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Abstract

This paper explores the possibility of cointegration existing between processes integrated at di¤erent
frequencies. Using the demodulator operator, we show that such cointegration can exist and explore its
form using both complex- and real-valued representations. A straightforward approach to test for the
presence of cointegration between processes integrated at di¤erent frequencies is proposed, with a Monte
Carol study and an application showing that the testing approach works well.
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1 Introduction

To date, the vast literature on cointegration has focused primarily on the long-run characteristics of economic
time series through the analysis of zero frequency unit roots. Nevertheless, economic and �nancial time series
may exhibit unit roots at other frequencies; in particular, Engle, Granger, Hylleberg and Lee (1993), Johansen
and Schaumburg (1999), Ahn and Reinsel (1994) and Bauer and Wagner (2012) analyze the seasonal case,
while Bierens (2001) and Caporale, Cuñado and Gil-Alana (2013) consider unit roots associated with the
business cycle. However, such analyses typically examine a speci�c frequency, without allowing the possibility
that the responses of economic agents may vary in relation to the seasonal or business cycle.
The current paper studies long-run linkages between time series with unit roots at di¤erent frequencies.

Thus, for example, we consider the nature of any cointegration between two series integrated at di¤erent
harmonic frequencies, or where one series is integrated at the zero frequency and the other at a business
cycle or seasonal frequency. To our knowledge, no previous study has examined the possibility or nature of
such cointegration. Succinctly stating our main result, we show that cointegration can exist between time
series that are integrated at di¤erent frequencies, with this being a speci�c type of time-varying polynomial
cointegration. More speci�cally, the cointegrating relationship is dynamic with coe¢cients that exhibit
cyclical variation, so that a long-run relationship can vary over the seasonal or business cycle.
Polynomial cointegration is discussed in the literature in the contexts of (so-called) seasonal cointegra-

tion and multicointegration (see Hylleberg, Engle, Granger and Yoo, 1990, and Granger and Lee, 1989,
respectively), while Gregoir (1999a, 1999b) undertakes a general analysis of these cases. Cubadda (2001)
provides an alternative representation of the polynomial cointegration arising in the seasonal case in terms
of complex-valued cointegration, which is developed further by Cubadda and Omtzigt (2005), and Gregoir
(2006, 2010). Although we take a similar approach to these latter authors, we relax the restrictions that
cointegration applies only at a single frequency and that cointegrating vectors are time invariant.
As examined by Park and Hahn (1999) and Bierens and Martin (2010), time-varying cointegration allows

the relevant coe¢cients to change smoothly over time in any direction. Such a general speci�cation is,
however, problematic in that it raises the question of what underlying mechanism drives these changes and
hence it is not surprising that other authors place some economic structure on the nature of the temporal
variation exhibited by the long-run relationship. For example, Hall, Psaradakis and Sola (1997) allow the

�Tomás del Barrio Castro gratefully acknowledge �nancial support from project ECO2017-83255-C3-P, MINECO/AEI/
FEDER, UE.
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cointegrating relationship to change with the economic environment through the use of a Markov-switching
speci�cation, while Birchenhall, Bladen-Hovell, Chui, Osborn and Smith (1989) apply periodic cointegration,
in which the long-run coe¢cients vary with the time of the year.
The present paper generalizes periodic cointegration to show that temporal variation in the coe¢cients

of a long-run relationship, with this variation being of a cyclic nature, can deliver cointegration between
variables that are individually integrated at di¤erent frequencies. This approach encompasses not only
variation associated with the seasons, but also over a cycle at a business cycle frequency, and the approach
provides a speci�c form of regime-switching cointegration. Some of our results are implicit in analyses of
periodic cointegration (see, in particular, Ghysels and Osborn, 2001, and Franses and Paap, 2004), but the
cross-frequency cointegration implications have not previously been drawn out.
In our analysis, a central role is played by the complex demodulator operator, which transforms a real

valued process integrated at a frequency di¤erent from zero to a complex valued process that is integrated
at frequency zero. The idea of complex demodulation has a long history in time series analysis (see, e.g.,
chapter 6 of Bloom�eld (1976) and the references therein) but, to the best of our knowledge, it has not been
previously used to investigate the presence of cointegration among series that are integrated at di¤erent
frequencies.
This paper is organized as follows. Section 2 reviews the notions of integration at a given frequency

and the demodulator operator. Section 3 presents our theoretical results. First, we show that two complex
valued processes integrated at di¤erent frequencies can cointegrated and the connection of this with the
demodulator operator. Second, we examine in details the various forms of cointegration that may exist
between real valued time series integrated at di¤erent frequencies. Third, we tackle inferential issues. In
Section 4, a Monte Carlo simulation exercise documents the small sample properties of the tests that we
suggest. Section 5 presents an empirical application to illustrate concepts and methods. Finally, Section 6
concludes.
It is useful to introduce some notation at this stage. Our analysis is concerned with a cyclical process

which has N observations per cycle; for example, N = 4 for quarterly seasonal data or N = 6 for annual
data following a six year business cycle. The analysis of the Appendix uses the vector of seasons (or, more
generally, cycles) representation that indicates a speci�c observation within the cycle. This double subscript
notation is also sometimes used below and it is important to appreciate that, in this vector notation, xn�
indicates the nth observation within the � th cycle; for example with quarterly data xn� is the n

th quarter
of year � within the available sample. Assuming that t = 1 represents the �rst period within a cycle, the
identity t = N(� � 1) + n provides the link between the usual time index and the vector notation.

2 Integration at a frequency

It is useful to have a notation for the operator that removes a single unit root at a spectral frequency
! 2 [0; �]. To this end, and following Gregoir (1999a) and Cubadda (1999), we adopt the notation

�! =

�
1� e�i!L; ! = 0; �
1� 2 cos!L+ L2 = (1� e�i!L)(1� ei!L); ! 2 (0; �) (1)

where L is the conventional lag operator. Special cases include the conventional �rst di¤erence operator
�0 = 1�L, while�� = 1+L and��=2 = 1+L2 remove unit roots at the semi-annual and annual frequencies,
respectively, for a seasonally integrated quarterly process (Hylleberg et al., 1990), and ��=3 = 1 � L + L2
remove as unit root corresponding to a cycle of six years duration in annual data.
To pin down the concept of integration at some frequency !, we adopt the following de�nition, used by

Gregoir (1999a):

De�nition 1. A purely nondeterministic real-valued random process xt is integrated of order d, for non-
negative integer d, at frequency ! 2 [0; �] if �d!xt is a covariance stationary process such that, for zero mean
white noise "t, its Wold representation

�d!xt = c(L)"t =
1X

i=0

ci"t�i

satis�es
P1

i=0 c
2
i <1 and c(ei!) 6= 0.

Following Hylleberg et al. (1990) and Gregoir (1999a), a process xt satisfying De�nition 1 is denoted

xt � I!(d):
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Although Gil-Alana (2001) and Gray, Zhang and Woodward (1989) allow fractional d, which is particularly
relevant for �nancial time series, we are interested in cointegration for unit root economic time series which
are typically I!(1) after taking account of deterministic e¤ects. Obviously, xt � I0(1) corresponds to a
conventional (single) unit root process integrated at the zero frequency.
Although the di¤erencing operator �! of (1) is de�ned for a real valued series, it is useful for the analysis

that follows to consider complex valued processes. Speci�cally, when xt � I!(1) we consider individually
each of the two factors

�
1� e�i!L

�
of �! for ! 2 (0; �). Then, for

xt = 2 cos(!)xt�1 � xt�2 + �t; (2)

with real-valued �t � I!(0), de�ne the complex valued process

x�t = xt � ei!xt�1: (3)

It is then straightforward to see that
x�t = e

�i!x�t�1 + �t: (4)

Successive substitution from (4) yields

x�t = e�i!tx�0 +
t�1X

s=0

e�i!s�t�s

= e�i!t
"

x�0 +
tX

`=1

ei!`�`

#

(5)

where e�i!t is the demodulator operator and x�0 is assumed to be Op (1) (with x
�
0 been part of the starting

value of x�t i.e. e
�i!tx�0 ).

As noted by Gregoir (1999a, 2006) and del Barrio Castro, Rodrigues and Taylor (2018, 2019), (5) is
equivalent to

x�t = e
�i!tx(0)�t (6)

where1

x
(0)�
t = x�0 +

tX

`=1

ei!`�` � I0 (1) :

Note that, here it is clearly shown that x�0 is the starting value of x
(0)�
t and that e�i!tx�0 is the stating

value of x�t . The demodulator operator of (5) therefore shifts the zero frequency peak of the complex-valued

process x
(0)�
t to frequency !; leading to a complex-valued x�t � I!(1). The demodulator operator provides the

key to cointegration between processes integrated at di¤erent frequencies, examined in subsequent sections2 .
Further note that, using the identity e�i!` = cos (! `)� i sin (! `) ; (5) can also be written as

x�t = e
�i!t

"

x�0 +
tX

`=1

cos (! `) �` + i
tX

`=1

sin (! `) �`

#

: (7)

Following an analogous line of argument, the complex-valued process x+t � I!(1) can also be constructed,
where

x+t = e
i!x+t�1 + �t = e

i!tx
(0)+
t (8)

and x
(0)+
t = x+0 +

Pt
`=1 e

�i!`�` � I0 (1). It is also clear that

x+t = e
i!t

"

x+0 +
tX

`=1

cos (! `) �` � i
tX

`=1

sin (! `) �`

#

; (9)

where the starting value x+0 is the complex conjugate of x�0 in (5). Hence x�t and x+t form a complex
conjugate pair of processes.
Lemma 1 in the Appendix summarizes the stochastic characteristics of (4) at the frequency !j = 2�j=N;

j = 1; : : : ; (N � 1) =2, corresponding to a cycle of N=j periods. In particular, when appropriately scaled,
1Note that as �t � I!(0) is the !-frequency �rst di¤erence of the real valued I!(1) process (2), ei!k�t acts as the complex

valued increment of the I0(1) process x
(0)�
t .

2The demodulator operator it is also used in Theorem 4 of Johansen and Schaumburg (1999) in a multivariate setting.
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Xt

`=1
cos (! `) �` and

Xt

`=1
sin (! `) �` converge to the independent Brownian motions w

�
R (r) and w

�
I (r)

respectively of Lemma 1; see also Gregoir (2006) and del Barrio Castro, Osborn and Taylor (2012, Remark
7). In Lemma 1 and in all the lemmas in the appendix we assume for simplicity and to focus on the main
ideas of the paper that �t � iid

�
0; �2

�
.

3 Cointegration for processes integrated at di¤erent frequencies

In this section we initially focus on the long run relationships between complex-valued processes with unit
roots at di¤erent frequencies, showing that long-run (cointegrating) relationships between such processes can
exist. Cointegration is then discussed for real-valued processes, with these long-run relationships generally
polynomial in form with periodically (seasonally or cyclically) varying coe¢cients. The �nal subsection
considers econometric approaches to testing for cointegration. To ensure distinct frequencies, we consider
xt � I!j (1) and yt � I!k(1) where !j = 2�j=N and !k = 2�k=N with j 6= k.

3.1 Cointegration between complex-valued processes

Based on the results of the previous section, de�ne the following triangular system with a long-run relationship
(cointegration) at the zero frequency between two complex-valued processes:

y
(0)�
t = �x

(0)�
t + ut (10)

x
(0)�
t = x

(0)�
t�1 + e

i!jt�t

where both the cointegrating coe¢cient � and the process ut � I (0) are generally complex-valued. Since

x
(0)�
t = ei!jtx�t from (6), (10) can also be written as

y
(0)�
t = �ei!jtx�t + ut (11)

x�t = e
�i!jx�t�1 + �t:

Note that multiplying the �rst line of (11) by e�i!jt leads to the triangular system of Gregoir (2010, p.
1499).

The system (11) exhibits a long-run (cointegrating) relationship between y
(0)�
t � I0(1); a complex-valued

process integrated at the zero frequency; and x�t � I!j (1), a complex-valued process integrated at the

frequency !j . It is also important to note that the relationship between y
(0)�
t and x�t is a form of periodic

cointegration, since the cointegrating coe¢cient �ei!jt = �ei!j(N(��1)+n) = �ei!jn is cyclically varying3 .
Lemma 54 in the appendix summarizes the stochastic behaviour of the triangular system (11) using the

vector of seasons notation and, in particular, (48) shows that y
(0)�
t and x�t share a single common complex-

valued stochastic trend; hence there are N � 1 cointegrating relationships between the two series across the
N observations of a complete cycle.

Premultiplying (11) by the demodulator operator e�i!kt shifts the complex valued process y(0)�t from
the zero frequency to frequency !k = 2�k=N with k = 0; 1; : : : ; bN=2c ; where bN=2c is the integer part of
N=2. With j 6= k we then have:

e�i!kty(0)�t = �ei[!j�!k]tx�t + e
�i!ktut:

Since, analogously to (6), y�t = e
�i!kty(0)�t , clearly y�t is a complex-valued process integrated at frequency

!k that shares a single common stochastic trend with x
�
t , a complex valued process integrated at frequency

!j . Hence the bivariate system

y�t = �e
�i[!k�!j ]tx�t + e

�i!ktut (12)

x�t = e
�i!jx�t�1 + �t:

links y�t � I!k(1) and x
�
t � I!j (1) through the periodic cointegration relationship

�
1;��ei[!j�!k]t

�0
with

a di¤erent coe¢cient for each observation within the cycle of N observations. Lemma 6 in the appendix

3As !j = 2�j=N it is evident that !j (N(� � 1) + n) is periodic and hence the identity �e
i!j(N(��1)+n) = �ei!jn holds.

4 In all the lemmas in the appendix we asume that the innovations on the cointegration relationships are iid with zero
expected value and constant variance.
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formalizes this result and summarizes the stochastic behaviour of the triangular system (12) using the vector
of seasons notation, with equation (57) writing this system in terms of the same complex-valued common
trend as for the system (11).
To summarize, (11) and (12), together with (48) and (57) of the Appendix, show that a unique long-run

cointegrating relationship can exist between complex-valued processes integrated at di¤erent frequencies.
The next subsection discusses the implications of such cointegration for real-valued processes. For this

purpose, it will be convenient to explicitly indicate the complex-valued nature of the cointegration by writing
� = �R + i�I and ut = Re(ut) + i Im(ut); so that (10) becomes

y
(0)�
t = [�R + i�I ]x

(0)�
t +Re(ut) + i Im(ut) (13)

x
(0)�
t = x

(0)�
t�1 + e

i!jt�t:

Further, there also exists the system

y
(0)+
t = [�R � i�I ]x

(0)+
t +Re(ut)� i Im(ut) (14)

x
(0)+
t = x

(0)+
t�1 + e

�i!jt�t

which forms the complex conjugate system to (10). Since, clearly,

Re(x
(0)�
t ) = Re(x

(0)+
t ); Im(x

(0)�
t ) = � Im(x(0)+t ) (15)

and
Re(y

(0)�
t ) = Re(y

(0)+
t ); Im(y

(0)�
t ) = � Im(y(0)+t ); (16)

cointegration can be equivalently considered using either y
(0)�
t and x

(0)�
t or y

(0)+
t and x

(0)+
t :

Finally, note also that !k = !N=2 = � in (12) leads to a long-run relationship between a process integrated
at a harmonic frequency !j = 2�j=N and a process integrated at the Nyquist frequency (�). Similarly, !k = 0
leads to cointegration between a process integrated at a harmonic frequency and a zero frequency unit root
process. These special cases and their implications are also discussed in the next subsection.

3.2 Cointegration between real-valued processes

This subsection extends the analysis to examine the implications of cointegration at di¤erent frequencies for
real-valued processes, which enables inference to be applied to observed time series. Since slightly di¤erent
considerations arise when one process is integrated at the zero or Nyquist frequency, four cases are considered:
namely !k; !j 2 (0; �); !k = 0, !j 2 (0; �); !k = �, !j 2 (0; �); !k = 0, !j = �:

3.2.1 I!k(1) and I!j (1) processes with !k; !j 2 (0; �)
One approach to cointegration is to transform one variable (say xt � I!j (1)) so that its unit root is shifted
to the frequency of the unit root in the other (yt � I!k(1)). This is achieved in the cointegrating relation of
the �rst line of (12) in which ei(!j�!k)tx�t � I!k(1) and e�i!ktut � I!k(0). It is tedious but not di¢cult to
see that taking the real and imaginary parts of this equation leads to

yt = cos(!k)yt�1 + �0;txt + [�1;t sin(!j)� �0;t cos(!j)]xt�1 + zR;t (17)

sin(!k)yt�1 = ��1;txt + [�1;t cos(!j) + �0;t sin(!j)]xt�1 � zI;t (18)

where

�0;t = �R cos[(!j � !k)t]� �I sin[(!j � !k)t)]; (19)

�1;t = �R sin[(!j � !k)t] + �I cos[(!j � !k)t]

and

zR;t = Re(e
�i!ktut) = cos(!kt)Re(ut) + sin(!kt) Im(ut)

zI;t = Im(e
�i!ktut) = cos(!kt) Im(ut)� sin(!kt)Re(ut)

Given that zR;t; zI;t � I!k(0), the system (17)-(18) provides two cointegrating relationships at frequency
!k between time series that are integrated at di¤erent harmonic frequencies, both of which are implied by
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the single complex-valued cointegration relationship of (12). The relationships of (17)-(18) are polynomial,
because the lags of yt and xt are involved, and time-evolving, because their coe¢cients vary in a periodic
fashion. For the special case of !k = !j , the system (17)-(18) reduces to the result reported in Gregoir
(2010). Lemma 9 of the appendix, speci�cally, (73) summarizes the stochastic behaviour of the triangular
system (17)-(18) with x�t = e

�i!jx�t�1+ �t and establishes that the combined 2N � 1 vector of processes for
yt and xt over a cycle of N observations is driven by two common trends.
Also note that (17) and (18) can be summarized in a single expression involving the observed series by

taking (17)+cos(!k)= sin(!k)(18), yielding

yt =

�
�0;t �

cos(!k)

sin(!k)
�1;t

�
xt

+

�
�1;t

�
sin(!j) +

cos(!k)

sin(!k)
cos(!j)

�
� �0;t

�
cos(!j)�

cos(!k)

sin(!k)
sin(!j)

��
xt�1 (20)

+zR;t �
cos(!k)

sin(!k)
zI;t:

Using (19) and trigonometric identities for the cosine and sine of the sum of two angles, (20) can also be
expressed

yt =

�
�R

�
cos ([!j � !k] t)�

cos(!k)

sin(!k)
sin ([!j � !k] t)

�
�

��I
�
sin ([!j � !k] t) +

cos(!k)

sin(!k)
cos ([!j � !k] t)

��
xt

�
�
�R

�
cos (!j [t+ 1]� !kt)�

cos(!k)

sin(!k)
sin (!j [t+ 1]� !kt)

�
� (21)

��I
�
sin (!j [t+ 1]� !kt) +

cos(!k)

sin(!k)
cos (!j [t+ 1]� !kt)

��
xt�1

+zR;t �
cos(!k)

sin(!k)
zI;t:

The relationship of (21) is used in Lemma 9 and also for generating simulated series in the Monte Carlo
analysis of Section 4 below.
To obtain an alternative representation to (17)-(18) that is more suitable for inference purposes, note

that the complex-valued cointegrating relationship of (13) can be written as

Re(y
(0)�
t ) + i Im(y

(0)�
t ) = �RRe(x

(0)�
t )� �I Im(x

(0)�
t ) + i

h
�I Re(x

(0)�
t ) + �R Im(x

(0)�
t )

i

+Re(ut) + i Im(ut): (22)

Equating the respective real and imaginery parts on both sides, (22) immediately leads to

Re(y
(0)�
t ) = �RRe(x

(0)�
t )� �I Im(x

(0)�
t ) + Re(ut) (23)

Im(y
(0)�
t ) = �R Im(x

(0)�
t ) + �I Re(x

(0)�
t ) + Im(ut) (24)

where Re(y
(0)�
t ); Im(y

(0)�
t ) � I0(1), and Re(ut); Im(ut) � I0(0). The system (23)-(24) suggests a straightfor-

ward way to make inference on the presence of a long-run relationship between series yt and xt is to search

for two cointegrating relationships among the real and imaginary parts of the demodulated series y
(0)�
t and

x
(0)�
t . Notice that, in order to achieve full statistical e¢ciency, the cross-equation restrictions between (23)
and (24) should be imposed in estimation.
Equivalently, for the complex conjugate system (14), we have

Re(y
(0)+
t )� i Im(y(0)+t ) = �RRe(x

(0)+
t )� �I Im(x

(0)+
t )� i

h
�I Re(x

(0)+
t ) + �R Im(x

(0)+
t )

i

+Re [ut]� i Im [ut] (25)

which also leads to (23-24), noting that (16) and (15) apply.

Therefore, cointegration analysis can be carried out using either the demodulated series y
(0)�
t and x

(0)�
t

in the complex-valued representation (10) or the real-valued series Re(y
(0)�
t ); Im(y

(0)�
t ); Re(x

(0)�
t ) and

6



Im(x
(0)�
t ) in the system (23)-(24). Comparing the results given in Lemma 9 and Lemma 6 of the Appendix,

namely (73) and (57) respectively, it can be seen that the nonstationary behaviour in each case is driven
by the pair of complex-valued conjugate Brownian motions wvR (r)� iwvI (r), together with the demodulator
operators e�i!j and e�i!k in the vectors v�j and v

�
k respectively. Hence the econometric strategy exposited

in subsection 3.3 to test for cointegration based on either the complex-valued demodulated time series or the
real-valued real and imaginary parts make sense.

3.2.2 I0(1) and I!j (1) processes with !j 2 (0; �)
Since yt � I0(1), only the process xt � I!j (1) needs to be demodulated and the triangular system of (10)
becomes

yt = �x
(0)�
t + ut = �e

i!jtx�t + ut (26)

x�t = e
�i!jx�t�1 + �t:

Noting that yt is real, taking the real part of the right-hand side of the cointegrating relationship in (26)
leads to the following representation in terms of the original variables:

yt = �0;txt + [�1;t sin(!j)� �0;t cos(!j)]xt�1 + zR;t (27)

where

�0;t = [�R cos(!jt)� �I sin(!jt)]; (28)

�1;t = [�R sin(!jt) + �I cos(!jt)]

and zR;t = Re(ut). Clearly (27) is a polynomial and periodic cointegrating relationship between the processes
yt � I0(1) and xt � I!j (1) for !j 2 (0; �). The stochastic behaviour of the system given by (27) with

x�t = e�i!jx�t�1 + �t is summarized in Lemma 8 of the Appendix, where (66) shows that the 2N � 1
combined vector for yt and xt over a cycle is driven by two common trends, as in the case where both
processes are integrated at di¤erent harmonic frequencies !k; !j 2 (0; �). However, unlike this previous
case, (27) shows there is one cointegrating relationship involving the two observed time series and their lags.
To obtain an alternate representation for inference purposes, sum (22) and (25), to yield

Re(y
(0)�
t ) + Re(y

(0)+
t ) = �R

h
Re(x

(0)�
t ) + Re(x

(0)+
t )

i
� �I

h
Im(x

(0)�
t ) + Im(x

(0)+
t )

i
+ 2Re(ut):

Since Re(x
(0)�
t ) = Re(x

(0)+
t ) and noting that Re(y

(0)�
t ) = Re(y

(0)+
t ) = yt, this implies that the single

cointegrating relationship between the two variables can be represented as

yt = �RRe(x
(0)�
t )� �I Im(x

(0)�
t ) + Re(ut): (29)

Therefore, cointegration between yt � I0(1) and xt � I!j (1) implies the existence of a single cointegrat-

ing relationship between yt, Re(x
(0)�
t ) and Im(x

(0)�
t ): Clearly, this cointegrating relationship can also be

equivalently expressed in terms of yt, Re(x
(0)+
t ) and Im(x

(0)+
t ).

3.2.3 I�(1) and I!j (1) processes with !j 2 (0; �)
The case yt � I�(1) is essentially analogous to the previous one, hence the main results are brie�y reported.
By premultiplying both sides of the �rst equation of (10) by e�i�t = cos(�t) yields the triangular syste,

yt = �ei(!j��)tx�t + cos(�t)ut (30)

x�t = e�i!jx�t�1 + �t

where cos(�t)ut � I�(0). Taking the real part of the cointegrating relationship leads to

yt = �0;txt + [�1;t sin(!j)� �0;t cos(!j)]xt�1 + zR;t (31)

which provides a representation in terms of the original variables, where

�0;t = [�R cos((!j � �)t)� �I sin((!j � �)t)]; (32)

�1;t = [�R sin((!j � �)t) + �I cos((!j � �)t)]
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and zR;t = cos(�t)Re(ut). Since zR;t � I0(0), (31) represents a single polynomial and periodic cointegrating
relationship between the processes yt � I�(0) and xt � I!j (1) with !j 2 (0; �). It can be noted that although
(31) has the same form as (27), their time-varying coe¢cients of (32) and (28) respectively di¤er, re�ecting
the frequency at which yt is integrated in each case. Lemma 10 of the appendix summarizes the stochastic
behaviour of the system (31) or (32) with x�t = e

�i!jx�t�1 + �t, with (80) showing that the series yt and xt
share two common trends.
Noting that y

(0)�
t = y

(0)+
t = cos(�t)yt, summing (22) and (25) leads to

cos(�t)yt = �RRe(x
(0)�
t )� �I Im(x

(0)�
t ) + Re(ut) (33)

which represents the single cointegrating relationship between yt and xt in terms of the series cos(�t)yt,

Re(x
(0)�
t ), and Im(x

(0)�
t ). Once again, the relationship can be equivalently expressed in terms of cos(�t)yt,

Re(x
(0)+
t ) and Im(x

(0)+
t ).

3.2.4 I0(1) and I�(1) processes

Finally, yt � I0(1) and xt � I�(1) is the simplest case, because the demodulated process x(0)�t ; in addition
to yt, is real-valued. Indeed, (10) for this case reduces to

yt = � cos(�t)xt + ut (34)

where � is real-valued and ut � I0(0). It is then clear that (34) represents the unique cointegrating rela-
tionship between the series. Lemma 11 of the appendix summarizes the stochastic behaviour of (34) when
x�t = �x�t�1 + �t, with (83) establishing that yt and xt share a single common trend over the cycle of N
observations.

3.3 Econometric strategies

Having shown that long-run relationships can exist between processes integrated at di¤erent frequencies, an
econometric strategy is required to detect such cointegration. Here we discuss possible approaches to such
inference.
The �rst and perhaps simplest approach consists of testing the cointegration rank in a VAR model applied

to a system of 2N variables formed from the vector of seasons representation for each of the two individual
time series5 , which treats the intra-cycle observations n = 1; :::; N as distinct time series. This approach
is discussed by, for example, Ghysels and Osborn (2001, Chapter 6) in the context of contemporaneous
periodic cointegration. For two processes integrated at di¤erent harmonic frequencies (that is, yt � I!k(1);
xt � I!j (1); with !k; !j 2 (0; �) and !k 6= !j), each series has two common trends across its N intra-cycle
series and hence no cointegration implies four common trends or 2N � 4 cointegrating relationships in the
2N � 1 vector of seasons for the two time series. However, as discussed in subsection 3.2.1, the presence of
cross-series cointegration implies two cointegrating relationships of the periodic polynomial form (17)-(18);
hence, overall, the 2N � 1 vector contains two common trends or 2N � 2 cointegrating relationships.
When either yt � I0(1) or yt � I�(1) while xt � I!j (1), !j 2 (0; �); the N observations for yt over a

cycle share one common trend while those for xt have two, so that no cointegration implies the presence
of three common trends and 2N � 3 cointegrating relationships. However, the 2N observations share two
common trends when the processes are cointegrated, implying that the combined 2N � 1 vector contains
2N � 2 cointegrating relationships. Finally, for yt � I0(1) and xt � I�(1) then (because the N intra-cycle
series for each of yt and xt is driven by its own common trend), no cointegration implies the presence of two
common trends or 2N �2 cointegrating relationships between the elements of the 2N �1 vector formed from
the vector of seasons of the two time series. On the other hand, cointegration between the series implies that
the same common trend drives both series and hence there are 2N � 1 cointegrating relationships between
the elements of the combined 2N � 1 system.
This approach has the obvious disadvantage of typically requiring the use of high dimensional systems.

For example, with quarterly seasonal data, the combined vector of seasons for the two variables has 8
elements, while it has 24 elements with monthly data. As shown by Franses (1994), the vector of seasons
approach lacks power even for the analysis of seasonal unit roots in a univariate quarterly time series.
This dimensionality problem can be avoided by transforming one or both of the original series so that

the unit roots under examination apply at the same frequency. An intuitively straightforward method is to

5 In the case of k variables the system will be of kN where each of the time series is treated as N � 1 vector of seasons.
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apply testing after any necessary transformation so that both are I0(1). For processes integrated at di¤erent
harmonic frequencies (!k; !j 2 (0; �); !k 6= !j), and as noted above, the complex reduced-rank regression

approach by Cubadda (2001) can be applied to the demodulated time series y
(0)�
t and x

(0)�
t in search of a

single cointegration vector.
An alternative to dealing with complex-valued processes is to use the real-valued representations discussed

in the preceding section. For the case of two series integrated at di¤erent harmonic frequencies !k and !j , the

usual Johansen (1996) method can be applied to the 4�1 vector consisting of Re(y(0)�t ); Im(y
(0)�
t ), Re(x

(0)�
t );

and Im(x
(0)�
t ), with cointegration requiring two cointegrating relationships, which are given by(23)-(24). For

processes yt � I0(1) and xt � I!j (1) having, respectively, a zero-frequency unit real and complex unit root,
the Johansen (1996) method can be applied to test for the existence of a single cointegrating relationship

among yt and the real and imaginary parts of x
(0)�
t ; as indicated by (27). Finally, in the case of processes

yt � I0(1) and xt � I�(1), the Johansen method can be applied to test for the existence of cointegration
between yt and cos(�t)xt in (34).
For all cases except yt � I0(1) and xt � I�(1), applying the tests just described requires computing the

demodulated from the observed series. For yt � I!k(1); xt � I!j (1); with !k; !j 2 (0; �); using de�nitions
corresponding to (3) and (6) it is easily seen that

x
(0)�
t = ei!jtx�t = e

i!jt(1� ei!jL)xt (35)

y
(0)�
t = ei!kty�t = e

i!kt(1� ei!kL)yt (36)

where L is the conventional lag operator. The real and imaginery parts of x
(0)�
t and y

(0)�
t can then be

obtained using the identity ei! = cos (!) + i sin (!). As noted in the discussion above, and due to the

relationship between complex conjugate pairs, numerically identical results will be obtained using x
(0)+
t and

y
(0)+
t as those from employing x

(0)�
t and y

(0)�
t .

Finally, note that the e¤ect of the demodulator operator e�i!jt on the deterministic part of the relation-
ship can be seen following the lines of chapter 7 in Bloom�eld (2000). For example, seasonal dummy variables
have a one-to-one correspondence with their trigonometric representations written in terms of cos (!jt) and
sin (!jt). Since cos (!jt) =

�
e�i!jt + ei!jt

�
=2, hence (1 � e�i!kL) cos (!jt) =

�
ei!jt � ei!j(t�2)

�
=2 and

e�i!kt(1� e�i!kL) cos (!jt) =
�
1� e�i!j2

�
=2 are constants once demodulated.

4 Monte Carlo analysis

This section provides the results of a Monte Carlo experiment to illustrate the nature of long-run relation-
ships between processes that are integrated at di¤erent frequencies and to examine the performance of the
approaches to testing discussed in subsection 3.3. We consider an overall cycle of N = 6 observations (the
smallest N which has two distinct harmonic frequencies) and sample sizes with 200, 100 and 50 complete cy-
cles; hence the total number of observations considered is T = 1200, 600 and 300. Cointegration is examined
using three approaches, namely applying the Johansen (1996) rank test to the combined 2N � 1 = 12 � 1
vector of seasons for the two series, applying the Johansen procedure to the appropriate real-valued system

and applying the complex-valued test of Cubadda (2001) to the demodulated time series y
(0)�
t and x

(0)�
t .

In each case, the procedure is applied using a VAR(1) speci�cation with the inclusion of a constant.
The Monte Carlo results are based on 5; 000 replications and all tests are conducted at a nominal 5%

level of signi�cance using asymptotic critical values. Those provided by Hamilton (1994, Table B.2, Case 2)
are employed when testing for cointegration for up to �ve series, with critical values obtained by simulation
using the same conditions as Hamilton (1994) when testing involves a larger number of series (namely up
to 12 for the vector of seasons). The complex-valued test uses the critical values of Cubadda (2001, Table
1). The �rst subsection considers situations where cointegration applies, followed by case where there is no
cointegration.

4.1 Cointegrated processes

Corresponding to the cases discussed in subsection 3.2, four cases are considered for cointegrated processes6 :

6We also calculated results for yt � I2�=3(1); xt � I�=3(1) for Case I, for Cases II and III with xt � I�=3(1) in place of
xt � I2�=3(1) and for Case IV with yt � I�(1); xt � I0(1) . For all of these, the results are e¤ectively the same as those
reported in Tables 1 to 4, respectively.
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� Case I: yt � I�=3(1); xt � I2�=3(1). Values of yt are generated using the cointegrating relationship
expressed in terms of the real-valued series as (21).

� Case II: yt � I0(1); xt � I2�=3(1). From (27) and (28), the cointegrating relationship used between
the real-valued series is

yt = [�R cos (!jt)� �I sin (!jt)]xt (37)

� [�R cos (!j [t+ 1])� �I sin (!j [t+ 1])]xt�1 + ut:

� Case III: yt � I�(1); xt � I2�=3(1), for which the cointegrating relationship is given by (33).

� Case IV: yt � I0(1); xt � I�(1). The cointegrating relationship here is as given in (34), with the
coe¢cient � real-valued.

In addition

xt =

(
2 cos(2�=3)xt�1 � xt�2 + "(x)t Cases I, II, III

�xt�1 + "(x)t Case IV
(38)

For all cases, ut; "
(x)
t � Niid(0; 1) and are mutually independent, while pre-sample starting values for all

series are set to zero.
In order to investigate the performance of the testing procedures discussed above, a range of �ve values7

are considered for the complex-valued cointegrating coe¢cient, with real and imaginery parts (�R and �I)
as shown below:

DGP �R �I
1 cos

�
�
3

�
= 0:5 sin

�
�
3

�
= 0:866

2 cos
�
2�
3

�
= �0:5 sin

�
2�
3

�
= 0:866

3 cos
�
�
6

�
= 0:866 sin

�
�
6

�
= 0:5

4 cos
�
5�
6

�
= �0:866 sin

�
5�
6

�
= 0:5

5 cos
�
�
8

�
= 0:924 sin

�
�
8

�
= 0:383

Only the coe¢cient �R is used in Case IV.
In line with the analysis of the previous section, we �rst consider cointegration between two processes

each integrated at di¤erent harmonic frequencies, with xt � I2�=3(1) and yt � I�=3(1); hence xt and yt have
3- and 6-period cycles, respectively8 . Results are shown in Table 1 for each cointegrated process considered,
with Panel A providing those obtained from applying the Johansen (1996) procedure to the 12 � 1 vector
of observations formed from the two variables over a cycle of 6 observations, Panel B applies the Johansen

procedure to the 4�1 vector consisting of the real and imaginery parts of x(0)�t and y
(0)�
t ; and, �nally, Panel

C applies the complex-valued cointegration test of Cubadda (2001) to x
(0)�
t and y

(0)�
t .

As discussed in subsection 3.3, cointegration implies the existence of 2N � 2 = 10 cointegrating relations
and two common trends in the 12�1 vector of seasons. Although highly parameterized, the Johansen (1996)
procedure performs well in detecting the correct number of cointegrating vectors for the largest sample size
of T = 1200 (namely 200 complete cycles of 6 observations), it is less satisfactory for smaller sample sizes.
Perhaps not surprisingly, for T = 300 (50 cycles), ten cointegrating vectors are relatively rarely detected.
Even with T = 600 (100 cycles) observations, the correct number of cointegrating vectors is detected in only
about three-quarters of the replications.
However, the much more parsiminous method that applies the Johansen (1996) procedure to the 4 � 1

consisting of Re(y
(0)�
t ); Im(y

(0)�
t ); Re(x

(0)�
t ) and Im(x

(0)�
t ) performs well in Panel B in detecting the presence

of two cointegrating vectors for all values of T considered. Even for T = 600, one cointegrating relation is
always rejected against two or more, while the test for the null hypothesis of two relations shows an empirical
rejection rate only modestly greater than the nominal 5%. Finally, in Panel C, the Cubadda (2001) test

reliably detects the presence of a single cointegrating vector in x
(0)�
t and y

(0)�
t for all three sample sizes.

Turning to the case where cointegration exists between a series integrated at the zero frequency and
another at a harmonic frequency, Table 2 provides the results for yt � I0(1), xt � I2�=3 (1). As noted
in subsection 3.3, and in common with the case where the series are cointegrated at di¤erent harmonic
frequencies, there are 2N � 2 = 10 cointegrating relationships and hence two common trends across the

7Further cases were also examined, with results very close to those shown in Tables 1 to 4.
8We also computed results for xt � I�=3(1) and yt � I2�=3(1), with results e¤ectively the same results as those shown in

Table 1.
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12� 1 combined vector of seasons. Once again, the Johansen (1996) procedure applied to the 12� 1 vector
provides reliable results only for largest sample size of T = 1200; indeed, the results in Panel A of Table

2 are very similar to those in Table 1. The test for cointegration between yt, Re(x
(0)�
t ) and Im(x

(0)�
t ),

however, works well in Panel B; the null hypothesis of no cointegration is always rejected, while the presence
of one vector is rejected against two with a rejection frequency very close to the nominal 5% level across
all three value of T . However, the complex-valued reduced-rank regression procedure applied at the zero

frequency using yt and x
(0)�
t does not perform well in Panel C. In particular, the initial null hypothesis of no

cointegration is rejected in only 30% (or fewer) of the replications across all DGPs and di¤erent values of T .
This �nding is not surprising since the procedure is designed by Cubadda (2001) to test for complex-valued
cointegration between series at a harmonic frequency. Therefore, the procedure is seeking cointegration
involving the real and imaginery parts of both series, whereas in this case yt is real.
The third situation, for which results are provided in Table 3, examines yt � I�(1), xt � I2�=3 (1)9 , again

using the �ve sets of values for �R and �I as above. These results are very similar to those where yt � I0(1)
in Table 2, and hence each of the methods used to detect the cointegration between yt and xt performs in a
equivalent way for the cases where one series is integrated at the zero or Nyquist frequencies. Note that, for
the testing of Panels B and C of Table 3, yt is demodulated to cos(�t)yt. These results also con�rm that the
complex-valued approach of Cubadda is not appropriate because yt and cos(�t)yt are real-valued variables.
Finally, Table 4 considers cointegration between to an I0 (1) process and an I� (1) process, as in (34).

As mentioned in subsection 3.3, the vector of seasons approach implies 11 cointegrating relationships, while
the other methods test for a single long-run relationship between the appropriate series. The results are in
line with those of earlier tables. Both the vector of seasons approach and the direct test applied to yt and
cos(�t)xt work well, with the quali�cation that the vector of seasons approach is less satisfartory for smaller
sample sizes. The approach of Cubadda (2001) is again not satisfactory (or, more accurately, not applicable)
here, as both yt and cos(�t)xt are real-valued time series.

4.2 No cointegration

In order to complete the picture, the performance is examined of the above tests in situations when there
is no cointegration between the processes integrated at di¤erent frequencies. For this purpose, we consider
the four cases as in the last subsection10 , namely: yt � I�=3(1), xt � I2�=3(1); yt � I0(1), xt � I2�=3(1);
yt � I�(1), xt � I2�=3(1); yt � I0(1), xt � I�(1). The data generating processes for xt are as in (38), while
those for yt are:

yt =

8
><

>:

2 cos(�=3) yt�1 � yt�2 + "(y)t Case I

yt�1 + "
(y)
t Cases II, IV

�yt�1 + "(y)t Case III

(39)

where "
(x)
t ; "

(y)
t � Niid(0; 1) and mutually independent, with pre-sample starting values for both series set

to zero.
The results are shown in Table 5. It can be seen that the Johansen (1996) approach applied to the 12�1

vector of seasons, for which the results are presented in Panel A, reliably (and correctly) detects the presence
of four common trends between the series in Case I (that is, two separate common trends in each of xt and
yt) only for the largest sample size, with T = 1200 (200 complete cycles of N = 6 observations). For smaller
samples the procedure lacks power. In particular, with T = 300, the null hypothesis of six common trends is
rejected against the alternative of fewer in only around a quarter of the replications. On the other hand, for
this case, the Johansen (1996) procedure applied to the four series formed from the real and imaginery parts

of y
(0)�
t and x

(0)�
t in Panel B correctly �nds little evidence of cointegration: the initial null hypothesis of no

cointegration (four common trends) is rejected with a frequency only modestly above the nominal 5% level.
Finally, the Cubadda (2001) procedure in Panel C performs very well for the Case, rejecting the presence of
a single complex cointegrating vector at close to the 5% level.
Once again, Table 5 reveals similar results overall for Cases II and III, when one series is integrated at

a harmonic frequency and the other at the zero (Case II) or Nyquist frequency (Case III). The vector of
seasons approach works well in detecting the presence of three common trends across the 12 � 1 vector,
implying no cross-series cointegration, only for the largest sample size. However, testing for cointegration

using yt, Re(x
(0)�
t ), and Im(x

(0)�
t ) works well overall, rejecting the initial (and correct) null hypothesis of

9Using xt � I�=3 (1) again yields very similar results.
10We also calculated results for yt � I2�=3(1); xt � I�=3(1) for Case I, for Cases II and III with xt � I�=3(1) in place of

xt � I2�=3(1) and for Case IV with yt � I�(1); xt � I0(1) . For all of these, the results are e¤ectively the same as those
reported in Table 5.
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three common trends with a size modestly larger than the nominal 5%. The rejection rate for (true) null of
two common trends is higher when the Cubadda complex cointegration approach is employed, but as already
noted this procedure is not designed for the situation where one of the two series is real-valued. The pattern
of results is largely repeated for Case IV, where both series are real and not cointegrated, and hence there
are two common trends across the 12 � 1 vector of seasons, which is reliably detected only for the largest
sample size (Panel A). The performance of the usual Johansen (1996) approach applied to yt and cos(�t)xt
is good in Panel B, while the complex-valued cointegration approach of Panel C is not appropriate to this
case.
Overall, therefore, we conclude that the best approach in general is to employ the approach using the

appropriate real and imaginery parts of the demodulated time series. The Cubadda (2001) approach works
very well when both time series are integrated at harmonic frequencies, but is not appropriate when one or
both series are real-valued. However, the Johansen (1996) test applied to the entire vector of seasons requires
long time series, with a large number of years of data for seasonal time series (or, more generally, complete
cycles). Hence, from a practical point of view, we recommend applying the Cubadda (2001) complex-valued
test to the demodulated time series when both time series are integrated at harmonic frequencies, or forming
the real and imaginary parts of the complex demodulated time series and then employing the Johansen
(1996) approach.

5 Empirical application

This section explores the presence of cointegrating relationship between processes integrated at di¤erent
frequencies using quarterly data from the Balearic Islands. In particular we analyze the relationship between
tourist arrivals (arrt) and total employment (empt) from the �rst quarter of 1979 to the fourth quarter of
201511 . Figures 1.a and 2.a show the two time series after taking logarithms, while the sample spectra can
be found in Figures 1.b and 2.b. It is evident from Figure 1 that tourist arrivals exhibit a clear seasonal
pattern which Figure 1.b shows to be is associated particularly with the annual frequency �=2. On the other
hand, employment in Figure 2 shows relatively little seasonal pattern and its spectrum is dominated by a
zero frequency peak.
Table 6 provides results for the HEGY test (Hylleberg, Engle, Granger and Yoo, 1990) for seasonal unit

roots, which are obtained from the regression

�4yt = �q+�qt+�0y
(0)
t�1+�

�
1 y

(1�)
t�1 +�

�
1y

(1�)
t�1 +�2y

(2)
t�1 (40)

+

pX

j=1


j�4yt�j+"t;

where �q and �q (q = 1; 2; 3; 4) are understood to be the coe¢cients of quarterly dummy variables for an

intercept and trend, respectively, y
(0)
t�1 = yt+ yt�1+ yt�2+ yt�3, y

(1�)
t�1 = �yt�1+ yt�3, y

(1�)
t�1 = �yt�2+ yt�4,

y
(2)
t�1 = �yt�1 + yt�2 � yt�3 + yt�4, p is the order of augmentation and "t is uncorrelated over time. Results
are obtained using both OLS and GLS detrending and the MAIC criteria is used to determine the order of
augmentation; see del Barrio Castro, Osborn and Taylor (2016) for details. Asymptotic critical values are
employed, with these obtained from the quantile functions in del Barrio Castro, Bodnar and Sansó (2017).
As usual, one-sided t-type tests are employed for the null hypotheses �0 = 0 and �2 = 0 (associated with the

zero and Nyquist frequencies, respectively), together with a joint F -type test for ��1 = �
�
1 = 0 (associated

with the frequency �=2).
The tests indicate that ln (arrt) is a seasonally integrated process, with unit roots at the zero and both

seasonal frequencies, �=2 and �. Although the sample spectrum of Figure 1.b does not indicate substantial
power associated with the Nyquist frequency �, the null hypothesis of a unit root at this frequency is not
rejected at any conventional level of signi�cance. On the other hand, ln (empt) apparently has only a zero
frequency unit root, with a unit root at the Nyquist frequency and a pair of complex unit roots at frequency
�=2 both rejected at the 1% level of signi�cance.
Based on these results, Table 7 explores the possibility of a long-run cointegrating relationship between

ln (empt) � I0(1) and ln (arrt) � I�=2(1). To be speci�c, In Panel A, the Johansen (1996) procedure is
applied to ln (empt) and the real and imaginery parts of (1� L) ln (arrt) while Panel B examines ln (empt)
11The data was obtained from the web page of the IBESTAT (Regional Statistical o¢ce of the Balearic Islands), in the case

of the quarterly employment data the source is the EPA (Encuesta de Población Activa) of the INE (National Statistical o¢ce
of Spain). And in the case of the passenger arrivals the source is the IBESTAT based on the data provided by AENA.
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and the real and imaginery parts of (1� L) (1 + L) ln (arrt) =
�
1� L2

�
ln (arrt). In both cases, a constant

is included in each equation of the VAR model employed for testing, while signi�cance is judged using the
critical values of Hamilton (1994, Table B.10, case 2). The �rst di¤erence transformation is applied to
ln (arrt) in both panels to remove the zero frequency unit root in the series, while (1� L) (1 + L) = 1� L2
removes unit roots at both the zero and Nyquist frequencies and leaves only the unit root at the frequency
�=2 if ln (arrt) contains unit roots at both the zero and Nyquist frequencies (see Table 6). In other words,
we test whether the nonstationary behavior at each of the annual frequency �=2 in tourism arrivals is related
with the zero frequency nonstationary behavior observed in employment.
Panel A of Table 7 indicates the presence of one cointegrating relationship (and hence two common trends)

among ln (empt), Re[e
i�
2
t
�
1� ei�2 L

�
(1� L) ln (arrt)] and Im[ei

�
2
t
�
1� ei�2 L

�
(1� L) ln (arrt)], implying the

existence of cointegration between the zero frequency unit root of ln (empt) and the pair of annual frequency
unit roots in ln (arrt). The evidence in Panel B, using the variables ln (empt), Re[e

i�
2
t
�
1� ei�2 L

� �
1� L2

�
ln (arrt)]

and Im[ei
�
2
t
�
1� ei�2 L

� �
1� L2

�
ln (arrt)] is a little less clear, in that the initial null hypothesis of no coin-

tegration is not rejected at even the 10% level with VAR orders of 3 and 5, although it is rejected at the 5%
level (or below) using orders of 2 or 4. However, as noted above, the sample spectrum of ln (arrt) in Figure
1.b does not have substantial power at the Nyquist frequency and hence the transformation employed in
Panel B may represent over-di¤erencing. Overall, the results in Table 7 support cross-frequency cointegration
between the toursim arrivals and employment series for the Balearic Islands.

6 Conclusions

A stochastic process that is I(1) at given frequency is characterized by having an unbounded spectrum
at that frequency. Hence, it is clear that if two stochastic processes are I(1) at di¤erent frequencies, no
time-invariant linear combinations of them can remove the unit roots at those frequencies. However, a
transformation known as complex demodulation is capable of shifting a unit root at a non-zero frequency
to a unit root at frequency zero. Hence, it is possible that a common (complex-valued) stochastic trend can
exist between demodulated stochastic processes that are not I(1) at the same frequency.
In terms of the original variables, the form of cointegration under consideration is periodic (that is, has

cyclically varying coe¢cients) and generally polynomial. This notwithstanding, statistical inference may be
easily conducted by already available methods for cointegration analysis. Using simulations and an empirical
example, the present paper both examines the theory underlying this form of cointegration and documents
the practical value of the proposed approach.
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8 Appendix

For the analysis it is useful to employ a double subscript notation xn� where the subscripts n� indicate the
nth observation within the � th cycle, where the total number of observations per complete cycle is N . The
spectral frequencies associated with xn�are then !j = 2�j=N where j = 0; 1; : : : ; bN=2c and b:c denotes the
integer part. Hence for example !1 = 2�=N completes a full cycle every N observations. Using the double
subscript notation for an I!j (1) process, (2) is written as

xn� = (2 cos!j)xn�1;� � xn�2;� + vn� ; n = 1; 2; � � � ; N: (41)

Also note that when using the double subscript notation, it is understood that xn�k;� = xN�n+k;��1 for
n � k � 0. Adopting the convention that t = 1 corresponds to n = � = 1, then t = N(� � 1) + n provides
the one-to-one mapping between the notations xt and xn� .
De�ning the N � 1 vector of seasons X�

� =
�
x�1� ; x

�
2� ; x

�
3� ; : : : ; x

�
N�

�0
for the process of (4), the following

lemma summarizes the stochastic characteristics of this process:

Lemma 1 For X�
� =

�
x�1� ; x

�
2� ; x

�
3� ; : : : ; x

�
N�

�0
with x�n� n = 1; 2; � � � ; N de�ned in (4) and with �n� �

iid
�
0; �2

�
then

1p
T
X�
bTrc ) �C�j W (r) = �v�j v

+0

j W
v (r) (42)

= � (N=2)
1=2
v
�
j (wR (r) + iwI (r))

where C�j is the circulant matrix of rank one C
�
j = Ci rc

�
1; e�i(N�1)!j ; e�i(N�2)!j ; � � � ; e�i!j

�
, the vectors

v
�
j and v

+
j are de�ned as v

�
j =

�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0
and v+j =

�
ei!j ei2!j ei3!j

� � � eiN!j
�
, W � (r) =

�
W �
1 (r) W �

2 (r) � � � W �
N (r)

�0
is N � 1 vector Brownian motion with w�R (r)

and w�I (r) two scalar Brownian motions de�ned as w
�
R (r) = (N=2)

�1=2PN
k=1 cos (k!j)W

�
k (r) and w

�
I (r) =

(N=2)
�1=2PN

k=1 sin (k!j)W
�
k (r) respectively.

Remark 2 Note that the result in Lemma 1 above also applies to x+t in (8), as it is straightforward to

see that for X+
� =

�
x+1� ; x

+
2� ; x

+
3� ; : : : ; x

+
N�

�0
it follows that T 1=2X+

bTrc ) �C+j W
� (r) = �v+j v

�0

j W
� (r) =

� (N=2)
1=2
v
�
j (w

�
R (r)� iw�I (r)) with C+j = Ci rc

�
1; ei(N�1)!j ; ei(N�2)!j ; � � � ; ei!j

�
. Hence we have a pair

of complex-valued scalar Brownian motions w�R (r)� iw�I (r) as in Gregoir (2010, p.1494). Note also that del
Barrio Castro, Rodrigues and Taylor (2018, equations (3.12) and (3.13)) prove a similar result but consider
complex-valued Near-Integrated processes and also allow serial correlation in the innovations.

Remark 3 From (42) and (5) it is clear that (w�R (r) + iw
�
I (r)) provides the behaviour. of the stochastic

trend
h
x�0 +

Pt
k=1 e

i!jk
k �k

i
, the vector v�j =

�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0
and the e¤ect of the

demodulator operator e�it!j . Another interesting point from (42) is that it shows that N processes comprising
the elements of X�

� share a common stochastic trend, or equivalently that there are N � 1 cointegration
relationships between the elements of X�

� .

Remark 4 For the process xn� of (41), Smith, Taylor and del Barrio Castro (2009, p 540, Lemma 1 and

Remark) show that for the circulant matrix of rank 2 Cj = Ci rc
h
sin(!j)
sin(!j)

;
sin(N!j)
sin(!j)

;
sin([N�1]!j)

sin(!j)
; : : : ;

sin(2!j)
sin(!j)

i

then Cj, C
�
j and C

+
j satisfy Cj =

e�i!j

e�i!j�ei!j C
�
j +

ei!j

ei!j�e�i!j C
+
j .

Proof of Lemma 1: First note that the process (4) admits the vector of seasons representation X�
� =�

x�1� ; x
�
2� ; :::; x

�
N�

�0
, then

��0 X
�
� = �

�
1 X

�
��1 + V� (43)

where, V� = [�1� ; �2� ; :::; �N� ]
0
and ��0 and �

�
1 are N �N matrices with generic element

��0(h;j) =

8
<

:

1 h = j; j = 1; :::; N
�e�i! h = j + 1; j = 1; :::; N � 1
0 otherwise

��1(h;j) =

�
e�i! h = 1; j = N
0 otherwise
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in which the subscript (h; j) indicates the (h; j)th element of the respective matrix. As in the quarterly PI(1)
model studied by Paap and Franses (1999), successively substituting in (43) yields

X�
� = [(��0 )

�1��1 ]
�X�

0 + (�
�
0 )

�1V� +
��1X

j=1

[(��0 )
�1��1 ]

j(��0 )
�1V��j

= [(��0 )
�1��1 ]

�X�
0 + (�

�
0 )

�1V� + [(�
�
0 )

�1��1 ](�
�
0 )

�1
��1X

j=1

V��j : (44)

Note that this result follows because (��0 )
�1��1 is idempotent, which can be seen by generalizing the form

of (��0 )
�1��1 presented by Paap and Franses (1999) and noting that e�i!N = 1 for x�n� � I!(1); and

hence12 [(��0 )
�1��1 ]

j = [(��0 )
�1��1 ] for j = 2; 3; :::. Clearly, (44) provides an alternative representation of

(5), but now expressed in terms of the vector of (complex-valued) observations over an entire cycle, where

[(��0 )
�1��1 ](�

�
0 )

�1 gives the e¤ect of the accumulated vector of shocks
P��1

j=1 V��j (see for example Boswijk
and Franses (1996), Paap and Franses (1999), del Barrio Castro and Osborn (2008), and for complex-valued
processes in the context of seasonally integrated processes, del Barrio Castro, Rodrigues and Taylor (2018)).
The matrix [(��0 )

�1��1 ](�
�
0 )

�1 has rank one and hence can be written as

C
�
j = [(�

�
0 )

�1��1 ](�
�
0 )

�1 = (a�j )(b
�
j )

0 (45)

where, for (45),

a
�
j =

�
1 e�i!j e�i2!j � � � e�i(N�1)!j

�0

b
�
j =

�
1 e�i(N�1)!j e�i(N�2)!j � � � e�i!j

�0
: (46)

Therefore, the scalar partial sum (b�j )
0P��1

j=1 V��j in (44) is integrated at the zero frequency, while a
�
j

allocates this across the N observations of the cycle at frequency !j , yielding an I!j (1) process. This is, of
course, the same as (5)-(6), but the cyclicality of the resulting process is now made clear by representing

the demodulation operator through the vector a�j . Note also that
1p
T

PbTrc
j=1 Vj ) �W � (r) where W � (r) is

N � 1 vector Brownian motion. Also, the circulant matrix C�j can be written as

C
�
j = (a�j )(b

�
j )

0 = (a�j )e
�i!jei!j (b�j )

0 = v�j v
+0
j (47)

v
�
j =

�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0

v
+
j =

�
ei!j ei2!j ei3!j � � � eiN!j

�0
:

Finally note that v+0j W
� (r) =

PN
k=1 e

ik!jW v
k (r) =

PN
k=1 cos (k!j)W

v
k (r) + i

PN
k=1 sin (k!j)W

v
k (r), and

that wR (r) = (N=2)
�1=2PN

k=1 cos (k!j)W
v
k (r) and wI (r) = (N=2)

�1=2PN
k=1 sin (k!j)W

v
k (r).�

The following lemmas provide the asymptotic results that underpin the discussion of Section 3.

Lemma 5 For Z
(0;!j)�
� =

h
y
(0)�
1� ; y

(0)�
2� ; : : : ; y

(0)�
N� ; x

�
1� ; x

�
2� ; : : : ; x

�
N�

i0
; with x�n� and y

(0)�
n� n = 1; 2; � � � ; N

de�ned in (11), �n� � iid
�
0; �2

�
and un� � iid

�
0; �2u

�
, then

1p
T
Z
(0;!j)�
bTrc ) � (N=2)

1=2

�
�1
v
�
j

�
(wvR (r) + iw

v
I (r)) (48)

with (w�R (r) + iw
�
I (r)) and v

�
j as in Lemma 1, while 1 is an N � 1 vector of ones.

Proof of Lemma 5: As in Lemma 1, de�ne V� = [�1� ; �2� ; � � � ; �N� ]0 as in Lemma 1, and also V u� =
[u1� ; u2� ; � � � ; uN� ]0 and V Z� = [V u0� V

0
� ]
0
. Using the same line of argument as in the proof of Lemma 1 we can

write
��0 Z

(0;!j)�
� = ��1 Z

(0;!j)�
��1 + V Z� (49)

12 Note that matrix ��0 (see chapter 2 pp 45-48 of Pollock (1999)) is an N �N lower-triangular Toeplitz matrix associated

with the polynomial
�
1� e�i!jL

�
. Hence the matrix

�
��0

�
�1

collects the coe¢cients of the expansion of the inverse polynomial

associated with
�
1� e�i!jL

�
. Based on the form of the matrices (��0 )

�1 and ��1 , it is clear that he resulting matrix (�
�

0 )
�1��1

is an N �N matrix with the �rst N � 1 columns having elements equal to zero and the last column equal to the column vector
v
�

j =
�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0
. Finally note that the last element of v�j , that is, e

�iN!j ; is equal to 1

as !j = 2�j=N and hence the idempotency of (��0 )
�1��1 can be deduced easily.
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where

��0 =

�
IN�N ��120

0N�N ��220

�
; ��1 =

�
0N�N 0N�N
0N�N ��221

�

in which all sub-matrix are N �N , with

��120 = Diag [��1;��2; � � � ;��N ]
= Diag

�
�ei!j�;�ei!j2�; :::;�ei!jN�

�

= Diag
h
�e�i!j [N�1]�;�e�i!j [N�2]�; :::; �

i

��220(h;k) =

8
<

:

1 h = k; k = 1; :::; N
�e�i!j h = k + 1; k = 1; :::; N

0 otherwise

��221(h;k) =

�
e�i!j h = 1; k = N
0 otherwise

;

where � is the zero frequency cointegration coe¢cient of (10) and the subscripts (h; j) refer to the (h; j)th

element of the respective sub-matrix, ��120 or ��221 . Using results for the inverse of partitioned matrix,

�
��0
��1

=

"
IN�N ���120

�
��220

��1

0N�N
�
��220

��1

#

:

Note also that, as previously stated, the sub matrix
�
��220

��1
is the inverse of an N � N lower-triangular

Toeplitz matrix associated with the polynomial
�
1� e�i!jL

�
. Hence

�
��0
��1

collects the coe¢cients in the

expansion of the inverse polynomial associated with
�
1� e�i!jL

�
. Using the form of

�
��0
��1

, it is easy to

check that
�
��0
��1

��1 is an 2N�2N matrix with all elements in its �rst N�1 columns equal to zero and the
last column collecting the elements of the �rst column of ���120

�
��220

��1
multiplied by13 e�i!j , followed

by the �rst column of
�
��220

��1
multiplied by e�i!j as well14 ; hence as the �nal element of the last column

of
�
��0
��1

��1 is equal to e
�iN!j = 1. It is also clear that

�
��0
��1

��1 is idempotent.
Recursive substitution from (49), yields

Z(0;!j)�� =
�
��0
��1

��1 Z
(0;!j)�
0 +

�
��0
��1

V Z� +
�
��0
��1

��1
�
��0
��1

��1X

j=1

V Z��j : (50)

We can write
�
��0
��1

��1
�
��0
��1

=

�
0N�N C

(0)�
y

0N�N C
�
x

�
(51)

where the N �N sub-matrices C
(0)�
y and C�x each have rank one, so that

C
�
x = a�x b

�0
x (52)

C
(0)�
y = a(0)�y b�0x

with

a�x =
�
1 e�i!j e�i2!j � � � e�i(N�2)!j e�i(N�1)!j

�0

a(0)�y = ei!j�
�
1 1 1 � � � 1 1

�0
(53)

b�x = b�y =
�
1 e�i(N�1)!j e�i(N�2)!j � � � e�i2!j e�i!j

�0
:

It is clear from (50) to (53) that
�
��0
��1

��1
�
��0
��1

, C
(0)�
y and C�x have rank 1, and hence there is one

common stochastic trend shared by the seasons of both time series y
(0)�
n� and x�n� ; or equivalently we have

13That is e�i!j
h
�1; e

�i!j�2; � � � ; e
�i!j [N�1]�N

i
0

= e�i!j
h
e�i!j [N�1]�; e�i!j [N�2]e�i!j�; � � � ; e�i!j [N�1]�

i
0

=

� [1; 1; � � � ; 1] :

14That is e�i!j
h
1; e�i!j ; � � � ; e�i!j [N�1]

i
0

=
�
e�i!j ; e�i2!j ; � � � ; e�iN!j

�0
:
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2N � 1 cointegration relationships between the elements of the vector Z�� . Note also that C�x in (52) has
the same form as (47) and it is possible to write:

C
�
x = (a�x )(b

�
x )

0 = (a�x )e
�i!jei!j (b�x )

0 = v�x v
+0
x (54)

v
�
x =

�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0

v
+
x =

�
ei!j ei2!j ei3!j � � � eiN!j

�0
:

In the case of C
(0)�
y ; note that:

C
(0)�
y = a(0)�y b�0x = �1ei!j b�0x = �1v+0x (55)

with 1 an N � 1 vector of ones. Based on

1p
T

bTrcX

j=1

V Zj =

"
1p
T

PbTrc
j=1 V

u
j

1p
T

PbTrc
j=1 Vj

#

)
�
�uW

u (r)
�W v (r)

�

where Wu (r) and W v (r) are two N � 1 vector Brownian motions. It is possible to see that for Z�� in (50)
we have:

1p
T
Z
(0;!j)�
bTrc )

�
0N�N C

(0)�
y

0N�N C
�
x

� �
�uW

u (r)
�W v (r)

�
(56)

and the result in Lemma 5 comes from (56),(54) and (55).�

Lemma 6 For Z
(!k;!j)�
� =

�
y�1� ; y

�
2� ; : : : ; y

�
N� ; x

�
1� ; x

�
2� ; : : : ; x

�
N�

�0
with x�n� and y

�
n� , n = 1; 2; � � � ; N de�ned

in (12) and with �n� � iid
�
0; �2

�
and un� � iid

�
0; �2u

�
; then

1p
T
Z
(!k;!j)�
bTrc ) � (N=2)

1=2

�
�v�k
v
�
j

�
(wvR (r) + iw

v
I (r)) (57)

with (wvR (r) + iw
v
I (r)) and v

�
j as in Lemma 1 and �nally v

�
k =

�
e�i!k e�i2!k e�i3!k � � � e�iN!k

�0
.

Remark 7 As a particular case of (12) and (57) we can de�ne a triangular system between two complex-
valued integrated processes, one associated with the Nyquist frequency (�) and the other to a harmonic
frequency !j, by multiplying (11) by e

�i�(N(��1)+n).

Proof of Lemma 6: First note that e�i!ktut = e�i!k(N [��1]+n)un� = e�i!knun� . De�ne V Z� = [V u0� V
0
� ]
0

with V� = [v1� ; v2� ; � � � ; vN� ]0 as in Lemma 1 and V u� =
�
�ei!ku1� ;�ei2!ku2� ; � � � ;�eiN!kuN�

�0
. Using the

same line of argument as in the proof of Lemma 5 we can write

��0 Z
(!k;!j)�
� = ��1 Z

(!k;!j)�
��1 + V Z� (58)

where

��0 =

�
IN�N ��120

0N�N ��220

�
; ��1 =

�
0N�N 0N�N
0N�N ��221

�

in which all sub-matrices are N �N , with

��120 = Diag [��1;��2; � � � ;��N ]
= Diag

h
�ei(!j�!k)�;�ei(!j�!k)2�; :::;�ei(!j�!k)N�

i

Diag
h
�e�i(!j�!k)[N�1]�;�e�i(!j�!k)[N�1]�; :::;�e�i(!j�!k)�

i

��220(h;k) =

8
<

:

1 h = k; k = 1; :::; N
�e�i!j h = k + 1; k = 1; :::; N

0 otherwise

��221(h;k) =

�
e�i!j h = 1; k = N
0 otherwise

;
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Recursively substituting from (58), and recognizing that
�
��0
��1

��1 is idempotent
15 , yields

Z(!k;!j)�� =
�
��0
��1

��1 Z
(!k;!j)�
0 +

�
��0
��1

V Z� +
�
��0
��1

��1
�
��0
��1

��1X

j=1

V Z��j : (59)

Also
�
��0
��1

��1
�
��0
��1

=

�
0N�N C

�
y

0N�N C
�
x

�
(60)

where the N �N sub-matrices Cy and C
�
x each have rank one, so

C
�
x = a�x b

�0
x (61)

C
�
y = a�y b

�0
x

with

a�x =
�
1 e�i!j e�i2!j � � � e�i(N�2)!j e�i(N�1)!j

�0

a�y = e�i!kei!j�
�
1 e�i!k e�i2!k � � � e�i(N�2)!k e�i(N�1)!k

�0
(62)

b�x = b�y =
�
1 e�i(N�1)!j e�i(N�2)!j � � � e�i2!j e�i!j

�0
:

It is clear from (60) to (61) that
�
��0
��1

��1
�
��0
��1

, C�y and C�x have rank 1, and hence there is one
common stochastic trend shared by the seasons of both time series y�n�and x

�
n� or equivalently we have

2N � 1 cointegration relationships between the seasons of the vector Z(!k;!j)�� . Note also that C�x in (61)
has the same form as (47) and it is possible to write:

C
�
x = v

�
x v

+0
x (63)

v
�
x =

�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0

v
�+
x =

�
ei!j ei2!j ei3!j � � � eiN!j

�0
:

In the case of C�y note that

C
�
y = a�y b

�0
x = �v�y v

+0
x (64)

v
�
y =

�
e�i!k e�i2!k e�i3!k � � � e�iN!k

�0
:

Based of the fact that

1p
T

bTrcX

j=1

V Zj =

"
1p
T

PbTrc
j=1 V

u
j

1p
T

PbTrc
j=1 Vj

#

)
�
�uW

u (r)
�W v (r)

�

where W � (r) is an N � 1 vector Brownian motion as in Lemma 2 and Wu (r) is an N � 1 complex-valued
vector Brownian motion. Hence for Z

(!k;!j)�
� in (59) we have:

1p
T
Z
(0;!j)�
bTrc )

�
0N�N C

�
y

0N�N C
�
x

� �
�uW

u (r)
�W � (r)

�
(65)

and the result in Lemma 6 comes from (65),(63) and (64).�

15First note that the for the inverse of ��0 we have:

�
��0

�
�1

=

2

4
IN�N ���120

�
��220

�
�1

0N�N

�
��220

�
�1

3

5 :

Note also that the resulting matrix
�
��0

�
�1
��1 is a 2N � 2N matrix with its �rst colunms with all the elements equal to zero

and the last column collecting in �rst place the elements of the �rst column of ���120

�
��220

�
�1

multiplied by e�i!j , followed

by the �rst column of matrix
�
��220

�
�1

multiplied by e�i!j as well, in this case also the last element of the last column of
�
��0

�
�1
��1 is equal to e�iN!j = 1. it is clear that matrix

�
��0

�
�1
��1 is idempotent.
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Lemma 8 For Z
(0;!j)
� = [y1� ; y2� ; : : : ; yN� ; x1� ; x2� ; : : : ; xN� ]

0
with yn� and x

�
n� (n = 1; 2; � � � ; N) de�ned

by (26) with vn� � iid
�
0; �2

�
, un� � iid

�
0; �2u

�
, and zRn� = Re [un� ] ; then

1p
T
Z
(0;!j)

bTrc ) � (N=2)
1=2

"
1
2 [(�R + i�I)1 (w

v
R (r) + iw

v
I (r)) + (�R � i�I)1 (wvR (r)� iwvI (r))]

e�i!j

�2i sin(!j)v
�
j (w

v
R (r) + iw

v
I (r)) +

ei!j

2i sin(!j)
v
+
j (w

v
R (r)� iwvI (r))

#

(66)

with (wvR (r) + iw
v
I (r)), v

�
j and v

+
j as in Lemma 1, (w

v
R (r)� iwvI (r)) the complex conjugate of (wvR (r) + iwvI (r))

and 1 is an N � 1 vector of ones.

Proof of Lemma 8: For V Z� = [zR1� ; zR2� ; � � � ; zRN� ; v1� ; v2� ; � � � ; v0N� ] = [V u0� V 0� ]
0
with V� = [v1� ; v2� ; � � � ; vN� ]0

and V u� = [zR1� ; zR2� ; � � � ; zRN� ]0, using the same line of argument as in the proof of previous lemmas we
can write

�0Z
(0;!j)
� = �1Z

(0;!j)
� + V Z� (67)

where

�0 =

�
IN�N �120
0N�N �220

�
; �1 =

�
0N�N �121
0N�N �221

�

in which all sub-matrices are N �N , with

�120 =

2

6666666
4

��11 0 0 0 � � � 0
��22 ��12 0 0 � � � 0
0 ��23 ��13 0 � � � 0
0 0 ��24 ��14 � � � 0
...

...
...

...
. . .

...
0 0 0 � � � ��2N ��1N

3

7777777
5

with �1n and �2n the coe¢cients associated with xn� and xn�1;� in (27). Hence we can see from (27) and
(28) that

�1n = [�R cos (!jn)� �I sin (!jn)]
�2n = � [�R cos (!j [n+ 1])� �I sin (!j [n+ 1])]

and the remaining submatrices are

�220 =

2

666666666
4

1 0 0 0 � � � 0
�2 cos (!j) 1 0 0 � � � 0

1 �2 cos (!j) 1 0 � � � 0
0 1 �2 cos (!j) 1 � � � 0
0 0 1 �2 cos (!j) � � � 0
...

...
...

...
. . .

...
0 0 � � � 1 �2 cos (!j) 1

3

777777777
5

�121 =

2

6666666
4

0 0 0 � � � 0 �12
0 0 0 � � � 0 0
0 0 0 � � � 0 0
0 0 0 � � � 0 0
...
...
...

. . .
...

...
0 0 0 � � � 0 �0

3

7777777
5

�221 =

2

6666666
4

0 0 � � � 0 �1 2 cos (!j)
0 0 � � � 0 0 �1
0 0 � � � 0 0 0
0 0 � � � 0 0 0
...
...

. . .
...

...
...

0 0 � � � 0 0 �0

3

7777777
5

:

Using results form the inverse of a partitioned matrix,

(�0)
�1
=

"
IN�N ��120

�
�220

��1

0N�N
�
�220

��1

#

:
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The matrix �220 is a lower-triangular Toeplitz matrix associated with the polynomial
�
1� 2 cos (!j)L+ L2

�
,

hence
�
�220

��1
collects the coe¢cients of the expansion of the inverse of

�
1� 2 cos (!j)L+ L2

�
, that is:

�
�220

��1
=

1

sin (!j)

2

6666666
4

sin (!j) 0 0 0 � � � 0
sin (2!j) sin (!j) 0 0 � � � 0
sin (3!j) sin (2!j) sin (!j) 0 � � � 0
sin (4!j) sin (3!j) sin (2!j) sin (!j) � � � 0

...
...

...
...

. . .
...

sin (N!j) sin ([N � 1]!j) sin ([N � 2]!j) sin ([N � 3]!j) � � � sin (!j)

3

7777777
5

In the case of the case of ��120
�
�220

��1
it is easy to check that:

��120
�
�220

��1
=

1

sin (!j)
�

2

666
4

�11 sin (!j) 0 � � � 0
�12 sin (2!j) + �22 sin (!j) �12 sin (!j) � � � 0

...
...

. . .
...

�1N sin (N!j) + �2N sin ([N � 1]!j) �1N sin ([N � 1]!j) + �2N sin ([N � 2]!j) � � � �1N sin (!j)

The matrix (�0)
�1
�1 is 2N � 2N , but as the matrix �1 has oly 4 elements di¤erent from zero (see the

de�nitions �121 and �221 above), then

(�0)
�1
�1 =

�
02N�2(N�1) Vy

02N�2(N�1) Vx

�
(68)

where Vy and Vx are N � 2 matrices with the following form16 :

Vy =
1

sin (!j)

2

6666666
4

� [�11 sin (!j)] �11 sin (2!j) + �12 sin (!j)
� [�12 sin (2!j) + �22 sin (!j)] �12 sin (3!j) + �22 sin (2!j)
� [�13 sin (3!j) + �23 sin (2!j)] �13 sin (4!j) + �23 sin (3!j)
� [�14 sin (4!j) + �24 sin (3!j)] �14 sin (5!j) + �24 sin (4!j)

...
...

� [�1N sin (N!j) + �2N sin ([N � 1]!j)] �1N sin ([N + 1]!j) + �2N sin (N!j)

3

7777777
5

(69)

Vx =
1

sin (!j)

2

6666666
4

� sin (!j) sin (2!j)
� sin (2!j) sin (3!j)
� sin (3!j) sin (4!j)
� sin (4!j) sin (5!j)

...
...

� sin (N!j) sin ([N + 1]!j)

3

7777777
5

: (70)

It is easy to check that the matrix ��10 �1 is idempotent
17 . Recursive substitution from (67) yields:

Z(0;!j)� = ��10 ��1 Z
(0;!j)
o +��10 V Z� +��10 �1�

�1
0

��1X

j=1

V Z��j :

16Based on the form of �1 it is possible to check that the �st colunm of Vy and Vx is going to be equal to minus th �rst

column of
�
�220

�
�1

and ��120
�
�220

�
�1

respectively. Finally in the case of the second column of Vy and Vx is the weigthed

sum of the �rst and second column of
�
�220

�
�1

and ��120
�
�220

�
�1

with weigths 2 cos (!k) and �1 respectively. Finally note
to obtain the second column for (69) and (70) we use the following recurrent expression for multiple angle:

sin (j!k) = 2 cos (!k) sin ([j � 1]!k)� sin ([j � 2]!k)

cos (j!k) = 2 cos (!k) cos ([j � 1]!k)� cos ([j � 2]!k)

17The lower 2� 2 submatrix of Vx is equal to:
2

6
4

� sin([N�1]!j)
sin(!j)

sin(N!j)
sin(!j)

� sin(N!j)
sin(!j)

sin([N+1]!k)

sin(!j)

3

7
5

and it is equal to I2�2. Hence
h
(�0)

�1 �1
ih
= (�0)

�1 �1 for h = 2; 3; : : : :
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The matrix ��10 �1�
�1
0 displays the impact of the accumulation shocks

P��1
j=1 V

Z
��j and has the form:

��10 �1�
�1
0 =

�
0N�N VyU

0
x

0N�N VxU
0
x

�

U
0
x =

1

sin (!j)

�
sin ([N � 1]!j) sin ([N � 2]!j) sin ([N � 3]!j) sin ([N � 4]!j) � � � 0
sin (N!j) sin ([N � 1]!j) sin ([N � 2]!j) sin ([N � 3]!j) � � � sin (!j)

�
:

In this case

VxU
0
x = Cj = Ci rc

�
sin (!j)

sin (!j)
;
sin (N!j)

sin (!j)
; � � � ; sin (2!j)

sin (!j)

�

=
e�i!j

�2i sin (!j)
C
�
j +

ei!j

2i sin (!j)
C
+
j (71)

where Cj is de�ned in Remark 2 and C
�
j and C

+
j in Lemma 1. Also, Vy of (69) can be simpli�ed as

Vy =

2

6666666
4

� [�R cos (!j)� �I sin (!j)] �R
� [�R cos (!j)� �I sin (!j)] �R
� [�R cos (!j)� �I sin (!j)] �R
� [�R cos (!j)� �I sin (!j)] �R

...
...

� [�R cos (!j)� �I sin (!j)] �R

3

7777777
5

: (72)

To obtain (72) from (69), we use the expressions for �1n and �2n in (27) and the formula connecting products
of sin and cos to sums18 jointly with the expressions for the double angle sin and cos19 . Clearly the two
columns of Vy are linearly dependent. Note also that it is possible to check that VyU

0
x is a matrix with

generic row element �R cos (!jh) � �I sin (!jh) with h = 1; 2; : : : ; N , that is, all the elements of the �rst
column are equal to �R cos (!j)��I sin (!j), the elements of the second column to �R cos (!j2)��I sin (!j2),
and so on and so forth. Finally it is possible to check that for VyU

0
x

VyU
0
x =

1

2

�
(�R + i�I)1v

+0
j + (�R � i�I)1v�0j

�

where 1 is aN�1 vector of ones and v�j =
�
e�i!j e�i2!j e�i3!j � � � e�iN!j

�0
v
+
j =

�
ei!j ei2!j ei3!j

� � � eiN!j
�0
. Hence the result in (66) it is easily obtained, following the lines of the proofs of the previous

lemmas.�

Lemma 9 For Z
(!k;!j)
� = [y1� ; y2� ; : : : ; yN� ; x1� ; x2� ; : : : ; xN� ]

0
with xn� and yn� n = 1; 2; � � � ; N satisying

(17)-(18) with x�t = e
�i!jx�t�1+�t, vn� � iid

�
0; �2

�
and $n� = zR;n��cos (!k) = sin (!k) zI;n� it is possible

to write:

1p
T
Z
(!k;!j)

bTrc ) � (N=2)
1=2

2

666
4

n
(�R+i�I)

2 v
�
k (w

v
R (r) + iw

v
I (r)) +

(�R�i�I)
2 v

+
k (w

v
R (r)� iwvI (r))+

+ cos(!k)
sin(!k)

h
(�R+i�I)

�2i v
�
k (w

v
R (r) + iw

v
I (r)) +

(�R�i�I)
2i v

+
k (w

v
R (r)� iwvI (r))

io

n
e�i!j

�2i sin(!j)v
�
j (w

v
R (r) + iw

v
I (r)) +

ei!j

2i sin(!j)
v
+
j (w

v
R (r)� iwvI (r))

o

3

777
5

(73)

with (wvR (r)� iwvI (r)), v�j and v+j as in Lemma 8, and v�k =
�
e�i!k e�i2!k e�i3!k � � � e�iN!k

�0

and v+k =
�
ei!k ei2!k ei3!k � � � eiN!k

�0
.

Proof of Lemma 9: De�ne V Z� = [$1� ; $2� ; � � � ; $N� ; v1� ; v2� ; � � � ; vN� ]0 = [V $0� V 0� ]
0
with V� =

[v1� ; v2� ; � � � ; vN� ]0 and V $� = [$1� ; $2� ; � � � ; $N� ]
0
. Using the same line of argument as in the proofs

of previous lemmas we can write
�0Z

(!k;!j)
� = �1Z

(!k;!j)
� + V Z� (74)

18 cos (!) sin (') =
sin(!+')�sin(!�')

2
and sin (!) sin (') =

cos(!�')�cos(!+')
2

19 sin (2!) = 2 cos (!) sin (!) and
1�cos(2!)
2 sin(!)

= sin (!)
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where �0 and �1 in (74) have the same expressions as in Lemma 8 but in this case �1n and �2n are de�ned
as:

�1n =

�
�R

�
cos ([!k � !j ]n) +

cos (!k)

sin (!k)
sin ([!k � !j ]n)

�
(75)

+�I

�
sin ([!k � !j ]n)�

cos (!k)

sin (!k)
cos ([!k � !j ]n)

��

�2n = �
�
�R

�
cos (!kn� !j [n+ 1]) +

cos (!k)

sin (!k)
sin (!kn� !j [n+ 1])

�

+�I

�
sin (!kn� !j [n+ 1])�

cos (!k)

sin (!k)
cos (!kn� !j [n+ 1])

��
:

The expressions for �1n and �2n in (75) are obtained from (21).
Hence �120 and �121 are de�ned as in Lemma 8 but with �1n and �2n following the expression collected

in (75), and �220 and �221 with exactly the same expression as in Lemma 8. Similarly, (�0)
�1
and (�0)

�1
�1

have equivalent expression as in Lemma 8. Clearly (�0)
�1
�1 is idempotent and has the form reported in

(68) with Vx de�ned in (70) and Vy as in (69) but with �1n and �2n de�ned in (75) by recursive substitution
from (74) yields

Z(!k;!j)� = ��10 ��1 Z
(!k;!j)
o +��10 V Z� +��10 �1�

�1
0

��1X

j=1

V Z��j :

The matrix ��10 �1�
�1
0 is also equal to

��10 �1�
�1
0 =

�
0N�N VyU

0
x

0N�N Cj

�

with Ux and Cj exactly as in Lemma 8 (71) and Vy is equal to (69) with �1n and �2n de�ned in (75).

Replacing �1n and �2n de�ned in (75) in (69) and using the expressions cos (!) sin (') =
sin(!+')�sin(!�')

2 ,

sin (!) sin (') = cos(!�')�cos(!+')
2 , sin (2!) = 2 cos (!) sin (!) and 1�cos(2!)

2 sin(!) = sin (!) the generic element in

the �rst column of Vy is seen to be

��R
�
cos (!kh� !j) +

cos (!k)

sin (!k)
sin (!kh� !j)

�
� (76)

��I
�
cos (!kh� !j)�

cos (!k)

sin (!k)
sin (!kh� !j)

�

and the generic element in the second column of Vy is

�R

�
cos (!kh) +

cos (!k)

sin (!k)
sin (!kh)

�
+ (77)

+�I

�
cos (!kh)�

cos (!k)

sin (!k)
sin (!kh)

�
;

with h in (76) and (77) being the row position in each column, that is h = 1; : : : ; N .
It is possible to check (using trigonometric identities) that the generic element of VyU

0
x can be expressed

as

�R

�
cos (!kh� !jf) +

cos (!k)

sin (!k)
sin (!kh� !jf)

�
+ (78)

+�I

�
sin (!kh� !jf)�

cos (!k)

sin (!k)
cos (!kh� !jf)

�

h = 1; : : : ; N ; j = 1; : : : ; N

where h refers to the rows position and f to the column position in VyU
0
x. Finally it is possible to write:

VyU
0
x =

�
1

2

�
(�R + i�I)v

�
k v

+0
j + (�R � i�I)v+k v�0j

�
+ (79)

+
cos (!k)

sin (!k)

�
(�R + i�I)

�2i v
�
k v

+0
j +

(�R + i�I)

2i
v
+
k v

�0
j

��
:
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Using (79) and (71) and following the lines of the proofs of the previous lemmas, the result reported in (73)
is easily obtained.

Lemma 10 For Z
(�;!j)
� = [y1� ; y2� ; : : : ; yN� ; x1� ; x2� ; : : : ; xN� ]

0
with xn� and yn� n = 1; 2; � � � ; N de�ned

in (31) and with vn� � iid
�
0; �2

�
,un� � iid

�
0; �2u

�
and zRn� = cos (�n)Re [un� ] it is possible to write:

1p
T
Z
(�;!j)

bTrc ) � (N=2)
1=2

"
1
2

�
(�R + i�I)vN=2 (w

v
R (r) + iw

v
I (r)) + (�R � i�I)vN=2 (wvR (r)� iwvI (r))

�

e�i!j

�2i sin(!j)v
�
j (w

v
R (r) + iw

v
I (r)) +

ei!j

2i sin(!j)
v
+
j (w

v
R (r)� iwvI (r))

#

(80)
with (wvR (r) + iw

v
I (r)), v

�
j and v

+
j as in Lemma 1, (w

v
R (r)� iwvI (r)) the complex conjugate of (wvR (r) + iwvI (r))

and vN=2 the N � 1 vector vN=2 =
�
�1; 1;�1; � � � ;�1N

�
.

Proof of Lemma 10: De�ning V Z� = [zR1� ; zR2� ; � � � ; zRN� ; v1� ; v2� ; � � � ; v0N� ] = [V u0� V
0
� ]
0
with V� =

[v1� ; v2� ; � � � ; vN� ]0 and V u� = [zR1� ; zR1� ; � � � ; zR1� ]0, then using the same line of argument as in the proof
of previous lemmas we can write

�0Z
(�;!j)
� = �1Z

(�;!j)
� + V Z�

where

�0 =

�
IN�N �120
0N�N �220

�
; �1 =

�
0N�N �121
0N�N �221

�

in which all sub-matrices are N �N . These are exactly as in Lemma 8 above, with the only di¤erence being,
rather than �1n and �2n from (31) and (32), we have

�1n = [�R cos ([!j � �]n)� �I sin ([!j � �]n)] (81)

= cos (�n) [�R cos (!jn)� �I sin (!jn)]
�2n = � [�R cos (!j [n+ 1]� �n)� �I sin (!j [n+ 1]� �n)]

= � cos (�n) [�R cos (!j [n+ 1])� �I sin (!j [n+ 1])] :

To obtain (81), the trigonometric identities relating to the cos and sin of a di¤erence are used. Hence we
could obtain the same results as in Lemma 8 but with the �1n and �2n de�ned in (81). Therefore, we have
the same Vy, Vx and Ux as in Lemma 8 but with �1n and �2n as de�ned in (81). It is possible to to rewrite
Vy using the formulas connecting the products of cos and sin with sums (see footnote 13) as

Vy =

2

6666666
4

� cos (�) [�R cos (!j)� �I sin (!j)] cos (�)�R
� cos (2�) [�R cos (!j)� �I sin (!j)] cos (2�)�R
� cos (3�) [�R cos (!j)� �I sin (!j)] cos (3�)�R
� cos (4�) [�R cos (!j)� �I sin (!j)] cos (4�)�R

...
...

� cos (N�) [�R cos (!j)� �I sin (!j)] cos (N�)�R

3

7777777
5

: (82)

Hence the result in (80) can be easily obtained.�

Lemma 11 For Z
(0;�)
� = [y1� ; y2� ; : : : ; yN� ; x1� ; x2� ; : : : ; xN� ]

0
with xn� = �xn�1;� + �n� and yn� de�ned

in (31), n = 1; 2; � � � ; N , and with �n� � iid
�
0; �2

�
, and ut � I0(0) it is possible to write:

1p
T
Z
(0;�)
bTrc ) � (N=2)

1=2

�
�R1w

v (r)
vN=2w

v (r)

�
(83)

with w� (r) = (N=2)
�1=2PN

k=1 (�1)
k
W v
k (r). being a scalar Brownian motion de�ned as in Lemma 10 and

1 as in Lemma 8.

Proof of Lemma 11: De�ning V Z� = [u1� ; u2� ; � � � ; uN� ; �1� ; �2� ; � � � ; �N� ] = [V u0� V
0
� ]
0
with V� =

[�1� ; �2� ; � � � ; �N� ]0 and V u� = [u1� ; u2� ; � � � ; uN� ]0, and then using the same line of argument as in the proof
of previous lemmas we can write

�0Z
(0;�)
� = �1Z

(0;�)
� + V Z� (84)

where

�0 =

�
IN�N �120
0N�N �220

�
; �1 =

�
0N�N 0N�N
0N�N �221

�
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in which all sub-matrix are N �N , with
�120 = �� � diag [cos (�) ; cos (2�) ; : : : ; cos (N�)]

= �� � diag
�
�1; 1; : : : ;�1N

�

and the remaing submatrices are

�220 =

2

66666
4

1 0 0 � � � 0
1 1 0 � � � 0
0 1 1 � � � 0
...
...

...
. . .

...
0 0 � � � 1 1

3

77777
5

�221 =

2

66666
4

0 0 � � � 0 �1
0 0 � � � 0 0
0 0 � � � 0 0
...
...

. . .
...

...
0 0 � � � 0 0

3

77777
5
:

Using results form the inverse of a partitioned matrix, we have:

(�0)
�1
=

"
IN�N ��120

�
�220

��1

0N�N
�
�220

��1

#

:

The matrix �220 is a lower-triangular Toeplitz matrix associated with the polynomial (1� L), hence
�
�220

��1

collects the coe¢cients of the expansion of the inverse of (1� L), that is:

�
�220

��1
=

2

6666666
4

1 0 0 0 � � � 0
�1 1 0 0 � � � 0
1 �1 1 0 � � � 0
�1 1 �1 1 � � � 0
...

...
...

...
. . .

...
�1(N�1) �1(N�2) �1(N�3) �1(N�4) � � � 1

3

7777777
5

:

In the case of the case of ��120
�
�220

��1
it is easy to check that:

��120
�
�220

��1
=

2

6666666
4

�� 0 0 0 � � � 0
�� � 0 0 � � � 0
�� � �� 0 � � � 0
�� � �� � � � � 0
...

...
...

...
. . .

...

�� � �� � � � � (�1)N �

3

7777777
5

:

The matrix (�0)
�1
�1 is a 2N � 2N matrix, but as �1 has only one non-zero element, it can be veri�ed that

(�0)
�1
�1 =

�
02N�2(N�1) � � 1
02N�2(N�1) vN=2

�
:

It is easy to check that ��10 �1 is idempotent
20 . Recursive substitution from (84) yields:

Z(0;�)� = ��10 �1Z
(0;�)
o +��10 V Z� +��10 �1�

�1
0

��1X

j=1

V Z��j

and matrix ��10 �1�
�1
0 displays the impact of the accumulation shocks of

P��1
j=1 V

Z
��j and has the form:

��10 �1�
�1
0 =

�
0N�N � � 1v0N=2
0N�N vN=2v

0
N=2

�
:

Finally note that w� (r) = (N=2)
�1=2

v
0
N=2W

� (r) = (N=2)
�1=2PN

k=1 cos (k�)W
�
k (r) = (N=2)

�1=2PN
k=1 (�1)

k
W �
k (r).�

20The last element of vN=2 is equal to one as frequency � only it is relevant for even number of seasons N .
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Table 1: Test Results for Cointegrated Processes, Case I: yt � I�=3(1); xt � I2�=3(1)

Panel A:Johansen Test Vector of Seasons Approach

T = 1200
DGP r0= 0 r0= 1 r0= 2 r0= 3 r0= 4 r0= 5 r0= 6 r0= 7 r0= 8 r0= 9 r0= 10 r0= 11

1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0542 0,0036

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0576 0,0042

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0514 0,0042

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0536 0,0044

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0574 0,0068

T = 600
1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9960 0,7548 0,0510 0,0062

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9964 0,7416 0,0520 0,0042

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9968 0,7522 0,0486 0,0040

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9958 0,7494 0,0514 0,0046

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9970 0,7612 0,0504 0,0036

T = 300
1 1,0000 1,0000 0,9948 0,9506 0,8020 0,5506 0,3126 0,2246 0,0914 0,0290 0,0084 0,0026

2 1,0000 0,9998 0,9934 0,9408 0,7856 0,5324 0,2946 0,2186 0,0828 0,0242 0,0078 0,0024

3 1,0000 0,9996 0,9950 0,9508 0,8052 0,5548 0,3094 0,2234 0,1002 0,0318 0,0080 0,0026

4 1,0000 0,9998 0,9928 0,9484 0,7960 0,5452 0,3048 0,2218 0,0924 0,0268 0,0074 0,0018

5 1,0000 0,9998 0,9932 0,9496 0,8152 0,5742 0,3164 0,2290 0,0942 0,0294 0,0076 0,0026

Panel B:Johansen Test Real and Imaginary Parts Approach

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 2 r0= 3 r0= 0 r0= 1 r0= 2 r0= 3 r0= 0 r0= 1 r0= 2 r0= 3

1 1,0000 1,0000 0,0498 0,0032 1,0000 1,0000 0,0510 0,0066 1,0000 1,0000 0,0540 0,0048

2 1,0000 1,0000 0,0572 0,0044 1,0000 1,0000 0,0584 0,0034 1,0000 1,0000 0,0622 0,0044

3 1,0000 1,0000 0,0512 0,0040 1,0000 1,0000 0,0594 0,0038 1,0000 1,0000 0,0586 0,0064

4 1,0000 1,0000 0,0470 0,0038 1,0000 1,0000 0,0608 0,0038 1,0000 1,0000 0,0542 0,0060

5 1,0000 1,0000 0,0518 0,0044 1,0000 1,0000 0,0528 0,0026 1,0000 1,0000 0,0550 0,0044

Panel C: Cubadda Complex-Valued Test

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1 1,0000 0,0558 1,0000 0,0532 1,0000 0,0552

2 1,0000 0,0544 1,0000 0,0538 1,0000 0,0560

3 1,0000 0,0480 1,0000 0,0552 1,0000 0,0558

4 1,0000 0,0490 1,0000 0,0552 1,0000 0,0574

5 1,0000 0,0506 1,0000 0,0480 1,0000 0,0490

Notes: The DGPs are de�ned in subsection 4.1 while the tests are described in subsection 3.3; r0 is the number of
cointegrating vectors under the null hypothesis. All tests are conducted at a nominal 5% level of signi�cance; for

further details see subsection 4.1. The true number of cointegrating vectors is 10 in Panel A, 2 in Panel B and 1 in

Panel C.
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Table 2: Test Results for Cointegrated Processes, Case II: yt � I0(1); xt � I2�=3(1)

Panel A: Johansen Test Vector of Seasons Approach

T = 1200
DGP r0= 0 r0= 1 r0= 2 r0= 3 r0= 4 r0= 5 r0= 6 r0= 7 r0= 8 r0= 9 r0= 10 r0= 11

1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0520 0,0056

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0584 0,0044

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0500 0,0052

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0588 0,0048

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0554 0,0040

T = 600
1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9960 0,7468 0,0540 0,0058

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9968 0,7468 0,0536 0,0036

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9964 0,7466 0,0490 0,0046

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9958 0,7458 0,0468 0,0040

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9952 0,7410 0,0496 0,0050

T = 300
1 1,0000 1,0000 0,9952 0,9468 0,7932 0,5468 0,3026 0,2246 0,0928 0,0282 0,0052 0,0022

2 1,0000 1,0000 0,9944 0,9490 0,8082 0,5638 0,3162 0,2308 0,1016 0,0314 0,0088 0,0022

3 1,0000 1,0000 0,9926 0,9390 0,7880 0,5560 0,3072 0,2212 0,0950 0,0254 0,0068 0,0008

4 1,0000 1,0000 0,9924 0,9476 0,7972 0,5606 0,3102 0,2336 0,0978 0,0270 0,0062 0,0018

5 1,0000 1,0000 0,9926 0,9478 0,7998 0,5488 0,3018 0,2204 0,0968 0,0274 0,0068 0,0014

Panel B: Johansen Test Real and Imaginary Parts Approach

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 2 r0= 0 r0= 1 r0= 2 r0= 0 r0= 1 r0= 2

1 1,0000 0,0500 0,0030 1,0000 0,0602 0,0056 1,0000 0,0616 0,0044

2 1,0000 0,0536 0,0038 1,0000 0,0554 0,0034 1,0000 0,0578 0,0054

3 1,0000 0,0500 0,0052 1,0000 0,0550 0,0030 1,0000 0,0624 0,0060

4 1,0000 0,0526 0,0066 1,0000 0,0566 0,0038 1,0000 0,0538 0,0026

5 1,0000 0,0530 0,0042 1,0000 0,0530 0,0048 1,0000 0,0528 0,0046

Panel C: Cubadda Complex-Valued Test

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1 0,2840 0,0234 0,2942 0,0308 0,2786 0,0264

2 0,2992 0,0246 0,2978 0,0256 0,2802 0,0276

3 0,2956 0,0244 0,2820 0,0248 0,2866 0,0242

4 0,3004 0,0290 0,2840 0,0250 0,2836 0,0240

5 0,2948 0,0234 0,2956 0,0216 0,2874 0,0240

Notes: As for Table 1, except that the true number of cointegrating vectors is 1 in Panel B.
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Table 3: Test Results for Cointegrated Processes, Case III: yt � I�(1); xt � I2�=3(1)

Panel A: Johansen Test Vector of Seasons Approach

T = 1200
DGP r0= 0 r0= 1 r0= 2 r0= 3 r0= 4 r0= 5 r0= 6 r0= 7 r0= 8 r0= 9 r0= 10 r0= 11

1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0612 0,0042

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0576 0,0048

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0624 0,0048

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0574 0,0046

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0480 0,0048

T = 600
1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 0,9970 0,7430 0,0508 0,0042

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9966 0,7610 0,0498 0,0040

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9972 0,7478 0,0492 0,0042

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9974 0,7550 0,0494 0,0048

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9966 0,7562 0,0434 0,0038

T = 300
1 1,0000 1,0000 0,9932 0,9488 0,8000 0,5438 0,2970 0,2186 0,0950 0,0264 0,0082 0,0024

2 1,0000 0,9998 0,9948 0,9552 0,8118 0,5676 0,3184 0,2284 0,0936 0,0270 0,0068 0,0014

3 1,0000 0,9996 0,9942 0,9438 0,7886 0,5418 0,2950 0,2156 0,0934 0,0282 0,0090 0,0020

4 1,0000 0,9998 0,9968 0,9520 0,8088 0,5622 0,3044 0,2188 0,0896 0,0258 0,0070 0,0016

5 1,0000 1,0000 0,9942 0,9428 0,7952 0,5448 0,2948 0,2150 0,0924 0,0304 0,0074 0,0024

Panel B: Johansen Test Real and Imaginary Parts Approach

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 2 r0= 0 r0= 1 r0= 2 r0= 0 r0= 1 r0= 2

1 1,0000 0,0600 0,0054 1,0000 0,0534 0,0040 1,0000 0,0610 0,0050

2 1,0000 0,0552 0,0048 1,0000 0,0554 0,0046 1,0000 0,0526 0,0038

3 1,0000 0,0640 0,0040 1,0000 0,0538 0,0044 1,0000 0,0622 0,0060

4 1,0000 0,0534 0,0048 1,0000 0,0580 0,0038 1,0000 0,0568 0,0048

5 1,0000 0,0494 0,0048 1,0000 0,0518 0,0028 1,0000 0,0574 0,0036

Panel C: Cubadda Complex-Valued Test

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1 1,0000 0,0510 0,9996 0,0492 0,9716 0,0496

2 1,0000 0,0476 0,9902 0,0426 0,9242 0,0430

3 0,9858 0,0454 0,9144 0,0416 0,8002 0,0442

4 0,9526 0,0422 0,8498 0,0390 0,6854 0,0348

5 0,9298 0,0398 0,8228 0,0354 0,6830 0,0320

Notes: As for Table 1, except that the true number of cointegrating vectors is 1 in Panel B.
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Table 4: Test Results for Cointegrated Processes, Case IV: yt � I0(1); xt � I�(1)
Panel A: Johansen Test Vector of Seasons Approach

T = 1200
DGP r0= 0 r0= 1 r0= 2 r0= 3 r0= 4 r0= 5 r0= 6 r0= 7 r0= 8 r0= 9 r0= 10 r0= 11

1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0560

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0528

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0510

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0546

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0496

T = 600
1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 0,9602 0,0492

2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9608 0,0474

3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9634 0,0494

4 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9570 0,0508

5 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9618 0,0514

T = 300
1 1,0000 1,0000 0,9948 0,9568 0,8346 0,6250 0,4104 0,3426 0,1948 0,0846 0,0328 0,0092

2 1,0000 1,0000 0,9944 0,9512 0,8274 0,6246 0,4064 0,3552 0,2070 0,0944 0,0318 0,0104

3 1,0000 1,0000 0,9950 0,9522 0,8264 0,6198 0,3884 0,3402 0,1914 0,0888 0,0300 0,0086

4 1,0000 1,0000 0,9946 0,9532 0,8276 0,6200 0,4110 0,3552 0,2012 0,0928 0,0320 0,0118

5 1,0000 0,9996 0,9958 0,9532 0,8314 0,6254 0,4132 0,3624 0,2118 0,0918 0,0316 0,0096

Panel B: Johansen Test, yt & cos(�t)xt
T = 1200 T = 600 T = 300

DGP r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1 1,0000 0,0518 1,0000 0,0514 1,0000 0,0518

2 1,0000 0,0522 1,0000 0,0562 1,0000 0,0428

3 1,0000 0,0522 1,0000 0,0546 1,0000 0,0546

4 1,0000 0,0556 1,0000 0,0506 1,0000 0,0496

5 1,0000 0,0478 1,0000 0,0544 1,0000 0,0520

Panel C: Cubadda Complex-Valued Test

T = 1200 T = 600 T = 300
DGP r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1 1,0000 0,1040 1,0000 0,1012 1,0000 0,0998

2 1,0000 0,0972 1,0000 0,1070 1,0000 0,0942

3 1,0000 0,1010 1,0000 0,1004 1,0000 0,1006

4 1,0000 0,1032 1,0000 0,1036 1,0000 0,1004

5 1,0000 0,0888 1,0000 0,1008 1,0000 0,0982

Notes: As for Table 1, except that the true number of cointegrating vectors is 11 in Panel A and 1 in Panel B.
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Table 5: Test Results for Processes with No Cointegration
Panel A. Johansen Test Vector of Seasons Approach

T r0= 0 r0= 1 r0= 2 r0= 3 r0= 4 r0= 5 r0= 6 r0= 7 r0= 8 r0= 9 r0= 10 r0= 11
Case I: xt � I2�=3(1); yt � I�=3(1)
1200 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 0,0912 0,0076 0,0012 0,0000

600 1,0000 1,0000 1,0000 1,0000 1,0000 0,9982 0,9290 0,5898 0,0940 0,0118 0,0006 0,0004

300 1,0000 0,9998 0,9968 0,9626 0,8246 0,5328 0,2512 0,1486 0,0518 0,0128 0,0032 0,0012

Case II: xt � I2�=3(1); yt � I0(1)
1200 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0650 0,0044 0,0006

600 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9984 0,9822 0,6208 0,0582 0,0062 0,0004

300 1,0000 1,0000 0,9966 0,9586 0,8206 0,5646 0,2888 0,1866 0,0636 0,0152 0,0040 0,0018

Case III: xt � I2�=3(1); yt � I�(1)
1200 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0654 0,0058 0,0008

600 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9994 0,9870 0,6510 0,0656 0,0056 0,0010

300 1,0000 1,0000 0,9966 0,9540 0,8096 0,5478 0,2862 0,1870 0,0664 0,0184 0,0030 0,0010

Case IV: xt � I�(1); yt � I0(1)
1200 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,0580 0,0054

600 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9976 0,7998 0,0468 0,0048

300 1,0000 1,0000 0,9960 0,9568 0,8416 0,6224 0,3650 0,2730 0,1196 0,0362 0,0098 0,0022

Panel B: Johansen Test Real and Imaginary Parts Approach

Case I Case II Case III Case IV

T r0= 0 r0= 1 r0= 2 r0= 3 r0= 0 r0= 1 r0= 2 r0= 0 r0= 1 r0= 2 r0= 0 r0= 1
1200 0,0670 0,0056 0,0004 0,0002 0,0600 0,0030 0,0008 0,0594 0,0056 0,0000 0,0528 0,0050

600 0,0786 0,0056 0,0004 0,0000 0,0644 0,0028 0,0006 0,0712 0,0038 0,0008 0,0570 0,0038

300 0,0780 0,0054 0,0010 0,0004 0,0644 0,0030 0,0006 0,0682 0,0060 0,0000 0,0518 0,0040

Panel C: Cubadda Complex-Valued Test

Case I Case II Case III Case IV

T r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1 r0= 0 r0= 1
1200 0,0512 0,0032 0,0724 0,0048 0,0698 0,0050 0,1134 0,0154

600 0,0546 0,0054 0,0726 0,0062 0,0774 0,0042 0,1172 0,0160

300 0,0564 0,0046 0,0766 0,0068 0,0714 0,0070 0,1170 0,0162

Notes: As for Table 1, except that the DGPs are described in subsection 4.2 and the processes are not cointegrated.
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Figure 1. Quarterly Tourist Arrivals in Balearic Islands

Figure 1.a Figure 1.b

Notes: Data are quarterly, 1979Q1-2015Q4. Figure 1.a shows the values after taking natural logarithms, while

Figure 1.b shows the sample spectrum of the log values obained using the Bartlett window.

Figure 2. Quarterly Employment in Balearic Islands

Figure 2.a Figure 2.b

Notes: As for Figure 1.
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Table 6: HEGY Test Results for Balearic Islands Series

ln (arrt) ln (empt)
GLS detrending OLS detrending GLS detrending OLS detrending

t�0 -1.776 -1.620 -2.053 -2.511
t�2 -1.975 -2.183 -4.769 *** -4.858 ***
F��

1
��
1

1.958 2.170 17.577 *** 18.236 ***

Notes: The HEGY test regression is (40), for which t�0 and t�2 are t-type statistics for one-sided unit root tests at
the zero and Nyquist frequencies, respectively, while F��

1
��
1

is a two-sided F -type test for a pair of complex unit

roots at the seasonal frequency �=2; the order of augmentation p is 4 for ln (arrt) and 1 for ln (empt) : In principle,
*, ** and *** indicate signi�cance at the 10%, 5% and 1% levels, respectively. For further details see Section 5.

Table 7: Tests for Cointegration across Frequencies between Balearic Islands Series

Panel A. (1� L) ln (arrt) Panel B. (1� L) (1 + L) ln (arrt)
VAR order r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

2 58,2273*** 6,2268 1,1521 39,8339*** 2,8350 0,8059
3 42,6551*** 2,4235 0,4932 31,0149 3,1387 0,8589
4 32,7465** 3,5900 1,0814 35,7733** 4,8300 1,3913
5 31,8937** 5,1240 0,3816 19,4901 4,7642 0,8576

Notes: The Johansen trace test is applied to a VAR consisting of ln (empt) and the real and imaginary parts of
either ei

�
2
t
�
1� ei�2 L

�
(1� L) ln (arrt) (Panel A) or ei

�
2
t
�
1� ei�2 L

�
(1� L) (1 + L) ln (arrt) (Panel B); r0 is

the number of cointegrating vectors under the null hypothesis. Signi�cance is indicated as in Table 6. For further

details see Section 5.
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