We describe this in the

following proposition.

Proposition 2. For any {X,<}, suppose X is uncountable. For any order-preserving func-

tion u : X → [0, 1], there exists at least one point x ∈ X such that d(u(x), u(X \ {x})) = 0.

Proof: The proof follows from the proof of Theorem 2. �

By Proposition 2, if for some attribute, it has uncountable levels, there is no “gap” to

include an interval around it. So, if this is the unique attribute with uncountable levels and

it is listed in the last location, then it is not a problem. However, when it is not listed in the

last location, the problem arises. We summarize this in the following theorem.

Theorem 2. For consistent {{Xi,<i}i∈N , {X,<}}, suppose N = {1, · · · , n} is finite. Then

{X,<} is representable by a utility function if and only if all but the last attributes admit

countable levels.

Proof. “If” part is easy to prove by Lemma 1. Let un be a utility function representing

<n on Xn. Given x−n ∈ X−n, consider the set S−n(x−n) = {(x−n, xn) : xn ∈ Xn}, by the

property of consistency, the reduced preference on S−n(x−n) can be represented by function

ûn : S−n(x−n) → R defined by ûn(x−n, xn) = un(xn). So S−n(x−n) ∈ S . Furthermore,

S−n(x−n) contains no pseudo-continuous point with respect to ûn. Also, X−n is at most

countable by assumption. Thus, by Lemma 1, ∪x−n∈X−n
S−n(x−n) = X ∈ S . This concludes

that {X,<} is representable by some utility function.

“Only if” part: Since strictly increasing transforms preserve preferences, without loss of

generality, we assume that for each i, ui : Xi → (0, 1) represents <i on Xi. If for some i < n

Xi is uncountable and there exists some function ψ : X → (0, 1) representing <. Let <i,i+1

be the reduced lexicographic preference on Xi × Xi+1. Then by the property of consistency

{Xi × Xi+1,<i,i+1} can be represented by function ψ(·, z) : Xi × Xi+1 → (0, 1) for any fixed

z ∈ XN\{i,i+1}.
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Take any two elements x′i+1 and x′′i+1 from Xi+1 with x′i+1 ≺i+1 x
′′
i+1. Let T = ui(Xi).

Consider the following two functions related to x′i+1 and x′′i+1 respectively,

h′ : T → R, h′(t) = ψ(u−1
i (t), x′i+1, z); h′′ : T → R, h′′(t) = ψ(u−1

i (t), x′′i+1, z).

Obviously both h′ and h′′ are strictly increasing. Let D′
1 and D

′′
1 be subsets of T that consist

of all discontinuous points of h′ and h′′ respectively (under ordinary topology reduced from

the Euclidean topology on R). Let D2 = {t ∈ T : ∃a0 > 0, ∀a ∈ (0, a0), t+ a /∈ T} be the set

of all locally maximal points of T . Then D′
1 ∪D′′

1 ∪D2 is a countable subset of T . Take an

arbitrary t∗ ∈ T \ (D′
1∪D′′

1 ∪D2). Then both h′ and h′′ are continuous at t∗ and there exists

a sequence tk ∈ T that is strictly decreasing and converges to t∗ as k → ∞. Let x∗ = u−1
i (t∗)

and xk = u−1
i (tk) for each k. Since ψ represents the lexicographic preference, we have

ψ(xk, x
′
i+1, z) < ψ(xk, x

′′
i+1, z) < ψ(xk+1, x

′
i+1, z).

That is

h′(tk) < h′′(tk) < h′(tk+1).

Let k tend to infinity, we get h′(t∗) = h′′(t∗). In other words, ψ(x∗, x′i+1, z) = ψ(x∗, x′′i+1, z).

On the other hand, ψ representing the lexicographic preference implies ψ(x∗, x′i+1, z) <

ψ(x∗, x′′i+1, z). The contradiction means that if there exists an attribute with uncountable

levels, it is only possible to occur at the last (i.e., the nth) attribute. �

When there are infinite attributes, i.e., N = N, we have the similar theorem with Theorem

3, whose proof is similar to that of Lemma 1.

Theorem 3. Assume {X,<} is consistent with {Xi,<i}i∈N. Then {X,<} is representable

by a utility function if and only if Xi is at most countable for every i ∈ N.

Proof. The same proof for the necessary part of Theorem 2 works to imply that if Xi is

uncountable for some i, X can not be represented by any utility function.

On the other hand, if Xi is countable for all i ∈ N, we can construct a utility function to

represent the lexicographic preference on X = ×i∈NXi.

Fix some θ /∈ ∪i∈NXi. For each i, define X̄i = Xi ∪ {θ}. We extend <i to X̄i by letting

θ ≺i x for every x ∈ Xi. In this manner we also extend the lexicographic preference < on X

to ×i∈NX̄i.
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Denote

S = {(x1, x2, . . . ) ∈ ×i∈NX̄i : ∃k such that xi ̸= θ for all i < k and xi = θ for all i ≥ k}

be the set of sequences ending with theta’s. It is easy to see that S is a countable set.

Therefore we can assign positive values to the points in S so that the total sum is finite. In

other words, we have a function v : S → (0,∞) satisfying
∑

s∈S v(s) <∞.

Now define u : X → R by

u(x) =
∑

s∈S,s≺x

v(s).

Now if x < y, then {s ∈ S, s ≺ x} ⊇ {s ∈ S, s ≺ y}, hence u(x) ≥ u(y) since v take

strictly positive values.

To complete proving that u represents < on X we need only show for any x ≺ y in

×i∈NXi, there exists some s ∈ S such that x ≺ s ≺ y.

Write x = (x1, x2, . . . ) and y = (y1, y2, . . . ). Note that x ≺ y means that x ̸= y. So there

is some k ∈ N such that xk ̸= yk and xi = yi for all i < k. Also xk ≺k yk in Xk.

Take s = (s1, s2, . . . ) ∈ S as follows. For i ≤ k, let si = yi; for i > k let si = θ. Then

x ≺ s ≺ y in X̄.

Thus we know from the definition of u that u(x) < u(y) if x ≺ y in X. �

Remark 2. The proof of Theorem 3 suggests that the results of Theorem 2 can be proved

intuitively as follows. To each Xi we add an outside element θ and let it be ranked strictly

lower to every element in Xi. Embed partial product spaces ×k
i=1Xi, k = 1, 2, . . . , n − 1,

to X̄ by supplementing θ to the tails. Now analyze by induction on k. Since each (Xi,<i

) is representable (by ui),the case for k = 1 is trivial. Suppose for general k < n, the

lexicographic preference on ×k
i=1Xi is representable, say by a function u1,...,k. To accommodate

other attributes with at least two different elements in an extended utility representation, it

is necessary that every point in u1,...,k(×k
i=1Xi) is “locally maximal”, in the sense that there

exists an interval to its right that includes no points of the set. This is also sufficient if

we need accommodate only one further attribute (with at least two different levels), for the

additional attribute can be distinguished by the interval to the right of each u1,...,k-value point.

As long as Xk+1 is countable, we can continue this way until k + 1 = n, where Xn can be

uncountable.

On the other hand, if Xk is uncountable for some k < n, it is impossible for every point

in u1,...,k(×k
i=1Xi) to be “locally maximal” in u1,...,k(×k

i=1Xi). The “locally maximal” points
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are at most countably many, because each such point is “one arm’s away” from other points

on its right.

6 Conclusion

In this paper, we mainly focus on the study of the utility function representation of lex-

icographic preferences. We find that the cardinality of different attributes will determine

whether the lexicographic preference can be represented by a utility function. It is shown

that lexicographic preference is representable by a utility function if and only if there is at

most one attribute with uncountable levels and when such an attribute exists, it must be the

least important one. An auxiliary result that is of independent interest is also established

on how the union of countable “representable” subsets with respect to a preference is also

“representable”. The main results are expressed for antisymmetric lexicographic preferences.

We also note that non-antisymmetric cases can be reduced to antisymmetric cases by con-

sidering the induced quotient spaces. Some examples are provided to help understand the

related concepts and results.
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