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Creation of Knowledge through Exchanges of Knowledge:

Evidence from Japanese Patent Data

By Tomoya Mori and Shosei Sakaguchi ∗

�is study shows evidence for collaborative knowledge creation among individ-
ual researchers through direct exchanges of their mutual differentiated knowledge.
Using patent application data from Japan, the collaborative output is evaluated
according to the quality and novelty of the developed patents, which are measured
in terms of forward citations and the order of application within their primary
technological category, respectively. Knowledge exchange is shown to raise collab-
orative productivitymore through the extensive margin (i.e., the number of patents
developed) in the quality dimension, whereas it does so more through the intensive
margin in the novelty dimension (i.e., novelty of each patent).

JEL: D83, D85, O31, R11, C33, C36

Keywords: Knowledge creation, Collaboration, Differentiated knowledge, Patents,
Technological novelty, Network

Knowledge is a key element in various aspects of economic modeling. �e theoretical develop-
ment of innovation-driven economic growth dates back at least to Shell (1966, 1967) and Romer
(1990), Grossman and Helpman (1991), and Aghion and Howi� (1992). Formalization has focused
on different aspects of knowledge, such as the tension between learning-by-doing and innova-
tion (e.g., Kle�e and Kortum, 2004), spillovers (e.g., Jovanovic and Rob, 1989), and imitations (e.g.,
Perla and Tone�i, 2014). Some have described the mechanism of knowledge creation. In Weitz-
man (1998), extant ideas induce the development of new ideas if recombined with other existing
ideas. Olsson (2000, 2005) formalized the recombination of ideas by their convex combinations.
Akcigit et al. (2018) considered team formation by endogenous specialization between a leader
and members of a team from ex ante symmetric agents.

�is study focuses on the theory of Berliant and Fujita (2008) with regards to the mechanism of
collaborative knowledge creation. What facilitates collaboration is the exchange of mutual differ-
entiated knowledge between collaborators through their common knowledge. �e keymechanics
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underlying their theory is that the relative size of common and differentiated knowledge varies
depending on the duration of collaboration. A longer duration of collaboration increases common
knowledge whereas it decreases differentiated knowledge between collaborators, while the oppo-
site is true between non-collaborators. To maintain balance between the two types of knowledge
with their collaborators, inventors seek polyadic collaborations and rotate their collaborators.

Extant empirical studies have primarily focused on knowledge spillovers associated with R&D
expenditure or transactions by firms and industries (e.g., Griliches, 1979; Scherer, 1982; Jaffe,
1986), or through flows of patent citations (e.g., Jaffe, Trajtenberg, and Fogarty, 2000). Recent stud-
ies have explored more specific channels of knowledge spillovers. For example, Bloom, Schanker-
man, and Reenen (2013) distinguished positive effects of R&D spillover from negative ones in
sharing product markets between firms. Zacchia (2020) proposed a microeconomic model and
showed evidence for knowledge spillover among firms through inventor networks. Other studies
have utilized exogenous termination of collaborations for the identification of peer effects (e.g.,
Waldinger, 2010) and positive externality from superstars in research (e.g., Azoulay, Zivin, and
Wang, 2010).

Using patent data from Japan, this study contributes to the niche empirical literature by show-
ing evidence for collaborative knowledge creation through active exchanges of knowledge among
individual inventors, rather than passive improvement of productivity via spillovers. Based on
Berliant and Fujita (2008), our baseline regression model focuses on an inventor and their av-
erage collaborator. It expresses the causality between their pairwise collaborative productivity
and the differentiated knowledge of the average collaborator. Collaborative output is measured
in terms of quality and novelty of patents. For a given patent, the quality is evaluated by forward
citations, and the novelty by the order of application within their primary technological category,
reflecting the scarcity of invention in this category.

In this regression, we control for individual fixed effects by exploiting panel data and a variety
of other factors. However, we face identification problems due to the remaining unobserved fac-
tors that influence inventors’ collaboration and knowledge creation. To deal with an endogenous
regressor for an inventor (i.e., the differentiated knowledge of collaborators), we propose instru-
mental variables constructed from the same endogenous variables of their distant indirect collab-
orators. Using more distant indirect collaborators to construct instrumental variables, one can
reduce endogeneity caused by unobserved factors (e.g., Zacchia, 2020) and by reflection problems
(e.g., Bramoullé, Djebbari, and Fortin, 2009), although this also makes the instruments weaker.
However, we argue that there is a channel in which our instruments retain relevance through
firm-specific factors while maintaining their exogeneity.

Our baseline results indicate that a 10% increase in collaborators’ differentiated knowledge for
an inventor raises the quality and novelty of their average pairwise output by 3%–4% and 5%,
respectively. Moreover, we found that in the contribution of knowledge exchange to the quality
and novelty of collaborative output, 17% and 65% can be a�ributed to the intensive margin (i.e.,
the average quality and novelty of output, respectively), rather than to the extensive margin (i.e.,
the number of patents developed). �us, collaborations appear to be more effective for seeking
novelty of output.
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�e remainder of this paper is structured as follows. Section I introduces the model by Berliant
and Fujita (2008), and Section II explains themotivating fact. Section III describes the data, Section
IV details the regression models, and Section V discusses our identification strategy. Section VI
presents the empirical results. Finally, Section VII concludes the paper.

I. A Mechanism of Collaborative Knowledge Creation

Here, we describe the Berliant-Fujita (BF) model. Each agent develops new knowledge either in
isolation or by collaborating in pairs, building on their accumulated stock of knowledge. Con-
sider a given set of agents who engage in knowledge creation. �ey are assumed to be a priori
homogeneous but become heterogeneous in the composition of the set of knowledge they cre-
ated in the past. Let δi j ∈ [0, 1] be the proportion of time that agent i allocates for collaboration
with j . If agent i works in isolation, then their knowledge creation is subject to constant returns
technology as given by yii = δiiakii if δii > 0 and 0 otherwise, where a > 0, kii is the knowledge
stock of agent i, and yii is the output.

If the subject instead collaborates with agent j (, i), then their joint output is given by

(1) yi j = δi jb
(

kCij
)θ (

kD
ij

)
1−θ
2
(

kD
ji

)
1−θ
2

for δi j > 0 and yi j = 0 otherwise, where b > 0, kC
ij
is the common knowledge of i and j; kD

ij
is

the knowledge of agent i differentiated from that of j; and θ ∈ (0, 1) is the relative importance of
common knowledge. All pieces of knowledge (irrespective of timing at which they are created)
are horizontally and symmetrically different.1

�e output from the collaboration of agents i and j becomes their common knowledge. �us,
the common knowledge of i and j increases as their collaboration lasts longer, and at the same time
the differentiated knowledge between i with agents other than j also increases relative to their
common knowledge. To achieve the best balance between common and differentiated knowledge
with collaborators, agents collectively decide on the group of collaborators, where each agent
i optimally chooses δi j for each j of their collaborators to maximize the total output

∑

j yi j/2
(assuming an equal split of output between collaborators).

Agents are assumed to maximize the present value of their lifetime knowledge production. In
a typical steady-state equilibrium, the size of the network component of each agent is given by
1 + 1/θ.2 Agents continue to rotate their collaborators so that the share δ = 1/(1 + 1/θ) of the
total time is allocated to each pairwise collaboration (Berliant and Fujita, 2008, Proposition 1).

While the model is highly stylized, it formalizes a microeconomic mechanism in which explicit
knowledge exchange induces the creation of new knowledge.

1�e BF model of knowledge creation by exchanging mutual differentiated knowledge is consistent with the knowledge creation
by recombination considered by Weitzman (1998) and Olsson (2000, 2005).

2Myopic core is adopted as the equilibrium concept. A typical steady-state equilibrium is the one resulting from the initial state
in which agents have sufficient common knowledge for the starting collaboration.
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II. A Motivating Fact

Here, we define the key variables and present a motivating fact for our study. We use patent
application data from Japan and construct two-period balanced panel data by aggregating five
consecutive years from 2000 to 2004 and from 2005 to 2009 to form periods 1 and 2, respectively.

Consider patent development in period t ∈ {1, 2} by the set I of inventors in the panel and their
collaborators. LetGit be the set of patents in which inventor i ∈ I participates in the development,
and G j for j ∈ Git is the set of inventors who participate in patent j . Denoting the value of patent
j by a scalar gj > 0, the productivity of inventor i is defined in terms of the total value of patents
in which they participated, with the value of each patent being discounted by the number of
inventors involved in the patent:

(2) ȳit =

∑

j∈Git

gj

|G j |

where |G j | is the cardinality of set G j . Herea�er, the expression |X | for a set X denotes the
cardinality of X . Let

(3) Nit ≡ ∪j∈Git
G j\{i}

represent the set of collaborators of inventor i ∈ I such that each agent in Nit participates in at
least one common patent with i in period t. �en,

(4) yit ≡
ȳit

nit

represents the average pairwise output by inventor i in period t, where nit ≡ |Nit | is the total num-
ber of collaborators of i in period t. It can be interpreted as the collaborative output of inventor i

with their average collaborator, corresponding to yi j in (1).

We focus on the role of knowledge exchange in the BF model, and hence the differentiated
knowledge kD

ji
of collaborators in (1). To simplify the analysis, we assume that the cumulative

knowledge of an inventor is fully utilized in the knowledge creation in each period, and hence it
is reflected in their output in the same period. Accordingly, the average differentiated knowledge

of collaborators of inventor i in period t is assumed to be reflected in the average output that the
collaborators of i produced outside the joint projects with i in the same period:

(5) kD
it =

1

nit

∑

j∈Nit

∑

k∈Gj t \Git

gk

|Gk |
.

Turning to the quantification of collaborative productivity, we consider the quality and novelty
dimensions. �e quality of a patent is measured by cited counts. Specifically, gj represents the
count of citations that patent j received in five years a�er publication. Here, gj excludes citations
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from the patents in which any firm employing the inventors in G j is involved.
3 �is construction

eliminates obvious correlations between yit and kD
it

due to mutual citations among the firms
affiliating in R&D.

�e novelty of a patent, on the other hand, is measured in terms of the scarcity of existing
patents sharing the same technological category with the patent. Specifically, gj is defined by
the reciprocal, 1/rj , of the order, rj = 1, 2, . . ., of j with respect to its application date among all
the patents classified in the same technological category as j . In our analysis, the technological
category adopted to compute the patent novelty is a ‘subgroup’ of the International Patent Clas-
sification (IPC) and is the most disaggregated technological category available in the data. �ere
were 31,511 and 26,424 subgroups with positive numbers of patents applied in periods 1 and 2,
respectively.4

Alternatively, the novelty of a patent has been defined, for example, by Fleming, Mingo, and
Chen (2007) to be the number of new subclass pairs associated with the patent.5 However, this
measure is too extreme for our purpose, since a patent’s novelty is zero unless it has at least a
new subclass combination. A recent measure of novelty by Watzinger and Schnitzer (2019) is
based on the frequency of word combinations appearing in the text of a patent in older patents. It
may capture some aspects that are missed in our definition of novelty, and vice versa. However,
the correspondence between arbitrary word combinations and technologies is not clear at this
point. We thus adopt a novelty measure that is consistent with the technological categories of
IPC, which defines the similarity and dissimilarity of all the patents in our data.

Figure 1 shows the relation between yi1 and kD
i1 in period 1. Panels A and B indicate a clear

positive relationship between the two variables under quality and novelty measures, respectively.
In particular, for the quality-based productivity in Panel A, by construction, the positive corre-
lation does not accrue from mutual citations among collaborators or their employer firms. �is
provides us a motivating fact for investigating the causal effect suggested by the BF model.

III. Data

Patent data – Patent data are taken from the published patent applications of Japan (Artificial Life
Laboratory, Inc., 2018), including information on all patents applied for between 1993 and 2017.
Since every applied patent is published within 1.5 years of application, our data include all the
output of inventors at a given point in time during the study period.

In this data, identical inventors are traced by matching their names and the establishments
they belong to, recorded in the applications of patents in which they participated. By utilizing
this information, we focus on the panel of 29, 287 inventors constituting set I who had been active
and stayed in the same establishments (and hence the same firms) in both periods, and they have
up to the 5th indirect collaborators in each period. �is panel helps us to isolate inventor and

3More precisely, let period 3 include all years from 2010, and let G be the set of all patents applied in periods t = 1, 2 and 3. Let
Fit be the set of inventors who belong to the same firm as inventor i in period t . �en, the set of potential citing patents for patent
j is given by C j ≡ {k ∈ G : k < Gℓ t ∀ ℓ ∈ Fit ∀ i ∈ G j ∀ t ∈ {1, 2, 3}}. Note that our quality-measure is far more conservative
than a simple exclusion of self-citation at the inventor or firm level.

4Refer to Appendix A (Table A1) as well as Appendix B for more details on technological categories in IPC.
5�ey used the United States Patent Classification with 10,000 subclasses.
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Figure 1. Pairwise productivity versus pairwise differentiated knowledge of inventors

Notes: �e figure plots the average pairwise productivity of an inventor yi,1 against the average differen-
tiated knowledge of their collaborators kD

i,1 for period 1 in log-scale. Productivity is measured based on

the quality and novelty of patents for which the inventor participated in the development of. �e simple
ordinary least squares (OLS) regression line is shown in each panel. �e estimated coefficients of ln kD

it
are

0.357 and 0.567 in Panels A and B, respectively.

firm-specific factors that may influence knowledge creation. �e indirect collaborators are used
to construct instrumental variables in order to eliminate influence from other endogenous factors.
Descriptive statistics of the data concerning the inventors in I are shown in Appendix A.

�e information on inventors not included in I is still used if they either directly or indirectly
collaborate with inventors in I . Specifically, there are 434,555 and 283,860 direct and indirect
collaborators in total in periods 1 and 2, respectively. �e inventors in I for regressions account
for only 6.7% and 8.8% of all the inventors with at least one collaborator in periods 1 and 2, re-
spectively. Nonetheless, neither the quality nor novelty of the developed patents exhibit stark
differences between the two sets of inventors. For the average quality (novelty) of patents in
pairwise collaborative output, ln yi,t/|Gi,t | in period 1, the mean values are -3.95 and -3.02 (-8.82
and -8.61) with standard deviations of 1.77 and 1.97 (2.01 and 2.61) for inventors in I and for the
full samples, respectively (Figure A1 in Appendix A compares their distributions between the
selected and full samples).

Each patent is associated with at least one technological classification based on the IPC, which
is maintained by the World Intellectual Property Organization (h�p://www.wipo.int/portal/en/
index.html). �e IPC hierarchically classifies technologies into eight sections, 120 classes, 300
subclasses, and finally 40,000 subgroups. �e IPC’s labeling scheme is consistent over time, and
a newly introduced category is basically associated with a new technology. Hence, the classifica-
tions in IPC at a given point in time roughly represent the state-of-the-art technological categories
at that time.6 Although an applicant can claim more than one IPC category for their patent, we
adopted only the primary IPC category of each patent to represent its technological category to

6See Appendix B for the details of the IPC technological categories.
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avoid subjective variation. We adopt the finest subgroup classification to define the novelty of
the patents, which together comprise 40,691 and 38,339 categories associated with the patents in
our data in periods 1 and 2, respectively.

Urban agglomerations – R&D activities are disproportionately concentrated in large cities (see
Figure C1 in Appendix C). If an urban agglomeration (UA) is defined as a contiguous area of
population density of at least 1000/km2 and with a total population of at least 10,000,7 in 2000,
99% of all inventors concentrated in UAs, with 81% in the largest three UAs. Inventors located
within a 10 km buffer of any of the 453 UAs are assigned to the closest UA; otherwise, their
locations are considered to be rural. In the regressions, the standard errors are clustered by UAs.8

Geographic neighborhood factors – Given the disproportionate geographic concentration of R&D
activities, productivity is expected to be influenced by geographic neighborhood (e.g., Jaffe, Tra-
jtenberg, and Henderson, 1993; �ompson and Fox-Kean, 2005; Kerr and Kominers, 2015). We
control for the geographic concentrations of five types of activities: inventors, R&D expenditure,
manufacturing employment and output, and residential population. Each geographic concentra-
tion is defined by the size of the concentration in a circle of given radius around inventor i. �e
formal definitions and descriptive statistics are described in Appendix C.

IV. Regression Models

Here, we describe the regression models. We focus on collaborative cases and do not address the
possibility of working in isolation. To apply data to theory, the original specification is simplified
by formulating a regression model for knowledge creation between an inventor and their average
collaborator rather than between each pair of inventors:

(6) ln yit = α + β ln kD
it + γ1 ln kit + γ2 (ln kit )

2
+ ln Ait + λi + τt + εit .

In the theoretical model, we focus on knowledge exchange, and hence the role of the differentiated
knowledge kD

ji
of collaborators in (1), while abstracting from the role of common knowledge kC

ij

and differentiated knowledge kD
ij
of inventor i. �e effect of knowledge exchange should naturally

be reflected in that of the average differentiated knowledge of collaborators, ln kD
it
in (6).

To control for other non-negligible knowledge effects, we include the cumulative research scope
of inventor isfi past projects. For this purpose, let S denote the set of all technological categories
(i.e., IPC subgroups), and the technological category assigned to patent j be sj ∈ S. �en, the
research scope of inventor i in period t is defined by

(7) Sit = ∪j∈Git
{sj}

7Population data are obtained from the Population Census (2010) by MIAC.
8As UAs spatially expand over time on average, we use the boundaries of UAs in 2010, each of which provides the largest spatial

extent during the study period 1995–2009 on average. However, the choice of the particular time point should not affect the basic
results because most inventors are concentrated in relatively large UAs whose spatial coverage is relatively stable over the study
period.
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which in turn can be used to define the cumulative research scope of inventor i in period t by9

(8) kit =

�

�

� ∪
t′<t

Sit′
�

�

� .

�e past experience of inventor i reflected in this value is naturally expected to correlate with the
size of common knowledge between inventor i and their collaborators as well as the differentiated
knowledge of i. In addition, it may partly control for other factors discussed in the literature; for
example, technological obsolescence (e.g., Horii, 2012), imitations (e.g., Chu, 2009; Cozzi and Galli,
2014), and learning-by-doing effects (e.g., Grossman and Helpman, 1991; Kle�e and Kortum, 2004;
Lucas and Moll, 2014). �e third and fourth terms on the RHS of (6) are supposed to capture their
overall effects up to the second order.

Other inventor- and time-specific productivity shi�ers for inventor i are bundled in the fi�h

term, Ait ≡ eX
⊤
it
η . Namely, Xit represents a vector of geographic neighborhood effects defined in

Section III that includes local concentrations of other inventors, R&D expenditure, manufacturing
employment/production, and residential population; η is a vector of coefficients corresponding
to each element of Xit . �e last three terms, λi , τt , and εit , on the RHS are the time-invariant
inventor fixed effect, period fixed effect, and inventor- and period-specific error, respectively. �e
values of parameters α, β, γ1, γ2, η, and τt are estimated by regressions.

Note that the technology of knowledge creation (1) itself, and hence the corresponding empir-
ical model (6), is not restricted to any specific mechanism of inventors’ collaboration, although
the BF model assumes autonomous collaborations by inventors. Consequently, in (6) it does not
ma�er for parameter identification whether network formation is autonomous or determined at
the firm or establishment level.

Finally, we exploit the log-linear relation between quantity and quality (or novelty) of collabo-
rative productivity given by (2):

(9) ln yit = ln y
p

it
+ ln y

q

it
.

In the first term on the RHS of (9), y
p

it
denotes the number of patents included (i.e., the extensive

margin) in inventor i’s pairwise output given by ȳ
p

it
/nit , where ȳ

p

it
≡
∑

j∈Git
1/|G j |, which coin-

cides with ȳit under gj = 1 in (2). In the second term, y
q

it
represents the average quality or novelty

(i.e., the intensive margin) of i’s pairwise output, yit/y
p

it
. We can thus decompose the effect of

each explanatory variable in (6) into those related to the quantity and average quality/novelty of
inventors’ pairwise output yit . �e model to be estimated for this purpose is given by

(10) ln y
m
it = α

m
+ βm ln kD

it + γ
m
1 ln kit + γ

m
2 (ln kit )

2
+ ln Am

it + λ
m
i + τ

m
t + ε

m
it

for m ∈ {p, q}, where the coefficients of each explanatory variable for m add up to that of the
corresponding variable in (6). In particular, we have β = βp + βq for the coefficient of ln kD

it
.

9To compute kit for t ∈ {1, 2}, we use all available data from 1993. Specifically, we define period 0 to be from 1993 to 1999.
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V. Identification by Instrumental Variables

Here, we present our strategy for model identification by dealing with the endogeneity of the
average differentiated knowledge of collaborators ln kD

it
in (6). �ere are three sources of endo-

geneity. �e first results from inventors’ endogenous collaboration; that is, network endogeneity,
where unobservable influences exist on inventors’ collaboration decisions and their productivi-
ties (e.g., Goldsmith-Pinkham and Imbens, 2013). �e second results from the mutual dependence
of productivities between an inventor and their collaborators through kD

it
in (6). �is is the so-

called ‘reflection problem’ in the context of econometric network analysis (e.g., Manski, 1993;
Bramoullé, Djebbari, and Fortin, 2009). �e third arises from unobservable network specific fac-
tors that influence an inventor and their collaboratorsfi productivities simultaneously. �ese are
called ‘correlated effects’ in Manski (1993). To solve the endogeneity caused by these reasons, we
argue that the endogenous variables kD

it
in (6) for inventor i can be instrumented by the average

value of the same variable for the distant indirect collaborators of i.

Let N̄ℓ
it
be the set of all the 0-th to ℓ-th indirect collaborators of inventor i given by

N̄ℓ
it = N̄ℓ−1

it ∪
[

∪j∈N̄ ℓ−1
it

Njt

]

ℓ = 1, 2, . . .(11)

where the set of the ‘0-th indirect collaborators’ is defined by the set of inventors comprising i

and their direct collaborators N̄0
it
≡ Nit ∪ {i}. To obtain N̄ℓ

it
from N̄ℓ−1

it
for ℓ = 1, 2, . . ., we expand

N̄ℓ−1
it

by the union of all the direct collaborators of j ∈ N̄ℓ−1
it

as in (11). �e set of the ℓ-th indirect

collaborators of i can then be given by

Nℓ
it = N̄ℓ

it\N̄ℓ−1
it ℓ = 1, 2, . . .(12)

�e instrument k
D,IVℓ

it
for kD

it
can be constructed as the average values of the differentiated knowl-

edge of collaborators for ℓ-th indirect collaborators j ∈ Nℓ
it
:

k
D,IVℓ

it
=

1

nℓ
it

∑

j∈N ℓ
it

kD
jt(13)

where nℓ
it
≡
�

�Nℓ
it

�

�.

Exogeneity of the instruments –�e extant literature on social interactions (e.g., Bramoullé, Djeb-
bari, and Fortin, 2009; De Giorgi, Pellizza, and Redaelli, 2010; Calvó-Armengol, Patacchini, and
Zenou, 2009) suggests that the reflection problem in our context be reduced by using instruments
constructed from indirect collaborators. Namely, the farther an indirect collaborator is from an
inventor in the collaboration network, the smaller the influence of their output on the inventor’s
productivity.10 �e instruments further solve the endogeneity caused by the endogenous network

10For example, in eq. (6) of Bramoullé, Djebbari, and Fortin (2009), the endogenous peer effect from the ℓ-th indirect peer is given
by β1+ℓ , where β ∈ (0, 1) and ℓ = 0, 1, 2, . . . with the 0-th indirect peer being the direct peer. �e peer effect β1+ℓ from the ℓ-th
indirect peers diminishes as ℓ increases.
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and correlated effects, if more distant inventors share less unobserved factors.

�is effect applies to our case if, for example, inventors with similar (observable and unobserv-
able) characteristics have proclivities to collaborate with each other. An obvious situation is that
inventors belong to the same firm. However, this case is not an issue for us, since firm-specific
factors can be controlled by inventor fixed effects. Another typical situation is that inventors
have similar technological specializations. �ese inventors likely share opportunities to exchange
ideas with each other through, for example, conferences and journals of common research sub-
jects, thereby affecting their chance of collaboration and productivities. �e exogeneity of the
instruments in this case arises from the fact that more distant indirect collaborators share less
common research fields with each other.11

To see if our data supports this conjecture, we quantify the commonality in technological spe-
cialization between indirect collaborators using the Jaccar index. �e average Jaccar index be-
tween the technological specialization Sit of inventor i and those of their ℓ-th indirect collabora-
tors j ∈ Nℓ

it
is computed as:

(14) Jℓit =
1

nℓ
it

∑

j∈N ℓ
it

|Sit ∩ Sjt |

|Sit ∪ Sjt |
∈ [0, 1] .

A larger value of Jℓ
it
implies higher average similarity in technological specialization between

inventor i and their ℓ-th indirect collaborators. In particular, it takes value 0 if their specializations
do not overlap (i.e., Sit ∩ Sjt = 0∀ j ∈ Nℓ

it
) and value 1 if they are identical (i.e., Sit = Sjt ∀ j ∈ Nℓ

it
).

In Figure 2, Panel A depicts the average values of Jℓ
i1 overall i ∈ I in terms of IPC sections,

classes, subclasses, and subgroups between an inventor and their ℓ-th indirect collaborators for
ℓ = 0, 1, . . . , 5. Panel B complements it by showing the average count of common technological
categories in the corresponding classifications between an inventor and their ℓ-th indirect collab-
orators. From Panel A, the commonality of specializations steadily decreases as the indirectness
ℓ increases. In terms of the IPC subgroup, it almost vanishes for the 3rd indirect collaborators. In
terms of the average count of common categories, it is less than 1 for the 3rd and higher indirect
collaborators for all classifications in IPC.

Relevance of instruments – Suppose that endogeneity is partly caused by some time-invariant un-
observed factors specific to the firms or establishments that inventors belong to. In this situation,
there is a possible channel over the collaboration network through which our instruments retain
relevance while satisfying exogeneity. We elaborate a simple example here. Note that the set Nit

of collaborators and the set Nℓ
it
of ℓ-th indirect collaborators of inventor i may contain inventors

that belong to the same firms, but which are different from the one i belongs to. For these inven-

tors, the productivities, and hence kD
it

and k
D,IVℓ

it
, correlate through the firm-specific factors.12

On the other hand, they do not have common firm-specific factors with i. Consequently, there is

11Our logic for the exogeneity of the instruments is similar to that of Zacchia (2020), who used similar instruments to identify
knowledge spillovers between firms through their inventor networks.

12Alternatively, kD
it

and k
D, IVℓ
it

also correlate if the 1st-indirect and ℓ-th indirect collaborators of i belong to the same firm.
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no correlation between yit and k
D,IVℓ

it
through unobserved factors.13

Whether there is sufficiently strong relevance of instruments is an empirical question to be
examined in Section VI. �e success in our case hinges on the fact that a relatively large share of
distant indirect collaborators belong to the same firms. Specifically, the shares of the 3rd, 4th, and
5th-indirect collaborators of an inventor who belong to the same firm as the inventor are 50%,
38%, and 25% (54%, 43%, and 32%) on average, respectively, in period 1 (period 2).

Figure 2. Exogeneity of instrumental variables

Notes: Panel A plots the average value of Jacaar indices between the research scopes Sit of direct and
indirect collaborators of inventors for t = 1, 2, where the research scope is defined in terms of the IPC
categories. �e horizontal axis indicates the degrees of indirectness in the collaborator network, where 0
represents a direct collaborator, and values of j = 1, 2, . . . , 5 represent the j-th indirect collaborators. Panel
B plots the average counts of common IPC categories between an inventor and direct/indirect collaborators.

VI. Results

Here, we present our main regression results for models (6) and (10) with brief discussions on ro-
bustness checks, the details of which are given in Appendix E. In all of the regressions conducted,
the fixed effects of inventors, periods, and IPC classes are controlled. �e geographic neighbor-
hood factors described in Section III are constructed for a circle with a 1 km radius around each
inventor except for residential population, which is computed within a 20 km radius around an
inventor to account for the urban environment around them. Standard errors are clustered by
UAs (see Section III).14

13Although N ℓ
it

possibly contains inventors that belong to the same firms as i, their common firm-specific factors are controlled
by inventor i’s fixed effect and hence do not violate the exogeneity condition.

14As the instruments ln k
D, IVℓ
it

for ln kD
it

in (6) and (10) involve inventors located in different UAs, one might suspect that cluster-
robust standard errors are incorrect because the instruments for any inventor i might be correlated with errors ε j t in (6) for any
inventor j even if inventors i and j are located in different UAs. However, we consider that these cluster-robust standard errors still
provide correct standard errors because the inventor fixed effects controlled in all regressions encompass UA-specific fixed effects,
making the errors free from correlation with UAs while allowing for standard errors to vary across UAs.
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Baseline results – Panels A and B in Table 1 summarize the regression results for key variables
of model (6) under quality- and novelty-adjusted productivity, respectively. More detailed tables
with estimated coefficients for neighborhood factors are described in Appendix D (Tables D2
and D3).15 In both panels, column 1 reports the result from the OLS regression, and the rest
report those from two-stage least squares (2SLS) instrumental variable (IV) regressions. For the
IV regressions, we use the 3rd to the 5th indirect collaborators to construct IVs for ln kD

it
. More

specifically, we use all three instruments ln k
IVℓ

it
for ℓ = 3, 4 and 5 in column 2, while only one is

used in columns 3–5, respectively.

�e IV results support the role of knowledge exchange in the BF model. �e estimated coef-
ficients of ln kD

it
are persistently positive and similar, 0.33–0.39 and 0.48–0.51, for quality- and

novelty-based productivity, respectively (except for the IV5-result in Panel A, which is discussed
later). �e values below 1 indicate decreasing returns to knowledge exchange, which is consistent
with the implication of the BFmodel that the benefit from collaborators’ differentiated knowledge
will eventually be dominated by that of common knowledge with collaborators and the inventors’
own differentiated knowledge.

�e estimated positive effect of research scope ln kit of an inventor and the negative effect of its
squared term (ln kit )

2 are consistent with the interpretation of positive decreasing-returns effects
of common knowledge as well as differentiated knowledge of the focal inventor, together with
other possible effects such as learning-by-doing effects discussed in Section IV.

To examine the strength of instruments, we conducted the heteroskedasticity robust weak in-
strument test of Olea and Pflueger (2013). Except for the IV regression based on the 5th indi-
rect collaborators for the quality-based case (column 5 in Panel A), Olea and Pflueger (2013)’s
first-stage effective F statistics, Feff , take large values, meaning that the IVs do not seem to be
weak.16 Indeed, the estimated coefficient of ln kD

it
in column 5 in Panel A (which is instrumented

by ln k
D,IV5

it
) seems to differ from the others. To confirm the exogeneity of the IVs, we use ln k

IVℓ

it

for all ℓ = 3, 4 and 5 in column 2 and conduct Hansen’s (1982) J test for overidentifying restric-
tions. �e p-values of the test are 0.68 and 0.11 for productivities based on quality and novelty,
respectively, meaning that the exogeneity of the IVs cannot be rejected.17

�e OLS result is consistent with the IV results in terms of the signs of the estimated coeffi-
cients, but it appears to have a substantial downward bias in the estimated coefficient of ln kD

it

under bothmeasures of productivity.18 Apossible explanation for the bias is that themore produc-
tive inventors a�ract (or are assigned by their firm) a larger number of relatively unexperienced
collaborators than the inventor intends. �e removal of this reverse causality leads to a larger
positive effect in the IV estimates.

Robustness checks – �e estimated coefficient of ln kD
it

in (6) might reflect not only the effects of

15�e estimated coefficients of the key variables in Table 1 change only marginally under alternative radius values (5 and 10 km)
adopted to compute geographic neighborhood factors.

16See Table D1 in Appendix D for the results of the first-stage regressions.
17Of course, this result of Hansen’s J test is by no means sufficient to guarantee the exogeneity of the instruments if all the

instruments are subject to the same type and magnitude of bias.
18Akcigit et al. (2018) and Zacchia (2020) reported similar downward bias on the effects of spillovers/interactions from other agents

on the R&D outcome.
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Table 1—Regression results for the Berliant-Fujita model

Panel A. �ality

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.166 0.334 0.340 0.392 0.488
(0.0111) (0.0444) (0.0440) (0.0565) (0.118)

ln kit 0.163 0.140 0.139 0.132 0.119
(0.0326) (0.0213) (0.0212) (0.0199) (0.0192)

(ln kit )
2 -0.0744 -0.0669 -0.0666 -0.0643 -0.0600

(0.0116) (0.00818) (0.00816) (0.00765) (0.00721)

R2 0.123 0.106 0.104 0.091 0.059

Feff 52.96 179 41.90 8.413

Critical Feff-value 20.09 23.11 23.11 23.11
Hansen J p-value 0.681

Panel B. Novelty

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.217 0.480 0.478 0.511 0.495
(0.00693) (0.0403) (0.0409) (0.0335) (0.0491)

ln kit 0.235 0.189 0.190 0.184 0.187
(0.0187) (0.0166) (0.0166) (0.0174) (0.0202)

(ln kit )
2 -0.182 -0.161 -0.161 -0.158 -0.160

(0.0148) (0.00924) (0.00920) (0.00982) (0.00916)

R2 0.175 0.134 0.135 0.124 0.129

Feff 332.9 1009 720.8 166.3

Critical Feff-value 17.85 23.11 23.11 23.11
Hansen J p-value 0.113

Notes: (i) �e number of observations is 58,574 (29,287 inventors×2 time periods) for all regressions. �e
inventors included have up to at least the 5th indirect collaborators in order to construct instruments for
an endogenous variable. (ii) �e dependent variable is the log of the average pairwise productivity of an
inventor, ln yit . It is defined in terms of cited counts and novelty of patents in Panels A and B, respectively.
(iii) �e explanatory variables shown are the average differentiated knowledge of collaborators, ln kD

it
; the

first- and second-order effects of the research scope, ln kit , of an inventor. (iv) Column 1 shows the result
from the OLS regression, while columns 2–5 show the results of IV regressions, where ln kD

it
is treated as

an endogenous variable, and is instrumented by the same variable of the 3rd-5th, 3rd, 4th, and 5th indirect
collaborators of inventor i in columns 2, 3, 4, and 5, respectively. (v) In all of the regressions, the inventor,
year, and IPC class fixed effects, as well as a variety of neighborhood effects are controlled. Neighborhood
effects include the sizes of concentration of inventors, R&D expenditure, manufacturing employment and
output within a 1-km radius, and population within a 20-km radius around a given inventor. (vi) �e fi�h
row in each panel reports Olea and Pflueger (2013)’s effective first-stage F-statistic. (vii) �e sixth row in
each panel indicates the 5% critical value of the effective F-statistic with a Nagar bias threshold τ = 10%.
(vii) �e last row in each panel indicates the p-value of Hansen (1982)’s J test. (viii) Robust standard errors
in parentheses are clustered on urban agglomeration.
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differentiated knowledge of collaborators, but also those of time-varying factors specific to the
inventors’ own and collaborators’ firms or establishments. Such factors include the R&D envi-
ronment and productivity externality (peer effects) from (possibly non-collaborating) inventors
that vary across firms or establishments, and their research affiliations.

To investigate these possibilities, we conduct the two exercises (see Appendix E for details).
First, we include the size and research scope of the firm or establishment to which an inventor
belongs as additional explanatory variables in (6). Second, we consider possible influences from
the broader neighborhood in the research network beyond an inventor’s own firm or establish-
ment. Specifically, we simulate random counterfactual choices of collaborators for each inventor
in I conditional on the actual number of collaborators as well as the firms/establishments to which
these collaborators belong. We then replace kD

it
in (6) with that constructed from the counterfac-

tual collaborators and estimate the model. We find that the effect of knowledge exchange on the
collaborative productivity appears to be at most mildly influenced by factors at the level of an
establishment, a firm, and a research affiliation of firms or establishments.

�antity–quality/novelty decomposition – Finally, we turn to the quantity-quality/novelty decom-
position of the effect of knowledge exchange on collaborative output based on (9) and (10). Figure
3 shows the point estimate and 95% confidence intervals of the estimated shares, β̂q/β̂, of con-
tributions accruing from knowledge exchange on the average quality and novelty of output.19

Figure 3. Contribution of knowledge exchange on the qality of created knowledge

Notes: Each horizontal line with the two bounds (indicated by bars) shows the 95% confidence interval
of the share of contribution by collaborators’ differentiated knowledge, βq/β for q = {quality, novelty},
where βq and β are the coefficients of the differentiated knowledge of collaborators, ln kD

it
in (10) and (6),

respectively. �e dot in each plot indicates the point estimate of βq/β. �e estimation is based on (6) and

(10) with ln kD
it
instrumented by ln k

D,IV j

it
for j = 1, 2 and 3.

19For each q = {quality, novelty}, the estimate and confidence interval of βq/β are calculated by the generalized method of
moments, which simultaneously estimates the baseline model (6) and the decomposed model (10) with the 2SLS weighting matrix.
�e comprehensive regression results are relegated to Appendix F (Tables F1 and F2). �e first stage of the regression is shared with
(6) and presented in Appendix D (Table D1).
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We find contrasting roles of knowledge exchange between the quality and novelty of output:
100 − 17.3 = 83% of its contribution can be a�ributed to increasing the quantity rather than
the quality of research output under the quality-adjusted productivity measure, whereas 65% of
the contribution accrues to increasing the average novelty rather than quantity of research output
under the novelty-adjusted measure. �e result indicates that knowledge exchange is comparably
more effective for seeking technological novelty than it is for increasing the quality of research
output.

Our findings agree with the results of Fleming, Mingo, and Chen (2007) in that cohesiveness
of a researcher network has negative effects on the novelty of their developed patents. Since
the cohesiveness is expected to be positively correlated with the amount of common knowledge
between collaborators, a larger cohesiveness may imply smaller differentiated knowledge within
the researcher network, and hence less novelty of output.

VII. Conclusions

We have shown evidence consistent with the collaborative knowledge creation mechanism pro-
posed by Berliant and Fujita (2008). To our knowledge, our work is the first to provide micro-
econometric evidence for collaborative knowledge creation through the exchange of knowledge
at the individual inventor level. We also found that knowledge exchange tends to raise the novelty
comparably more than the quality of collaborative invention.

�is evidence has important policy implications. Namely, firms, cities, regions, and countries
that promote encounters and collaboration among inventors across organizations and institu-
tions, despite the possibility of imitations and undesired diffusion, may have be�er chances to
foster innovation through knowledge exchange.

In the future, it will be of interest to further investigate the roles of firms in R&D. As financial
resources for R&D are typically provided by firms, firm-specific pa�erns of collaborations and
R&D policies could affect the productivity of individual inventors and firms.20 By matching the
addresses of establishments in the patent database with those of the Census of Manufacturers,
it is also possible to investigate the impact of patent development on firm productivity. Second,
non-technological diversity of collaborators in terms of, for example, gender, age, and cultural
background, may affect productivity. For example, Østergaard, Timmermans, and Kristinsson
(2011) and Inui et al. (2014) found a positive influence of gender diversity on innovation of Danish
and Japanese firms, respectively.

20See Akcigit and Kerr (2018) for an initial a�empt in this direction as they distinguish between R&D that is internal and external
to firms and study the firm dynamics that arise from this distinction.
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Calvó-Armengol, Antoni, Elenora Patacchini, and Yves Zenou. 2009. “Peer effects and social
network in education”. Review of Economic Studies 76 (4): 1239–1267.

Chu, Angus C. 2009. “Effects of blocking patents on R&D: A quantitative DGE analysis”. Journal
of Economi Growth 14 (1): 55–78.

Cozzi, Guido, and Silvia Galli. 2014. “Sequential R&D and blocking patents in the dynamics of
growth”. Journal of Economic Growth 19 (2): 183–219.

De Giorgi, Giacomo, Michele Pellizza, and Silvia Redaelli. 2010. “Identification of social in-
teractions through partially overlapping peer groups”.American Economic Journal: Applied Eco-

nomics 2 (2): 241–275.

Fleming, Lee, Santiago Mingo, and David Chen. 2007. “Collaborative brokerage, generative
creativity, and creative success”. Administrative Science �arterly 52 (3): 443–475.

Goldsmith-Pinkham, Paul, and Guido W. Imbens. 2013. “Social networks and identification
of peer effects”. Journal of Business & Economic Statistics 31 (3): 253–264.

Griliches, Zvi. 1979. “Issues in assessing the contribution of research and development to pro-
ductivity growth”.�e Bell Journal of Economics 10 (1): 92–116.

Grossman, Gene M., and Elhanan Helpman. 1991. Innovation and Growth in the Global Econ-

omy. Cambridge, MA: �e MIT Press.

Hansen, Lars Peter. 1982. “Large sample properties of generalized method of moments estima-
tors”. Econometrica 50 (4): 1029–1054.



17

Horii, Ryo. 2012. “Wants and past knowledge: Growth cycles iwth emerging industries”. Journal
of Economic Dynamics and Control 36 (2): 220–238.

Inui, Tomohiko,MakikoNakamuro,KazumaEdamura, and JunkoOzawa. 2014. “Impact of
diversity and work-life balance (in Japanese)”. Discussion paper No. 14-J-055, Research Institute
of Economy, Trade and Industry (RIETI).

Jaffe, Adam B. 1986. “Technological opportunity and spillovers of R&D: Evidence from firms’
patents, profits, and market value”. American Economic Review 76, no. 5 (): 984–1001.

Jaffe, Adam B., Manuel Trajtenberg, and Michael S. Fogarty. 2000. “Knowledge spillovers
and patent citations: Evidence from a survey of inventors”. American Economic Review Papers

and Proceedings 90 (2): 215–218.

Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson. 1993. “Geographic localiza-
tion of knowledge spillovers as evidenced by patent citations”. �e �arterly Journal of Eco-

nomics 108 (3): 577–598.

Jovanovic, Boyan, and Rafael Rob. 1989. “�e diffusion and growth of knowledge”. Review of

Economic Studies 56 (4): 569–582.

Kerr,WilliamR., and Scott Duke Kominers. 2015. “Agglomerative forces and cluster shapes”.
Review of Economics and Statistics 97 (4): 877–899.

Klette, Tor Jakob, and Samuel Kortum. 2004. “Innovating firms and aggregate innovation”.
Journal of Political Economy 112 (5): 986–1018.

Lucas, Robert E., and Benjamin Moll. 2014. “Knowledge growth and the allocation of time”.
Journal of Political Economy 122 (1): 1–51.

Manski, Charles F. 1993. “Identification of endogenous social effects: �e reflection problem”.
Review of Economic Studies 60 (3): 531–542.

Ministry of Internal Affairs and Communications of Japan. 2010. Population Census (Tabu-

lation for standard area mesh).
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APPENDICES

A. Data

Tables A1 and A2 show the descriptive statistics of the 29,287 focal inventors in I in the panel data
used in the regressions, where the la�er table collects the variables whose values differ between
quality and novelty. �ese are the inventors who have at least one collaborator, strictly positive
collaborative productivity, and at least 5th-indirect collaborators in each period. �ey account
for only as 6.7% and 8.8% of the full samples of the 439,260 and 331,342 inventors who have at
least one collaborator and positive collaborative productivity in periods 1 and 2, respectively.
But, these two sets of inventors do not exhibit any stark difference in the quality and novelty of
collaborative output as indicated by Figure A1.

Figure A1.�ality and novelty of patents in the regression and full samples (period 1)

Notes: �e figure compares the distributions of the average quality (Panel A) and novelty (Panel B) of
patents, ln yi,1/|Gi,1 |, developed by an inventor through their collaborative knowledge creation between
the full set of the 439,260 inventors with at least one collaborator and positive productivity and the set
of 29,287 inventors selected for our baseline regressions in Table 1 in period 1. �e la�er set of inventors
appear in both periods, and have at least up to the 5th indirect collaborators in each period.

B. IPC

�e IPC classifies technologies into eight sections: A (human necessities), B (performing opera-
tions; transporting),. . ., H (electricity). �ese sections are divided into classes such as A01 (agri-
culture; forestry; animal husbandry; hunting; trapping; fishing) and then into subclasses such as
A01C (planting; sowing; fertilizing). Each subclass is further divided into groups, e.g., A01C1 (ap-
paratus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing
or planting), and then into subgroups, e.g., A01C1/06 (coating or dressing seed) and A01C1/08
(immunizing seed). �e IPC’s labeling scheme is consistent over time, and a newly introduced
category is basically associated with a new technology (e.g., the classes B81 for microtechnology
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Table A1—Descriptive statistics of basic variables

Period

(1) (2)

Variable 1 2

(1) Number of patents
�

� ∪i∈I Git

�

� 956,711 709,761

(2) Number of IPC classes |St | 120 122

(3) Number of IPC subclasses |St | 599 588

(4) Number of IPC subgroups |St | 31,511 26,424

(5) Share of collaborating inventors 0.829 0.850

(6) Number of collaborators per inventor |Nit | 14.72 12.59
(11.39) (9.950)

(7) Number of relevant inventors in period t |It | 29,287 29,287

(8) Number of direct & indirect collaborators
�

�∪5
ℓ=0

∪i∈It Nℓ
it

�

� 434,555 283,860

(9) Number of inventors per patent |G jt | 2.968 3.047
(1.841) (1.906)

(10) Number of patents per inventor |Git | 19.23 14.60
(19.23) (14.60)

(11) Number of IPC sections per inventor |St | 2.223 1.993
(1.061) (0.974)

(12) Number of IPC classes per inventor |St | 3.318 2.776
(2.136) (1.792)

(13) Number of IPC subclasses per inventor |St | 4.193 3.452
(2.959) (2.496)

(14) Number of IPC subgroups per inventor |St | 8.681 6.737
(6.596) (5.479)

Notes: �is table shows the descriptive statistics of the basic variables of the 29,287 focal inventors used
in our regressions. Numbers in parentheses are standard deviations.
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Table A2—Descriptive statistics of qality and novelty variables

Panel A. �ality Panel B. Novelty

(1) (2) (3) (4)
Period 1 2 1 2

Patent value gj 0.674 0.436 0.009 0.007
(3.131) (1.612) (0.044) (0.039)

Inventer ȳit 5.134 2.523 0.062 0.038
productivity (11.50) (4.568) (0.147) (0.101)

Pairwise yit 0.516 0.319 0.006 0.004
productivity (1.209) (0.837) (0.017) (0.020)

Differentiated kD
it

3.452 1.764 0.040 0.026
knowledge (5.210) (2.387) (0.056) (0.047)

Notes: �is table shows the descriptive statistics of the quality and novelty related variables of the 29,287
focal inventors used in our regressions. Numbers in parentheses are standard deviations.

and B82 for nanotechnology introduced in 2000). As another example, the shale revolution in the
late 2000s in the United States was made possible by some key innovations in excavation technol-
ogy that mainly belong to a new subclass C09K (compositions for drilling of boreholes or wells;
compositions for treating boreholes or wells) that was split from E21B (earth or rock drilling; ob-
taining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells) in 2006.
If there are no fundamental changes in technology in a given category, the classification remains
the same (e.g., A47C for furniture; domestic articles or appliances; coffee mills; spice mills; suction
cleaners in general). Taken together, the set of technological categories specified in the IPC at a
given point in time roughly represents the set of the state-of-the-art technologies at that time,
and hence makes an appropriate proxy for the set of technological knowledge.

We have 121, 609, and 40,691 (123, 616, and 38,339) relevant IPC classes, subclasses, and sub-
groups, respectively for period 1 (period 2), associated with the applied patents in our data.

C. Geographic neighborhood factors

�is section describes UAs and gives precise definitions for the measures of geographic neigh-
borhood factors discussed in Section III. �e descriptive statistics of the neighborhood factors are
shown in Table C1.

UAs – Panels A and B in Figure C1 show the spatial distribution of inventors and 453 UAs as
of 2010, respectively, where the warmer colors in each panel indicate higher population density.
Each inventor is assigned to the closest UA if there is any UA within 10 km of their location.

Inventor concentration –�e local population, aINV
it

, of inventors within a given distance, d̄, of the
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Figure C1. Spatial distribution of inventors and UAs

Notes: �emap of Japan in the figure includes fourmajor islands (Honshu, Kyushu, Shikoku andHokkaido)
together with other islands connected to at least one of these major islands by road. Panel A shows the
geographic distribution of inventors in Japan, and Panel B shows the distribution of population over 453
UAs indicated by colored patches on the map. In both panels, warmer colors indicate higher population
density. �e population data at the 1 km-by-1 km grid level are obtained from the Population Census (2000,
2005) by MIAC.

location of inventor i is defined as

(C1) aINVit =

�

�

{

j ∈ It\Nit : d(i, j) < d̄
}�

� ,

where d(i, j) represents the great-circle distance between inventors i and j (rows 1–3, Table C1).
To evaluate the pure spillover effects, this population excludes the collaborators, Nit , of i.21

R&D expenditure – Focusing on manufacturing, we first aggregate firm-level R&D expenditure at
the industry level according to the three-digit Japanese Standard Industry Classification (SIC) in
each period t. Denote the industry-level R&D expenditure (in million yen) by vm for each industry
m ∈ Mt , where Mt is the set of three-digit manufacturing industries in period t.22

Next, from the micro data of the Establishment and Enterprise Census as well as the Economic
Census (MIAC, 2001, 2006; 2009), we find the set of establishments, Emt , in each industry m ∈

21�eeffects of externalities from the nearby inventors and firms that have been recognized in the literature (e.g., Jaffe, Trajtenberg,
and Henderson, 1993; �ompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and Kominers, 2015).

22Data on R&D expenditure at the firm level are available for firms with at least four employees for every year from 2000 to 2009
from the Survey of Research and Development.
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Mt in period t, and compute the employment share, ekt , of each establishment k ∈ Emt within
industry m.

Assuming that the R&D expenditure of each establishment in each industry is proportional to
the employment size of the establishment, the value of R&D expenditure of each establishment in
period t is approximated by vmtemt . Assuming that the R&D expenditure in the previous period
t − 1 affects the productivity of inventors in the current period t, the R&D around inventor i in
period t is given as follows (rows 4–6, Table C1):23

(C2) aR&Dit =

∑

m∈Mt

∑

k∈{ j∈Em : d(i, j)<d̄}

vm,t−1ek,t−1.

aR&D
it

is naturally expected to influence patent development.

Manufacturing concentration – Assuming that the employment size and output of an establish-
ment correlate with demand for new knowledge, we proxy the local market size for an invented
technology around inventor i by the local manufacturing employment and output around i:24

(C3) a
MNF j
it

=

∑

k∈{ j∈Et : d(i, j)<d̄}

ekt

where Et = ∪m∈Mt
Emt , and ekt represents the total output value (employment) of establishment

k for j = o ( j = e) (rows 7–12, Table C1).25

Residential population – �e local residential population is defined as

(C4) aPOPit =

∑

k∈{ j∈R : d(i, j)<d̄}

rkt

where R represents the set of 1km-by-1km cells covering the relevant location space in Japan; the
centroid of each cell is considered to be the representative location of the cell in measuring the
distance from the cell; rkt is the residential population in cell k ∈ R at the beginning of period t

(rows 13–15, Table C1).26

23�e R&D expenditure values are obtained from the Survey of Research and Development (2000-2010) by MIAC and from METI
Basic Survey of Japanese Business Structure and Activities (2000-2010) by METI.

24Another interpretation of aMNF
it

is the spillover from manufacturing concentration around i in period t .
25�emanufacturing employment values are obtained from the Establishment and Enterprise Census for (2001, 2006) and Economic

Census for Business Frame (2009) by MIAC; the manufacturing output values are obtained from the micro data of the Census of
Manufacturers (2000, 2005) and Economic Census for Business Frame (2009) by MIAC.

26�e residential population in the 1 km-by-1 km cells is available from the Population Census (2000, 2005) by MIAC.
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Table C1—Descriptive statistics of the geographic neighborhood factors

(1) (2)
Period 1 2

Inventor population 1km 5,750 5,629
(7,225) (7,282)

5km 31,026 30,158
(42,143) (42,269)

10km 70,720 66,011
(79,277) (77,330)

R&D investment 1km 10,454 18,480
(78,020) (180,284)

5km 150,581 278,911
(338,668) (703,381)

10km 300,256 520,066
(466,130) (920,505)

Manufacturing employment 1km 2,240 6,676
(1,505) (7,106)

5km 52,974 76,491
(32,395) (74,655)

10km 182,597 212,371
(106,414) (166,473)

Manufacturing output 1km 21,801,942 20,774,589
(in thousand) (58,182,730) (83,883,736)

5km 158,183,183 104,957,604
(129,167,825) (129,388,708)

10km 445,908,195 317,846,559
(255,976,915) (226,259,080)

Residential population 5km 595,461 615,722
(386,442) (399,930)

10km 2,100,541 2,156,271
(1,388,078) (1,432,171)

20km 6,386,959 6,573,357
(4,252,098) (4,416,168)

Notes: Numbers are the average values with standard deviations in parentheses.
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D. Baseline Regression Results

Table D1 summarizes the first-stage results for the 2SLS-IV regressions for model (6). Tables D2
and D3 add the second-stage results for the estimated effects of geographic neighborhood factors
to Table 1 under quality- and novelty-adjusted productivities, respectively.

For geographic neighborhood factors, we generally have expected results. In particular, the
nearby concentrations of R&D expenditure and manufacturing employment have persistent pos-
itive results for all specifications. �e fact that the nearby concentration of inventors have only
weak or even negative effects suggests that the knowledge exchange is the primary cause of ag-
glomeration for R&D activities. �e effects of manufacturing output do not seem to have clear
additional factors to manufacturing employment. �e negative effects of residential population
indicate that the density of R&D expenditure and manufacturing ma�ers.
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Table D1—First stage regression results for the Berliant-Fujita model

Panel A. �ality

Variable (1) IV3-5 (2) IV3 (3) IV4 (4) IV5

ln k
D,IV3

it
0.373 0.364

(0.0466) (0.0273)

ln k
D,IV4

it
0.0384 0.257
(0.0464) (0.0398)

ln k
D,IV5

it
-0.0896 0.139
(0.0261) (0.0482)

ln kit 0.127 0.127 0.131 0.134
(0.0481) (0.0473) (0.0542) (0.0595)

(ln kit )
2 -0.0402 -0.0403 -0.0423 -0.0440

(0.0156) (0.0155) (0.0185) (0.0198)

R2 0.0336 0.0328 0.0130 0.00311

Feff 52.96 179 41.90 8.413

Panel B. Novelty

Variable (1) IV3-5 (2) IV3 (3) IV4 (4) IV5

ln k
D,IV3

it
0.443 0.466

(0.0204) (0.0147)

ln k
D,IV4

it
0.0396 0.397
(0.0168) (0.0148)

ln k
D,IV5

it
-0.00724 0.319
(0.0332) (0.0248)

ln kit 0.146 0.146 0.161 0.165
(0.0152) (0.0153) (0.0174) (0.0207)

(ln kit )
2 -0.0741 -0.0739 -0.0782 -0.0793

(0.00854) (0.00858) (0.0104) (0.0124)

R2 0.0546 0.0545 0.0311 0.0164

Feff 332.9 1009 720.8 166.3

Notes: �e table shows the first-stage results for the key variables in the 2SLS-IV regressions for model (6).
(i) �e number of observations is 58,574 (29,287 inventors×2 time periods) in all the regressions. (ii) �e
dependent variable is log of the differentiated knowledge of collaborators of inventor i, ln kD

it
. It is defined

in terms of cited counts and novelty of patents in Panels A and B, respectively. (iii) Explanatory variables

shown are the average differentiated knowledge of indirect collaborators, ln k
D,IVℓ

it
for ℓ = 3, 4 and 5; the

first- and second-order effects of the research scope, ln kit , of an inventor. (iv) In all the regressions, year
and IPC class fixed effects, as well as a variety of neighborhood effects are controlled. Neighborhood effects
include the sizes of concentration of inventors, R&D expenditure, manufacturing employment and output
within a circle of 1-km radius, and population within a circle of 20-km radius around a given inventor. (v)
�e last row in each panel reports Olea and Pflueger, 2013’s effective first-stage F-statistic.
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Table D2—Regression results for the BF model under qality-based productivity

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.166 0.334 0.340 0.392 0.488
(0.0111) (0.0444) (0.0440) (0.0565) (0.118)

ln kit 0.163 0.140 0.139 0.132 0.119
(0.0326) (0.0213) (0.0212) (0.0199) (0.0192)

(ln kit )
2 -0.0744 -0.0669 -0.0666 -0.0643 -0.0600

(0.0116) (0.00818) (0.00816) (0.00765) (0.00721)
ln aINV

it
-0.0668 -0.108 -0.109 -0.122 -0.146
(0.0871) (0.0995) (0.0997) (0.0977) (0.108)

ln aR&D
it

0.0176 0.0124 0.0122 0.0106 0.00763
(0.00711) (0.00639) (0.00631) (0.00564) (0.00503)

ln a
MNFe
it

0.0906 0.0852 0.0850 0.0833 0.0803
(0.0119) (0.0116) (0.0116) (0.0111) (0.0118)

ln a
MNFo
it

0.0206 0.0154 0.0153 0.0136 0.0107
(0.0139) (0.0173) (0.0173) (0.0175) (0.0195)

ln aPOP
it

-3.792 -3.697 -3.694 -3.664 -3.610
(1.055) (0.832) (0.824) (0.761) (0.670)

τ1 0.218 0.104 0.0996 0.0643 -0.000898
(0.0485) (0.0313) (0.0314) (0.0511) (0.0799)

R2 0.123 0.106 0.104 0.091 0.059

Feff 52.96 179 41.90 8.413

Critical Feff-value 20.09 23.11 23.11 23.11
Hansen J p-value 0.681

Notes: (i) �e number of observations is 58,574 (29,287 inventors×2 time periods) in all the regressions.
�e inventors included have up to at least the 5th indirect collaborators in order to construct instruments
for an endogenous variable. (ii) �e dependent variable is log of the average pairwise productivity of an
inventor, ln yit . It is defined in terms of cited counts and novelty of patents in Panels A and B, respectively.
(iii) Explanatory variables shown are the average differentiated knowledge of collaborators, ln kD

it
; the first-

and second-order effects of the research scope, ln kit , of an inventor. (iv) Column 1 shows the result from
the OLS regression, while columns 2-5 show the results of IV regressions, where ln kD

it
is treated as an

endogenous variable, and is instrumented by the same variable of the 3rd-5th, 3rd, 4th and 5th indirect
collaborators of inventor i in columns 2, 3, 4 and 5, respectively. (v) In all the regressions, inventor and
IPC class fixed effects are controlled. Neighborhood effects include the sizes of concentration of inventors,
R&D expenditure, manufacturing employment and output within a circle of 1-km radius, and population
within a circle of 20-km radius around a given inventor. (vi)�e third to last row reports Olea and Pflueger,
2013’s effective first-stage F-statistic. (vii) �e second to last row indicates 5% critical value of the effective
F-statistic with a Nagar bias threshold τ = 10%. (viii) �e last row in each panel indicates the p-value of
Hansen, 1982’s J test. (ix) Robust standard errors in parentheses are clustered on urban agglomeration.
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Table D3—Regression results for the BF model under novelty-based productivity

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.217 0.480 0.478 0.511 0.495
(0.00693) (0.0403) (0.0409) (0.0335) (0.0491)

ln kit 0.235 0.189 0.190 0.184 0.187
(0.0187) (0.0166) (0.0166) (0.0174) (0.0202)

(ln kit )
2 -0.182 -0.161 -0.161 -0.158 -0.160

(0.0148) (0.00924) (0.00920) (0.00982) (0.00916)
ln aINV

it
0.262 0.112 0.113 0.0941 0.104
(0.121) (0.119) (0.120) (0.112) (0.109)

ln aR&D
it

0.0442 0.0307 0.0308 0.0291 0.0300
(0.0192) (0.0158) (0.0158) (0.0153) (0.0146)

ln a
MNFe
it

0.00718 0.0326 0.0324 0.0356 0.0340
(0.0155) (0.0155) (0.0156) (0.0153) (0.0171)

ln a
MNFo
it

-0.0123 -0.0114 -0.0115 -0.0113 -0.0114
(0.00637) (0.0100) (0.00998) (0.0107) (0.0103)

ln aPOP
it

-0.145 -1.299 -1.291 -1.436 -1.363
(0.980) (0.948) (0.950) (0.896) (0.897)

τ1 0.196 0.0194 0.0206 -0.00162 0.00946
(0.0450) (0.0558) (0.0562) (0.0497) (0.0592)

R2 0.175 0.134 0.135 0.124 0.129

Feff 332.9 1009 720.8 166.3

Critical Feff-value 17.85 23.11 23.11 23.11
Hansen J p-value 0.113

Notes: (i) �e number of observations is 58,574 (29,287 inventors×2 time periods) for all regressions. �e
inventors included have up to at least the 5th indirect collaborators in order to construct instruments for an
endogenous variable. (ii) �e dependent variable is log of the average pairwise productivity of an inventor,
ln yit . It is defined in terms of cited counts and novelty of patents in Panels A and B, respectively. (iii) �e
explanatory variables shown are the average differentiated knowledge of collaborators, ln kD

it
; the first-

and second-order effects of the research scope, ln kit , of an inventor. (iv) Column 1 shows the result from
the OLS regression, while columns 2-5 show the results of IV regressions, where ln kD

it
is treated as an

endogenous variable, and is instrumented by the same variable of the 3rd-5th, 3rd, 4th and 5th indirect
collaborators of inventor i in columns 2, 3, 4 and 5, respectively. (v) In all the regressions, inventor and
IPC class fixed effects are controlled. Neighborhood effects include the sizes of concentration of inventors,
R&D expenditure, manufacturing employment and output within a 1-km radius, and population within a
20-km radius around a given inventor. (vi) �e third to last row reports Olea and Pflueger, 2013’s effective
first-stage F-statistic. (vii) �e second to last row indicates 5% critical value of the effective F-statistic with
a Nagar bias threshold τ = 10%. (viii) �e last row in each panel indicates the p-value of Hansen, 1982’s J
test. (ix) Robust standard errors in parentheses are clustered on urban agglomeration.
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E. Robustness

�e estimated coefficient of ln kD
it
in (6) might reflect not only the effects of differentiated knowl-

edge of collaborators, but also those of time-varying factors specific to the inventors’ own and
collaborators’ firms or establishments. Such factors include R&D environment and productivity
externality (peer effects) from (possibly non-collaborating) inventors that vary across firms or es-
tablishments, and their research affiliations. �is section investigates how much of the estimated
coefficient of ln kD

it
in (6) is explained by the common factors at the level of a firm, an establish-

ment or their research affiliation, rather than by the direct exchange of knowledge at the inventor
level.

Firm/establishment size and scope – We first consider factors that correlate with the size and re-
search scope of the firm to which an inventor belongs. Let Fit be the set of inventors who belong
to the same firm as inventor i at some point in period t, and let F−i,t ≡ Fit\ (Nit ∪ {i}), that is
Fit excluding i and their collaborators. �e firm size, fit = |F−i,t | captures the magnitude of R&D
activities within the firm to which inventor i belongs; however, outside the projects, i and their
collaborators are directly involved. Given that more than 80% of collaboration occurs within a
firm on average, the variation in kD

it
may simply reflect firm size in period t. We also include the

research scope of the firm to which inventor i belongs defined by s
f

it
= |∪j∈Fit

Sjt\(∪u∈Nit∪{i }Sut )|.
It counts the number of distinct technological categories associated with the patents developed in
the inventor i’s firm, while excluding those associated with the patents developed by i and their

collaborators. �e values of fit and s
f

it
reflect the potential scale effect of a firm; for example,

the availability of common research facilities, funding, and other sources of increasing returns as
well as spillover. In a similar manner, we can define the set Eit of inventors who belong to the
same establishment as inventor i in period t and set the establishment size eit = |E−it | as well as
the research scope se

it
= | ∪j∈Eit

Sjt\(∪u∈Nit∪{i }Sut )| of their establishment.

Tables E1 and E2 summarize the first- and second-stage 2SLS-IV regression results for the key
variables. Panels A and B in the table show the IV results for (6) under quality- and novelty-
adjusted measures, respectively, with these additional controls on the RHS. �e IVs are con-
structed using all the 3rd–5th indirect collaborators because similar results are obtained when
only one of them is used.27

We find that the estimated coefficients of ln kD
it

in (6) are different between the baseline and
the current specifications (under both the quality- and novelty-adjusted productivity) when the
size and research scope at the firm/establishment level are controlled. But, the differences in
all the specifications considered in Table E2 are within 10% of the estimated coefficient in the
baseline specification. �us, the effect of knowledge exchange on the collaborative productivity
appears to be at most mildly influenced by the scale of a firm and an establishment. �e size
effect is negative a�er controlling for the scope effect for both the firm and establishment levels
and under both quality- and novelty-adjusted productivities. It may reflect the fact that a larger
firm/establishment tends to host a larger share of less experienced inventors.

27�eeffective first-stageF values, Feff , for theweak IV test byOlea and Pflueger, 2013 are reasonably large for all cases, indicating
the strong relevance of the IVs. Hansen, 1982’s J-test indicates no evidence against the exogeneity of the IVs.
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Table E1—First-stage regression results with firm/establishment size and research
scope effects

Panel A. �ality Panel B. Novelty

Variable (1) (2) (1) (2)

ln k
D,IV3

it
0.346 0.288 0.397 0.313

(0.0179) (0.0177) (0.0196) (0.0197)

ln k
D,IV4

it
0.0359 0.0434 0.0134 0.0212
(0.0238) (0.0235) (0.0260) (0.0256)

ln k
D,IV5

it
-0.0933 -0.0795 -0.0236 -0.0172
(0.0215) (0.0214) (0.0234) (0.0232)

ln kit 0.105 0.0833 0.116 0.0890
(0.0180) (0.0178) (0.0216) (0.0213)

(ln kit )
2 -0.0362 -0.0261 -0.0665 -0.0530

(0.00549) (0.00540) (0.00664) (0.00651)
ln fit -0.530 -0.704

(0.0476) (0.0602)

ln s
f

it
0.825 1.365

(0.0536) (0.0690)
ln eit -0.511 -0.542

(0.0465) (0.0555)
ln se

it
0.985 1.375

(0.0403) (0.0500)

R2 0.0278 0.0205 0.0377 0.0253

Feff 512.1 512.1 823.1 823.1

Notes: �e table shows the first-stage results for the key variables in the 2SLS-IV regressions for model
(6) with firm/establishment size and scope controls. (i) �e number of observations is 58,574 (29,287
inventors×2 time periods) for all regressions. (ii) �e dependent variable is log of the differentiated knowl-
edge of collaborators of inventor i, ln kD

it
. It is defined in terms of cited counts and novelty of patents in

Panels A and B, respectively. (iii) �e explanatory variables shown are the average differentiated knowl-

edge of indirect collaborators, ln k
D,IVℓ

it
for ℓ = 3, 4 and 5; the first- and second-order effects of the research

scope, ln kit , of an inventor; sizes, fit and eit , and research scopes (in terms of IPC subgroup), s
f

it
and se

it
, of

the firm and establishment to which i belongs. (iv) In all the regressions, inventor, year and IPC class fixed
effects, as well as a variety of neighborhood effects are controlled. Neighborhood effects include the sizes
of concentration of inventors, R&D expenditure, manufacturing employment and output within a 1-km
radius, and population within a 20-km radius around a given inventor. (v) �e last row reports Olea and
Pflueger, 2013’s effective first-stage F-statistic.
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Table E2—Regression results with firm/establishment size and research scope effects

Panel A. �ality Panel B. Novelty

Variable (1) (2) (1) (2)

ln kD
it

0.331 0.368 0.442 0.409
(0.0455) (0.0542) (0.0396) (0.0495)

ln kit 0.142 0.145 0.187 0.186
(0.0223) (0.0223) (0.0267) (0.0264)

(ln kit )
2 -0.0689 -0.0685 -0.162 -0.161

(0.00684) (0.00683) (0.00847) (0.00841)
ln fit -0.283 -0.373

(0.0676) (0.0794)

ln s
f

it
0.161 0.445

(0.0828) (0.105)
ln eit -0.250 -0.280

(0.0640) (0.0712)
ln se

it
0.0367 0.420
(0.0782) (0.0976)

R2 0.107 0.099 0.144 0.154

Feff 512.1 512.1 823.1 823.1

Critical Feff-value 9.361 9.361 9.453 9.453
Hansen J p-value 0.424 0.433 0.757 0.711

Notes: (i) �e number of observations is 56,744 (28,372 inventors×2 time periods) in all the regressions.
�e inventors included have up to at least the 5th indirect collaborators as well as have information on the
belonging establishments and firms. (ii) �e dependent variable is log of the average pairwise productivity
of an inventor, ln yit , defined in terms of forward citations in Panel A and novelty of patents in Panel
B. (iii) Explanatory variables shown are the average differentiated knowledge of collaborators, ln kD

it
; the

number of inventors in the firm and establishment of an inventor, ln fit and ln eit , respectively; the scope

of developing patents at the firm and establishment levels in terms of IPC subgroups, ln s
f

it
and ln se

it
,

respectively; the first- and second-order effects of the cumuraltive research scope, ln kit , of an inventor.
(iv) In all the regressions, ln kD

it
is treated as an endogenous variable, and is instrumented by the same

variable of the 3rd-5th indirect collaborators of inventor i. (v) In all the regressions, year and IPC class
fixed effects, as well as a variety of neighborhood effects are controlled. Neighborhood effects include
the sizes of concentration of inventors, R&D expenditure, manufacturing employment and output within
a circle of 1-km radius, and population within a circle of 20-km radius around a given inventor. (vi) �e
fourth row in each panel reports Olea and Pflueger, 2013’s effective first-stage F-statistic. (vii)�e fi�h row
in each panel indicates 5% critical value of the effective F-statistic with a Nagar bias threshold τ = 10%.
(viii) �e last row in each panel indicates the p-value of Hansen, 1982’s J test. (ix) Robust standard errors
in parentheses are clustered on urban agglomeration.
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Counterfactual collaboration –Next, we consider possible influence from broader neighborhood in
the research network beyond the own firm or establishment. Even though we focus on inventors
whose firm affiliation is fixed throughout the study period, the patents are o�en developed jointly
by an affiliation of multiple firms and establishments. Affiliation-specific factors, such as the
amount of available research funds, the presence of star inventors and spillovers, may influence
collaborative output of inventors.

To evaluate the influence of the research affiliation of firms, we consider random counterfac-
tual choices of collaborators for each inventor in I conditional on the actual number of their
collaborators as well as firm/establishment affiliation of each. Suppose that among the nit col-
laborators of inventor i ∈ I in period t, nA

it
belongs to firm A, nB

it
belongs to firm B, and so on,

where nit =
∑

j n
j

it
. �en, these nit collaborators are replaced by nA

it
randomly chosen collabo-

rators without replacement (according to the uniform probability distribution) from firm A, nB
it

from firm B, and so on; however, the second or closer indirect and direct collaborators of i are
excluded from the selection to mitigate the reflection problem. We construct 1,000 sets of counter-
factual collaboration pa�erns in this way and compute the counterfactual value k̃D

it
under each.

Model (6) is then estimated by OLS with and without firm-level controls, ln fit and ln s
f

it
, using the

counterfactual value of k̃D
it
. Alternatively, a similar exercise is done for counterfactual affiliations

among establishments rather than firms.

We interpret the estimated coefficient, β̃, for counterfactual ln k̃D
it

as the effect of common
factors within an affiliation of firms/establishments. It is then compared with the estimated co-
efficient, β̂, under the actual collaborations based on IV regression using the instruments based
on all the 3rd-5th indirect collaborators. Figure E1 shows the distribution of the estimated shares,
β̃/β̂, for each pair of actual and counterfactual specifications of the model.

Regarding the firm-based counterfactual collaboration, as depicted in Panel A (Panel B) of Fig-
ure E1, the share β̃/β̂ takes values 0.15 and 0.16 (-0.001 and 0.016) on average under the produc-
tivity measured by quality (novelty) with and without controls for firm size and research scope,
respectively. In Panel C (Panel D) of Figure E1, the corresponding values for the establishment-
based counterfactual collaborators are found to be 0.15 and 0.17 (0.004 and 0.056), respectively.

For the quality of collaborative output, firm and establishment-based counterfactual collabora-
tions appear to account for a non-negligible portion of the positive effect of knowledge exchange.
Yet, on average more than 80% of the effect remains to have direct impact on actual collaborative
output. For the novelty of collaborative output, they appear to have only marginal effects.
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Figure E1. Contribution of firm/establishment affiliations to collaborative produc-
tivity

Notes: Each panel shows the distribution of the relative size, β̂ν/β̂ (ν = 1, . . . , 1000), of the estimated co-
efficients of ln kD

it
between the random counterfactual and actual collaborations. Inventors in each coun-

terfactual collaboration are randomly selected conditional on the affiliation of inventors with firms or

establishments in the actual collaboration. �e values of β̂ν are estimated by the OLS, whereas β̂ is esti-
mated by the IV regression using instruments constructed from all the 3rd-5th indirect collaborators based
on model (6) with and without controls for size and research scope of firms or establishments. Panels A
and B (C and D) show the cases under quality- and novelty-adjusted productivities, respectively, with and
without controls for size and research scope at the firm (establishment) level.

F.�antity-�ality and �antity-Novelty Decomposition of Collaborative Productivity

Tables F1 and F2 show the second-stage result of the 2SLS-IV regressions for (10) under quality-
and novelty-adjusted productivities, respectively.
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Table F1—�ality-qantity decomposition of collaborative productivity

Panel A. Average quality

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.0823 0.0579 0.0577 0.0806 0.0759
(0.00617) (0.0331) (0.0334) (0.0522) (0.107)

ln kit 0.0334 0.0368 0.0368 0.0337 0.0343
(0.0180) (0.0186) (0.0186) (0.0194) (0.0233)

(ln kit )
2 -0.00276 -0.00385 -0.00386 -0.00284 -0.00304

(0.00546) (0.00566) (0.00566) (0.00595) (0.00729)

R2 0.054 0.054 0.054 0.054 0.054

Feff 534.7 1495 599.6 146.3

Critical Feff-value 9.281 23.11 23.11 23.11
Hansen J p-value 0.833

Panel B. �antity

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.0837 0.276 0.282 0.311 0.412
(0.00504) (0.0277) (0.0281) (0.0450) (0.0972)

ln kit 0.129 0.103 0.102 0.0984 0.0847
(0.0140) (0.0149) (0.0149) (0.0158) (0.0201)

(ln kit )
2 -0.0716 -0.0631 -0.0628 -0.0615 -0.0570

(0.00431) (0.00459) (0.00461) (0.00489) (0.00639)
R2 0.081 0.027 0.024 0.006 -0.075

Feff 534.7 1495 599.6 146.3

Critical Feff-value 9.272 23.11 23.11 23.11
Hansen J p-value 0.300

Note: (i) �e number of observations is 58,574 (29,287 inventors×2 time periods) for all regressions. �e
inventors included have up to at least the 5th indirect collaborators in order to construct instruments for
an endogenous variable. (ii) In Panel A, the dependent variable is log of the average patent quality of
pairwise collaboration by inventor i, ln y

q

it
. In Panel B, it is log of the average number of patents developed

in pairwise collaboration by inventor i. (iii) �e explanatory variables shown are the average differentiated
knowledge of collaborators, ln kD

it
; the first- and second-order effects of the research scope, ln kit , of an

inventor. (iv) Column 1 shows the result from the OLS regression, while columns 2-5 show the results of
IV regressions, where ln kD

it
is treated as an endogenous variable, and is instrumented by the same variable

of the 3rd-5th, 3rd, 4th and 5th indirect collaborators of inventor i in columns 2, 3, 4 and 5, respectively. (v)
In all the regressions, inventor, year and IPC class fixed effects, as well as a variety of neighborhood effects
are controlled. Neighborhood effects include the sizes of concentration of inventors, R&D expenditure,
manufacturing employment and output within a 1-km radius, and populationwithin a 20-km radius around
a given inventor. (vi) �e fi�h row in each panel reports Olea and Pflueger, 2013’s effective first-stage F-
statistic, Feff . (vii) �e sixth row in each panel indicates 5% critical value of the effective F-statistic with a
Nagar bias threshold τ = 10%. (viii) �e last row in each panel indicates the p-value of Hansen, 1982’s J
test. (ix) Robust standard errors in parentheses are clustered on urban agglomeration.
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Table F2—Novelty-qantity decomposition of collaborative productivity

Panel A. Average novelty

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.157 0.312 0.310 0.355 0.378
(0.00610) (0.0252) (0.0252) (0.0330) (0.0449)

ln kit 0.105 0.0782 0.0785 0.0707 0.0666
(0.0203) (0.0210) (0.0210) (0.0215) (0.0222)

(ln kit )
2 -0.111 -0.0990 -0.0992 -0.0956 -0.0937

(0.00625) (0.00657) (0.00657) (0.00686) (0.00730)

R2 0.132 0.108 0.109 0.094 0.084

Feff 841.1 2436 1359 635.1

Critical Feff-value 9.297 23.11 23.11 23.1
Hansen J p-value 0.0934

Panel B. �antity

Variable (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5

ln kD
it

0.0604 0.168 0.168 0.157 0.116
(0.00419) (0.0178) (0.0178) (0.0243) (0.0340)

ln kit 0.130 0.111 0.111 0.113 0.120
(0.0140) (0.0145) (0.0145) (0.0147) (0.0152)

(ln kit )
2 -0.0705 -0.0620 -0.0619 -0.0629 -0.0661

(0.00432) (0.00460) (0.00460) (0.00476) (0.00513)

R2 0.078 0.054 0.054 0.059 0.072

Feff 841.1 2436 1359 635.1

Critical Feff-value 9.293 23.11 23.11 23.11
Hansen J p-value 0.171

Note: (i) �e number of observations is 58,574 (29,287 inventors×2 time periods) for all regressions. �e
inventors included have up to at least the 5th indirect collaborators in order to construct instruments for
an endogenous variable. (ii) In Panel A, the dependent variable is log of the average patent quality of
pairwise collaboration by inventor i, ln y

q

it
. In Panel B, it is log of the average number of patents developed

in pairwise collaboration by inventor i. (iii) �e explanatory variables shown are the average differentiated
knowledge of collaborators, ln kD

it
; the first- and second-order effects of the research scope, ln kit , of an

inventor. (iv) Column 1 shows the result from the OLS regression, while columns 2-5 show the results of
IV regressions, where ln kD

it
is treated as an endogenous variable, and is instrumented by the same variable

of the 3rd-5th, 3rd, 4th and 5th indirect collaborators of inventor i in columns 2, 3, 4 and 5, respectively. (v)
In all the regressions, inventor, year and IPC class fixed effects, as well as a variety of neighborhood effects
are controlled. Neighborhood effects include the sizes of concentration of inventors, R&D expenditure,
manufacturing employment and output within a 1-km radius, and populationwithin a 20-km radius around
a given inventor. (vi) �e fi�h row in each panel reports Olea and Pflueger, 2013’s effective first-stage F-
statistic, Feff . (vii) �e sixth row in each panel indicates 5% critical value of the effective F-statistic with a
Nagar bias threshold τ = 10%. (viii) �e last row in each panel indicates the p-value of Hansen, 1982’s J
test. (ix) Robust standard errors in parentheses are clustered on urban agglomeration.
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