
Munich Personal RePEc Archive

Flexible Retirement and Optimal

Taxation

Ndiaye, Abdoulaye

New York University (Stern)

2018

Online at https://mpra.ub.uni-muenchen.de/102651/

MPRA Paper No. 102651, posted 13 Sep 2020 19:52 UTC



Flexible Retirement and Optimal Taxation

Abdoulaye Ndiaye∗

New York University (Stern)

This version: August 14, 2020
First version: November 3, 2017

Abstract

This paper studies optimal insurance against idiosyncratic wage shocks

in a life cycle model with intensive labor supply and endogenous retirement.

When the fixed cost of work is increasing in wage, the optimal retirement

wedge provides stronger incentives for delayed retirement with age. Retire-

ment benefits that resemble the US Social Security system can implement

the optimum. Calibrated numerical simulations suggest that a mix of re-

tirement benefits that increase with claiming age, and age-dependent linear

taxes, is close to optimal.
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1 Introduction

Planning for retirement and choosing when to retire are important decisions for

most people. Workers pay Social Security (SS henceforth) contributions from

their earnings,1 save and invest in retirement accounts, and choose whether to

claim early or delay claiming retirement benefits beyond the normal retirement

age.

There is strong evidence that the pension and and tax systems affect retirement

behavior.2 Wedges, or implicit distortions in SS benefits and labor income taxes,

affect labor supply, both through daily work hours—the intensive margin—and

through the timing of retirement—the extensive margin. The value of retirement

pensions and post-tax retirement savings determines consumption after retirement.

In turn, retirement behavior affects the income distribution and the duration of

retirement, which are critical inputs into the design of the SS and tax system.

This paper aims to assess the effect of endogenous retirement for the optimal

design of social insurance over the life cycle. Since the seminal Mirrlees (1971)

income taxation model, most models in optimal tax theory assume that retirement

is an exogenous date instead of an endogenous labor supply decision. Progress has

been made in specific economies with a disability shock (cf. Diamond and Mirrlees

(1978) and Golosov and Tsyvinski (2006)) or a permanent wage shock at birth in a

static setting (cf. Michau (2014) and Shourideh and Troshkin (2015)). In realistic

life cycle settings where wage risk gradually resolves over time, the implications

of endogenous retirement for the structure of optimal retirement policies are yet

to be understood.

This paper’s central question is the following: How does the endogeneity of

retirement affect the optimal design of social security and taxes? In other words,

how should the government choose consumption, work hours, and the retirement

age to provide wage insurance over the life cycle, and through what policy instru-

ments? First, I analytically derive optimal history-dependent policies and describe

the economic forces that shape retirement distortions over the life cycle. Second,

I calibrate the model to the U.S. economy and quantify the magnitude, evolution,

and welfare gains from optimal policies. Third, I show that optimal policies can be

implemented by retirement benefits akin to the U.S. SS system. Finally, I explore

policy recommendations for simple linear policies that condition on the retirement

age.

1In the US, employers also pay the SS portion of the Federal Insurance Contributions Act
(FICA) tax of 6.2% of gross compensation.

2cf. Gruber and Wise (1998, 2002).
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In the life cycle model, workers adjust their labor supply through work hours

and the timing of retirement. Individuals live from ages 25 to 80, work, consume,

and choose when to retire. During work years, labor income is the product of

intensive labor supply and wage or productivity, evolving as a Markov process.

A fixed utility cost of staying in the labor market creates non-convexities in the

disutility of labor. This fixed cost incorporates some essential characteristics of

retirement decisions. First, workers adjust their work hours until they irreversibly

exit the labor force, with a drop in work hours to zero. Second, when productivity

is public information, highly productive agents efficiently retire later than lowly

productive agents. Third, there is an option value of waiting for higher wages

before retirement. This option value decreases with age as the value of waiting for

higher wages vanishes in old-age.

The government chooses consumption, work hours, and retirement age in order

to maximize social welfare. As in the standard Mirrlees (1971) model, individual

productivity and labor effort are privately observed by the workers. Besides, the

fixed utility cost of staying in the labor market depends on productivity and is

unobserved by the government. Therefore, the government’s goal is to design a

dynamic mechanism that is incentive-compatible. This mechanism leads to im-

plicit taxes and subsidies, or "wedges" that summarize the distortions in the con-

strained efficient allocations. With endogenous retirement, the retirement, labor,

and savings wedges interact in nontrivial ways. On the one hand, a positive labor

wedge will distort both work hours and the retirement age downwards. On the

other hand, a positive savings wedge will discourage retirement savings and delay

retirement. Therefore, the optimal retirement wedge’s first goal is to counterbal-

ance the indirect distortions to retirement decisions from the labor and savings

wedges. I introduce the net retirement wedge as the net distortion on retirement

that filters out the effects of labor and savings distortions. The second goal is

to redistribute and insure against wage shocks while accounting for the disparate

impact of continued work on the welfare of low wage and high wage workers.

When the fixed cost of work is increasing in wage, continued work has a pos-

itive redistributive and insurance value. It is then optimal to incentivize delayed

retirement beyond merely countering the indirect distortions to retirement deci-

sions from the labor and savings wedges. As a result, the net retirement wedge

gives stronger incentives for delayed retirement with age. The optimal retirement

wedge inherits the rate of persistence from the wage shocks. The relative size of

the fixed cost of work for high wage and low wage workers determines the direc-

tion of the net retirement wedge. Finally, the insurance and redistributive value
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of endogenous retirement and the size of labor distortions amplify the level of the

net retirement wedge.

This paper proposes two implementations of the optimal allocations: The first

implementation is through retirement benefits that share similar features with

many public pension programs worldwide. These retirement benefits are con-

tingent on the history of income until retirement. When incentivizing delayed

retirement has a positive redistributive and insurance role, the benefits are pro-

gressive in lifetime incomes. Also, the social insurance system is always actuarially

more favorable to low earners than high earners, and more so when incentivizing

delayed retirement has a positive redistributive and insurance role. The second

implementation is through a simple SS program similar to the US Old-Age, Sur-

vivors, and Disability Insurance (OASDI) program. In particular, a deferral rate

adjusts benefits such that the private and public option values of continued work

equalize at the second-best retirement age.

I calibrate the model to a baseline U.S. economy with a rich representation

of the status quo SS and tax systems. Then, I discuss the properties of optimal

policies for different assumptions on the relative size of the fixed cost of work for

high wage and low wage workers. When continued work has a positive redistribu-

tive and insurance role, the net retirement wedge is negative and decreases with

age, i.e., the planner provides stronger delayed retirement incentives with age. A

simple combination of retirement benefits that are linear in lifetime incomes and

that increase with retirement age, along with age-dependent linear taxes, achieves

almost the entire welfare gains from the constrained efficient allocations in my

calibrated simulations.

Related Literature An extensive empirical literature documents the relation-

ship between retirement behavior and tax and SS systems around the world. Gru-

ber and Wise (1998), Gruber and Wise (2002), and their accompanying volumes of

comparative studies document that, over much of the second half of the 20th cen-

tury, disincentives to continue working created a trend towards early retirement.

This trend has shown signs of reversal in the mid-2000s because of longevity,

gender composition, social norms, SS and tax reforms, and other factors.

This paper builds on the insights of the early non-linear income taxation lit-

erature. Mirrlees (1971) develops the theory and optimal tax formulas that Saez

(2001) links to estimated elasticities. Albanesi and Sleet (2006) develop a dynamic

Mirrlees model and focus on implementing the optimal allocations with a restricted

set of instruments. The subsequent literature develops the dynamic Mirrlees model
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with persistent productivity shocks (Farhi and Werning (2013)) and focuses on the

evolution of the labor wedge. Golosov et al. (2016) disentangle the motives of

insurance and redistribution. Stantcheva (2017) incorporates endogenous human

capital acquisition.3 A comprehensive survey of the dynamic taxation literature

can be found in Golosov and Tsyvinski (2015) and Stantcheva (2020). These pa-

pers assume an exogenous retirement age and find that the labor wedge should

increase with age and that linear history-independent but age-dependent taxes are

close to optimal. Three sets of results distinguish this paper and contribute to the

dynamic taxation literature. First, with endogenous retirement, the retirement

wedge plays important insurance and actuarial roles that are not present with

exogenous retirement. Second, the labor wedge is slightly hump-shaped rather

than increasing in old age. Third, retirement benefits that are increasing with

retirement age are needed in addition to the age-dependent linear taxes to achieve

welfare gains close to those from the constrained efficient allocations. Crucially,

these retirement benefits are history-dependent but are linear in lifetime incomes.

My analysis of the Mirrlees optimal policies sheds new light on the quantita-

tive results of complementary literature on the parametric optimization of social

insurance. Huggett and Parra (2010) study the level of insurance provided by the

US SS and tax system in a model with a fixed retirement age. They quantitatively

find that SS benefits that are linear or progressive in lifetime income are equally

as desirable under the status quo tax system. Both policies outperform a radical

reform that replaces the social insurance system with a tax on lifetime income.

However, as the authors acknowledge, their analysis cannot identify the policies

that come close to achieving the maximal welfare gains. This paper shows that re-

tirement benefits that are linear in lifetime incomes, combined with age-dependent

linear taxes, can achieve the bulk of the maximal welfare gains for the simulations

studied. Crucially, this paper emphasizes the importance of actuarial adjustment

of retirement benefits with retirement age if one accounts for endogenous retire-

ment. In a model with exogenous retirement but an increasing elasticity of labor

supply parameter, Karabarbounis (2016) finds that the optimal labor income tax,

within the class of the Heathcote et al. (2014) tax function, is hump-shaped in

age.

The first analysis of retirement and optimal taxation comes from Diamond and

Mirrlees (1978). In their framework, workers are subject to disability shocks (as

subsequently in Golosov and Tsyvinski (2006)). All able workers choose the same

retirement age and share the same productivity at any given age. Hence, their

3Makris and Pavan (2017) investigate the effects of learning-by-doing on optimal taxes.
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retirement decisions do not interact with the income distribution. Also, Diamond

and Mirrlees (1978) do not allow for an intensive margin of labor supply. Other

papers study optimal taxation with an extensive margin of labor supply in a static

framework (Saez (2002), Jacquet et al. (2013), Gomes et al. (2017), Rothschild

and Scheuer (2013)).

Recent literature has analyzed optimal tax and retirement benefits and the

timing of retirement. Michau (2014), Cremer et al. (2004), Choné and Laroque

(2014), and Shourideh and Troshkin (2015) introduce the retirement margin in

the analysis of optimal tax and retirement benefit systems. In these papers, a

permanent shock deterministically pins down the whole history of productivity,

as in a static setting. Shourideh and Troshkin (2015) find that when the fixed

cost of work increases in wages, the static retirement wedge incentivizes delayed

retirement. This paper highlights novel contributions to this literature. These

include the stronger incentives for delayed retirement as workers age, the insurance

and actuarial roles of the retirement wedge, the two proposed implementations,

and ensuing policy recommendations for simple policies.

Other papers study aspects of retirement, taxation, and social security design

with essential differences from the current paper. Nishiyama and Smetters (2007)

and Hosseini and Shourideh (2019) study the privatization and funding of social

security in overlapping generation economies. Moser and Olea de Souza e Silva

(2019) study the optimal design of social security with presented-bias individuals.

This paper contributes to our understanding of the optimal design of intragenera-

tional insurance with rational retirement as an endogenous labor supply decision.

I extend the results to economies with home production and individuals with an

uncertain lifetime correlated with income. More work is needed to fully understand

the determinants of labor supply in old age (marital status, social norms, health,

liquidity constraints) and to formulate comprehensive Social Security reform.

The following sections are structured as follows. Section 2 sets up the life cycle

model of endogenous retirement and highlights the retirement decision features in

the full information benchmark. Section 3 develops a recursive formulation of the

second-best planning problem. Section 4 determines the optimal retirement poli-

cies and describes the results. Section 5 presents the numerical analysis. Section

6 contains two implementations of optimal policies and policy recommendations

for simpler policies. Section 7 discusses modeling assumptions and presents two

extensions of the canonical model. Section 8 concludes. All major proofs are

relegated in Appendix A. Computational Appendix B. contains some additional

proofs and figures of the numerical analysis.
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2 A Life cycle Model of Endogenous Retirement

In this section, I describe an economy in which workers are ex-ante heterogeneous

in productivity, experience idiosyncratic productivity shocks over their lifetime,

and adjust their labor supply through flexible working hours and the timing of

their retirement.

Productivity, Technology, and Preferences Consider a continuous-time econ-

omy populated by a continuum of agents who live until age T . At each time t,

each agent privately observes the realization of his current labor productivity

θt ∈ (0,+∞). Agents provide lt ≥ 0 units of labor at time t at a wage rate equal

to their productivity and earn gross income yt = θtlt.

At time t = 0, initial productivity θ0 ∈ (0,+∞) is drawn from a distribution

F with density f . A standard Brownian Motion B = {Bt,Ft; 0 ≤ t ≤ T} on

(Ω,F ,P) drives the productivity shocks in future periods. A history of produc-

tivities (θt) = {θs}s∈[0,t] is a sequence of realizations of the productivity process

that evolves according to the law of motion

dθt
θt

= µtdt+ σtdBt. (1)

The real constants µt−
1
2
σ2
t and σt are, respectively, the drift and volatility of log-

productivity. When the drift and volatility are independent of time, productivity

is a Geometric Brownian Motion (GBM) and log-productivity is the continuous-

time limit of a random walk.

Agents have time-separable preferences over consumption {ct}0≤t≤T and labor

{lt}0≤t≤T processes that are progressively measurable with respect to the filtration

Ft.
4 When an agent is working, (lt > 0), he incurs a flow utility cost of staying in

the labor market φ(θt), and his current period utility is u(ct, lt)−φ(θt), where u is

increasing in consumption, decreasing in labor, twice continuously differentiable,

and concave. Utility along the intensive margin is separable in consumption and

labor and isoelastic in labor:

u(ct, lt) = u(ct)− h(lt) = u(ct)− κ
l
1+ 1

ε
t

1 + 1
ε

where ε > 0 is the intensive Frisch elasticity of labor supply. In Appendix A.15,

I extend the analysis to preferences that are non-separable in consumption and

4Consumption ct(θ
t) and labor lt(θ

t) depend on the whole history of productivities until time
t. In the text, I drop the realizations θt when referring to Ft-measurable processes {ct, yt} to
simplify the notation.
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labor.

The fixed utility cost of staying in the labor market can be thought of as

the utility cost of commuting time, work-related consumption costs, or taste for

leisure. I write it in units of utils for tractability. This fixed cost creates a non-

convexity in the disutility of work as agents prefer no work to a few hours of work.

As in French (2005) and Rogerson and Wallenius (2013), these non-convexities

trigger retirement at some point in the worker’s life.

Retirement, lt = 0, is an irreversible decision. Define a stopping time TR ∈ T ,5

the age after which a retired agent provides zero labor effort and does not incur

the fixed utility cost. After retirement, an agent’s utility in each period is u(ct, 0).

I define the retirement age as the age at which an individual chooses to exit the

labor force forever6—which the model allows to differ from the age at which an

individual chooses to start claiming Old-Age, Survivors and Disability Insurance

(OASDI) benefits.7

Planning Problem Preferences over consumption and labor {ct, lt} and retire-

ment decisions {TR} are summarized by an agent’s expected lifetime utility:

v0({ct, lt,TR}) ≡ E
{∫

TR

0

e−ρt[u(ct, lt)− φ(θt)]dt+

∫ T

TR

e−ρtu(ct, 0)dt
}

(2)

in which ρ is the rate of time preference. A utilitarian planner chooses incentive-

compatible (IC) allocations to maximize social welfare:

max
{ct,lt,TR}

v0({ct, lt,TR}) (3)

subject to the law of motion of productivity (1), the definition of indirect utility

(2) and an intertemporal resource constraint. For simplicity, I work in partial

equilibrium, and the planner can save aggregate resources in a small open economy

and borrow at a net rate of return r. I study the planner’s problem for a single

5A random variable TR is a stopping time if {TR ≤ t} ∈ Ft, ∀t ≥ 0. Intuitively, this definition
means that at any time t, one must know whether retirement has occurred or not.

6The irreversible retirement assumption is motivated by empirical and theoretical reasons.
Rogerson and Wallenius (2013) find empirical evidence in the Current Population Survey data
that retirement occurs as abrupt transitions from full-time to little or no work in the U.S. By age
70, the age by which individuals should start claiming SS benefits, 75% of men report working
zero hours. In addition, this assumption is without loss of generality and can be relaxed. The
main predictions of the model remain unchanged if this paper allows for retirees to return to the
labor market at a lower wage.

7In a decentralized economy, workers can actually claim SS benefits whenever they want, and
their optimal retirement benefits system are computed according to the history of their earnings.
Because I work with allocations directly in this primal approach, the SS benefits are implicit in
the model.
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cohort in isolation and abstract from intergenerational redistribution issues.8 The

planner’s resource constraint is therefore:

E
{∫ T

0

e−rtctdt
}

+G ≤ E
{∫

TR

0

e−rtθtltdt
}

. (4)

The left-hand side includes exogenous government spending G9 and the cost of

providing lifetime consumption to agents. The right-hand side is the sum of the net

present value (NPV) of income yt generated by workers until they retire. Because

of the law of large numbers, the aggregate resource constraint is the expectation

over the histories of productivities (θt).

2.1 The Full Information Benchmark

This section solves the planning problem with full information. I highlight features

of the optimal retirement decision that are absent in existing models with no

endogenous retirement choice but have important implications for optimal policy.

Let the rate of time preference equal the rate of return of government savings,

ρ = r. From the intertemporal Euler equation, productivity shocks are fully

insured and consumption is the same across different histories: u′(ct(θ
t)) = λ,

where λ is the marginal social cost of public funds.10 When it is optimal to

work, the marginal rate of transformation of labor into consumption is the wage

rate, θt. Therefore, labor supply satisfies κl
1
ε
t = λθt. With full information, the

planner maximizes social welfare by maximizing total resources available in the

economy. Consumption is smoothed and more productive agents work more hours

and produce more output. It is only natural then that, as long as the fixed cost of

staying in the labor market for highly productive workers is not too high compared

to that of lowly productive workers (Technical Assumption 1), the planner makes

highly productive workers retire later than lowly productive workers.

Assumption 1. For some constant ψ, φ
′

(θ) ≤ ψθε, ∀θ.

Proposition 1. (First-best retirement decision) Suppose that Assumption 1 holds.

Then there exists a time-dependent productivity threshold θfbR (t) such that retire-

ment occurs if and only if productivity falls below it: T
fb
R = inf{t; θt ≤ θfbR (t)}.

8Given that I study insurance and redistribution across one cohort, time is equivalent to age
for the cohort.

9G can capture many sources of exogenous government revenues and expenses as well as
intergenerational transfers to or from another cohort etc.

10λ the multiplier on the planner’s resource constraint (4)
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The proof is in Appendix A. This proposition means that the planner balances

the need to induce the highly productive (high wage) agents to continue working

with the need to avoid the fixed utility cost for less productive (low earning)

workers. In the first-best case, it is therefore, optimal to set productivity cut-offs

below which retirement occurs.

To understand the determinants and lifetime evolution of these retirement

cut-offs, I consider the case in which agents are risk neutral.

In this tractable case, I analytically show that there is an option value of

waiting for higher productivity shocks before retirement. In addition, this option

value decreases over time. Therefore, the implicit labor supply elasticity over the

retirement margin increases over time. The following corollary summarizes this

result in terms of the retirement thresholds θfbR (t).

Corollary 1. (Option value of continued work vs. retirement) Suppose that As-

sumption 1 holds and productivity is a GBM. Denote θS the static participation

threshold.

1. For all t < T , θfbR (t) ≤ θS and the marginal social value of continued work is

negative at retirement, i.e, θfbR (t)lfb(θfbR (t))− h(lfb(θfbR (t)))− φ(θfbR (t)) ≤ 0 .

2. The retirement thresholds θfbR (t) are increasing in t. In addition, lim
t→T

θfbR (t) = θS.

Point 1 of the corollary states that retirement occurs below a productivity level

at which it would be efficient not to work in a static environment. This creates

an option value of waiting for higher productivity shocks and higher earnings be-

fore retirement that is not present in models with permanent productivity shocks

like Michau (2014) or Shourideh and Troshkin (2015). Working today instead of

retiring preserves the option of retiring later at a higher wage, hence the term "op-

tion value" of work. Indeed, when there is no uncertainty on future earnings, the

marginal value of labor is equal to the fixed utility cost of work at retirement, and

the option value is zero. In practice, this option value is negative at retirement.

Rust (1989), Lazear and Moore (1988) and Stock and Wise (1988) estimate struc-

tural models of retirement with uncertain earnings and find that people continue

to work at any age, as long as the expected present utility value of continuing

work is greater or equal to the expected present value of immediate retirement.

Point 2 of the corollary states that the option value of continued work decreases

over time as the horizon shortens. The option value of continued work vanishes at

the end of the horizon and only then is the irreversible retirement decision similar

to a static participation decision and the marginal value of labor equal to the fixed

utility cost of work.
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To develop some intuition, set11 φ(θ) = φ0 + φ1θ
1+ε, and consider the infinite

horizon limit T → ∞. In this case, the retirement threshold is independent of time,

θfbR . The proof in Appendix A proceeds similarly to Leland (1994) by decomposing

the value of social welfare into two terms:

w(θ) = A(φ1)θ
1+ε −

φ0

ρ
︸ ︷︷ ︸

social value of working

forever (SVWF)

− (
θfbR
θ
)x

︸ ︷︷ ︸

discounting at

retirement E[e−ρT
fb
R |θ]

[A(φ1)(θ
fb
R )1+ε −

φ0

ρ
]

︸ ︷︷ ︸

SVWF starting at

retirement threshold

(5)

where the positive constant x and non-increasing function A(φ1) are defined in

the Appendix A. The value of social welfare w(θ) is the value of lifetime utility

of output if the agent were to work forever, minus the value of lifetime utility of

output if he were to work forever at the optimal retirement threshold, discounted

by the expected value of the discount factor at retirement. This value is zero at

retirement. From a smooth pasting argument as in Dixit (1993), the value of its

marginal social welfare is also zero at retirement. This gives an explicit value of

the retirement threshold

θfbR =
(φ0

ρ

x

A(φ1)(1 + ε+ x)

) 1
ε
. (6)

and the static participation threshold is

θS = (
φ0

[κε(1 + ε)]−1 − φ1

)
1
ε

Note that both θfbR and θS are increasing in φ0 and in φ1,
12 meaning that workers

retire earlier when their fixed costs are large. In addition, the marginal social

value of continued work is negative at retirement θfbR < θS.

In summary, the solution of the first-best planning problem generates the

following insights about the implications of optimal retirement: First, lowly pro-

ductive agents retire earlier than highly productive agents. Second, there is an

option value of waiting for higher earnings before retiring. Therefore, the implicit

labor supply elasticity increases over time.

When the planner cannot observe productivity, first-best allocations with con-

stant consumption are not achievable as any agent would be better off retiring

immediately. Nevertheless, history-dependent versions of these intuitions carry

11With φ1 < 1/(κε(1+ε)). The proof in Appendix A, considers in general any constant, power
function, or linear combination thereof φ(θ) = φ0 + φ1θ

1+εφ with εφ ≤ ε.
12For convergence of net present values, I assume that ρ > µ > σ2ε/2 in the proof in the

Appendix A.
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Figure 1: First-Best Retirement Decision
Note: Example of productivity history. Horizontal axis t, vertical axis θt. Retirement region
shaded. θs: static participation cut-off. The retirement region expands with age.

through in the second-best retirement policies.

3 The Social Insurance Problem

This section studies the second-best problem in which productivity and its evo-

lution is private information to the planner. I start by setting up the planning

problem with full IC constraints. Then, I relax the incentive problem using the

First Order Approach (FOA) procedure developed in Farhi and Werning (2013),

and I incorporate the retirement decision. Finally, through a redefinition of the

state space, I write a recursive formulation of the FOA.

3.1 Incentive Compatibility

In the second-best problem, both the agents and the planner observe consumption

{ct}, retirement status TR and income from work {yt}. However, the planner does

not observe {θt}, and therefore does not observe labor {lt = yt/θt} either. As a

result, the planner needs to incentivize the agents with dynamic contracts.

A contract is a both a consumption process {ct} and a stochastic retirement

time TR that are adapted to the filtration generated by {yt}.
13 By the revela-

tion principle, a contract is a mapping from any reported process of productivities

13The planner’s objective is concave and the optimal contract cannot be strictly improved by
randomization over allocations and stopping times.
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σ({θt}) = {θ̃t} to a triplet {c̃t, ỹt, T̃R} of processes adapted to the filtration gen-

erated by {θ̃t}. It specifies the consumption, output, and retirement status at any

time. An allocation is IC if it is the outcome of a contract in which it is optimal for

the agent to truthfully reveal his true productivity process {θt}. In other words,

for any reporting strategy σ, E{v0({ct, lt,TR})} ≥ Eσ{v({c̃t, ỹt, T̃R})}, where Eσ

is the expectation over the paths generated by reports. The planner commits to

a non-renegotiable contract at time zero.

In order to characterize allocations, I now relax the planner’s incentive con-

straints.

3.2 Recursive Formulation of the Planning Problem

The planner’s cost of providing an allocation {ct, lt = yt/θt,TR} is

K0(v) = min
{c,y,TR}

E
{∫ T

0

e−ρtctdt−

∫
TR

0

e−ρtytdt
}

(7)

By duality, the planner’s problem is equivalent to minimizing the cost of provid-

ing allocations (7), subject to a minimum promised utility v0 ≥ v, full incentive

compatibility and the law of motion of productivity (1).

The First Order Approach (FOA) relaxes the IC constraints by restricting

attention to local deviations. An IC mechanism must be immune to such devi-

ations. As a result, the sensitivity of promised utility with respect to reports,

denoted by ∆t ≡ ∂θvt, satisfies an envelope condition on the agent’s optimal re-

porting problem. I discuss the optimal reporting problem in detail in Appendix

A.

Kapička (2013), Farhi and Werning (2013), and Golosov et al. (2016) im-

plement the FOA in the context of optimal taxation, while Williams (2011) and

Sannikov (2014) do so in the context of optimal contracting in continuous-time.

It is a necessary, but not generally sufficient, condition for an allocation to be

IC.14 In the numerical analysis, I verify ex-post that the allocations obtained from

the FOA satisfy full incentive compatibility using a method developed by Farhi

and Werning (2013) that does not require solving for the full incentive-compatible

mechanism. I continue the recursive formulation of the problem and reparametrize

the state space in a simpler form. The lemma below derives the law of motion of

promised utility and its sensitivity and allows me to solve the problem recursively.

Lemma 1. (Law of motion of promised utility and sensitivity)

14Nevertheless, it gives a lower bound on the cost of providing a given promised utility to the
agents.
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1. The law of motion of promised utility is

dvt = (ρvt − u(ct,
yt
θt
) + φ(θt))dt+ θt∆tσtdBt (8)

with the boundary condition

vo = v.

2. (FOA) The law of motion of the sensitivity process ∆t ≡ ∂θvt is

d∆t =
[(

ρ− µt

)

∆t − uθ(ct,
yt
θt
) + φ′(θt)− σ∆,tσt

]

dt+ σ∆,tσtdBt (9)

with the boundary condition

∆0 = argmin
∆

K0(v,∆).

Point 1 of this lemma states that the drift of promised utility is the discounted

flow utility which features the fixed cost φ(θt). Importantly, it highlights that the

volatility of promised utility is controlled by the sensitivity process. The boundary

condition is the promise-keeping constraint. Point 2 of the lemma characterizes

how the sensitivity with respect to reports is linked to allocations in an incentive-

compatible mechanism, i.e., the evolution of informational rents.15 Technically, the

term uθ constitutes the rent in the static Mirrlees model, while the term σ∆,sσt is

a dynamic rent that summarizes an agent’s advance information about his future

productivity profile. The term µ∆s captures how a misreport today affects the

planner’s perceived distribution of productivities in the future. The term φ′(θt)

is the novel departure from the dynamic taxation literature and constitutes rents

due to the fact that fixed costs are unobserved by the planner. The boundary

condition ensures that the initial sensitivity is chosen to minimize the ex-ante cost

of providing promised utility, v. The proof is in Appendix A.

These recursive formulations allow me to analyze the relaxed planning prob-

lem. In a final step, I work for tractability with dual variables of (vt,∆t) that

are derivatives of the cost function with respect to these state variables: λt = Kv

and γt = K∆. The economic intuition behind these state variables is that they

represent the marginal change in the cost of providing allocations when promised

utility vt or, respectively, its sensitivity ∆t is marginally increased.16 Then I solve

the planner’s problem recursively in the endogenous state space (λt, γt, θt, t), which

15Informational rents are rents the highly productive agents derive from having information
on their types that is not available to the planner.

16Because of the Pontryagin Maximum Principle, (see Bismut (1973)) this method of working
directly with the Lagrangians of the problem makes the problem tractable.
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is much smaller than the space of all histories of productivities.

4 Optimal Retirement Policies

For given allocations {c∗t , y
∗
t ,T

∗
R } that solve the relaxed planning problem, the

optimal distortion in the choices of individuals can be summarized by wedges.

Agents choose whether to work or retire, work hours conditional on working,

and savings. Below I define the corresponding retirement, labor, and savings

wedges which will be the main focus of this section. Section 6 proposes two

implementations of these allocations and corresponding wedges in a decentralized

economy.

4.1 Wedges: A Measure of Distortions

Definition 1. The labor wedge (or intratemporal wedge) τL conditional on work-

ing is the gap between the marginal rate of substitution and the marginal rate of

transformation between consumption and labor before retirement.

τLt ≡ 1 +
1
θt
ul(c

∗
t ,

y∗t
θt
)

uc(c∗t ,
y∗t
θt
)

(10)

The savings wedge (or intertemporal wedge) at time t and horizon s is the dif-

ference between the expected marginal rate of intertemporal substitution between

time t and time t+ s and the return on savings.

τKt,s ≡ 1− e−(ρ−r)s
uc(c

∗
t ,

y∗t
θt
)

Et

{

uc(c∗t+s,
y∗
t+s

θt+s
)
∣
∣
∣Ft

} (11)

The intertemporal wedge at time t is the marginal intertemporal wedge between

t and t+ dt, i.e., τKt =
dτKt,s
ds

∣
∣
∣
s=0

.

Let vlft (TR; {c
∗
t , y

∗
t , φ̃t}) be the expected utility under laisser-faire at time t

of an agent who privately chooses to retire at TR given second-best allocations

{c∗t , y
∗
t } and a virtual fixed cost φ̃t. I define the retirement wedge as the change in

fixed cost φ̃t = (1+τφt )φ(θt) that makes the agent privately choose the second-best

retirement decision T ∗
R given {c∗t , y

∗
t , φ̃t}, ie:

T
∗
R = argmax

TR

vlft (TR; {c
∗
t , y

∗
t , (1 + τφt )φ(θt)}) (12)

A positive labor wedge implies that labor is distorted downwards. The savings

wedge represents the deviation from the Euler equation. These two wedges have
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been the main focus of the dynamic taxation literature.

A positive (resp. negative) retirement wedge means that participation is dis-

torted at time t towards early (resp. delayed) retirement. It is equal to the

increase (rep. reduction) in fixed utility cost that would make the agent privately

choose the second-best retirement decision given {c∗t , y
∗
t }. The marginal retire-

ment decision is forward-looking. At each age, the agent compares his expected

value of continued work against his expected value of retiring today. For exposi-

tory purposes, I define the retirement wedge implicitly and I provide its recursive

representation later in this section.

4.2 Optimal Labor and Savings Wedges

Before focusing on the retirement wedge, I characterize the standard labor and

savings wedges in the model with endogenous retirement. The proofs are presented

in Appendix A.

The labor wedge (Appendix A. Proposition 8) is shaped by similar forces as

in the standard model. In particular, when the cross-sectional variance of log-

productivity increases over time, the labor wedge increases over time due to the

insurance motive. But, the cost of insurance is decreased work incentives; the

more elastic the labor supply, the stronger the effect. As a result, the labor wedge

is related to the inverse of the Frisch elasticity of labor supply.

Under separable utility, the standard Inverse Euler Equation (Rogerson (1985);

Golosov et al. (2003)) holds and leads to a positive savings wedge during work

years (Appendix A. Proposition 9). The main difference lies in the endogenous

retirement ages when savings are not distorted anymore.

4.3 The Net Retirement Wedge

The labor, savings and retirement wedges defined above, summarize the optimal

distortion in choices of the agents. With endogenous retirement, these distor-

tions interact in nontrivial ways. First, a positive labor wedge will distort both

hours and the retirement age downwards. Second, a positive savings wedge will

discourage retirement savings and delay retirement.

Hence, part of the retirement wedge is simply undoing the effects of labor and

savings distortions on retirement. Therefore, similar to Stantcheva (2017), I define

the net retirement wedge as the net distortion on retirement that filters out the

effects of labor and savings distortions on retirement.

To build intuition, suppose agents are risk neutral in consumption. Since
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agents are risk-neutral in consumption, the government does not need to distort

savings. Appendix A.10 shows that if the government has a redistributive motive

in the initial period,17 the persistence of the productivity process determines how

initial heterogeneity affects the labor wedge at time t,
τLt

1−τLt
= 1t

τL0
1−τL0

.The change

in fixed utility cost that would make the agent privately choose the second-best

retirement decision given {y∗t }
18 is:

τφt φ(θt) = τL0
ε

1 + ε
y∗t

︸ ︷︷ ︸

downward retirement distortion

from labor wedge

−
τL0

1− τL0

ε

1 + ε
εφ,θ(θt)

︸ ︷︷ ︸

net wedge

φ(θt) (13)

Where εφ,θ(θt) is the elasticity of the fixed utility cost with respect to productivity.

The first term is a positive fixed cost and comes from the fact that the of labor

wedge distorts retirement downward. The net retirement wedge τRt corrects for

this effect (τRt − τφt )φ(θt) = −τL0
ε

1+ε
y∗t and is equal to the second term of (13) in

equilibrium.

In the more complex case with agents who are risk averse in consumption, the

definition of the net retirement wedge is presented in Appendix A. 8.

4.4 The Optimal Retirement Wedge

Proposition 2. The optimal retirement and labor wedges satisfy the following

relation:

τRt = −
τLt

1− τLt

ε

1 + ε
εφ,θ(θt) (14)

In particular τRt (θ
t) ≥ 0 iff φ′(θt) ≥ 0.

The proof is in Appendix A.8. Despite the complexity of the model, this

proposition leads to a simple equilibrium relation between the labor wedge and

the net retirement wedge. The final point of the proposition states that if the fixed

utility cost is increasing (resp. decreasing) in productivity, the social insurance

system incentivizes delayed (resp. early) retirement. Therefore, the relative differ-

17The government evaluates welfare using non-increasing Pareto weights α(θ0). Then
τL
t

1−τL
t

=
τ(θ0)

1−τ(θ0)
= (1 + 1

ε )
1
θ0

Λ(θ0)−F (θ0)
f(θ0)

where Λ(θ0) =
∫
∞

0
α(θ0)dF (θ0)

18With quasilinear utility in consumption, the government minimizes the efficiency losses of
output. Aggregate consumption is pinned down by output through the intertemporal budget
constraint.
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ence of fixed utility cost between highly productive and lowly productive agents

plays a key role in signing the net labor wedge. I discuss empirical estimates and

calibration of this fixed cost in 5.2.

4.5 The Insurance Value of Endogenous Retirement

4.5.1 The Redistributive and Insurance Role of the Retirement Wedge

The fixed utility cost has two compounding effects on social welfare that deter-

mine the optimal net wedge. First, if the fixed cost is larger for highly productive

workers relative to lowly productive workers, continued work mostly benefits lowly

productive workers and therefore reduces inequality. This results in a positive ef-

fect on social welfare. The opposite would hold if the fixed cost was decreasing

in productivity. Second, if the fixed cost is increasing in productivity, the wel-

fare gains from delayed retirement are modulated by the size of labor distortions

because of their negative effect on labor force participation (on top of hours).

The larger the labor distortions, the harder it is for the government to incentivize

delayed retirement and therefore the larger is the optimal net retirement wedge.

Set φ(θ) = θ
1+1/εφ

1+1/εφ
, then εφ,θ(θt) = 1+1/εφ and the ratio of the net retirement

wedge and labor wedge is

τφt /(
τLt

1− τLt
) = −

1 + 1/εφ
1 + 1/ε

(15)

The net retirement wedge relative to the labor wedge is larger when ε is larger,

or when εφ is lower. Given labor distortions, the larger is the Frisch elasticity ε,

the harder it is for the government to incentivize delayed retirement and therefore

the larger is the optimal net retirement wedge. The lower is εφ, the larger are the

welfare gains from reducing inequality by incentivizing delayed retirement. and

the larger is the net wedge.

Technically, the insurance value of the net retirement wedge is related to the

fact that individuals possess private information about their types and fixed cost,

hence an efficient allocation must allow them to collect rents on that informa-

tion. If highly productive workers benefit less from delayed retirement than lower-

productivity workers (φ′ ≥ 0), then incentivizing for delaying retirement loosens

their incentive constraints. If workers benefit equally from delayed retirement

(φ′ = 0), it is optimal not to distort retirement decisions beyond the downward

retirement distortions due to the labor wedge. These downward retirement dis-

tortions are captured by the gross retirement wedge.
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4.5.2 Consumption Smoothing and Optimal Retirement

In addition to the wedges, the insurance value of endogenous retirement is present

in consumption after the endogenous retirement age, its net present value, and

the percentage change, if any, in consumption before and after retirement, which I

denote as
∆c

T
+
R

c
T

−

R

with an abuse of notation. After retirement, the incentive problem

stops since the agent does not need to be incentivized to work. Therefore, the

planner does not need to distort consumption decisions after retirement.

Lemma 2. Suppose r = ρ and u is strictly concave in consumption. Then, post-

retirement consumption is constant.

The result is intuitive: Since output is zero after retirement, there is no infor-

mation for the planner to learn about the agent’s real productivity after retirement.

Since there is no incentive constraint after retirement, the problem is one of full

insurance. The Euler equation holds intertemporally, and the marginal utility of

consumption at l = 0 is equalized cross-sectionally. Since uc is strictly decreasing,

it follows that consumption is constant after retirement.

This lemma implies that the retirement age is an endogenous age after which

there is perfect consumption smoothing. In addition, the level of consumption after

retirement and its net present value only depend on the history of productivities

up until retirement. However, this lemma allows for a distortion in consumption

“at” retirement between the last working period and the first period in retirement.

The following proposition shows that such a distortion is not optimal.

Proposition 3. Suppose r = ρ and u is strictly concave in consumption then post-

retirement consumption is equal to the final working period consumption: c
T

+
R

=

c
T

−

R
.

To minimize distortions, agents are given their last period consumption at

retirement in the separable utility case. Highly productive agents are offered cor-

respondingly higher retirement consumption than lowly productive agents. Tech-

nically, this lemma is a consequence of the smooth pasting condition (Dixit (1993)).

It implies that the marginal change in the cost of providing an infinitesimal

promised utility before and after retirement are equal. In the separable utility

case, it implies that there is no distortion in consumption at retirement.

Since consumption is smoothed after retirement and there is no labor effort,

the agent’s utility is not sensitive to the reports after retirement. The endogenous

retirement age is therefore the age at which the sensitivity is zero.19 It is more

19For incentive compatibility, given the same past history of productivity, promised utility is
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complex than the first-best retirement age since it depends on the whole history

of productivities through the endogenous sensitivity. In Appendix A.15, I show

that under Assumption 1 and risk neutral consumption, the optimal retirement

decision is such that highly productive agents retire later than lower-productivity

agents.

4.6 Age-Dependency of The Retirement Wedge

The analysis above links the retirement and labor wedges. It is also useful to pro-

vide a recursive representation of the optimal net wedge and highlight its evolution

over time.

Proposition 4. (Recursive Representation of the Net Wedge)

The optimal net wedge evolves according to

dτRt = −σc,tσ
2
t

(

εφ,θ(θt) + τRt
θtε

′
φ,θ(θt)

εφ,θ(θt)

)

dt+ τRt

(du′(ct)

u′(ct)
+
dεφ,θ(θt)

εφ,θ(θt)

)

(16)

The proof is in Appendix A.9. To understand this evolution suppose that the

elasticity of the fixed cost with respect to productivity is a constant parameter

εφ,θ. Then equation (16) becomes

dτRt = −σc,tσ
2
t εφ,θdt+ τRt

du′(ct)

u′(ct)
(17)

As for the labor wedge in Farhi and Werning (2013), equation (17) has a drift

term and an autoregressive term. The first term of is the instantaneous covari-

ance between log-productivity and the inverse of marginal utility of consumption

scaled by the elasticity of the fixed cost with respect to productivity. When the

instantaneous variance of log-productivity is non-zero, this drift is of the same

sign as εφ,θ. If εφ,θ > 0 i.e φ′ > 0, then the net wedge becomes more negative

over time i.e the incentives for delayed retirement increase over time. The co-

variance of consumption growth and log-productivity represents the benefits of

increased insurance since it depends on fluctuations in consumption and the level

of risk aversion. In addition, the larger is the benefit of delayed retirement for

lower-productivity agents relative to highly productive, the larger are the insur-

ance gains from incentivizing delayed retirement, explaining the role of elasticity

εφ,θ. The second term is autoregressive and is scaled by the change in the marginal

utility of consumption. Since there is a positive savings wedge that vanishes at

higher for higher reports, so ∂θv = ∆ ≥ 0. The sensitivity process starts at a positive value
defined by ∆0 = argmin∆K0(v,∆), and follows the law of motion (9) until it hits zero, at which
point retirement is triggered, T ∗

R = inf{t; ∆(θt) = 0}.
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retirement, consumption trends downwards and marginal utility of consumption

trends upwards over time.20 Thus, this term is of the same sign as the net wedge.

As a result, if εφ,θ > 0, the incentives for delayed retirement increase over time.

In addition, since the variance of consumption growth vanishes at retirement, the

net wedge becomes more strongly correlated over time. The general formula (16)

captures these effects, while accounting for the fact that a pathwise increase in

the benefit of delayed work for lower-productivity workers relative to highly pro-

ductive workers, dεφ,θ(θt) > 0, leads to an increase in the insurance gains from

delayed retirement.

5 Numerical Analysis

The roadmap of the numerical analysis presented below is the following: First,

I discuss the quantitative importance of extensive margin of labor supply in old

age through the fixed cost of staying in the labor market; second, I contrast the

labor, savings, and retirement wedges to those resulting from a standard model

with fixed or exogenous retirement; third, I explain the phenomenon of wedge

smoothing effect over the life cycle; and fourth, I examine the progressivity of the

retirement and labor wedges. The numerical algorithm, calibration details, and

additional results are presented in Computational Appendix B.

Before showing simulation results, I discuss the empirical evidence on the

extensive margin of labor supply in old age and the model’s crucial parameter, i.e.

the fixed cost of staying on the labor market and its evolution.

5.1 Empirical Evidence on the Extensive Margin of Labor

Supply in Old Age

There are various estimates of the Frisch elasticity of labor supply both on the

intensive and extensive margin. These estimates range from the small 0-0.5 in the

micro literature to the large 2-4 in the macro literature. Reichling and Whalen

(2012) and Peterman (2016) provide a survey of the estimates of the Frisch elas-

ticity of labor supply in the micro literature and in the macro literature.

To reconcile these differences, French (2005), Rogerson and Wallenius (2013),

Prescott et al. (2009), and Chang et al. (2014) estimate life cycle models with

endogenous retirement. They consider non-convexities in the labor supply decision

20Since from the inverse of the marginal utility of consumption is a martingale, the marginal
utility of consumption is a submartingale and its paths trend upwards.
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due to fixed time costs that match the hours worked and labor force participation

of old workers. They find that one needs large fixed time costs, around 5 to 6

hours a day, to match the work hours and the retirement data. In their estima-

tions of extensive margin elasticities, Chetty et al. (2012) find, in a model similar

to Rogerson and Wallenius (2013), that extensive margin labor supply responses

ought to be large to explain the gap between the micro and macro Frisch elastici-

ties. In addition, Banks et al. (1998) and Aguila et al. (2011) posit that there are

sizable fixed consumption costs related to work. In light of this, I set an intensive

Frisch elasticity of 0.5 (cf. Chetty (2012)), and I endogenously calibrate a fixed

utility cost of staying in the labor market that depends on age and productivity.

After the calibrations, I compare the time value and consumption value of the

resulting estimates with the time costs and consumption costs estimated in the

literature.

There is empirical evidence of variation in the extensive margin elasticities of

labor supply by age. Alpert and Powell (2013) find that participation elasticities

on the extensive margin with respect to after-tax labor income rise from close

to zero in young age to 0.76 for women and 0.55 for men at age 65 in the US.

Using French administrative data, Sicsic et al. (2020) find that french workers

have substantially larger labor supply elasticities after age 50. This is consistent

with the behavioral responses around retirement documented around the world

by Gruber and Wise (2002). Indeed, in the US, 55 is the first legal point of entry

into retirement through disability in the OASDI program. As a result, I let the

fixed cost increase with age.

Finally, the evidence on the relative magnitude of extensive margin elasticities

of labor supply between high and low earners is not conclusive. On the one hand,

Gruber and Saez (2002) and Kleven and Schultz (2014) find that the elasticity of

taxable income (ETI) is larger for high earners. Nonetheless, it is hard to disen-

tangle whether this difference comes from hours worked, participation, unobserved

effort, career choices, tax avoidance, and/or evasion. On the other hand, Sicsic

et al. (2020) find that in France, where there are large transfers to low wage work-

ers, the bottom half percentile has a larger ETI than the middle 40%-percentile,

but a lower ETI than the top 10% of wage earners. Since the relative magnitude

of the fixed cost of work between high wage and low wage workers matters for the

evolution of the net retirement wedge, I allow for two simulations. Simulation A

restricts the fixed cost to increase in wages. In contrast, Simulation B restricts

the fixed cost to decrease in wages.

22



5.2 Calibration

Exogenously calibrated parameters In the simulated economies, agents live

for T = 55 periods, each period corresponding to 1 year from age 25 to 79. I set

the discount factor and the interest rate equal to ρ = r = 0.05. Since Deaton

and Paxson (1994), there is evidence that inequality in consumption and income

increases with age within a cohort. Consistent with these findings, I assume that

productivity is a geometric random walk with an age-dependent drift that captures

a hump-shaped productivity profile:21

log(θt) = µ(t) + log(θt−1) + ǫt

where ǫt ∼ N (−σ2

2
, σ2).

Storesletten et al. (2004) have found a high estimate of the volatility σ2
H =

0.0161 and Heathcote et al. (2010) found a low estimate of σ2
L = 0.00625. In the

benchmark simulations, I choose an intermediate value of σ2
M = 0.0095, in line

with Heathcote et al. (2005)’s estimate of a medium volatility. I calibrate µ(t)

using empirical analogs from wage data from the American Community Survey

(ACS), provided by the U.S. Census Bureau, controlling for possible selection in

the data. The method and calibrated values, presented in Appendix B, give an

average per-period productivity growth of +7% per year at age 25 and an average

productivity decline of −4% per year at age 79.

Preferences during working years are:

log(ct)−
κ

1 + 1
ε

(yt
θt

)1+ 1
ε
− φ(t)

with ε = 0.5 and κ = 1, consistent with the estimate of Chetty (2012). During

retirement, per period utility is simply log(ct). While many parameters are read-

ily estimated from the literature, the fixed cost function φ(θ, t) is an important

parameter to calibrate in the model. I endogenously calibrate the fixed costs in a

baseline U.S. economy.

Endogenously matched parameters in the baseline US economy The

baseline economy is the income fluctuation model in which agents who start with

zero asset holdings, experience idiosyncratic productivity shocks, freely save and

borrow in a risk-free asset subject to the natural borrowing limit, choose their

consumption, work hours, and their retirement age. For simplicity, I assume that

21Farhi and Werning (2013) and Stantcheva (2017) consider productivity that is a geometric
random walk without drift.
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agents start claiming retirement benefits whenever they exit the labor force with-

out loss of generality.22 The tax system is set to mimic the U.S. tax system. I

follow Heathcote et al. (2014) and set the labor income tax equal to the approx-

imation function:

T (yt) = yt − λtaxy
1−τtax
t

where their value of the progressivity parameter τtax is 0.181. The tax on savings

is set to a flat tax rate equal to 20% of capital gains.

The SS benefits system in the baseline features three specific ages that are

important for the availability and value of retirement benefits in the US. First,

the Full Benefits Age (FBA), which I set at 66 for the present cohort, is the age

at which a worker can claim the full amount of retirement benefits, the Primary

Insurance Amount (PIA). The PIA is a function of the Average Indexed Monthly

Earnings (AIME), the average monthly earnings of the 35 highest earning years.

The PIA follows a progressive benefit schedule.23 Thus, I use the same method

used for tax functions and approximate SS benefits using

PIA(AIME) = λssAIME1−τss .

I follow Heathcote et al. (2014) and estimate that τss = 0.37 by running a re-

gression on the log version of this equation, the details of which are in Appendix

B.

Second, the Early Eligibility Age (EEA=62) is the age at which an agent can

start claiming retirement benefits. For each year between the EEA and the FBA,

an individual who starts claiming benefits at that age loses 6.67% points of the PIA

per early year (the Actuarial Reduction Factor, ARF). For instance, someone who

retires at age 63 gets 80% of his PIA. Third, benefits are automatically distributed

after age 70. For each year between the FBA and 70, an individual who starts

claiming benefits at that age gains 8% points of the PIA per year delayed (the

22Making the retirement age and claiming age different turns out not to matter quantitatively
for the results in numerical tests. First, because the SS adjustment rate is higher than the
real interest rate, workers would only want to start claiming benefits while working if they
were tightly borrowing constrained. Because of log utility in consumption, workers never hit
the natural borrowing limit. Therefore, the only case in which a worker would want to start
claiming benefits while continuing to work is when a previously highly productive worker, with
large expected SS benefits, becomes so unproductive that his current income and accumulated
assets are not enough for him to sustain his high level of consumption. Because of the high
persistence in the productivity process, the fraction of such workers is small.

23In the U.S. SS system, the PIA is a step function of the AIME. The first bracket gives a PIA
with a replacement rate of 90% of the AIME until the AIME reaches $895. The second bracket
gives a replacement rate of 32% until it reaches $5,397. Finally, the third bracket replaces 15%
of the AIMEs over $5,397 and below an earnings cap of $127,200.
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Delayed Retirement Credit, DRC). For instance, someone who retires at age 70,

gets 132% of his PIA, the maximum actuarial24 adjustment.

In this baseline economy, I calibrate the fixed costs and the parameters of the

tax function λtax and the SS function λSS. To discipline the level of taxes λtax,

I endogenously match the income-weighted average marginal tax that Barro and

Redlick (2011) finds to be around 37%. Another target for λSS is to generate

the average replacement rate of SS benefits at the FBA. Munnell and Soto (2005)

report this value at 42%.

Following the discussion on the empirical evidence on the Subsection 5.1, I

calibrate specifications of fixed costs φ(θ, t) that have one component that increases

in age φ1(t) and one component φ0(θ) that increases in productivity in Simulation

A, and decreases in productivity in Simulation B: φ(θ, t) = φ0(θ) + φ1(t). The

time-dependent component of the fixed costs is constant until age 55 - when the

first point of entry into retirement through the OASDI’s disability program occurs

in the U.S. - then increases linearly until age 79 as φ1(t) = a + b(t − 55)+. The

productivity-dependent component of the fixed cost is logarithmic, φ0(θ) = φ ln(θ)

where φ > 0 in Simulation A and φ < 0 in Simulation B. I calibrate the levels φ

and a, in order to generate moments of labor force participation rate in old age

such as the labor force participation rates for ages 62-64 (50.4% in 2016 in the

U.S. population from the Bureau of Labor and Statistics report Toossi (2015)),

ages 65-69 (32.2%), and I normalize their relative ratio to match the labor force

participation rate of the young for ages 25-54 (81.3%). I calibrate the time slope

b, in order to generate a measure of age change in extensive margin elasticity of

labor supply in old age, as in French (2005). 25

Table 1 summarizes the calibrated values. Simulations A and B yield a value

of φ = 0.4 and φ = −0.7 respectively. In particular, in Simulation A (resp B) the

fixed cost of the mean wage agent is equivalent to 4.26 hours (resp 6.88 hours) per

day in terms of time cost at age 55 that increases by 10 minutes (resp 2.6 minutes)

each year until attaining 8.67 hours (resp 7.75 hours) per day at age 79.26 These

estimates are within the range of estimates in Chang et al. (2014).

24The standard term used for these adjustments does not necessarily imply that they are
actuarially fair.

25I match the percentage change in the average retirement age after a 1% unexpected increase
in income at age 65.

26To compute the time value of fixed utility costs, I follow Shourideh and Troshkin (2015) and
use parameters from Chang et al. (2014) who estimates a model similar to this paper’s baseline
economy. I take the estimates of κ̂ = 82.70 from Table 1 of Chang et al. (2014) for ε = 0.5
and the lowest variance σx, which (annualized) is closest to the median variance σM . I link the

estimate of the fixed utility cost φ̂ to its time cost l̂ by solving κ̂
l̂1+1/ε

1 + 1/ε
= φ̂.
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Table 1: Calibration

concept functional form Sim A Sim B source/target

Exogenously parametrized

log θt = µ(t) + ρ log θt−1 + εt ρ = 1 Storesletten et al. (2004)

productivity
ε ∼ N(−σ2

2 , σ
2)

σ2M = 0.0095 Heathcote et al. (2005)

µ̂ : 7% ց −4% Ruggles et al. (2018)

utility log c− κ
1+ 1

ε

(yθ )
1+ 1

ε κ = 1, ε = 0.5 Chetty (2012)

Endogenously calibrated in baseline U.S. economy

fixed cost

φ0(θ) = φ ln(θ) φ̂ = 0.4 φ̂ = −0.7 E25−54, E62−64, E65−69

φ1(t) = a+ b(t− 55)+
â = 4.26h/d â = 6.88h/d 81.3%, 50.4%, 32.3%

b̂ = 10mn/d b̂ = 2.6mn/d ε65 = 1.05

tax function T (y) = y − λtaxy
1−0.181HSV

tax λ̂tax = 0.83 λ̂tax = 0.83 T ′(y) = 37%

SS function PIA(AIME) = λSSAIME0.67ACS
SS λ̂ss = 0.62 λ̂ss = 0.64 PIA = 42%

For each simulation, I compute the policy functions for the calibrated values

above. From these policy functions, I perform a Monte Carlo simulation with

N=100,000 draws. Ex-ante welfare is set to result in an aggregate cost of alloca-

tions equal to that in the baseline economy, which provides the value of G for each

simulation. To compare allocations from different simulations, I fix the seed across

Monte Carlo simulations, and I convert G into the US national debt-per-capita

in dollar terms when needed. This gives a sense of outcomes achievable without

additional government debt and ensures consistency across simulations.

To have a sense of the fit of this calibration to the data, Appendix B contains

graphs of the implied labor force participation rate and hazard ratio at each age,

the implied mean consumption, income, total assets, and assets of retirees, as

well as the variances of wages, income, and consumption over the life cycle in

the baseline economy. The labor force participation rates that result from the

fixed costs match the BLS data in Toossi (2015) to a first order, with spikes in

retirement at 62 and 66. In particular, the variances of log wages and earnings

match the estimates in Heathcote et al. (2010).
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5.3 Results

The labor and savings wedges with and without endogenous retirement

Figure 2 contrasts the labor and savings wedges that result from the optimum for

each value of φ to those of a model with exogenous retirement where the retire-

ment age T exo
R is independent of the history of income realizations. The process

for T exo
R is exogenously chosen so that both models generate the same labor force

participation rate over the life cycle in the baseline economy. Hence, the exper-

iment holds observed retirement behavior fixed and determines the difference in

optimal policies if those retirement ages were the result of an endogenous decision

or were generated by an exogenous process.

In Panel A, the labor wedge is smaller when φ > 0. The reason is that some of

the burden of the labor wedge is achieved by the redistribution and insurance value

of endogenous retirement. On the other hand, when φ < 0, continued work has a

negative insurance or redistributive role , and the role is on the labor wedge, which

becomes larger. The labor wedge grows until old age when agents start retiring.

Then, the reduction in inequality among remaining workers, when retirement is

endogenous, leads to the a drop in the labor wedge. Thus, the labor wedge is

slightly hump-shaped.

Panel B plots the savings wedge in percentages of net interest as a function of

age. The savings wedge is small in units of gross interest on savings but can be as

high as 30% of net interest. It is larger when φ < 0. Compared to the exogenous

retirement case, savings are less distorted when continued work has a positive re-

distributive and insurance role (φ > 0) since endogenous retirement helps in the

government’s screening problem. On the other hand, savings become more dis-

torted when endogenous retirement increases the rents of highly productive agents,

(φ < 0). In addition, as shown in Appendix A. Proposition 9, the savings wedge is

proportional to the variance of consumption growth. At retirement, consumption

is constant and the savings wedge is zero. This force pushes for decreasing the

savings wedge over time. In particular, the predictable component of the inno-

vations to productivity, captured by µ(t), is insured through the intertemporal

(savings) wedge. The calibrated values µ̂(t) generate productivity profiles that

are hump-shaped in age. Therefore, the savings wedge is hump-shaped in age

as a combination of its convergence to zero at retirement and the intertemporal

insurance of µ(t).
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Figure 2: Average labor and savings wedges over time. The labor and savings
wedges are smaller when continued work has a positive insurance value (φ > 0).
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The retirement wedge Figure 3 presents the net retirement wedge scaled by

the fixed cost τRt φt for the ease of comparison with a fixed utility cost of work.27

The net retirement wedge captures the true incentive effect of the social insurance

system on retirement. A positive (negative) net retirement wedge means that

participation is distorted towards early (delayed) retirement after filtering out the

effects of labor and savings distortions on retirement. With φ = 0.4, delayed

retirement has a positive insurance value and the wedge is negative, i.e. it is

optimal to distort retirement decisions upwards, against downward retirement

distortions due to the labor wedge. The opposite is true when φ = −0.7. Finally,

the net wedge is declining when φ = 0.4, and growing otherwise, as inferred in the

drift of formula (16).

The sign of φ′
t(θ) clearly matters for the direction of the net wedge. Shourideh

and Troshkin (2015) calibrate this fixed cost of work using the HRS and PSID

and find that it increases with lifetime earnings. As discussed above, one possible

interpretation of the fixed cost is work-related expenses. Banks et al. (1998)

(Figure 7.) and Aguiar and Hurst (2013) (Figure 2.A) empirically estimate that

work-related expenses are hump-shaped in age just as our estimate of the drift of

log-productivity µ̂(t). These suggest that taking the fixed cost to increase with

productivity, i.e. φ > 0, is a reasonable assumption. I do not, however, take

a stand on the sign of φ, whose empirical estimate is an important question of

study. Instead, in the rest of the paper, I will consider the implications of both

possibilities and discuss policy implications for retirement benefits systems around

the world and the US SS system in particular.

Retirement wedge smoothing over the life cycle Figure 4 plots the rela-

tionship between the net retirement wedge at age t and the net retirement wedge

at age t− 1 for middle-aged adults (age 35 in Panel A) and old-aged workers (age

55 in Panel B).28 At a young age, the net wedge is more volatile from one period

to the next. However, it becomes more deterministic over time, leading to a retire-

ment wedge smoothing result. The previous dynamic taxation literature has found

a similar “tax smoothing” result for the labor wedge (which continues to hold in

the presence of endogenous retirement.) Similar intuitions for these results carry

through. A wage shock early in life is persistent. It has consequences over many

years, leading to a larger present value change in the income flow than a shock

27In utility terms, the fixed cost of work at age 55 of the mean wage agent is 0.154 for φ = 0.4
and 0.65 for φ = −0.7. An alternative (and equivalent) definition of the net retirement would
be directly in levels of the fixed utility cost.

28Arbitrary cut-offs for these age categories yield similar results.
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Figure 3: Average net retirement wedge over time.

later in life. As the agent smoothes out the shock, consumption at a young age

will react strongly to unexpected changes in wages. The variance of consumption

growth and the savings wedge vanish at retirement. Therefore, from the evolution

of the net retirement wedge in Proposition 4, the net retirement wedge becomes

more strongly correlated with age.

Progressivity or regressivity of the net retirement and labor wedges.

Figure 5 plots the labor wedge τLt , against the contemporaneous productivity

shock, θt, at the arbitrarily chosen prime age of 44 and Figure 6 does a similar

exercise for the net retirement wedge. Panels A (resp. B) are for simulations with

a positive (resp. negative) insurance value of delayed retirement φ = 0.4 (resp.

φ = −0.7).

The labor wedge is always regressive in the short-run, whether delayed retire-

ment has a positive insurance value (Panel A) or the opposite (Panel B). This

short-run regressivity of the labor wedge also holds in the model with exogenous

retirement. However, with endogenous retirement, the labor wedge is less regres-

sive in the short-run when continued work has a positive insurance value (Panel

A relative to Panel B). The reason is that short-run regressivity captures the fact

that good productivity shocks raise consumption and lower labor distortions, at
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31



least in the short-run. When delayed retirement has a positive insurance value,

subsidizing delayed retirement with a negative net retirement wedge decreases the

need to reduce the labor wedge.

When φ > 0, the net retirement wedge is progressive in the short run. On the

other hand, when φ < 0, the net retirement wedge exhibits short-run regressivity.

The reason for this inverse pattern is that both the labor wedge and the net

retirement wedge are tools to insure against earnings risk. At the optimum, they

evolve according to the key relation (14). The labor wedge always has positive

insurance and redistributive effects. The same is true for incentivizing delayed

retirement (negative net retirement wedge), only if φ > 0. Accordingly, the two

instruments comove negatively when φ > 0 and positively when φ < 0.

6 Implementation and Policy Implications

The previous sections determine the wedges that summarize distortions from opti-

mal allocations in a direct revelation mechanism. In this section, I instead consider

what policy instruments can implement those allocations. There are many possi-

ble implementations. Theory alone does not guide as to which one to choose since

political or administrative constraints are important for tax and pension systems

in practice. I present two implementations that are particularly useful because

they are variations in existing policies around the world and the US.

6.1 Retirement Benefits

First, I describe the decentralized economy and introduce some notation. In the

decentralized economy, agents choose whether to work or retire wt ∈ {0, 1}, hours

conditional on work and therefore income yt, consumption ct, and savings at in a

risk-free asset at a gross interest rate r. We keep the restriction that retirement

is irreversible (If wt = 0 then ys = ws = 0 ∀ s ≥ t) as the imposed constraint

on the optimal mechanism. Agents are endowed with zero initial assets.29 This

implementation follows similar steps as Werning (2011) and Stantcheva (2017) and

adds retirement benefits.

Denote by m∗({θt}) the optimal allocation of the social planner’s problem af-

ter history {θt} for any choice variable m ∈ {w, y, c, a}. For any history {θt} and

subset of variables m ⊂ {r, y, c, a}, let Qt
m({θ

t−}) be the set of values for these

29Agents can differ in initial asset holding as long as it is observable. The proposed retirement
benefits would then depend on initial assets as well.
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Figure 5: Regressivity of the labor wedge. The labor wedge is regressive in the
short-run but less so when continued work has a positive redistributive value
φ = 0.4 (Panel A).
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Figure 6: Progressivity and regressivity of the net retirement wedge. The net
retirement wedge exhibits short-run progressivity when φ = 0.4 (Panel A) but
short-run regressivity when φ = −0.7 (Panel B).
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variables at time t, which could arise in the planner’s problem after history {θt−},

that is, such that for some θt ∈ (0,+∞), mt = m∗
t ({θ

t−, θ}). For a history of ob-

served choices {mt}, denote by Θt(mt) the set of all histories consistent with these

choices, that is, all {θt} such that {mt} = {m∗
t ({θ

t})}. Assumption 2 guarantees

that in the planner’s problem, the income histories can be uniquely inverted to

identify the history of productivities until retirement.

Assumption 2. Θt({wt, yt}) is either the empty set or a singleton for all histories

{wt, yt} such that {wt} = {1}s≤t.

In the proposed implementation in Proposition 5, retirement benefits, b, are

combined with a history-dependent tax on labor income, Ty(wt, {y
t}), and a his-

tory independent savings tax, Ts(at). The agent’s problem is

v(a0, θ0) = max
wt,yt,ct,at

E
{∫ T

0

e−ρt[u(ct)− (h(
yt
θt
) + φ(θt))wt]dt

}

(18)

such that

dat = [yt − T (wt, {y
t}) + b(wt, {y

t}) + rat − Ts(at)− ct]dt,

a0 = 0, aT ≥ 0. If wt = 0, then ys = ws = 0 ∀s ≥ t.

Proposition 5. The optimum can be implemented through retirement benefits

b(wt, {y
t}) contingent on the history of income until retirement together with a

history independent savings tax Ts(at) and a history-dependent tax on labor income

Ty(wt, {y
t}).

6.1.1 Features of the Retirement Benefits System

Figure 7 illustrates the implementation through retirement benefits, by plotting

in Panel A the income tax rate paid out of earned income (which include the labor

income tax and the retirement contributions in the payroll tax) and in Panel B,

the average pension annuities in USD as a function of retirement age.30

In Panel A, the average earned income tax subsidizes labor supply at a young

age because labor distortions increase over the majority of the lifetime. Then it

is hump-shaped as a result of the hump-shaped profile of labor earnings. In par-

ticular, the average tax on earned income is smaller when incentivizing delayed

retirement has a positive redistributive and insurance role (φ = 0.4), reflecting

30To convert the NPV of lifetime income is USD, I normalize the different simulations by
imposing exogenous government spending at the baseline economy equal to the gross federal
debt of 69,060 USD per-capita in 2019.
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that endogenous retirement incentives fulfill part of the redistribution and insur-

ance and takes some of the burden away from the earned income tax. As workers

retire in old-age, the remaining workforce gets mostly selected into highly pro-

ductive workers who pay higher average earned income taxes. This effect is more

prevalent when incentivizing the delayed retirement of highly productive workers

has a positive redistributive and insurance role (φ = 0.4).

In Panel B, the yearly retirement benefits (pension annuities) increase as a

function of each retirement age group, reflecting the need to complement the

tax system with retirement benefits that are increase in claiming-age. Recall

that both the earned income tax and the tax on savings create distortions in

the retirement decision. Labor-led distortions push retirements downwards, and

savings-led distortions push retirement upwards. Since the tax on savings is small

relative to the earned income tax, labor-led distortions dominate, and on net,

these taxes lead to a push towards early retirement. The retirement benefits must

counterbalance this effect first. This explains why retirement benefits increase with

retirement age for both simulations with φ = 0.4 and φ = −0.7. Comparatively,

the slope of the retirement benefits is steeper in retirement age when incentivizing

delayed retirement has a positive redistributive and insurance role, (φ = 0.4).

Before highlighting the insurance role of the retirement benefits system, it is

worthwhile discussing the insurance role of the social insurance system as a whole

and the tax and retirement contribution system in isolation.31 In summary, the

social insurance system provides a significant degree of insurance relative to au-

tarky. This result is also true in a model with exogenous retirement. A novel point

of my analysis is that this overall degree of insurance is larger when incentivizing

for delayed retirement has a positive redistributive and insurance role (φ = 0.4).

In addition, both the social insurance system overall and the earned income tax

and retirement contributions system in isolation are progressive and more so when

incentivizing delayed retirement has a positive redistributive and insurance role.

These sets of results are presented and elaborated upon in Appendix B.2.1.

Now, I focus on the insurance role of the retirement benefits system. Figure

8 plots how the lifetime replacement rate, i.e, the NPV of retirement benefits as

31A caveat is warranted. The history of taxes, retirement contributions, and retirement ben-
efits jointly determine consumption and income realizations at every point in time. Therefore,
the effect of one instrument on any particular allocation cannot be isolated. However, since in
the implementation of Proposition 5 savings taxes are set to deter private savings, and earned
income taxes and benefits deter from off-equilibrium allocations, in equilibrium, the realizations
of consumption before retirement equal to income after earned income taxes and retirement
contributions, and consumption after retirement equals to retirement benefits. I focus on the
degree of insurance in these equilibrium allocations.
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Figure 7: Average earned income tax rate (Panel A): labor income tax plus payroll
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hump-shaped in age and are smaller when φ = 0.4. Pension annuities (Panel
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a fraction of the NPV of labor income, evolves depending on the realizations of

the NPV of labor income, for φ = 0.4 (Panel A) and φ = −0.7 (Panel B). When

incentivizing delayed retirement has a positive redistributive and insurance role,

the lifetime replacement rate decreases in lifetime labor income realizations and

vice versa. Quantitatively, the population average of the elasticity of the NPV of

retirement benefits with respect to the NPV of lifetime income is 0.85, less than

1, for φ = 0.4 (Panel A) and 1.14, greater than 1, for φ = −0.7 (Panel B). Retire-

ment benefits provide more insurance when incentivizing delayed retirement has a

positive redistributive and insurance role. In isolation, retirement benefits feature

a form of progressivity in lifetime incomes when incentivizing delayed retirement

has a positive redistributive and insurance role and regressivity otherwise. This is

reminiscent of the short-run progressivity of the net retirement wedge when φ > 0,

which our simulations suggest, holds true in the long-run. The net present value

of lifetime incomes is not however, a perfect summary of the long-run and the

history of incomes. The income history–contingent nature of benefits is clearly

seen in the dispersion of the lifetime replacement rate at a given NPV of lifetime

incomes: in the constrained optimum post-retirement consumption depends on

the full past history of incomes in slightly non-linear ways.

After analyzing the earned income tax and retirement contribution system, on

the one hand, and the retirement benefits system, on the other hand, I study their

interaction through the actuarial role of the retirement benefits, earned income

taxes, and retirement contributions. The social insurance system is actuarially

favorable to an individual if his lifetime retirement benefit net of earned income

taxes and retirement contributions is positive. Figure 9 plots how the lifetime

actuarial rate, i.e. the NPV of retirement benefits minus earned income taxes

and retirement contributions as a fraction of the NPV of labor income evolves

depending on the realizations of the NPV of labor income, for φ = 0.4 (Panel

A) and φ = −0.7 (Panel B). In terms of levels, the social insurance system is

always actuarially more favorable to low earners and actuarial unfavorable to high

earners. In relative terms, the elasticity of the NPV of benefits nets of taxes and

contributions with respect to the NPV of lifetime income is −0.47 for φ = 0.4

(Panel A) and −0.39 φ = −0.7 (Panel B). As we have seen that he retirement

benefits are progressive in lifetime incomes when incentivizing delayed retirement

has a positive redistributive and insurance role, so is the social insurance system on

net more actuarially favorable to agents with low lifetime incomes when φ = 0.4.
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Figure 8: Lifetime replacement rate: NPV of retirement benefits as a fraction
of the NPV of labor income plotted against NPV of labor income realizations.
Retirement benefits are progressive in lifetime incomes and provide more insurance
when incentivizing delayed retirement has a positive redistributive and insurance
role (Panel A) φ = 0.4.
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Figure 9: Lifetime actuarial rate: NPV of retirement benefits minus earned
income taxes and retirement contributions as a fraction of the NPV of labor income
plotted against NPV of labor income realizations. The social insurance system is
always actuarially more favorable to low earners, and more so when incentivizing
delayed retirement has a positive redistributive and insurance role (Panel A) φ =
0.4.
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6.1.2 Comparison with Existing Retirement Benefits Systems

Government pension systems that provide retirement benefits are present in vir-

tually all countries in the world (see Gruber and Wise (1998) and Blundell et al.

(2016) for an overview). The German chancellor Otto Von Bismarck first in-

troduced an old-age social insurance program in 1889 because “those who are

disabled from work by age and invalidity have a well-grounded claim to care from

the state”. Subsequently, the UK economist William Beveridge argued in 1909

that it is costly for older workers to cope with rapid technological change (Costa

(1998)). These two seminal programs reflect the notion of a retirement benefits

system insuring against depreciated skills and old-age disability; however, they

provided insurance to a various degree. On the one hand, the Bismarckian sys-

tem was a compulsory scheme for blue-collar workers below an income threshold,

which levied contributions on both employees and employers and paid benefits on

an earnings-related basis. Over the years, it expanded to include the entire Ger-

man workforce. The system was adapted and applied in Italy and Spain (1919),

Belgium (1924), France (1930), Portugal (1935), and Switzerland (1948). On the

other hand, the Beveridgian system levied contributions from general tax revenues

and paid a flat rate pension to all over a certain age subject to a needs test. This

system proved equally popular and was adopted in New Zealand (1898), the UK,

including Ireland (1908), Australia (1908), Canada (1927), and Norway (1936).

For most developed countries, public pension schemes are Defined Benefit in

nature. In these schemes, retirement benefits are a function of the flexible age at

which the individual begins claiming benefits and earnings when working (as well

as other factors, such as marital status). Although the precise details of these

public pension schemes differ across countries, many share common features with

my proposed implementation. First, in most countries, there is no mandatory re-

tirement age, and retirement benefits increase as workers delay claiming them. By

continuing to work and contribute to the system, individuals can accrue entitle-

ment to a higher future pension income and adjustments for late claiming. There

is typically a greater incentive to continue working while it is still possible to ac-

crue additional rights. In many countries, the ability to accrue additional rights

ceases at some pivot age, referred to as the normal retirement age. Historically,

many European systems raised annual benefits little, if at all, for those who chose

to delay claiming benefits past the normal retirement age.32 This was the case in

32Many but not all European schemes have had normal pension ages that are earlier than in
the US. In 2014, the average normal pension age across OECD countries was 64.0 years for men
and 63.1 years for women, whereas it was 66 in the US. However, there is considerable variation
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Germany until 1997 and remains the case in Spain. However, an increasing num-

ber of countries have started to impose some actuarial adjustment, although the

levels of these vary significantly. At one extreme, Australia and the Netherlands

continue to offer no increase in future benefit income to those who delay claim-

ing. At the other extreme, until April 2016, the UK offered individuals a 10.4%

increase in benefits for each year of delayed claiming beyond the state pension

age (now reduced to 5.4%). Second, as the historical background on Bismarckian

and Beveridgian systems showed, most public pension schemes have an insurance

aspect.33 The insurance aspect of pension schemes is particularly progressive and

significant for those with low income. European pensions typically provide higher

replacement rates than the US SS system (Duval (2004)). For example, public

pensions in Spain replace on average 80% of pre-retirement income, whereas it is

closer to 42% for the US ( Toossi (2015)). European pension schemes also tend

to be more progressive. The Netherlands, Spain, and the UK all have a mini-

mum benefit level that is higher than in the US. Third, the actuarial value of a

retiree’s benefits rarely equals the actuarial value of the taxes paid while working,

especially at low incomes.

There are two differences between the optimal retirement benefits system pro-

posed in our implementation and real-world pension systems. First, benefits are

optimally a function of the age of exit of the labor force. Although retirement pen-

sions impose an early and normal34 age typically referred to as retirement ages,

in some countries, these ages simply relate to the date at which benefits can be

claimed and have a weak relationship to employment. In many countries, individ-

uals can draw benefits and work at the same time with little penalty. However, in

some countries, pensioners have their benefits reduced if they have income from

earnings, often referred to as an “earnings test.” This earnings test reduces the

incentive to work once a person claims retirement benefits. An extreme example

is Australia, where benefits are withdrawn at a 50% rate of earnings above an

earnings threshold. Gelber et al. (2020) estimate that the earnings test reduces

across countries. The lowest early retirement ages in the OECD are 58.0 years for women in
Turkey and 58.7 years for men in Slovenia. The highest normal retirement age in the OECD is
67 for men and women in Norway and Iceland. Many developed countries are in the process of
increasing their early and normal retirement ages. Denmark, France, Germany, the Netherlands,
and the UK are all in the process of increasing (or have recently increased) the early and/or
normal retirement ages in their public pension schemes.

33This paper focuses on intragenerational insurance. There is additional intergenerational
insurance in most public pension plans that are pay-as-you-go systems, where taxes collected
from the working young are used to finance current retirees’ benefits.

34In many countries such as Australia, the Netherlands, New Zealand, and the UK do not
have separate early and normal retirement ages.
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the labor force participation rate of Americans aged 63-64 by 3.3pp. However,

several countries like the UK (in 1989) and the US (in 2000 for earnings after

the normal retirement age) have abolished the earnings test. Second, the optimal

benefits depend not only on a summary statistic of the history of past income,

such as the NPV of income but rather on the whole history of incomes. Most

countries (US, France, Germany, Japan, etc.) provide benefits that are indeed

history-dependent. However, these benefits are mostly indexed on an average of

past incomes. The numerical analysis below shows that the gain from full history-

dependent policies, relative to a mix of simpler retirement policies that are linear

in past incomes and history-independent (but age-dependent) linear taxes, is not

very large for the calibration chosen. This implies that retirement benefits that

are linear in past incomes might be close to optimal provided that they increase

adequately with retirement age.

6.2 Implementation with a Simple Social Security Pro-

gram

When can one reduce the history dependence of the optimal policies proposed

above? In this subsection, I show that in the limit case of workers who are risk-

neutral in consumption, optimal policies can be implemented by a retirement

benefit system that looks similar to the US SS system (depends on lifetime income

and retirement age) and a history-independent labor income tax. To construct

this implementation, I proceed in two steps. First, I construct retirement-age-

dependent post-retirement transfers that replicate the effects of the retirement

wedge. Given optimal hours and said transfers, the agent’s private retirement

decision would coincide with the optimal retirement decision. Second, using these

post-retirement transfers and labor wedge, I construct a SS system and history-

independent income tax that implement the optimum.

6.2.1 The Retirement Wedge as Post-Retirement Transfers

Recall from Section 4.3 that if agents are risk neutral in consumption, then con-

sumption is undistorted and the labor wedge at age t is simply equal to the time

zero labor wedge τ tL({θ
t}) = τ 0L(θ0), where τ 0L(θ0) is determined by the govern-

ment’s redistributive motive in the initial period. Lemma 5 in Appendix A.12

gives general conditions on the distribution of initial heterogeneity such that there

exist government Pareto weights that rationalize a constant optimal labor wedge,

τ tL({θ
t}) = τL. In particular, these conditions are satisfied if initial productivity is
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Pareto-distributed for a range of social welfare functions, from utilitarian (labor

wedge equal to zero), to Rawlsian (largest labor wedge), to a Rawlsian-utilitarian

mixture (intermediate levels of labor wedge).35

If the government sets a flat labor income tax equal to τ and a post-retirement

transfer π is a function of retirement age, then the agent chooses hours conditional

on work optimally yt = y∗t and his private retirement decision satisfies:

max
ν

E
{∫ ν

0

e−ρt
[

(1− τ)y∗t − h(
y∗t
θt
)− φ(θt)

]

dt+ e−ρνπ(ν)
}

(19)

The planner’s choice of the optimal retirement decision is different from the agent’s

private choice in two aspects. First, because of labor income taxes, the govern-

ment values output relative to the fixed cost more than the agent. Second, the

government wants to distort the fixed cost faced by the agent due to the redistribu-

tive value of the net retirement wedge. The transfer π implements the optimal

retirement decision if T ∗
R is a solution to the agent’s private retirement decision

problem (19).

Under assumption 1, I construct π by evaluating the agent’s expected utility

at the productivity process reflected at the second-best l retirement cut-off θ∗R(t).

Intuitively, the reflected productivity is a process that equals productivity as long

as the it stays above the cut-off. Once productivity falls below the cut-off and

the planner would want the agent to retire, the reflected process follows its own

dynamics and is defined to stay above the cut-off at all times. Appendix A.13

provides the formal mathematical definition of reflected processes and proves the

proposition below.

Proposition 6. Suppose Assumption 1 holds. Define {θ̃t}t the reflected process

above θ∗R(t) then

π(t) = Et

{∫ T

t

e−ρs
[

[(1− τ)ỹ∗s − h(
ỹ∗s
θ̃s
)− φ(θ̃s)

]

ds
}

implements the second-best retirement decision, where ỹ∗t = (1− τ)ε
θ̃1+ε
t

κε(1+ε)
.

The transfer achieves to implement the second-best retirement decision by

doing the following. First, when the net retirement wedge and labor wedge result

in distortions for delayed (resp. early) retirement, the planner provides a marginal

change in the transfer that increases (resp. decreases) the option value of continued

35If the distribution is Pareto with shape parameter a on [θ,∞) and the government puts
weight αθ at θ and equal weights on (θ,∞), then the labor wedge is τL = 1

a

αθ

1+αθ
. The labor

wedge is τL = 0 if αθ = 0 (utilitarian), and τ = 1
2a if αθ = 1 (Rawlsian), and is increasing in αθ.
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work of the agent until (resp. after) productivity falls to θ∗R(t). Proposition 6 states

that the marginal change in the optimal transfer is the agent’s private value of

work at a level of labor income that is constrained to stay above the level of labor

income that triggers retirement in the second-best. In particular, if π implements

T ∗
R , then a lump-sum transfer added to π implements T ∗

R . This will allow us

to complement any smooth history-independent labor income tax with a history-

dependent retirement benefit and a lump-sum transfer to implement the optimum.

Proposition 7. Let T (yt) be a differentiable history-independent labor income tax,

there exists retirement benefits b and a lump-sum transfer t0 such that (T, b, t0)

implements the optimum. In addition,

b(ν, {yt}) = δ(ν) E
{∫

T ∗

R

0

e−ρtτy∗t )
}

︸ ︷︷ ︸

level around second best

+ π(ν)− δ(ν)E[e−ρT ∗

Rπ(T ∗
R )]

︸ ︷︷ ︸

deferral rate

+ f({ys})
︸ ︷︷ ︸

function of past earnings

for any retirement age ν. Where e−ρT ∗

Rf({ys}) =
∫

T ∗

R

0
e−ρt[T (yt)−τyt]dt and δ(t) ≡

1−e−ρ(T−t)

1−e−ρT is the lifetime equivalent of a stream of unit of consumption from time

t until death.

6.2.2 Comparison with the US Social Security Program

This implementation gives an explicit formula for the retirement benefits similar

to the US SS benefits that have three components.

Thirst term on the right hand side of Proposition 7 captures that the benefits

are defined around a common level at the second-best. This level affects the overall

replacement rate of the SS system. It is linked to the taxes collected to fund the

system and aggregate output. The US Social Security Old-Age, Survivors, and

Disability Insurance (OASDI) program and Medicare’s Hospital Insurance (HI)

program are financed primarily by payroll taxes through the Federal Insurance

Contributions Act tax. Box workers and firms pay a SS tax of 6.2% up to $132,700

of income and a 1.45% tax for Medicare, resulting in a total payroll tax of 15.3%.

The overall SS benefits level adjusts with inflation through COLAs (cost of living

adjustments) that are indexed on the Consumer Price Index for Urban Wage

Earners and Clerical Workers (CPI-W).

Second, benefits adjust with a deferral rate using the transfers π that guarantee

that the planner provides a marginal change in the benefits that equalizes the

private and public the option value of continued work at the second-best retirement

45



age. This is reminiscent of the actuarial adjustments in the US SS benefits between

the EEA and age 70 (the actuarial reduction factor and the delayed retirement

credits before the FBA) discussed in Section 5.2. Figure 10 contrasts the actuarial

adjustment rate of the US SS system with the average actuarial adjustment rate in

the optimum of our two simulations. The optimal adjustment rates increase faster

when incentivizing delayed retirement has a positive redistributive and insurance

role (φ = 0.4). In particular, the optimal adjustment rates are larger and more

convex than the status quo actuarial reduction factors and delayed retirement

credits. Finally, in our model, the adjustment rate can be substantial in old age

for high earners who delay retirement until age 70. A caveat is warranted. In

practice, the very top of the income distribution disposes of higher returns and a

richer set of instruments to sustain their retirement consumption. The ingredients

of our model (log-normal productivity, savings in a risk-free asset) are set to

tease out the policy implications of endogenous retirement for the vast majority

of workers who rely on SS as a significant source of income in retirement.
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Figure 10: Actuarial adjustment rate of Social Security

Third, benefits at the optimal retirement age, net of the overall level, are a

simple function f({ys}|T
∗
R ) of past earnings until some target retirement age. In

particular, if the tax function T in our second implementation is linear, benefits at

the optimal retirement age are linear in the NPV of past incomes. The Averaged

Indexed Monthly Earnings (AIME) is the equivalent of the NPV of past incomes
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in the US SS system with the difference that the average is over the 35 highest-

earning years. Our second implementation states that if the tax system is linear,

a Primary Insurance Amount (PIA) that is linear in the NPV of past incomes can

implement the optimum. This result is specific to the quasilinear in consumption

utility function specification. But as we see in the next subsection, with history-

independent (but age-dependent), linear taxes, retirement benefits that are linear

in past incomes might be close to optimal provided that they increase adequately

with retirement age. Suppose the tax function is HSV as in our baseline economy.

In that case, the function weights past earnings in non-linear ways, trading off

the labor supply disincentives of progressive taxes with the insurance gains of the

social insurance system. These insurance gains can be substantial with significant

risk aversion in consumption, as we see next.

6.3 Welfare Gains and Simple Age-Dependent Policies

What are the welfare gains from the optimal mechanism, and how do they compare

to from simpler, linear policies? The first row of Table 2, reports the welfare gains

from the second-best relative to the baseline economy with a parametrization of

the U.S. tax and SS system described in Section 5.2.36 The numbers represent

the constant percentage increase, at all dates and histories, in the baseline con-

sumption required to achieve the same utility as the alternative allocation. The

first column corresponds to the simulation for φ = 0.4 and the second column for

φ = 0.7. The second sub-columns correspond to our benchmark medium value for

the conditional variance of productivity σ2
m = 0.0095, whereas the first and third

report simulations with a lower value and a higher value, respectively. Welfare

gains are higher when the conditional variance of productivity is larger or when

incentivizing delayed retirement has a negative insurance and redistributive value

(φ > 0). These welfare gains correspond to an upper bound on potential gains

from reforming the U.S. tax system and SS system.

Given the clear age trends in the wedges, it is natural to compare the full

optimum to simple age-dependent and retirement-age dependent policies. I take

a hint from the second-best to formulate a sensible choice of the tax and retire-

ment benefits policies. First, the policy sets the linear income tax rate, (resp.

the linear savings tax rate) at each age equal to the cross-sectional average of the

36The literature has usually compared the welfare from the second-best with the welfare
achieved in a laissez-faire economy with no taxes or subsidies. I choose a direct comparison
with the baseline US economy. This allows me to measure the long-run welfare gains after a
reform of the status quo US tax and SS system.
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Table 2: Welfare Gains from simpler tax and retirement benefits policies

φ = 0.4 φ = −0.7

Low Med. High Low Med. High

Var Var Var Var Var Var

Welfare gain from second-best (%) .61 1.13 1.32 .74 1.43 1.68

Welfare gain from linear policies (%) .55 1.04 1.25 .68 1.36 1.63

As % of second-best 89.5 91.6 94.2 92.1 95.3 96.7

Note: Low variance is σ2l = 0.00625, medium variance is σ2
m = 0.0095 and high variance

is σ2
m = 0.0161. Row 1 report the gain from the second-best, relative to the baseline US

economy, in terms of the equivalent increase in consumption after all histories. Welfare
gains are higher when the conditional variance of productivity is larger or when
incentivizing delayed retirement has a negative insurance and redistributive value
(φ > 0). Row 2 shows the gain from linear age-dependent policies relative to the
baseline US economy, while row 3 expresses this gain as a fraction of the gain from the
second-best. Age-dependent linear taxes and retirement benefits that are increasing in
claiming-age achieve a very large fraction of the welfare gain from the second-best.

labor wedge (resp. savings wedge.) The taxes are therefore age-dependent but

history-independent. Second, the retirement benefits at the Full Benefits Age of

66 are linear in the NPV of labor income. I set the coefficient of linearity equal

to the cross-sectional average replacement rate of the annuity value of lifetime in-

come at the Full Benefits Age. The retirement benefits remain, therefore, history-

dependent but are linear in lifetime incomes as a summary statistic. Between the

EEA and age 70, retirement benefits evolve at the average adjustment rates in

the second-best. The retirement benefits are, therefore increase in claiming-age.

It is worth noting that this policy is not equivalent to increasing the Full Benefits

Age. Indeed, a 1-year increase in the Full Benefits Age corresponds to a uniform

decrease of the actuarial reduction factor by -6.67pp and a uniform increase of the

delayed retirement credits by 8pp, while the adjustment rate is steep and convex

in the optimum (Figure 10). Given the number of periods and the presence of

three instruments, it is numerically challenging to optimize over age-dependent

tax rates and history-dependent retirement benefits precisely. Hence, this experi-

ment delivers a lower bound for the welfare gains. It turns out, however, that even

this lower bound is very tight. The third row in Table 2 shows that welfare gains as

a fraction of the second-best gains range from 89.5 percent for a low-variance and

high φ case to 96.7 percent for a high-variance and low φ scenario. This suggests

that—for these particular calibrations—the fully history-dependent policies can

be informative about simple linear taxes and retirement policies that are linear in

48



incomes, and that increase benefits with the retirement age.

7 Extensions and Discussion

This section discusses which of the models assumptions are necessary for its key

results and briefly presents extensions developed in Appendix A. The paper’s main

contributions as threefold:

First, are the economic insights on the forces that drive optimal policies, e.g.,

the sign (negative wedge when incentivizing delayed retirement has a positive

redistributive and insurance role), evolution and age-dependency of the net retire-

ment wedge, the principle of wedge smoothing, and the progressivity or regressivity

of the net retirement wedge. Even though the results on the savings wedge de-

pend on the separability between consumption and labor, the qualitative results

on the retirement wedge and labor wedge carry through in the case with home

production or complementary in consumption and leisure, an extension developed

in Appendix A.15.

Second, tractability in the retirement decision allows for a closed-form solution

of the retirement behavior in the first-best. There is an option value of waiting

for higher productivity shocks before retirement. This option value decreases with

age. Therefore, the implicit labor supply elasticity over the extensive margin

increases with age. For these results, I assume that retirement is irreversible and

that the fixed cost of staying in the labor market for highly productive workers

cannot be too large relative to lowly productive workers (Technical Assumption

1). The qualitative results remain unchanged if agents can reenter the labor force

at a lower wage (due to search costs or depreciation of skills). Quantitatively, I

truncate the bottom quantile (and top centile) of the productivity distribution

to have a finite distribution and guarantee that Technical Assumption 1 holds

numerically for Simulation A with a slowly-increasing fixed cost of staying in the

labor market. For completeness, an extension in Appendix. A.15 shows that when

the fixed cost of staying in the labor market for highly productive workers is very

large compared to that of lowly productive workers, it becomes optimal for highly

productive workers to retire early.

Third, I provide two ways to implement the planner’s optimal allocations in

a decentralized economy. The first implementation is through retirement benefits

contingent on the history of income until retirement, together with a history-

independent savings tax and a history-dependent tax on labor income. Impor-

tantly, this implementation does not rely on the separability between consumption
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and labor. The second implementation is through a smooth history-independent

tax on labor income, a lump-sum transfer, and retirement benefits closely resem-

bling the US SS system. In particular, the optimum can be implemented with

a linear labor income tax and SS benefits that are linear in the NPV of past in-

comes. This second implementation relies on risk neutrality in consumption. Both

implementations guide us in finding simpler tax and retirement benefits policies

that achieve the bulk of welfare gains from more elaborate second-best policies.

Home production and Complementary in Consumption and Leisure

Saez (2002) argues that the non-separability in consumption and leisure is im-

portant to study optimal income taxation while Hurst (2008) emphasizes the im-

portance of home production for the observed drop in consumption expenditure

at retirement. It is well known that with non-separability between consumption

and leisure the Inverse Euler equation and the no savings tax result of Atkin-

son and Stiglitz (1976) do not hold. The reason is that income and productivity

now directly affect the intertemporal rate of substitution for consumption. In-

tertemporal distortions allow to separate types and relax incentive constraints. In

Appendix A.15, I relax the assumption of separable intensive preferences in con-

sumption and labor. by considering Greenwood et al. (1988) preferences. The

dynamics of the net retirement wedge and labor wedge, and the insights on the

first and second-best retirement behavior remain unchanged. Consumption after

retirement however drops in the first-best, baseline and decentralized economies,

consistent with Hurst (2008).

Uncertain Lifetime and the Correlation of Life Expectancy and Income

There is empirical evidence that life expectancy is positively correlated with in-

come.Chetty et al. (2016) find that in the United States, between 2001-2014, the

gap in life expectancy between the richest 1% and poorest 1% of individuals is

14.6 years. In Appendix A.15, I relax the assumption of fixed death at age 80 and

introduce stochastic lifetime positively correlated with income. In this situation,

the planner can take advantage of the fact that highly productive agents have

longer life expectancy than the general population in order to give them lower

retirement consumption and lower NPV of consumption compared to a model in

which agents uniformly life at the average life expectancy.

Health, Liquidity, and Intergenerational Transfers Both health and em-

ployment decline as people age. Thus, it seems natural to suspect that health
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declines are one cause of exits from the labor force in old age. There are several

reasons why I might expect health to impact retirement behavior. First, declining

health makes work less pleasant. Second, it can reduce an individual’s productivity

and, thus, the individual’s wage. Third, health shocks might reduce life expectancy

and the savings that an individual needs for retirement. Health appears to affect

employment rates more than hours worked. Nonetheless, the empirical evidence

on the effect of health on employment rates is modest. The fraction of individuals

who report bad health rises from 20% at age 55 to 37% by age 70. French (2005)

shows that this decline in health would lead to a 7 pp drop in the employment

rate, and would explain a small share of the drop in participation rates from 87%

to 13% between ages 55 and 70. For this reason, I abstracted away from health as

a separate exogenous shock that can affect wages and the fixed cost of staying in

the labor market. However, an alternative interpretation of the model can allow

to think of health shocks by reinterpreting θt as a composite of productivity and

health shocks. It is, nonetheless, important for future research to think of health

shocks for joint design the design of Medicare and Social Security.

Liquidity constraints are another concern due to the importance of housing

wealth for the elderly and the fact that workers cannot borrow against future ben-

efits. If public pensions crowd out private savings that would otherwise have been

more liquid, they may delay retirement. Understanding the quantitative impor-

tance of liquidity effects is difficult because pension schemes are complex. Individ-

uals are likely to be affected by incentives from many different public programs and

private pension schemes at the same time. Therefore, I chose to allow agents to

borrow against their post-retirement transfers as in Grochulski and Kocherlakota

(2010). The evolution and increase in post-retirement consumption as a function

of retirement arises naturally. There is no forced-saving element in the social in-

surance system. In the quantitative exercise, log utility of consumption implies

that agents never hit their borrowing limit since they consume a fixed share of

their NPV of income. Therefore, assets in our model should be interpreted as the

risk-free equivalent of all the savings vehicles at the disposal of workers to plan

for retirement (housing, 401(k), standard IRA, and Roth IRA, etc.) adjusted for

shadow liquidity and early withdrawal costs.

Finally, by focusing on insurance across one cohort or one person’s lifetime, I

abstracted from intergenerational transfers and issues of funding Social Security

over the long-run (cf. Nishiyama and Smetters (2007) and Hosseini and Shourideh

(2019)). As long as government debt can be kept stable and constant, our solution

corresponds to the steady equilibrium of the corresponding overlapping genera-
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tions model. In addition, one can reinterpret my life cycle model as a dynastic

household, with persistence in productivities. This paper contributes to under-

standing how endogenous retirement affects the optimal design of social insurance

over the life cycle. Further examining the interplay between intragenerational and

intergenerational insurance will be essential to resolve the issue of funding Social

Security in the long-run and is left for future research.

8 Conclusion

This paper studies optimal retirement, labor, and savings distortions in a life cycle

model with an intensive margin of labor supply and an endogenous retirement

age. The government insures individuals who privately observe persistent wage

shocks. In this environment, the following insights refine our prior understanding

of social insurance over the life cycle: (i) the optimal retirement distortions provide

stronger incentives for delayed retirement with age when high wage workers do not

disproportionately benefit from continued work, (ii) the optimal labor distortions

are slightly hump-shaped in old-age, unlike in existing dynamic models with no

endogenous retirement choice, in which they are everywhere increasing, and (iii)

savings become undistorted between the last work-year and retirement, and remain

undistorted after retirement.

The optimal allocations can be decentralized with retirement benefits that

share similar features with many public pension programs worldwide. These re-

tirement benefits are contingent on the history of income until retirement. In

particular, the benefits are progressive in lifetime incomes when incentivizing de-

layed retirement has a positive redistributive and insurance role. Besides, the

social insurance system is always actuarially more favorable to low earners than

high earners, and more so when incentivizing delayed retirement has a positive

redistributive and insurance role. When risk aversion is small, a simple Social

Security program similar to the US Old-Age, Survivors, and Disability Insurance

(OASDI) program can decentralize the optimum. In particular, the Social Se-

curity benefits increase with retirement age and guarantee a marginal change in

the benefits that equalizes the private and public option values of continued work

exactly at the constrained efficient retirement age. In numerical simulations, a

simple combination of retirement benefits that are linear in lifetime incomes and

that increase with retirement age, along with age-dependent linear taxes, achieve

almost the entire welfare gain from the constrained optimum for the calibrations

studied. Further numerical work, and a conceptual framework for assessing the
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interplay between complexity and approximate optimality in policies, could shed

light on whether this result remains true with different preferences, especially with

higher risk aversion.

As life expectancies have risen over the past century, accounting for retirement

- an endogenous labor supply decision - is of first-order importance for social

insurance. The theory proposed in this paper leads to two open empirical questions

that are important in quantifying optimal policies. Empirical estimates of the fixed

time and monetary costs of work, and their heterogeneity across time and worker

characteristics, would improve the calibration of macro models to match micro

evidence on extensive margin elasticities. Furthermore, an empirical estimate of

the mean and variance of hourly wages among full-time workers age 60-75 would

help quantify wage inequality among older workers.
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Appendix For Online Publication

Part I

A - Analytic Appendix

1 First-Best: Proof of Proposition 1

Proof. The planner’s problem is

max
{λ,ct,lt,TR}

E
{∫ T

0

e−ρs[u(ct)− λct]dt+

∫
TR

0

e−ρs[λθtlt − κ
(lt)

1+ 1
ε

1 + ε
− φt(θt)]dt

}

subject to the law of motion of productivity (1). From the optimal allocations

u′(c) = λ and κl
1
ε
t = λθt, denote E

{∫ T

0
e−ρs[u(ct) − λct]dt

}

= h(λ). Then the

above objective rewrites as

max
{λ,TR}

h(λ) + E
{∫

TR

0

e−ρt[λ1+ε (θt)
1+ε

κε(1 + ε)
− φt(θt)]dt

}

.

Denote a maximizer by λ∗. By an envelope condition, the expected change in the

payoff if retirement is delayed an infinitesimal short time is λ∗1+ε (θt)
1+ε

κε(1 + ε)
− φt(θt).

Taking ψ < λ∗1+ε

κε in the condition of growth bounded from above of φt(θ) in

Proposition 1 or assuming that G is high enough such that marginal utility of

consumption λ∗1+ε is high and the inequality holds, then the expected change

in payoff is increasing in productivity. The dynamic single crossing condition in

Strack and Kruse (2013) holds and Theorem 4.3 of Jacka and Lynn (1992) implies

that the shape of the stopping region (retirement rule) is determined by a time-

varying threshold.

Note that when φt is independent of productivity, or nonincreasing in pro-

ductivity, the “bounded growth from above” condition in the Proposition holds,

implying Proposition 1.

2 First-Best: Proof of Corollary 1

Proof. To qualify results further, I now consider agents who are risk neutral in

consumption, so that u(ct) = ct. Consumption is not pinned down by the Euler

equation. I eliminate consumption from the planner’s problem by replacing the

1



resource constraint into the planner’s social welfare function:

w ≡ max
TR

E
{∫

TR

0

e−ρt[θtl
fb
t − κ

(lfbt )1+
1
ε

1 + 1
ε

− φ(θt)]dt
}

−G (20)

subject to the law of motion of productivity (1). Normalizing government spending

to zero, G = 0, and replacing the first-best labor allocations using the optimality

condition κ(lfbt )
1
ε = θt, the social welfare function w(θt, t) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
{

−w(θ, t), −ρw(θ, t)+
θ1+ε

κε(1 + ε)
−φ(θt)+(µtθ)∂θw(θ, t)+

σ2
t θ

2

2
∂θθw(θ, t)+∂tw(θ, t)

}

.

(21)

The terms to the right of −ρw(θ, t) consist of the marginal social value of labor

minus the fixed cost and derivatives of social welfare with respect to time and

productivity.

Now consider the case of productivity that evolves according to a GBM, i.e.,

µt and σt are, respectively, constants µ and σ. I show that even when the fixed

cost is a constant φ(t) = φ, there is an option value of waiting for higher pro-

ductivity shocks before retirement. In addition, this option value decreases over

time. Therefore, even when the fixed cost is constant over time, the elasticity over

the retirement margin increases over time. Hence, the extensive margin elasticity

of labor supply increases over time, despite the intensive Frisch elasticity and the

fixed cost being time-independent.

Consider the infinite horizon model, T = +∞. To ensure convergence of social

welfare, I assume

ρ > (1 + ε)(µ+
1

2
σ2ε). (22)

Social welfare is now time-independent and replacing the HJB equation in this

setting is

max{0− w(θ),−ρw(θ) + µθwθ +
σ2θ2

2
wθθ +

θ1+ε

κε(1 + ε)
− φ(θ)}. (23)

I conjecture that the solution is of the following form: there is a threshold θfbR such

that an agent is retired if and only if his productivity falls below the threshold

θt ≤ θfbR . This implies that w(θ) = 0 for all θ ≤ θfbR and for θ > θfbR , w is a

nonnegative solution to the equation

− ρw(θ) + µθwθ +
σ2θ2

2
wθθ = −

θ1+ε

κε(1 + ε)
+ φ(θ) (24)

2



Moreover, w must be C1 on its entire domain. This implies that w(θfbR ) = 0 a

value matching condition and wθ(θ
fb
R ) = 0, a smooth pasting condition. Finally,

observe that, for θ ≤ θfbR , the second term in the right hand side of (23) implies

that
θ1+ε

κε(1 + ε)
≤ φ(θ) i.e. at retirement and afterward, the marginal social value

of continued work is negative. In particular θ̂fbR ≤ θS.

Set φ1θ
1+εφ + φ0 with εφ < ε. Define the quadratic polynomial P (x) = −ρ +

µx+ σ2

2
x(x− 1). The homogeneous equation

− ρw(θ) + µθwθ +
σ2θ2

2
wθθ = 0 (25)

admits the general solution

w(θ) = C−θ
x− + C+θ

x+ (26)

in which x− and and x+ are the negative and positive roots of P . I find a

particular solution for each non-homogenous term, respectively denoted Aθ1+ε,

A′θ1+εφ , and B in which A = −
1

κε(1 + ε)P (1 + ε)
, A′ =

φ1

P (1 + εφ)
and B = −

φ

ρ
.

By the assumption in (22), P (1 + ε) < 0. The sum of these particular solutions

Aθ1+ε + A′θ1+εφ +B is the value of social welfare if agents never retire.

By the superposition principle of linear homogenous ODEs the solution takes

the form

w(θ) = Aθ1+ε + A′θ1+εφ +B + C−θ
x− + C+θ

x+ (27)

for θ > θfbR and w(θ) = 0 for θ ≤ θfbR . From (22) I ensure that x+ > 1 + ε. Since

lfb − κ (lfb)1+
1
ε

1+ 1
ε

=
θ1+ε

κε(1 + ε)
I can conjecture that w(θ) =θ→+∞ O(θ1+ε). Therefore

C+ = 0.

By the value matching and smooth pasting conditions:

A(θfbR )1+ε + A′(θfbR )1+εφ +B + C−(θ
fb
R )x− = 0 (28)

(1 + ε)A
(θfbR )1+εφ

θfbR
+ (1 + εφ)A

′ (θ
fb
R )1+εφ

θfbR
+ x−C−

(θfbR )x−

θfbR
= 0. (29)

Multiplying (28) by x− and (29) by θfbR and subtracting the two yields

(1 + ε− x−)A(θ
fb
R )1+ε + (1 + εφ − x−)A

′(θfbR )1+εφ = x−B. (30)

When εφ = ε the caution becomes simply

(1 + ε− x−)(A+ A′)(θfbR )1+ε = x−B.

3



Setting A(φ1) = A + A′, Thus the expression of θfbR and w in Corollary 1 follows

by replacing the values of A(φ1) and B.

θfbR =
(φ0

ρ

x

A(φ1)(1 + ε+ x)

) 1
ε
. (31)

and the static participation threshold is

θS = (
φ0

[κε(1 + ε)]−1 − φ1

)
1
ε

Both θfbR and θS increasing in φ0 and in φ1, . In addition, since
ρ−(1+ε)(µ+σ2

2
ε)

ρ
< 1

and (x)
(1+ε+x)

< 1, I get θfbR < θS. Now in finite horizon, the problem is time

dependent and thresholds are time dependent. When time goes to T , the value

of waiting for productivity to improve decreases and thresholds converge to θ∗.

Only the dynamic single crossing property of the derivative operator is needed in

finite horizon for this to hold. This is again an application of Jacka and Lynn

(1992).

3 The First Order Approach

3.1 First Order Approach under Risk Neutrality

I first introduce the First Order Approach (FOA) in the simpler setting in which

agents are risk neutral in consumption and productivity is a GBM. I relax incentive

compatibility by considering a family of deviations that Bergemann and Strack

(2015) call consistent deviations. The effect of these deviations on promised utility

can be summarized by what Pavan et al. (2014) call the impulse response function.

This FOA is standard in the dynamic contracting literature with persistent shocks.

The value of the agent’s productivity if he reports his productivity truthfully

is

θt = θ0 exp((µ−
σ2

2
)t+ σBt).

I define Φ by θt ≡ Φ(t, θ0, Bt) and set the following definition, which is motivated

by Bergemann and Strack (2015).

Definition 2. (Consistent deviations). A deviation is called consistent if an agent,

with real productivity θt = Φ(t, θ0, Bt) and associated initial shock θ0, misreports

his initial shock by announcing θ̃0 ∈ Θ0 at t = 0 and continues to misreport

θ̃t = Φ(t, θ̃0, Bt) instead of his true productivity θt at all future dates t ≤ T .

With this definition, an agent who follows a consistent deviation misreports his

4



true type in all future periods. An agent’s reported productivity θ̃t = Φ(t, θ̃0, Bt)

would be equal to the productivity he would have had if his initial shock had been

θ̃0 instead of θ0. From these misreports, the planner can infer the true realized

path of Brownian shocks Bt. However, since the allocations depend on the history

of productivities instead of the Brownian shocks, the inference on the Brownian

shocks is not of immediate use for the principal. Bergemann and Strack (2015)

show that incentive compatibility with respect to consistent deviations—which is

a one-dimensional class of deviations—is sufficient for full incentive compatibility

in the risk-neutral and GBM case. This result allows me to derive the incentive-

compatible optimal allocations and retirement distortions.

Consider the ex-ante utility at time 0 of an agent with initial productivity θ0

who announces θ̃0 and follows consistent deviations; denoting it v(θ0, θ̃0). Then

v(θ0, θ̃0) = E{θ̃}
{∫ T

0

e−ρtct(θ̃0)dt−

∫
TR(θ̃0)

0

e−ρt[κ

(
yt(θ̃0)

Φ(t,θ0,Bt)

)1+ 1
ε

1 + 1
ε

+φt

(

Φ(t, θ0, Bt)
)

]dt
∣
∣
∣θ̃0

}

.

(32)

Restricting attention to consistent deviations alone, the incentive problem turns

into a static one. Truthful reports at time zero are necessary for incentive com-

patibility, i.e. v(θ0) = max
θ̃0

v(θ0, θ̃0) and an envelope condition allows me to obtain

the derivative of ex-ante utility. The sensitivity of ex-ante utility with respect to

initial reports satisfies:

vθ(θ0) = E
{∫

TR

0

e−ρt[(1 +
1

ε
)(
Φθ(t, θ0, Bt)

θt
)κ

(yt
θt
)1+

1
ε

1 + 1
ε

− Φθ(t, θ0, Bt)φ
′

t(θt)]dt
∣
∣
∣θ0

}

.

(33)

Φθ(t, θ0, Bt) is what Pavan et al. (2014) call the impulse response function and

Bergemann and Strack (2015) call the stochastic flow in continuous-time. Here

with GBM productivity the stochastic flow is the ratio of current productivity to

initial productivity, that is,

Φθ(t, θ0, Bt) = exp((µ−
σ2

2
)t+ σBt) = θt/θ0.

Then the incentive compatibility constraint simplifies to

vθ(θ0) =
1

θ0
E
{∫

TR

0

e−ρt[(1 +
1

ε
)κ

(yt
θt
)1+

1
ε

1 + 1
ε

− θtφ
′

t(θt)]dt
∣
∣
∣θ0

}

. (34)
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3.2 First Order Approach under Risk Aversion

Here, I relax incentive compatibility by considering specific types of deviations

as in the risk neutral case. Suppose the agent has reported his type truthfully

until time t, {θ̃t} = {θt} and then decides to misreport his type. Since the

planner observes continuous reports from the agent, she can construct a process

B θ̃
t from the reports that evolves according to dB θ̃

t = dθ̃t−µtθ̃tdt

σtθ̃t
. Under truth-

telling, B θ̃
t = Bt. Therefore, the agent is restricted to reports that make B θ̃

t a

Brownian motion. The Girsanov Theorem implies that there exist misreports −ηt

such that dBt = dB θ̃
t + ηtdt under the measure Q of the Brownian motion B θ̃

t and

gives the formula for the change of measure from P to Q. An incentive-compatible

mechanism must be immune to these deviations.

Lemma 3. (Sensitivity of promised utility) IC ⊆ FOA. Moreover, If an alloca-

tion {c, y, ν} ∈ FOA then there exists a process {σ∆,t} such that the sensitivity

process {∆t} has the integral form:

∆t = E
{∫

TR

t

e−ρs[µs∆s + uθ(cs,
ys
θs
)− φ

′

s(θs) + σ∆,sσs]ds
∣
∣
∣Ft

}

(35)

Proof. Denote {θ̃} the process reported by the agent. Let θt = θ at time t. By

Girsanov’s theorem, there exists a process {η} is adapted to Ft such that

dθ̃t = dθt + ηtdt = (θtµt + ηt)dt+ θtσtdBt. (36)

The agent’s problem is to choose controls ηt to maximize promised utility for given

allocations {c, y} and retirement rule TR. Denote {θη} ≡ {θ̃} the misreports

generated by {η}. Global incentive compatibility is equivalent to the fact that the

optimal report is truth-telling i.e η⋆t = 0 ∀t. Now with the FOA, assume that all

the controls ηs, ∀s ∈ [0, t) have been equal to 0 so far. Promised utility at time t

given the control η is

wt(θ, θ
η) = sup

{η}

E
{∫

TR(η)

t

e−ρ(s−t)
[

u
(

cs(η),
ys(η)

θs

)

−φs(θs)
]

ds+

∫ T

TR(η)

e−ρ(s−t)[u(cs(η), 0)]ds
∣
∣
∣F

η
t

}

.

(37)

The expectation above is taken with respect to the realization of the process {θ̃},

since it is reports that determines the allocation and the retirement rule. If the

agent follows a process η then

dBη
t =

dθηt − ((θηt −
∫ t

0
ηsds)µt + ηt)dt

(θηt −
∫ t

0
ηsds)σt

(38)

forms a standard Brownian motion. Therefore, there is exists nonnegative process

6



γη and some sensitivity process Y
′η such that

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )− u(ct,

yt
θt
) + φt(θt))dt− γηt dt+ σtY

′η
t dB

η
t .

Then replacing the standard Brownian from (38) in this equation I have

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )−u+φ)dt− γηt dt+σtY

η
t [dθ

η
t − ((θηt −

∫ t

0

ηsds)µt+ ηt)dt].

(39)

Since the dependence on past controls η = 0 is completely captured by the current

value of θη, vt = wt(θt, θ
η=0). Ito’s formula implies that

dwt(θt, θ
η
t ) = ∂twt(θt, θ

η)dt+∂θηwt(θt, θ
η
t )(θtµt+ηt)dt+∂θηwt(θt, θ

η
t )θtσtdBt+

1

2
∂2(θη)2wt(θt, θ

η
t )θ

2
t σ

2
t dt.

(40)

The equation (39) becomes with the FOA ηs = 0, ∀s ∈ [0, t):

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )− u(ct,

yt
θt
) + φt(θt))dt− γηt dt+ θηt σtY

η
t dBt.

Comparing equations (40) and (39) and equalizing their drifts yield:

∂twt(θt, θ
η
t )+∂θηwt(θt, θ

η
t )(θtµt+ηt)+

1

2
∂2(θη)2wt(θt, θ

η
t )θ

2
t σ

2
t = (ρwt(θt, θ

η
t )−u(ct,

yt
θt
)+φt(θt))dt−γ

η
t dt.

Now I obtain the Hamilton-Jacobi-Bellman equation for wt

ρwt(θt, θ
η
t ) = sup

ηt

{

∂twt(θt, θ
η)+∂θηwt(θt, θ

η
t )(θtµt+ηt)+

1

2
∂2(θη)2wt(θt, θ

η
t )θ

2
t σ

2
t+u(ct,

yt
θt
)−φt(θt)

}

.

Therefore following Theorem 3.1, p. 95 in Hartman (2002), The envelope theorem

implies37

ρ∂θwt(θt, θ
η
t ) = ∂t,θwt(θt, θ

η)+∂2θη ,θwt(θt, θ
η
t )(θtµt+ηt)+∂θηwt(θt, θ

η
t )µt+

1

2
∂3(θη)2,θwt(θt, θ

η
t )θ

2
t σ

2
t

+∂2(θη)2wt(θt, θ
η
t )θtσ

2
t + uθ(ct,

yt
θt
)− φ′

t(θt).

This expression can be evaluated at ηt = 0, writing∂wt(x,θ)
∂θ

= ∆t(x, θ) and consid-

ering the fact that when ηt = 0 I have ∂wθη(θ, θ
η) = ∆t, so that

ρ∆t = ∂t∆t+∂θ∆t(θtµt+0)+∆tµt+
1

2
∂2(θ)2(∆t)θ

2
t σ

2
t +∂θ∆tθtσ

2
t +uθ(ct,

yt
θt
)−φ′

t(θt).

The Feynman-Kac formula applies to this differential equation and I deduce that

∆t = E
{∫

TR

t

e−ρs[∆sµs − uθ(cs,
ys
θs
) + φ′

s(θs) + ∂θ∆sθsσ
2
s ]ds+∆TR

∣
∣
∣Ft

}

.

37For a fully rigorous argument, one needs to make regularity assumptions on TR and use
Malliavin calculus to differentiate with respect to stochastic processes. See Di Nunno et al.

(2009).
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After retirement, an optimal allocation must give constant consumption. There-

fore the sensitivity is zero at retirement. This with ∂θ∆sθs = σ∆,s, implies the

result:

∆t = E
{∫

TR

t

e−ρs[∆sµs − uθ(cs,
ys
θs
) + φ′

s(θs) + σ∆,sσ
2
s ]ds

∣
∣
∣Ft

}

.

4 Recursive Formulation of Second-Best: Proof

of Lemma 1

Proof. For given consumption, output, {c, y} and retirement rule TR, the expected

utility of an agent is at time t is:

vt = E
{∫

TR

t

e−ρ(s−t)u(cs,
ys
θs
)ds+

∫ T

TR

e−ρ(s−t)u(cs, 0)ds
∣
∣
∣Ft

}

Then

e−ρtvt+

∫ t

0

e−ρsu(cs,
ys
θs
)ds = E

{∫
TR

0

e−ρsu(cs,
ys
θs
)ds+

∫ T

TR

e−ρsu(cs, 0)ds

︸ ︷︷ ︸

W

∣
∣
∣Ft

}

≡ Wt.

By iterated expectation, Wt is a martingale. By the Martingale Representa-

tion Theorem, there exists a square integrable process such that Wt = E[W ] +
∫ t

0
σ

′v
s dBs. This implies that e−ρtvt = E[Y ]−

∫ t

0
e−ρsu(cs,

ys
θs
)ds+

∫ t

0
σ

′v
s dBs. There-

fore e−ρtvt is an Ito process. Applying Ito’s lemma,

dvt = (ρvt − u+ h)dt+ σv
t dBt

in which σv
t = ertσ

′v
t . By Feynman-Kac, σv

t = θt∆tσt and

dvt = (ρvt − u+ h)dt+ θt∆tσtdBt

with the initial value condition

v0 = v.

The law of motion of the sensitivity process is a direct application of this idea to

Lemma (3).
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5 Recursive Formulation of Second-Best: Hamilton-

Jacobi-Bellman Equation

First, for the sake of legibility I drop the state 4-tuple (v,∆, θ, t) from the notation.

Denote g(t) ≡
∫ T

t
e−ρ(s−t)ds = 1

ρ
(1− e−ρ(T−t)) a shorthand that represents by how

much constant consumption is discounted from time t until death. The associated

Hamilton-Jacobi-Bellman equation to this problem is then:

0 = max
ct,yt,σ∆,t

{

−K + g(t)u−1
l=0

( v

g(t)

)

, −ρK + (ct − yt) + L(v,∆, θ, t) ◦K
}

(41)

in which L(v,∆, θ, t) is the derivative operator with respect to state variables:

L(v,∆, θ, t) ◦K = Kv[ρvt − u+ φt] +K∆[(ρ− µ)∆t − uθ + φ
′

t − σ∆,tσ] +Kt +Kθθtµ+

(42)

+
1

2
Kvvθ

2
t∆

2
tσ

2 +
1

2
K∆∆σ

2
∆,tσ

2 +
1

2
Kθθθ

2
t σ

2

+Kv∆θt∆tσ∆,tσ
2 +Kvθθ

2
t∆tσ

2 +K∆θθtσ∆,tσ
2.

The first component of the right-hand side of this dynamic equation captures

that once an agent is retired with promised utility v, the cost of providing such

utility is the discounted value of the flow consumption u−1
l=0(

v
g(t)

). The second com-

ponent captures the fact that before retirement, the flow cost over an infinitesimal

time dt is the discounted cost −ρKdt, flow consumption minus output, and the

derivatives of the cost function with respect to state variables. By optimality,

these should sum up to zero in the working region.

6 Optimal Labor Wedge

The evolution of the labor wedge is obtained from the evolution of γt:

Proposition 8. (Labor wedge)

The law of motion of γt, is

dγt =
[

− θtλtσc,tσ
2
t + µtγt

]

dt+ γtσtdBt, γ0 = 0.

In addition, the labor wedge satisfies

d
( τLt
1− τLt

)

= [(1 +
1

ε
)σc,t +

τLt
1− τLt

σ2
c,t]σ

2
t dt−

τLt
1− τLt

σc,tσtdBt.
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Proof. Applying Ito’s lemma to yt = K∆(vt,∆t, θt, t) yields

dγt = L(vt,∆t, θt, t) ◦K∆dt+ (K∆vθt∆t +K∆∆σ∆,t +K∆θθt)σtdBt.

Using the envelope theorem, differentiate HJB with respect to ∆ to get

−ρK∆ − L(vt,∆t, θt, t) ◦K∆ + (ρ− µt)K∆ +Kvvθ
2
t∆tσ

2
t +Kv∆θtσ∆,tσ

2
t = 0

using this equation, the first order condition for σ∆,t and the expression for σc,t,

the drift of γt is (−θtλtσc,tσ
2
t dt + µtγt)dt and the volatility is γtσtdBt. Hence the

law of motion of γt.

The first order condition on yt, coupled with the law of motion of γt, implies:

d
(

λt
τLt

1− τLt

)

= [(1 +
1

ε
)λtσc,tσ

2
t ]dt. (43)

This expression states that the process λt
τLt

1−τLt
has zero instantaneous volatility.

This means that its paths are less dispersed than the paths of productivity for

insurance purposes. Applying Ito’s lemma to (43) yields:

d
( τLt
1− τLt

)

= [(1 +
1

ε
)σc,t]σ

2
t dt+

τLt
1− τLt

λtd
(

u′(ct)
)

. (44)

Apply Ito’s lemma to the Inverse Euler equation and replace d(u′(ct)) = u′(ct)σ
2
c,tσ

2
t dt−

u′(ct)σc,tσtdBt in (44) to obtain the formula of the labor wedge in the proposition:

d
( τLt
1− τLt

)

=
[

(1 +
1

ε
)σc,t +

τLt
1− τLt

σ2
c,t

]

σ2
t dt−

τLt
1− τLt

σc,tσtdBt. (45)

7 Optimal Savings Wedge

Under separable utility, a standard Inverse Euler Equation of optimal contracting

and dynamic moral hazard models holds.

Proposition 9. (Savings wedge)

1. There exists a process σc,t such that

d
( 1

u′(ct)

)

=
1

u′(ct)
σc,tσtdBt (Inverse Euler Equation) (46)

2. The intertemporal wedge between t and t+ s is positive and satisfies

τKt,s =

∫ t+s

t

σ2
c,t′σ

2
t dt

′

10



and the intertemporal wedge at time t is τKt = σ2
c,tσ

2
t .

Proof. Applying Ito’s lemma to λt = Kv(vt,∆t, θt, t) yields

dλt = L(vt,∆t, θt, t) ◦Kvdt+ (Kvvθt∆t +Kv∆σ∆,t +Kvθθt)σtdBt.

Using the envelope theorem, differentiate HJB with respect to v to get −ρKv −

L(vt,∆t, θt, t) ◦ Kv + ρKv = 0, i.e L(vt,∆t, θt, t) ◦ Kv = 0. Therefore, the drift

of dλt is zero and λt is a martingale. The volatility process is determined by

σc,t = Kvvθt∆t +Kv∆σ∆,t +Kvθθt.

Point 1 states that the standard Inverse Euler Equation extends to the case with

endogenous retirement. The inverse of marginal utility of consumption is a mar-

tingale. A direct consequence of this is that the intertemporal wedge is positive,

since Jensen’s inequality applies to the inverse function that is concave.

Point 2 highlights that the intertemporal wedge τKt is linked to the volatility

of the inverse of the marginal utility of consumption. This volatility is a control

for how much the changes in productivity translate into changes in consumption.

It is, therefore, a measure of risk exposure. A high volatility of the inverse of

marginal utility of consumption implies that the planner exposes the agents to

risk to provide incentives at the expense of insurance. This risk exposure stops at

retirement and the volatility σc,t goes to zero.38

8 Optimal Net Retirement Wedge: Proof of Propo-

sition 2

The agent’s objective is

K(v) = min
{TR}

E
{∫

TR

0

e−ρt(ct − yt)dt+ e−ρTRc
T

+
R
g(TR)

}

(47)

subject to

dvt = (ρvt − u(c) + h(y/θ) + φ(θ))dt+ θt∆tσtdBt

38In Sannikov (2014), risk exposure does not go to zero at retirement. Instead, it builds up
to target, starts falling at an age before retirement, and goes to zero at the end of the horizon.
The difference is because, in my setting, there is no output after retirement, and therefore there
is no need for the agent to be exposed to risk after retirement.
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and

dθt
θt

= µtdt+ σtdBt.

The HJB is

0 = max
{

−K + g(t)u−1
l=0

( v

g(t)

)

, −ρK + (ct − yt) + Lp(v, θ, t) ◦K
}

in which L(v,∆, θ, t) is the derivative operator with respect to state variables:

Llf (v, θ, t) ◦K = Kv[ρvt − u+ φt] +Kt +Kθθtµ+ (48)

+
1

2
Kvvθ

2
t∆

2
tσ

2 +
1

2
Kθθθ

2
t σ

2 ++Kvθθ
2
t∆tσ

2

But I know the HJB of the second-best planner’s problem is

Lsb(v,∆, θ, t) ◦K = Kv[ρvt − u+ φt] +Kt +Kθθtµ+ (49)

+
1

2
Kvvθ

2
t∆

2
tσ

2 +
1

2
Kθθθ

2
t σ +Kvθθ

2
t∆tσ

22

K∆[(ρ− µ)∆t − uθ + φ
′

t − σ∆,tσ] +
1

2
K∆∆σ

2
∆,tσ

2 +Kv∆θt∆tσ∆,tσ
2 +K∆θθtσ∆,tσ

2.

With the FOC on the variance of the sensitivity

−K∆σ∆,tσ +Kv∆θt∆tσ∆,tσ
2 +K∆θθtσ∆,tσ

2 = −K∆∆σ
2
∆,tσ

2

So that

Lsb(v,∆, θ, t) ◦K = Kv[ρvt − u+ φt] +Kt +Kθθtµ+ (50)

+
1

2
Kvvθ

2
t∆

2
tσ

2 +
1

2
Kθθθ

2
t σ

2

K∆[(ρ− µ)∆t − uθ + φ
′

t]−
1

2
K∆∆σ

2
∆,tσ

2.

Now this expression tells use if the planner add the wedge τL,φ in the agent’s

problem

dvt = (ρvt − u(c) + h(y/θ) + φ(θ) + τL,φ)dt+ θt∆tσtdBt

such that

τL,φ =
K∆

Kv

[(ρ− µ)∆t − uθ + φ
′

t]−
1

2Kv

K∆∆σ
2
∆,tσ

2

Then given the allocations c∗, y∗, σ∗
∆ the agent’s private retirement decision will

be the same as the second-best retirement decision.
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The net wedge corrects for the terms in c∗, y∗, σ∗
∆ given the Lagrangians:

τφ = τL,φ −
K∆

Kv

[(ρ− µ)∆t − uθ] +
1

2Kv

K∆∆σ
2
∆,tσ

2

Then using the FOCs on c and y

τφ =
K∆

Kv

φ
′

t =
γ

λ
φ′ = −

ǫ

1 + ǫ

τL

1− τL
θφ′(θ).

Therefore dividing by φ(θ):

τRt = −
τLt

1− τLt

ε

1 + ε
εφ,θ(θt)

9 Age-Dependency of The Retirement Wedge:

Proof of Proposition 4

From the law motion of the labor wedge

d
( τLt
1− τLt

)

= [(1 +
1

ε
)σc,t]σ

2
t dt+

τLt
1− τLt

λtd
(

u′(ct)
)

and the equilibrium relation between the net retirement wedge and labor wedge

τRt = −
τLt

1− τLt

ε

1 + ε
εφ,θ(θt)

One obtains

d(τ tR) = −
ε

1 + ε
d(

τLt
1− τLt

εφ,θ(θt))

Using Ito’s Lemma on τ tR

d(τ tR) = −
ε

1 + ε
[d(

τLt
1− τLt

)εφ,θ(θt) +
τLt

1− τLt
dεφ,θ(θt) + d(

τLt
1− τLt

)d(εφ,θ(θt))]

And on εφ,θ(θt)

dεφ,θ(θt) = [µθε′φ,θ(θ) +
σ2

2
θ2ε′′φ,θ(θ)]dt+ σθε′φ,θ(θ)dBt

Collecting the terms

d(τ tR) = τ tRλtd
(

u′(ct)
)

− σc,tσ
2
t εφ,θ(θt)dt+ τ tR

1

εφ,θ(θt)
dεφ,θ(θt)− τ tRσc,tσ

2
t

θε′φ,θ
εφ,θ

dt

Thus, the result

d(τ tR) = −σc,tσ
2
t [εφ,θ(θt) + τ tR

θtε
′
φ,θ(θt)

εφ,θ(θt)
]dt+ τ tR[

1

u′(ct)
d
(

u′(ct)
)

+
1

εφ,θ(θt)
dεφ,θ(θt)].
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10 Implementation: Proof of Proposition 5

The savings tax Ts(at) is constructed to guarantee zero private wealth holdings as

in Werning (2011). The retirement benefits schedule b and labor income tax Ty

are such that, along the equilibrium path, the optimal allocations from the social

planner’s problem are affordable for each agent after all histories, given zero asset

holdings:

T (w∗
t {θ

t−, θ}, {yt−, y∗t ({θ
t−, θ})}) = w∗

t {θ
t−, θ}(y∗t ({θ

t−, θ})− c∗t ({θ
t−, θ}))

b(w∗
t {θ

t−, θ}, {yt−, y∗t ({θ
t−, θ})}) = (1− w∗

t {θ
t−, θ})c∗t ({θ

t−, θ}))

for all {wt−, yt−} such that {θt−} ∈ Θt({wt−, yt−}) 6= ∅, and all θ ∈ (0,+∞).

The retirement benefits and income taxes for off-equilibrium allocations —

those allocations which are not optimally assigned to any type in the social plan-

ner’s program — are set to be sufficiently unattractive, to ensure that agents do

not select them. Intuitively then, conditional on entering a period with no sav-

ings, and with a given history incomes, agents only face the choice of allocations

available in the planner’s problem after ability histories which, up to this period,

are consistent with the observed choices. By the temporal incentive compatibility

of the constrained efficient allocation, they will choose the allocation designed for

them. As a result, income taxes are only levied when the agent is working and

the agent receives retirement benefits after exiting the labor market.

To do so, I need to exclude histories {wt−, yt−} which do not correspond to

any history {θt−}. Consider a choice (wt, yt) which is not assigned in the social

planner’s problem for any type θt after history {θt−1} i.e, such that (wt, yt) /∈

Qt−
w,y({θ

t−}). The income tax and retirement benefits at these levels have to be

sufficiently dissuasive to make them strictly dominated by allowed choices. There

are several ways to rule out these non-allowed allocations, and the goal here is just

to provide a possible one, which is to simply set the income taxes prohibitively

high if the agent must retire and the retirement benefits very low if the agent

must continue working, so that irrespective of savings, it is never optimal to chose

such allocations. Set implicit finite (but potentially very large) upper and lower

limits on asset holdings, a > 0 and a < 0. This can be done either by extending

the savings tax so that for at > a and at < a. For instance, after a history

{θt−} ∈ Θt({wt−, yt−}) and for any choice (wt, yt) /∈ Qt−
w,y({θ

t−}), set

T (wt, {y
t}) > wt(a− a+ yt)
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b(wt, {y
t}) < −(1− wt)(a− a+ yt)

The retirement benefits and income tax at least confiscate income and impose

an additional penalty such that all wealth is confiscated and agents can never

borrow sufficiently to retain positive consumption. This leaves the agent with zero

consumption, and will never be chosen. The second and less draconian way is to

smooth the retirement benefits and income tax by making the agent slightly prefer

optimal allocation to non-allowed allocation. This is the approach I undertake in

the next implementation.

11 Pareto Optimal Retirement under Risk Neu-

trality

Consider the case of agents who are risk neutral in consumption and productiv-

ity is a GBM. Risk neutrality in consumption implies that consumption need not

be distorted. Because of the strict concavity of u(c) in the case of risk-averse

agents with a utilitarian planner, the equivalent generalized social marginal wel-

fare weights (as in Saez and Stantcheva (2016)) reflect decreasing marginal utility

of consumption. Lowly productivity agents have lower consumption and higher

marginal utility and therefore higher social welfare weights. To ensure compa-

rability between the risk-averse utilitarian and the risk neutral cases, I assume

that the planner puts Pareto welfare weights α(θ0) on each agent with initial type

θ0. Since with concave utility, marginal utility of consumption is non-increasing,

I assume the function α : Θ0 7→ (0; +∞) is non-increasing. I normalize the sum

of Pareto weights to one
∫∞

0
α(θ0)dF (θ0) = 1 and call the summand of weights

Λ(θ) =
∫ θ

0
α(θ0)dF (θ0).

The following lemma formulates the second-best retirement decision problem

by substituting optimal allocations in the planner’s problem.

Lemma 4. (Allocations and wedges) The labor wedges are time invariant and

depend only on initial heterogeneity and the welfare weights

τLt
1− τLt

=
τ(θ0)

1− τ(θ0)
= (1 +

1

ε
)
1

θ0

Λ(θ0)− F (θ0)

f(θ0)
(51)

In addition, the planner’s problem is to choose the retirement rule so as to solve:

max
TR

∫ ∞

0

E
{∫

TR

0

e−ρt
[

(1−τ(θ0))
ε[yfbt −κ

(
yfbt

θt
)1+

1
ε

1 + 1
ε

]−[φt−
τ(θ0)

1− τ(θ0)

ε

1 + ε
θtφ

′

t(θt)]dt
}

dF (θ0)

(52)
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Proof. The problem of the planner is to choose allocations {c, y} and a retirement

rule TR to maximize social welfare subject to the definition of ex-ante utility, the

resource constraint (4), the relaxed incentive compatibility constraint (34) and

the law of motion of productivity (1). I rewrite the problem from the first-order

approach with risk neutrality below for reading convenience.

max
{c,y,v,TR}

∫ ∞

0

α(θ0)v(θ0)dF (θ0)

s.to
dθt
θt

= µdt+ σdBt

v(θ0)= E0

{∫ T

0

e−ρtctdt−

∫
TR

0

e−ρt[κ
(yt
θt
)1+

1
ε

1 + 1
ε

+ φt]dt
∣
∣
∣θ0

}

0 ≤E
{∫

TR

0

e−ρtytdt
}

− E
{∫ T

0

e−ρtctdt
}

vθ(θ0)=
1

θ0
E0

{∫
TR

0

e−ρt[(1 +
1

ε
)κ

(yt
θt
)1+

1
ε

1 + 1
ε

− θtφ
′

t(θt)]dt
∣
∣
∣θ0

}

(FOA)

Eliminate consumption from the problem by plugging the definition of ex-ante

utility at time zero into the feasibility constraint (4). The feasibility constraint

then becomes:
∫ ∞

0

(

v(θ0)+E0

{∫
TR

0

e−ρt
[

κ
(yt
θt
)1+

1
ε

1 + 1
ε

+φt

]

dt
∣
∣
∣θ0

})

dF (θ0) ≤

∫ ∞

0

E0

{∫
TR

0

e−ρtytdt
∣
∣
∣θ0

}

dF (θ0).

(53)

Denote by λ the multiplier on the new feasibility constraint (53). If v(θ0) is

interior, the first order conditions on v: α(θ0)f(θ0) − λf(θ0) = 0 integrated over

Θ0 yields λ = 1. The problem is then to maximize the Lagrangian

∫ ∞

0

α(θ0)v(θ0)dF (θ0)−
[ ∫ ∞

0

(

v(θ0) + E0

{∫
TR

0

e−ρt[κ
(yt
θt
)1+

1
ε

1 + 1
ε

+ φt]dt
∣
∣
∣θ0

})

dF (θ0)

−

∫ ∞

0

E0

{∫ ν

0

e−ρtytdt
∣
∣
∣θ0

}

dF (θ0)
]

subject to the incentive constraints from the FOA (34)and the law of motion of

productivity (1). By partial integration
∫ ∞

0

v(θ0)dF (θ0) =

∫ ∞

0

1− F (θ0)

f(θ0)
vθ(θ0)dF (θ0) + lim

θ→0
v(θ)

∫ ∞

0

α(θ0)v(θ0)dF (θ0) =

∫ ∞

0

1− Λ(θ0)

f(θ0)
vθ(θ0)dF (θ0) + lim

θ→0
v(θ).

Eliminating v from the Lagrangian using partial integration and the expression of
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vθ from in the incentive compatibility constraint, the planner’s problem becomes

∫ ∞

0

E0

{∫
TR

0

e−ρt
[

yt−κ
(yt
θt
)1+

1
ε

1 + 1
ε

[
1+(1+

1

ε
)
Λ(θ0)− F (θ0)

f(θ0)

1

θ0

]
−[φt−

Λ(θ0)− F (θ0)

f(θ0)

θt
θ0
φ′
t(θt)]

]

dt
∣
∣
∣θ0

}}

dF

(54)

The first order condition for yt implies that the labor wedge is time invariant and

depends only on initial heterogeneity and the welfare weights.

τLt
1− τLt

=
τ(θ0)

1− τ(θ0)
= (1 +

1

ε
)
1

θ0

Λ(θ0)− F (θ0)

f(θ0)
.

Since yfbt − κ
(
y
fb
t
θt

)1+
1
ε

1+ 1
ε

=
θ1+ε
t

κε(1+ε)
and ysbt − κ

(
ysbt
θt

)1+
1
ε

1+ 1
ε

[
1 + (1 + 1

ε
)Λ(θ0)−F (θ0)

f(θ0)
1
θ0

]
=

(1− τ(θ0))
ε θ1+ε

t

κε(1+ε)
then I can replace ysb in the planner’s objective (54) to obtain

max
ν

∫ ∞

θ
E
{∫

TR

0

e−ρt
[

(1−τ(θ0))
ε[yfbt −κ

(
yfbt

θt
)1+

1
ε

1 + 1
ε

]−[φt−
τ(θ0)

1− τ(θ0)

ε

1 + ε
θtφ

′
t(θt)]dt

}

dF (θ0).

(55)

The normalization of Pareto weights and the assumption of non-increasing

weights implies that Λ(θ0)− F (θ0) is always non-negative. The labor wedges are

therefore non-negative. In the risk neutral case, with GBM productivity, the labor

wedges only depend on the inverse intensive Frisch elasticity of labor supply, initial

heterogeneity, and the welfare weights of the planner. Because there is no income

effect, consumption can be allocated freely over time without distorting the labor

margin.

In the context of private information, labor distortions are such that the flow

utility of consumption and disutility of labor is lower than it is in the first-best.

This is captured by the factor (1 − τ(θ0))
ε < 1 in front of [yfbt − κ

(yfbt /θt)1+1/ε

1+1/ε
] in

the planner’s objective. These labor distortions create incentives for the agents to

retire early. However, the virtual fixed cost either increases or decreases depending

on the sign of φ
′

t(θt).

If φ
′

t is negative, the virtual fixed cost increases compared to the first-best.

Its effect goes in the same direction as the decrease in output y and agents re-

tire earlier than in the first-best. Therefore, if φ
′

t is negative, all agents retire

earlier in the second-best compared to the first-best. In addition, retirement is

a cut-off rule. If φ
′

t is positive, the virtual fixed cost decreases compared to the

first-best and depends negatively on the intensive Frisch elasticity of labor and the

labor wedge. Its effect goes in the opposite direction as the decrease in y. Hav-

ing solved the retirement decision problem in the first-best case, the derivation
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of the analogous rule for the second-best scenario is relatively simple. Dividing

the planner’s objective by (1 − τ(θ0))
ε, one can observe that the choice of the

retirement rule in the second-best is equivalent to the choice of the retirement

rule in the first-best when the fixed utility cost is replaced by a virtual cost φ̃

defined as φ̃(t, θt) =
φ(t, θt)

(1− τ(θ0))ε
(1−

τ(θ0)

1− τ(θ0)

ε

1 + ε
εφ,θ(θt, t)). In contrast to

the first-best case, the retirement rule depends on initial productivity. Defining

S(τ(θ0), t) ≡ φ̃(t, θt)/φ(t, θt), and S(τ(θ0)) ≡ φ̃(θt)/φ(θt) when φ is time-invariant.

The following proposition summarizes the results on second-best retirement deci-

sion.

Proposition 10. (Second-best retirement decision)

1. There exists a time-dependent and initial productivity dependent determin-

istic retirement threshold θsbR (t, θ0) such that T sb
R = inf{t; θt ≤ θsbR (t, θ0)}.

2. Set φ(θ) = φ1θ
1+1/εφ + φ0. A the infinite horizon limit, T = +∞ the re-

tirement thresholds are time-invariant θ̂sbR : Θ0 7→ R
+∗, T sb

R = inf{t; θt ≤

θsbR (θ0)} and

θsbR (θ0) = θfbR S(τ(θ0))
1
ε .

3. If φ1 ≤ 0, retirement occurs earlier in the second-best compared to the first-

best for all agents θsbR (t, θ0) ≥ θfbR (t). If φ1 > 0 , a criterion for whether

retirement happens early or is delayed compared to the first-best is

S(θ0) =
1

(1− τ(θ0))ε
(1−

τ(θ0)

1− τ(θ0)

1 + 1/εφ
1 + 1/ε

)

For a given T < +∞, retirement occurs earlier in the second-best compared

to the first-best: θsbR (t, θ0) ≥ θfbR (t) for all t ≤ T if and only if S(θ0) ≥ 1.

Point 1 of the proposition highlights that retirement thresholds depend on the

initial productivity of the agents. Again, the option of continued work compared

to retiring is negative at retirement. The second point gives an explicit formula

for the optimal retirement threshold at infinite horizon as in the discussion after

Corollary 1.39 Point 2 gives an explicit expression for the retirement thresholds at

infinite horizon.

Point 3 of the proposition states that if the fixed utility cost is increasing in

productivity, there is a force that pushes for delayed retirement. High types have

39There is no concern for immiseration at infinite horizon here since, with risk neutrality in
consumption, consumption is not pinned down by first order conditions.
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a high fixed cost and lower information rents than in the case when the fixed cost

is independent of productivity. This creates an effect that goes in the opposite

direction of the income tax. Depending on the strength of this effect retirement

may occur early or be delayed compared to the first-best. The proposition shows

that the relative weight of the two forces depends on the criterion S that in turn

depends on the intensive Frisch elasticity of labor supply, the elasticity of the

fixed cost with respect to the wage and the welfare weights of the planner. This

criterion allows one to determine what productivity types should be induced to

retire before S(θ0) ≥ 1 or after the first-best S(θ0) < 1. Not that this is a relative

comparison of the retirement decision in the second-best relative to first-best, but

not a discussion of the retirement wedge and its implementation in the quasilinear

case, which I turn to next.

12 Implementation: Proof of Lemma 5

Lemma 5. For any smooth distribution f such that θ0f(θ0) →θ0→∞ 0 (which is

satisfied by all densities that have a mean), for all τ , there exist Pareto weights

that are smooth on the support of f , except that put weight on the min of the

support of f , such that the optimal tax is constant, τ(θ0) = τ .

Λ(θ) =
∫ θ

0
α(θ0)dF (θ0). We want in the interior Λ(θ)−F (θ) = τ

1−τ
θf(θ). The

limit condition in the lemma comes from the fact that Λ(∞) − F (∞) = 0. Now

the derivative is a necessary condition in the interior

[α(θ)− 1] =
τ

1− τ
[1 + θ]

So

α(θ) = 1 +
τ

1− τ
[1 +

θf ′(θ)

f(θ)
]

with a mass at the bottom support θ such that the sum of weights add up to 1,

i.e

αθ = 1−

∫ θ

θ
α(θ0)dF (θ0) = −

τ

1− τ
(1 +

∫ ∞

θ
θf ′(θ))dθ =

τ

1− τ
θf(θ)

And of course the condition that the weights are positive everywhere i.e

θf ′(θ)

f(θ)
≥ −

1

τ

In particular, if the support of the distribution starts at zero, there is no mass

at zero.
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In particular if the distribution is Pareto (θ, α) such that f(θ) = aθa

θa+1 then
θf ′(θ)
f(θ)

= −1− a and the weights are constant

α(θ) = 1−
τ

1− τ
a

and

αθ =
τ

1− τ
a

One can also invert this to show that with Pareto distribution and such type

of Pareto weights that I call Rawlsian-Utilitarian the tax is given by:

τ =
1

a

αθ

1 + αθ

which is a zero marginal tax τ = 0 if αθ = 0 and utilitarian. And τ = 1
2a

if

Rawlsian.

13 Implementation: Proof of Proposition 6

I started with the definition of a reflected process above the second-best retirement

boundary.

Definition 3. (Reflected Process) Let θ∗R : [0, T ] → R be a càdlàg function. A

processes {θ̃t}t on (Ω,F ,P) is called a reflected version of {θt}t with barrier θ∗R if

it satisfies the following conditions:

1. θ̃t is constrained to stay above θ∗R: For every t ∈ [0, T ] we have θ̃t ≥ θ∗R(t)

a.s.

2. Until {θt} hits the barrier both processes coincide: For every 0 ≤ t < T ∗
R

we have θt = θ̃t a.s.

3. θ̃ is always higher than θ: For every t ∈ [0, T ] we have θ̃t ≥ θt a.s.

4. When {θt} hits the barrier, {θ̃t}t is at θ∗R: θ̃T ∗

R
= θ∗R(T

∗
R ) a.s.

The next proposition ensures the existence of a reflected version of the pro-

ductivity process at the second-best retirement boundary for our GBM diffusion

process.

Proposition 11. Let θ∗R : [0, T ] → R be a càdlàg function. If {θt}t has no jumps,

then there exists a version of {θt}t reflected at θ∗R.
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The conditions of this proposition are just the necessary ones to obtain our

result. In general, there exist reflected versions at càdlàg boundaries for a very

large class of processes including those with downward jumps.

Now I proceed to prove Proposition6 . If the government sets a flat labor

income tax equal to τ from Lemma 5, and a post-retirement transfer π is a function

of retirement age, then the agent chooses hours conditional on work optimally

yt = y∗t and his private retirement decision satisfies:

max
ν

E
{∫ ν

0

e−ρt
[

(1− τ)y∗t − h(
y∗t
θt
)− φ(θt)

]

dt+ e−ρνπ(ν)
}

.

The occurrence of π is here to implement the wedges τφ with post-retirement

transfers. From Proposition 10 we know that the second-best retirement decision

is a cut-off rule, θ∗R. Then Theorem 5 of Strack and Kruse (2013) applies and

implies that

π(t) = Et

{∫ T

t

e−ρs
[

[(1− τ)ỹ∗s − h(
ỹ∗s
θ̃s
)− φ(θ̃s)

]

ds
}

implements the second-best retirement decision, where ỹ∗t = (1− τ)ε
θ̃1+ε
t

κε(1+ε)
.

14 Implementation: Proof of Proposition 7

As in the previous implementation, I start by setting the savings tax such that the

agents are not willing to privately save. Because of risk neutrality in consump-

tion, the savings tax can be set to zero. Given a history-independent income tax

T (yt), and a history-dependent lifetime retirement benefit b({yt},TR) the agent’s

consumption before retirement is ct = yt−T (yt) and after retirement, the NPV of

consumption is cTR
g(TR) = b({yt},TR). The agents private optimization problem

is:

max
yt,ν

∫ ∞

θ
E
{∫ ν

0

e−ρt[yt − T (yt)− h(
yt
θt
)]−φt(θ)

]

dt+ e−ρνb({ys}, ν)
}

dF (θ0) (56)

I search for affordable benefits of the form

b({yt}, ν) = −T (0)g(ν) + π(ν) + f({yt},T
∗
R )

that guarantees that yt = y∗t after which we will know that ν = T ∗
R by construction

of the transfer π. The necessary condition for optimal hours is, given T ∗
R

(1− T ′(yt) + e−ρ(T ∗

R−t)∂b({ys},T
∗
R )

yt
= h(

y∗t
θt
) = 1− τ

21



Setting

e−ρ(T ∗

R−t)∂b({ys},T
∗
R )

yt
= T ′(y)− τ

And integrating pathwise over y,

e−ρT ∗

Rf({ys},T
∗
R ) =

∫
T ∗

R

0

e−ρt[T (yt)− τyt]dt

guarantees that yt = y∗t . The transfer π(TR) guarantees that ν = T ∗
R as long

as it is affordable by the aggregate resource constraint. Now observe that if π

implements the second-best retirement decision, any lump-sum transfer added to

π also implements the second-best retirement decision. This will allow me to adjust

the lump-sum transfer −T (0) until the aggregate resource constraint is satisfied

in equilibrium.

T (0)g(0) + E
{∫

T ∗

R

0

e−ρtT (y∗t )
}

= E[e−ρT ∗

Rπ(T ∗
R )] + E[e−ρT ∗

Rf({y∗s},T
∗
R )]

Replacing the expression of −T (0) in b yields that for any TR:

b({yt}, ν) =
g(ν)

g(0)

(

E
{∫

T ∗

R

0

e−ρtT (y∗t )
}

− E[e−ρT ∗

Rf({y∗s},T
∗
R )]

)

︸ ︷︷ ︸

level around second best corrected for tax distortion

+ π(ν)−
g(ν)E[e−ρT ∗

Rπ(T ∗
R )]

g(0)
︸ ︷︷ ︸

actuarial adjustment

+ f({ys},T
∗
R )

︸ ︷︷ ︸

function of past earnings

which simplifies from the expression of f to:

b({yt}, ν) =
g(ν)

g(0)

(

E
{∫

T ∗

R

0

e−ρtτy∗t )
}

︸ ︷︷ ︸

level around second best corrected for tax distortion

+ π(ν)−
g(ν)E[e−ρT ∗

Rπ(T ∗
R )]

g(0)
︸ ︷︷ ︸

actuarial adjustment

+ f({ys},T
∗
R )

︸ ︷︷ ︸

function of past earnings
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Rename without lost of generality the income tax T to a tax on labor income with-

out the lump-sum transfer. The benefits b({yt}, ν), combined with labor income

tax and the lump-sum transfer, implements the planner’s optimum.

15 Extensions of the Canonical Model

In this section, I present the extensions of the results to the case of non-separable

utility in consumption and labor, agents with stochastic lifetimes and productivity-

dependent fixed costs.

15.1 Non-Separable Utility and Leisure-Consumption Com-

plementarity

In this section, I relax the assumption of separable intensive preferences in con-

sumption and labor. In particular, I allow for non-separabilities between con-

sumption and leisure. Saez (2002) argues that this non-separability is important

to study optimal income taxation. Non-separability between consumption and

leisure brings difficulties in that the Inverse Euler equation does not hold. It is

well known that with nonseparable preferences, the no capital tax result of Atkin-

son and Stiglitz (1976) does not hold. The reason is that income and productivity

now directly affect the intertemporal rate of substitution for consumption. In-

tertemporal distortions allow to separate types and relax incentive constraints.

Denote the consumption function C(y, u, θ) the inverse of u(·, y
θ
). Define

η(y, u, θ) ≡
−θCyθ(y, u, θ)

Cy(y, u, θ)
.

By differentiation of the implicit function C, Cy = −uy/uc = |MRSt| = 1−τLt
is the marginal rate of substitution between consumption and leisure. Therefore

η represents the elasticity −d log |MRSt|
d log θt

and plays an important role in this section.

In the separable isoelastic utility case above, this elasticity is η(y, u, θ) = 1 + 1
ε
.

Define the co-state λt = Kv as in the separable utility case. With non-separable

utility, λ is still a martingale dλt = σλ,tσtdBt but is not the inverse of the marginal

utility of consumption since the Inverse Euler equation does not hold. The labor

wedge satisfies

d
( 1

uc

1

η

τLt
1− τLt

)

= [λtσλ,tσ
2
t ]dt. (57)

The no-volatility result generalizes: the stochastic process 1
uc

1
η

τLt
1−τLt

has zero in-
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stantaneous volatility so that its realized paths vary much less than those for

productivity, in the sense that they are of bounded variation. To qualify the

wedges further, I consider the Greenwood et al. (1988) preferences

u(c, l) =
1

1− ν

(

c−
l1+

1
ε

1 + 1
ε

)1−ν

(58)

for ν > 0. Then η = 1 + 1
ε

and the labor wedge satisfies

d
( τLt
1− τLt

1

uc

)

= [(1 +
1

ε
)λtσλ,t]σ

2
t dt.

as well as

d
( τLt
1− τLt

)

= [(1 +
1

ε
)(λtuc)σλ,t]σ

2
t dt+

τLt
1− τLt

1

uc
d(uc). (59)

The dynamics of the labor wedge depend on the covariance between growth in λ

and log-productivity, the inverse intensive Frisch elasticity of labor supply, λtuc

(which is one in the separable utility case) and the innovations in marginal of

consumption. The first term of labor wedge is the drift term similar to the one

in formula 44. The term that mirrors the marginal utility of consumption is

responsible for the short-run regressivity. The net retirement wedge satisfies the

same equilibrium relation involving the labor wedge, namely,

τRt = −
τLt

1− τLt

ε

1 + ε
εφ,θ(θt). (60)

From 59 and 60 one deducts similar dynamics for the net retirement wedge:

d(τ tR) = −σλ,tσ
2
t [εφ,θ(θt) + τ tR

θtε
′
φ,θ(θt)

εφ,θ(θt)
]dt+ τ tR[

1

u′(ct)
d
(

u′(ct)
)

+
1

εφ,θ(θt)
dεφ,θ(θt)].

The following lemma characterizes the first-best retirement decision in this

setting.

Lemma 6. Suppose u is a Greenwood et al. (1988)-type utility function. The

optimal retirement rule in the first-best is a cut-off rule T
fb
R = inf{t; θt ≤ θfbR (t)}.

Proof. Denote λ the Lagrangian on the government’s resource constraint. The

first order condition on ct when an agent works is
(

ct −
l
1+1

ε
t

1+ 1
ε

)−ν

= λ and c−ν
t = λ

when an agent is retired. The first order condition for the labor supply of workers

is l
1
ε
t λ = λθt so that lt = θεt . After rearranging and simplifying, the terms inλ
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cancel out and the planner’s retirement problem is rewritten as:

max
{λ,TR}

E
{∫

TR

0

e−ρt[λ
(θt)

1+ε

(1 + ε)
− φt(θt)]dt

}

.

The proof ends as in the proof of Propositon 1 applying Theorem 4.3 in Jacka and

Lynn (1992).

The conjecture could be made from this lemma that in the second-best as well,

agents with a history of low productivity shocks retire earlier than agents with a

history of high productivity.

As for retirement consumption, it is constant after retirement as in the separa-

ble utility case. However, because the Inverse Euler does not hold, little is known

about consumption before retirement and about whether such consumption drops

at retirement in the second-best. In the first-best though, the smooth pasting

condition implies that marginal utility of consumption is continuous at retirement

and consumption drops at retirement c
T

+
R

= c
T

−

R
+

θfbR (t)1+ε

1+1/ε
to counter the discrete

fall in labor.

15.2 Uncertain Lifetime Correlated with Income

There is empirical evidence that life expectancy is positively correlated with in-

come. Chetty et al. (2016) find that in the United States, between 2001-2014,

the gap in life expectancy between the richest 1% and poorest 1% of individuals

is 14.6 years.

To model this positive correlation, I assume that there exist an exogenous

productivity threshold θD such that T = TD = inf{t ∈ R, θt ≤ θD}. Then

the discounting function after retirement with productivity θ ≥ θD is g(θ) =
1
ρ

(

1−
(

θ
θD

)γ−)

(increasing in current productivity θ) in which γ− is the negative

solution of ρ = µγ + σ2

2
γ(γ − 1). This modeling choice has the convenience that,

if productivity is a GBM, time is not a state variable of the planner’s problem

anymore while each agent have a finite expected lifetime. Since the problem is

time homogenous, I focus on retirement consumption rather than the life cycle

pattern of the wedges. The HJB equation becomes

0 = max
ct,yt,TR,σ∆,t

{

−K + g(θ)u−1
l=0(

v

g(θ)
) , −ρK + (ct − yt) + L(v,∆, θ) ◦K

}

where the derivatives operator over state variables L is defined in Appendix A.

For a given promised utility v, retirement consumption u−1
l=0(

v
g(θ)

) is decreasing

in current productivity. In addition, the net present value of retirement benefits
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are g(θ)u−1
l=0(

v
g(θ)

) and for a given promised utility v they are lower for highly

productive agents compared to lowly productive agents.40 Other things equal,

with stochastic lifetime correlated with income, the planner can take advantage

of the fact that highly productive agents have longer life expectancy than the

general population in order to give them lower retirement consumption and lower

net present value of consumption compared to a model in which the end of the

horizon is the average life expectancy T = E[TD].

15.3 Fast-Increasing Fixed Costs

Technical assumption 1assumes that the fixed utility cost of staying in the labor

market does not grow too fast in productivity i.e there exists ψ > 0, such that

∀(θ, t), φ
′

t(θ) ≤ ψθε. This section relaxes this assumption and shows that if the

fixed utility cost of staying in the labor market grows fast in productivity, when

agents promised utility becomes high, they become too costly to incentivize to

work and they retire.

Lemma 7. Suppose there exists ψ > 0 such that φt(θt) ≥ ψθ1+ε
t . Then, for each

t there exists a promised utility v∗t such that if vt ≥ v∗t , the planner collects more

revenue from retiring the agent than from making him work.

Proof. For a fixed θ, the function y 7→
h( y

θ
)+φt(θt)

y
is minimized at a y that satisfies

1
θ
h′(y

θ
) =

h( y
θ
)+φt(θt)

y
(marginal utility cost equals average utility cost). This yields

ymin

θ
=

(
φt(θ)(1+ε)

κ

) ε
1+ε

and the minimum value of average cost is 1
θ
h′(ymin

θ
) =

κ
ε

1+ε
((1+ε)φt(θt))

1
1+ε

θt
. With the assumption on φt I have uniformly on θ and t,

h(yt
θt
) + φt(θt) ≥ Kyt in which K = κ

ε
1+ε ((1 + ε)ψ)

1
1+ε .

For any vt and t define c̄ the constant consumption level which, given contin-

ually to the agent after t, gives him an expected utility of vt: g(t)u(c̄(t, vt)) = vt.

Also define v∗t by u′(c̄(t, v∗t )) = K. Such a level exists provided that u′(0) > K, a

condition without which the agent would never work even in the full information

solution (and which is true by definition for log utility). Then for vt ≥ v∗t the

agent does not work and the optimal contract is ct′ = c̄(t, vt) for all t′ ≥ t. To see

this, let vt ≥ v∗t , then u′(c̄(t, vt)) ≤ K. From concavity of u and inequality on h,

vt = E
(∫ T

t

e−r(s−t)(u(cs)− 1s≤TR
[h(

ys
θs
)+φs(θs)])ds

)

≤ E
(∫ T

t

e−r(s−t)(u(c̄(t, vt))

+(cs − c̄(t, vt))u
′(c̄(t, vt))− 1s≤TR

Kys)ds
)

40For a concave utility function u, the function g 7→ gu−1(v/g) is decreasing.
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≤ g(t)u(c̄(t, vt))− u′(c̄(t, vt))E
(∫ T

t

e−r(s−t)(1s≤TR
ys − cs)ds+ g(t)c̄(t, vt)

)

.

Since vt = g(t)u(c̄(t, vt)) and u′ ≥ 0 , the revenue from any allocation (c, y) is

less than −g(t)c̄(t, vt) which is the revenue from retiring the agent with constant

consumption c̄(t, vt). It follows that for vt ≥ v∗t the agent does not work.

The argument of the proof is mechanical and comes directly from the fast

growth in φt(θt). The lemma applies to any allocations, even non-incentive-

compatible ones.

Note that the lemma does not imply directly that under the conditions speci-

fied there is an upper retirement boundary since promised utility is an endogenous

state variable of the problem. The existence of such a boundary depends on how

big the government exogenous revenue −G is to achieve high promised utility.

Indeed, if ψ is high it becomes more and more costly to incentivize high types

who need to be retired whenever they have accumulated a high promised utility.41

Under these conditions, both agents with a history of low productivity shocks and

agents with a history of high productivity shocks retire earlier than agents with a

history of average productivity.

41For instance, following the notation in the proof in Appendix A, for log utility the highest
promised fixed consumption before retirement occurs is c̄(t, v∗t ) = 1/K. This quantity decreases
with ψ; therefore when ψ is high the likelihood of an upper retirement boundary being endoge-
nously hit is higher.
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Appendix For Online Publication

Part II

B - Computational Appendix

1 Dynamic Mirrlees Model Numerical Algorithm

1.1 Planning Problem

I do a numerical simulation of a discrete time version of the model. I present

the discrete time model and the algorithm of the numerical simulation below.

An agent working until time t, reports a productivity history θt and the planner

recommends {c(θt), y(θt), v(θt),∆(θt), s(θt)}. A retirement decision s equal to zero

means the agent works work in period t + 1 and equal to one means the agents

retires forever independently of θt+1.

Define u(c, y; θ) = u(c, y
θ
) and f t(θt|θt−1) the conditional density of θt. With

the savings rate denoted q−1, the planner’s problem is to minimize the cost K

such that, for a working agent s = 0:

K(v,∆, θ−, t, 0) = min
[ ∫

{c(θ)− y(θ) + qK(v(θ),∆(θ), θ, t+1, τ(θ))f t(θt|θ−)dθ
]

subject to for all θ ∈ Θ

w(θ) = u(c(θ), y(θ); θ)− φt(θ) + βv(θ)

ẇ(θ) = uθ(c(θ), y(θ); θ)− φθ(θ) + β∆(θ)

And

v =

∫

w(θ)f t(θ|θ−)dθ

∆ =

∫

w(θt)∂θ−f
t(θ|θ−)dθ.
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Define

βt
fact =

1− βT+1−t

1− β
.

For a retired agent s = 1 and ∆ = 0:

K(v, 0, θ, t+ 1, 1) = βt+1
factu

−1
( v

βt+1
fact

)

.

The relaxed planning problem can be recovered by setting t = 1 and treating

∆ a as control variable:

K(v) = min
∆

K(v,∆, θ0, 1, 0).

1.2 Normalization

The process for productivity is a geometric random walk: θt = θt−1εt in which εt

is log-normal log εt ∼ N(−σ2

2
, σ2). Preferences are separable in consumption and

labor and u(ct) = log(ct) and I denote h(yt/θt) the disutility of labor. The fixed

cost of staying in the labor market is a funtion of age φ(t). To reduce the number

of state variables I re-normalize ỹt ≡ yt/θt−1, c̃t ≡ ct/θt−1, h(yt/θt) = h(ỹt/εt).

Denote g the density of εt. The densities of θt and εt are linked by f(θt|θt−1)dθt =

g(εt)dεt and ∂θt−1f(θt|θt−1)dθt =
1

θt−1
(g(εt)+εtg

′(εt))dεt (See derivation in Stantcheva

(2017)). Denote g̃(εt) = g(εt) + εtg
′(εt). Let φt(θ) = φ ln(θ) + φ1(t).

Normalized continuation variables are defined as:

ṽt ≡E
( TR(θt)

∑

s=t+1

βs−t−1(log(cs/θt)− h(ys/θs)− φt(θs/θt)) +
T∑

s=τ(θt)+1

βs−t−1 log(cs/θt)
)

=vt − βfact
t+1 log(θt) + φEβ

fact(TR(θt))
t+1 log(θt)

And

w̃t(θ
t) ≡u(c̃t)− h(ỹt/εt)− φ(θt/θt−1) + β

( TR(θt)
∑

s=t+1

βs−t−1(log(cs/θt−1)− h((ys/θt−1)/(θs/θt−1))− φt(θs

+
T∑

s=τ(θt)+1

βs−t−1 log(cs/θt−1)
)

=u(c̃t)− h(ỹt/εt)− φt(εt) + βṽt + βfact
t (µ(t) + log(εt))− φEβ

fact(TR(θt))
t (µ(t) + log(εt))

=wt − βfact
t log(θt−1) + φβ

fact(TR(θt))
t log(θt−1),

2



∆̃t−1 ≡ ∆t−1/θt−1.

Renormalized constraints The promise-keeping constraint

vt−1 =

∫

wt(θt)f
t(θt|θt−1)dθt

implies

ṽt−1+β
fact
t log(θt−1)−φβ

fact(TR(θt))
t log(θt−1) =

∫

[w̃t(θt)+β
fact
t log(θt−1)−φβ

fact(TR(θt))
t log(θt−1)]f

t(θt|

Therefore

ṽt−1 =

∫

w̃t(εt)gǫ(εt)dεt.

Sensitivity of promised utility

∆t−1 =

∫

wt(θt)∂θt−1f
t(θt|θt−1)dθt

becomes

∆t−1 =

∫

[w̃t(εt) + βfact
t log(θt−1)]g

t(θt|θt−1)dθt.

The integral in log is zero because it’s the derivative of the expectation of a

constant. Therefore

∆t−1 =

∫

w̃t(εt)
g̃(εt)

θt−1

dεt

and

∆̃t−1 =

∫

w̃t(εt)g̃(εt)dεt.

In addition

∂w̃(εt)

∂εt
= −

ỹt
ε2t
h′(

ỹt
εt
)− φ′

t(εt) + β
∆̃t

εt
.

1.3 Normalized Planning Problem

Let K̃ = K/θt−1. The planner’s problem is then

K̃(ṽ, ∆̃, t, 0) = min
[ ∫

{c̃(ε)− ỹ(ε) + qεK̃(ṽ(ε), ∆̃(ε), t+ 1, s̃(ε))g(εt)dεt

]

3



Subject to

w̃t(εt) = u(c̃t)−h(ỹt/εt)−φt(εt)+βṽt+β
fact
t (µ(t)+log(εt))−φEβ

fact(TR)
t (µ(t)+log(εt))

∂w̃(εt)

∂εt
=
ỹt
ε2t
h′(

ỹt
εt
)− φ′

t(εt) + β
∆̃t

εt

ṽt−1 =

∫

w̃t(εt)g(εt)dεt

∆̃t−1 =

∫

w̃t(εt)g̃(εt)dεt

and for retired agents:

K̃(ṽ, 0, t, 1) = min
[ ∫

{c̃(ε) + qεK̃(ṽ(ε), 0, t+ 1, 1)g(εt)dεt

]

Subject to

w̃t(εt) = u(c̃t) + βṽt + βfact
t (µ(t) + log(εt))

ṽt−1 =

∫

w̃t(εt)g(εt)dεt.

1.4 Hamiltonian and First Order Conditions

Dropping the tildes, the Hamiltonian of the normalized problem is, while working:

[Ct(y(ε), w(ε)− βv(ε), ε)− y(ε)]g(ε)

+q[K(v(ε),∆(ε), ε, t+ 1, s(ε))]g(ε)

+λ[v − w(ε)g(ε)] + γ[∆− w(ε)g̃(ε)]

+p(ε)[utθ(C
t(y(ε), w(ε)− βv(ε), ε), y(ε), ε) + β∆(ε)]

And the limits of the co-state p(ε) are zero at zero and infinity. The co-state

satisfies:

dp(ε)

dε
= −

[ 1

u′(c(ε))
− λ− γ

g̃(εt)

g(εt)

]

g(εt) (61)
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The FOCs for ∆(ε), v(ε) and y(ε) are:

p(ε)

ε2g(εt)
= −

q

β
γ(ε)

1

u′(c(ε))
=
q

β
ελ(ε) (62)

1−
1

ε

h′( ỹ(ε)
ε
)

u′(c(ε))
=

p(ε)

ε2g(εt)
h′(

ỹ(ε)

ε
)[1 +

ỹ(ε)

ε

h′′( ỹ(ε)
ε
)

h′( ỹ(ε)
ε
)
]. (63)

In these equations, I denote the extensions of λ and γ to retired states with

the same notation.

1.5 Algorithm

Since the model is in finite horizon, the algorithm solves policy functions backwards

from t = T , vT (ε) = 0,∆T (ε) = 0, sT (ε) = 1.

The algorithm takes as state space the dual (λ−γ−, ε, s−). I truncate ε between

the first percentile and the 99% percentile. The algorithm goes in the following

steps:

• If in working state at time t: s− = 0

1. Start with a guess for the promised utility of the lowest type in a given

period: wt(εlow)

(a) Solve for yt(λt, st, εt, pt, wt(εlow)) using (63) and (62).

(b) Solve for λt(st, εt, pt, wt(εlow)) from (62), replacing c as a function

of w and v using the solution for yt(λt, st, εt, pt, wt(εlow)) computed

in 1(a).

(c) Solve for γt(st, εt, pt, wt(εlow)).

(d) Replace 1/u′(c) using (62) in the ODE (61) satisfied by the co-state

p and solve the ODE.

i. While solving the ODE compareKt+1(λt(st = 0), γt(st = 0), ε, 0)

to Kt+1(λt(st = 1), γt(st = 1), ε, 1) and set st equal to the work

status with lowest cost.

2. Check the boundary condition p(εhigh).

(a) If the boundary condition is not met within the tolerance level

change wt(εlow) and go to 1.

3. Once the boundary condition is met, follow 1. in reverse order to com-

pute policy functions.

5



(a) Compute w̃t, ṽ−, ∆̃− using their integral definitions.

• If in retired state at time t: s− = 0

– Set λt = λ−/ε, γt = 0, st = 1, c̃t = λ−, ỹt = 0.

2 Optimal Policies

2.1 Degree of Social Insurance and Tax Progressivity

In Figure 11. Panel A, I present a measure of the degree of insurance of the social

insurance system as a whole by plotting the net present value of consumption

against the net present value of output. Without insurance, such quantities would

vary one for one. The presence of overall insurance in the decentralized constrained

optimum makes the net present value of consumption vary less than one for one

with the present value of income. This result is also true in a model with exogenous

retirement. A novel point of our analysis is that this overall degree of insurance is

larger when incentivizing for delayed retirement has a positive redistributive and

insurance role (φ = 0.4).

Furthermore, Panel B of the same figure shows that the social insurance system

is overall progressive in that the ratio of the net present value of consumption to

the net present value of earnings increases as lifetime earnings increase. I find that

the population average of the elasticity of the NPV of lifetime consumption with

respect to the NPV of lifetime income is 0.67 for φ = 0.4 and 0.82 for φ = −0.7.

As a result, the social insurance system is overall more progressive and provides

more insurance when incentivizing delayed retirement has a positive redistributive

and insurance role.

Figure 12 Panel A shows that lifetime taxation is progressive in that the ratio

of the net present value of income after earning taxes and retirement contributions

to the net present value of earnings decreases as lifetime earnings increase. Equiv-

alently, the ratio of the net present value of labor income taxes and retirement

contributions to the net present value of earnings increases as lifetime earnings

increase (Panel B.) I find that the average of elasticity of the NPV of after-tax

income with respect to the NPV of lifetime income is 0.66 for φ = 0.4 and 0.79

for φ = −0.7. As a result, the earnings tax and retirement contribution system in

isolation is more progressive when incentivizing delayed retirement has a positive

redistributive and insurance role. This is consistent with the fact that when incen-

tivizing delayed retirement has a positive redistributive and insurance role, there

6
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Figure 11: Panel A shows the relative degree of social insurance between the
simulation for φ = 0.4 and φ = −0.7. Panel B highlights the relative progressivity
of social insurance system between the two simulations. The social insurance
system is overall more progressive and provides more insurance when incentivizing
delayed retirement has a positive redistributive and insurance role (φ = 0.4).
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is less of a role for the labor income tax to decrease at high incomes to incentivize

work.
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Figure 12: Progressivity of tax system. The earnings tax and retirement contribu-
tion system in isolation is more progressive when incentivizing delayed retirement
has a positive redistributive and insurance role (φ = 0.4).

2.2 Moments and Properties of Optimal Allocations

Figure 13 plots the cross-sectional average allocations over time. Average output

follows the hump-shaped profile of productivity before declining with retirement.
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Mean consumption is constant, as a result of the Inverse Euler equation (9) and

log utility with ρ = r, which imply that consumption is a martingale.
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Figure 13: Mean allocations

Figure 14 plots average allocations of workers over time. Average output

among workers follows the hump-shaped profile of productivity until old-age.

When mostly lowly productive workers start retiring, average output among work-

ers goes up, reflecting a pool of remaining workers more productive than the gen-

eral population. Mean consumption is constant, in young age due consumption

being a martingale. When agents start retiring, the remaining pool of highly

productive workers has higher average consumption.
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Figure 14: Mean allocations of workers

Figure 15 plots the average consumption of retires over time. Early retirees

have low consumption and more productive workers retire over time. Average
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consumption of retires increases until it equalizes the average consumption over

the general population.
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Figure 15: Mean allocations of retirees

Figure 16 shows the optimal and baseline labor force participation rate as

a function of age. Figure 17The labor force participation rate decreases until

age 75, after which it is non-zero at each age but less than 1%. The Average

Retirement Age (ARA) is larger in the optimum than in the baseline economy,

and the optimum does not feature the spikes in retirement hazard at ages 62 and

66. This is consistent with the fact there are still considerable implicit disincentives

to continued work between the Early Eligibility Age and age 70 in the U.S. tax

and SS system as documented by Gruber and Wise (1998).
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Figure 16: Labor force participation

Figure 18 plots the cross-sectional variances of output, and consumption, over

time. The variance of output is driven by the variance of productivity and the
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Figure 17: Retirement Hazard Ratio

variance of work hours. The variance of productivity is slightly hump-shaped,

while the variance of work hours is strongly hump-shaped and declines close to

retirement. Output is much more volatile than consumption. Hence, pre-tax

income inequality grows at an increasing rate, but the provision of insurance pre-

vents this from translating fully into consumption inequality. In addition, while

consumption variance grows, it does so at a decreasing rate, echoing the tax and

retirement wedge smoothing results described above. At retirement, the variance

of consumption stays constant.
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Figure 18: Variance of allocations
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3 Baseline Economy Numerical Algorithm

I present the income fluctuation model in the baseline U.S. economy. In this

economy, agents who face idiosyncratic productivity shocks, consume and save

in a risk-free asset, choose their working hours and the age at which they retire.

I define retirement as an irreversible exit of the labor force. I assume that the

retirement age and the SS benefits claiming age are the same. Denote s the last

working period of an agent, i.e s = t if the agent works at time t and s < t if

the agent retired before t. The productivity θt represents current productivity if

s = t and last working productivity if s < t, θt = θs. With log utility, agents never

hit their borrowing constraints because they consume at each period a constant

fraction of their net worth. Denote T (yt) the Heathcote et al. (2014) income tax

function and b({yt′}t′∈[0,s], s) the SS benefits as a function of the history of earning

and the retirement age. I make a Tauchen approximation of the productivity

process θt = θρt−1εt where ρ = 0.999 and denote the transition matrix π.

For a given asset level at and productivity θt, Average Indexed Monthly Earn-

ings AIMEt a working agent’s continuation utility is

vt (at, θt , AIMEt, t) = max
ct,yt,at+1,st+1

ln (ct)− h(
yt
θt
)− φt(θt) + βE[vt+1 (at+1, θt+1, AIMEt+1, st+1) |θt]

s.t. ct +
q

1− τK
at+1 = at + yt − T (yt).

AIMEt+1 =
tAIMEt + yt

t+ 1
(64)

For s < t, a retired agent’s continuation utility is:

v (at, θt , AIMEs, s) = max
ct,yt,at+1

{ln (ct) + βvt+1 (at+1, θt+1, AIMEt+1, s)}

s.t. ct +
q

1− τK
at+1 = at + b(AIMEs, s).

AIMEt+1 =
tAIMEt + 0

t+ 1
if s ≤ 35 else AIMEt+1 = AIMEt

(65)

Then the intertemporal Euler equation holds,
1

ct
=

βq

1− τK
E[

1

ct+1

] and for workers,

the intratemporal equation holds.

The algorithm follows these steps of the endogenous grid method.

• Set aT+1 = 0, sT+1 = T.

• For each t, if s = t:

1. For given at+1, AIMEt+1, st+1 ∈ {t, t + 1} solve for AIMEt using

12



updating rule of AIME and the Euler equation

2. For given at+1, AIMEt, and st+1 ∈ {t, t+1} solve for ct using the Euler

equation

3. Solve for yt using the intratemporal equation.

4. Set st+1 to the work status that yields higher vt

5. Solve for at using the budget constraint of the workers, ct(at+1, st+1)

and yt(at+1, st+1)

6. Interpolate the policy functions for the missing values at

• For each t, if s < t:

1. For given at+1, AIMEt+1, st+1 ∈ {t, t + 1} solve for AIMEt using

updating rule of AIME and the Euler equation

2. For given at+1,AIMEt, and st+1 = s solve for ct and cs using the Euler

equation

3. Solve for ys using the intratemporal equation at time sand comput

b(AIMEt, s).

4. Solve for at using the budget constraint of the retired ct(at+1, s) and

yt(at+1, s)

5. Interpolate the policy functions for the missing values at

At the end of the algorithm I check that the bounds on allocations are not hit.

4 Estimation of Social Security Function

In 2018 the PIA has 3 brackets42; the first PIA bracket is 90% of the AIME from

$0 to $895. The second is 32% of the AIME above $895 up to $5,397, and the

third is 15% of the AIME above $5,397 up to $10,700 which corresponds to one

twelfth of maximum taxable earnings in 201843. The AIME is calculated using

42Calculation methodology for 2018 can be found at https://www.ssa.gov/pubs/EN-
05-10070.pdf. Historical cutoff points can be found at
https://www.ssa.gov/oact/cola/bendpoints.html

43Note this calculation this yields maximum benefits of $3,041.59, even though according
to the SSA if you were to maximize your AIME in all 35 years your PIA would be $2,788.
This is because the maximum taxable earnings in past years scaled by indexing factors comes
often comes out to less than $128,400 the maximum taxable in 2018. For example, the 2015
maximum taxable is $118,500 with an indexing factor 1.0113001 yielding $119,839.06. A list of
past maximum taxable earnings can be seen at https://www.ssa.gov/OACT/quickcalc/ and a
list of indexing factors is at https://www.ssa.gov/cgi-bin/awiFactors.cgi
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the mean of the highest 35 years of income in a person’s life, after scaling by an

index factor to account for inflation.

I use the same variables and survey data (Bureau (2016)) I used when calibrat-

ing productivity. I again narrow to those age 25 to 79, employed (empstat = 1 ),

and use the person weights perwt which indicate how many people in the general

population an observation should represent. To approximate the AIME I simply

use their reported income incwage that year, since reliable and complete data on

lifetime earnings is very difficult to obtain. Like I did for the income function, I

replicate the method in Heathcote et al. (2014) but for Social Security; I calculate

the PIA based on the rules above and estimate the equation

log[PIA(AIME)] = log[λss] + (1− τss)log[AIME]

using OLS on 5.9 million observations (increases to 121.2 million when including

frequency weights), which yielded τss = 0.37. Excluding weights or including those

employed but with positive income did not change results significantly. Those

without income were by default excluded. The regression produces a R2 of 0.94

and a good approximation of the SS benefits function that I use for analytical

reasons. Figure 19 shows the PIA as a function of AIME.
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Figure 19: Primary Insurance Amount as a function of Average Indexed Monthly
Eearnings

5 Estimation of Hump-Shaped Productivity Pro-

file

I calibrate µt using empirical analogs from wage data. In the calibration, {µt}
79
t=25

is interpreted as a deterministic baseline trajectory for productivity, from which
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individuals may deviate. We can take the exponential of both sides and take the

expectation, which yields

E[θt] = E[θt−1e
ǫtµt] = E[θt−1]E[e

ǫt ]µt = E[θt−1]µt

since µt is deterministic and eǫt is an independent log-normal variable with mean

1. This reduces the problem of calibrating µt to finding E[θt] and E[θt−1]. Like

De Nardi (2004), I follow the same method as Hansen (1993), which uses approxi-

mate hourly wages, calculated from total annual earnings, as a proxy for individual

productivity, which I denote wi and θi respectively. The mean of hourly wage wt

for individuals of the same age would be a proxy for mean productivity θt of the

sample. But instead of using the smaller Current Population Survey (CPS) from

the U.S. Bureau of Labor Statistics (BLS), I use the larger and more detailed

American Community Survey (ACS) from the U.S. Census Bureau. I specifi-

cally use the most recent 2016 5% dataset which combines and normalizes the

1% datasets of 5 years. Given the framework of the model, I narrow the sample

to those aged 25 and 79 and those indicated to be currently employed, and then

calculate approximate mean hourly wages wt for each age t

θt = wt =
1

∑

i:Agei=tweighti

∑

i:Agei=t
θi1employed{i}weighti

where θi individual productivity is

θi = wi =
1

52

AnnualIncomei
WeeklyHoursi

More specifically, AnnualIncomei is annual wage and salary income earned

from an employer, WeeklyHoursi is usual weekly hours, and weighti is the number

of people in the U.S. person i in the sample should represent in the population. I

use 52 to obtain approximate annual hours since weeks worked is not available in

the 2016 dataset. Table 3 lists variable names and descriptions used.

However, there are two issues I encounter if I were to directly use wt

wt−1
as the µt

values; first, as age increases, representation in the sample and working share both

decrease, leading to volatility in mean wage. Second, ACS is cross-sectional and

cannot account for the theoretical prediction that those with lower wages retire

earlier. To address these issues I instead use a regression approximation of µt

while labor force participation is high and replace later years with extrapolations.

First, I collapse the data set by age so there is one representative observation for
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Table 3: Estimation of hump-shaped productivity profile

Variable IPUMS name description value

AnnualIncomei incwage annual salary and wages from an employer 0 - 714,000

WeeklyHoursi uhrswork usual hours per week if employed last year

1-98

0 = N/A

99 = 99+

1employed{i} empstat employment status

1 = employed

2 = unemployed

3 = not in labor force

weighti perwt number of people represented by i 1 - 1829

each age, where all variables are the weighted averages across individuals of that

age. Next I calculate wt

wt−1
and denote this w̃t and estimate the equation

w̃ = β0 + β1age+ β2age
2 + β3age

3

for ages where labor force participation is greater than or equal to 20% given

the sample issues above, which turns out to be 70 and under. To obtain the

empirical labor force participation rate and in particular the age when labor force

participation reach 20%, I use PSID data. I exclude those who report having

retired then unretired to make it comparable with the permanent decision in the

model and for simplicity. The top panel of Figure 20 shows the empirical labor

force participation rate and the 20% cut-off.

Using the β̂ coefficients I then calculate the fitted values µ̂t and use these

fitted values for ages 71 to 79 and use the original calculated µt values for all

earlier years. I run this regression without weights because µt, not θt is the main

parameter of interest. Also, I am solely interested in finding a baseline trend line

with for productivity with respect to age instead of finding the best fit line for the

entire population, which would weigh the middle of the distribution more. I use

up to a cubic term because the path of w̃t has an inflection point. Using these, I

use value w25 as a baseline and sequentially calculate the predicted values of wt

and plot these with the observed wt values below. The bottom panel of Figure 20

shows the empirical and predicted efficiency profiles.

16



20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Age

S
h
ar

e
in

L
ab

or
F
or

ce

Labor Force Participation by Age

Labor Force Participation
Labor Force Participation Cutoff

20 25 30 35 40 45 50 55 60 65 70 75 80
14

16

18

20

22

24

26

28

Age

W
ag

e

Mean Hourly Wage by Age, Empirical and Predicted

Hourly Wage, Empirical
Hourly Wage, Predicted
Cutoff Age

Figure 20: Top panel: Empirical labor force participation rate and 20% cut-off.
Bottom panel: hump-shaped productivity profile.
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6 Moments and Properties of Allocations in Base-

line Economy

The following figures illustrate how the baseline economy behaves, when calibrated

as in Table 1. In this case, taxes and retirement benefits are calibrated to the US

status tax and SS system as explained in Section 5.2, and are not set optimally.

Figure 21 plots the means of income and consumption. Figure22 plots the

variance of the logs of output, consumption, and wages, while Figure 23 shows

the variances of output, consumption, and wages. Figure24 plots the mean asset

holdings over the general population, while Figure25 plots the mean assets of

retirees. The labor force participation rates and retirement hazard ratio are plotted

alongside their counterpart in the optimal allocations in Figures 16 and 17.
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Figure 21: Mean output and consumption. Panel A for φ = 0.4 and Panel B for
φ = −0.7.
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Figure 22: Variance of the logs of output, consumption, and wages. Panel A for
φ = 0.4 and Panel B for φ = −0.7.
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Figure 23: Variance of the logs of output, consumption, and wages. Panel A for
φ = 0.4 and Panel B for φ = −0.7.
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Figure 24: Mean asset holdings. Panel A for φ = 0.4 and Panel B for φ = −0.7.
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Figure 25: Mean asset holdings of retirees. Panel A for φ = 0.4 and Panel B for
φ = −0.7.
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