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Abstract 

We consider a patent licensing game with a capacity constrained innovator. We show that when 

the constraint is strong (weak), the patentee prefers licensing by means of a fixed fee (unit 

royalty). In the case of a two-part tariff, the innovator charges a positive fixed fee if and only if 

the constraint is strong enough.  
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1. Introduction 

We consider optimal patent licensing when the innovator is capacity constrained. When the 

capacity constraint is maximum (that is, the innovator cannot produce), the model coincides with 

the case of an outside patentee; when the capacity constraint is not binding, the model coincides 

with the case of an unconstrained inside patentee. Therefore, our model provides a bridge 

between the two cases usually considered in the literature: outside innovator and unconstrained 

inside innovator. 

Capacity constraint is often relevant for the innovator. Pavitt et al. (1987), Acs and Audretsch 

(1990), OECD (2004), Marx et al. (2014), and Scholz (2017) provide evidence of the importance 

of small firms in generating technological innovations which are diffused by means of licenses. 

For example, Scholz (2017) emphasizes that, due to the increasing scarcity of raw materials that 

posit severe capacity constraints especially to small firms, licensing agreements that delegate 

production (or part of production) to other firms in change of the innovation are becoming 

widespread. OECD (2004) stresses that “[innovating] firms lack the complementary assets, such 

as marketing and manufacturing, which are necessary to successfully commercialise their 

inventions” (p.16). Pavitt et al. (1987), by analyzing the size distribution of innovating firms in 

UK after the Second World War, show that smaller firms are more likely to commercialize 

innovations than bigger firms. More recently, McClellan et al. (2020) suggest that, when 

developing monoclonal antibodies as a treatment for COVID-19, total capacity is split between 

companies which employ an in-house manufacturing network and others that act solely as 

contract manufacturers. Therefore, in many cases the innovator is a small firm with limited 

production possibilities, that licenses its innovation to other firms.  

Theoretical literature has rarely considered the role of capacity constraint in determining the 

licensing choice of the patentee. Scholz (2017) analyses a vertical model where the upstream 

firms are capacity constrained, while the patentee is an outside innovator. Alderighi (2008) 

proposes a licensing method consisting in maximum authorized production for the licensee. 

However, at the best of our knowledge, the case of a capacity constrained patentee has not been 

considered yet.1 As capacity constraint is a specific form of decreasing returns to scale, our work 

 
1 Mukherjee (2001) considers the case where, after the licensing decision of the patentee, both firms can 

endogenously decide to restrict production, which is a set-up different from ours. 
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also relates with the literature of patent licensing under returns to scale (Sen and Stamatopoulos, 

2009; 2016; 2019). 

While the literature has shown that in the case of an outside (inside) innovator the fixed fee 

(unit royalty) is preferred by the patentee (Kamien and Tauman, 1986, Wang, 1998, Sen and 

Tauman, 2007), we show that fixed fee is preferred by the patentee even if the patentee competes 

with the licensee, provided that the capacity constraint of the patentee is strong enough, that is 

the patentee can produce only a small quantity. Therefore, fixed fee might be preferred to unit 

royalty even if the patentee is an insider. This happens both in the case of drastic and non-drastic 

innovation. 

The rest of the paper proceeds as follows. In Section 2 we introduce the model. In Section 3 

we derive some preliminary results regarding a constrained Cournot duopoly with asymmetric 

firms. In Section 4 we derive the equilibrium profits under licensing. In Section 5 we compare 

different licensing mechanisms. Section 6 concludes. Proofs are in the Appendix. 

2. The model 

Consider a Cournot duopoly with two firms, 1 and 2, with inverse demand p = 1− q1− q2. 

Firm 1 (the patentee) has a cost-reducing innovation. The marginal cost of a firm is 0 with the 

innovation and c > 0 without the innovation where 0 < c < 1. Since firm 1 has the innovation, its 

marginal cost is 0. Firm 1 is constrained by capacity k > 0, firm 2 has no capacity constraint.   

Next we introduce the distinction between drastic and non-drastic innovation (Arrow, 1962). 

Consider a monopolist facing demand p = 1− Q who is not capacity constrained and who has the 

cost reducing innovation, so its marginal cost is 0. The monopoly price under marginal cost 0 is 

pM ≡ 1/2. A cost reducing innovation is drastic if the monopoly price pM under the reduced cost 

does not exceed c (the marginal cost without innovation); otherwise the innovation is non 

drastic. Thus an innovation is drastic if c ≥ 1/2 and non drastic if c < 1/2.  

Remark. If firm 1 is not capacity constrained and it has a drastic innovation, it has no 

incentive to license the innovation to firm 2 as without the innovation firm 2 drops out of the 

market and firm 1 obtains the monopoly profit under the reduced cost. However, this may not be 

the case when firm 1 is capacity constrained.  
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We consider three licensing policies:  

(i) unit royalties: If firm 1 licenses the innovation to firm 2 with unit royalty r ≥ 0, firm 2 has 

the cost-reducing innovation and for every unit it produces firm 2 has to pay r to firm 1. So the 

effective marginal cost of firm 2 is (0 + r) = r. Firm 2's marginal cost without the innovation is c, 

so unit royalties that are acceptable to firm 2 must have r ≤ c.  

(ii) fixed fees: If firm 1 licenses the innovation to firm 2 with fixed fee  f  ≥ 0, firm 2 has the 

cost-reducing innovation and it pays the fee f upfront to firm 1.  

(iii) combinations of unit royalties licensing and fixed fees: If firm 1 licenses the innovation to 

firm 2 using a policy (r, f) that has unit royalty r  ≥ 0 and fixed fee  f  ≥ 0, firm 2 has the cost-

reducing innovation, it pays the fee f upfront to firm 1 and for every unit it produces, it has to pay 

r to firm 1. So the effective marginal cost of firm 2 is (0 + r) = r.  

Since firm 1 has the cost reducing innovation, its marginal cost is 0. If firm 2 does not have 

the innovation, its marginal cost is c. If firm 2 has the innovation under a fixed fee policy, its 

marginal cost is 0. If firm 2 has the innovation under a policy that has royalty r (either a royalty 

policy or a policy that is a combination of royalty and fee), then the effective marginal cost of 

firm 2 is r.   

The strategic interaction between firms 1 and 2 is modeled as the three-stage licensing game 

G. In stage 1 of G, firm 1 decides whether to licenses its innovation to firm 2 or not and offers a 

licensing policy to firm 2; in stage 2 firm 2 decides whether to accept the policy or not; in stage 

3, firms 1 and 2 compete in the Cournot duopoly and payments are made according to the policy.  

3. Cournot duopoly Dk(r) 

For 0 ≤ r ≤ c and k > 0, denote by Dk(r) the Cournot duopoly in which firm 1 has marginal 

cost 0 and capacity constraint k; firm 2 has marginal cost r and no capacity constraint. In 

particular note that with respect to marginal cost of firm 2, r = c corresponds to the situation 

where firm 2 does not have the innovation.  
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Thus, if firm 2 has the innovation under a fixed fee policy, the resulting Cournot duopoly is 

Dk(0). If firm 2 has the innovation under a policy that has royalty r, it is Dk(r). If firm 2 does not 

have the innovation, the resulting Cournot duopoly is Dk(c).  

To determine optimal licensing policies for firm 1, it is therefore useful to determine 

equilibrium outcomes of Dk(r) for all 0 ≤ r ≤ c and k > 0. When there is no capacity constraint, 

the quantities produced by firms 1,2 in the unique (Cournot-Nash) equilibrium are: 
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Lemma 1: For any 0 < c < 1, the Cournot duopoly Dk(r) has a unique (Cournot-Nash) 

equilibrium. If the capacity k exceeds )(1 rq , the equilibrium outcome is the same as the case 

with no capacity constraint. Otherwise, the capacity constraint is binding and firm 1 exhausts its 

capacity (that is, q1= k). 

Proof: See the Appendix. ■ 

For the Cournot duopoly Dk(r), denote the equilibrium price by pk(r), quantities of firms 1,2 

by  q1
k(r), q2

k(r) and profits by φ1
k(r), φ2

k(r). 

4. Equilibrium profits 

No license. When firm 1 does not license the innovation, the resulting Cournot duopoly is 

Dk(c), where firm 1 obtains Cournot profit φ1
k(c). 

Unit royalty policy. When firm 1 licenses the innovation to firm 2 with unit royalty r ≥ 0, the 

Cournot duopoly game Dk(r) is played where the Cournot quantity of firm 2 is q2
k(r). So for firm 

1, the licensing revenue from royalty is rq2
k(r). The payoff of firm 1 is the sum of its Cournot 

profit and licensing revenue, given by  

(1) πk
R(r) = φ1

k(r) + rq2
k(r)  

Recall that no royalty with r > c is acceptable to firm 2. So under unit royalty policy, the 

problem of firm 1 is to choose r (0 ≤ r ≤ c) to maximize πk
R(r) given in (1). We also need to 

compare the payoff from optimal royalty policy with φ1
k(c) to see whether licensing by means of 

royalty is superior than not licensing.  
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Fixed fee policy. When firm 1 licenses the innovation to firm 2 with fixed fee f  ≥ 0, the 

resulting Cournot duopoly is Dk(0) in which firm 2 obtains the Cournot profit φ2
k(0). If firm 2 

refuses to have a license, the resulting Cournot duopoly is Dk(c) in which firm 2 obtains the 

Cournot profit φ2
k(c). Therefore the maximum fixed fee firm 1 can set is φ2

k(0) − φ2
k(c) 

(provided this is non-negative), making firm 2 just indifferent between accepting and rejecting. 

So the payoff of firm 1 has under the fixed fee policy has two parts: (i) firm 1's Cournot profit 

φ1
k(0) and (ii) fixed fee φ2

k(0) − φ2
k(c). This payoff is  

(2)  πk
F = φ1

k(0) + φ2
k(0) − φ2

k(c)  

We need to compare this payoff with φ1
k(c) to see whether licensing by means of fixed fee is 

superior than not licensing.  

Combinations of unit royalties and fixed fees policy. Suppose firm 1 licenses the innovation to 

firm 2 using a licensing policy (r, f) where r (0 ≤ r ≤ c) is the unit royalty and f  ≥ 0 is the fixed 

fee firm 2 has to pay firm 1. If firm 2 accepts this policy, it obtains the Cournot profit φ2
k(r). If it 

rejects, it operates with marginal cost c and obtains the Cournot profit φ2
k(c). So for any r, the 

maximum fixed fee firm 1 can set is  

(3) f = φ2
k(r) − φ2

k(c) 

Under the licensing policy (r, f), the payoff of firm 1 has three parts: (i) its Cournot profit 

φ1
k(r), (ii) royalty revenue rq2

k(r) and (iii) fixed fee f given by (3). When f is chosen optimally as 

in (1), the payoff of firm 1 as function of r is 

(4)  πk
RF(r) = φ1

k(r) + rq2
k(r) + φ2

k(r) − φ2
k(c)  

As the fixed fee f is chosen optimally for any r, under combinations of unit royalties and fees 

the problem of firm 1 is to choose r (0 ≤ r ≤ c) to maximize πk
RF(r) given in (4). We also need to 

compare the payoff from optimal combination with φ1
k(c) to see whether such a policy is  

superior than not licensing.  

For the analysis it will be convenient first to characterize optimal combinations of unit 

royalties and fees. 
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Optimal combinations of unit royalties and fixed fees. When the unit royalty is r, the 

resulting Cournot duopoly is Dk(r) in which firm 1 has marginal cost 0 and firm 2 has (effective) 

marginal cost r. Therefore Cournot profits are:  φ1
k(r) = pk(r)q1

k(r) and φ2
k(r) = [pk(r) − r]q2

k(r).  

Using this in (4) and denoting Qk(r) = q1
k(r) + q2

k(r) (the total quantity), we have 

(5) πk
RF(r) =  pk(r)q1

k(r) + rq2
k(r) + [pk(r) − r]q2

k(r) − φ2
k(c) = pk(r)[q1

k(r) + q2
k(r)] − φ2

k(c) = 

              = pk(r)Qk(r) − φ2
k(c) = pk(r)[1 − pk(r)] − φ2

k(c) 

For any price p (0 ≤ p ≤ 1), let φM(p) = p(1 − p) be the profit of the monopolist at price p who 

has marginal cost 0. Observe from (5) that 

(6) πk
RF(r) = φM (p

k(r)) − φ2
k(c) 

Since φ2
k(c) is a constant not affected by r, by (4), the problem of firm 1 is to choose r to 

maximize φM (p
k(r)). Note that φM (p) is increasing for p < 1/2, decreasing for p > 1/2 and its 

unique maximum is attained when p equals pM ≡ 1/2 (the monopoly price with marginal cost 0). 

Let φM
* ≡  φM (pM) = 1/4 (the monopoly profit at marginal cost 0). From (4), the maximum 

possible payoff firm 1 can obtain is φM
* − φ2

k(c) (the monopoly profit with marginal cost 0 by 

leaving firm 2 its reservation profit φ2
k(c)). 

Proposition 1 characterizes optimal combinations of unit royalties and fixed fees.  

Proposition 1 When firm 1 uses combinations of unit royalties and fixed fees, the optimal 

licensing policies are as follows: 

(1) Suppose the innovation is non drastic (c < 1/2). If k < c, the unique optimal policy for firm 

1 is to license the innovation to firm 2 using unit royalty r = k and positive fixed fee. If k ≥ c, the 

unique optimal policy is to license the innovation to firm 2 using a pure royalty policy (zero fixed 

fee) with unit royalty r = c.  

(2) Suppose the innovation is drastic (c ≥ 1/2). If k < QM ≡ 1/2 (the monopoly output with 

marginal cost 0), the unique optimal policy for firm 1 to license the innovation to firm 2 using 

unit royalty r = k and positive fixed fee. If k ≥ 1/2, it is optimal for firm 1 to not license the 

innovation and use it exclusively to obtain the monopoly profit.  
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Proof: See the Appendix. ■ 

Figure 1 presents optimal licensing policies for firm 1 in the (c, k) plane. The line OA is the 45 

degree line (k = c); the line AH has equation k = 1/2. Therefore, a positive fixed fee emerges 

provided that k is low enough, both in the case of drastic innovation and non-drastic innovation. 

Remark. Note that the set of licensing policies with combinations of fixed fees and royalties 

include as special cases policies that have only fixed fees or only royalties. Therefore:  

(i) for cases where not licensing is superior to combinations of unit royalties and fixed fees for 

firm 1, not licensing must be also superior to only fixed fees or only unit royalties.  

(ii) for cases where optimal combination has only royalty and no fixed fee and such a policy is 

also superior to not licensing, this policy must also be the optimal unit royalty policy as well and 

it must be also superior to pure fixed fees. 

 

 

 

 

 

 

 

 

The following corollary is immediate from Proposition 1.  

Corollary 1:  

(1) If the innovation is non drastic (c < 1/2) and k ≥ c, the unique optimal unit royalty policy 

for firm 1 has r = c. This policy is superior to not licensing and any pure fixed fee policy.  
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(2) If the innovation is drastic (c ≥ 1/2) and k ≥ 1/2, not licensing is superior to both unit 

royalty policies and fixed fee policies; it is optimal for firm 1 to not license the innovation and 

use it exclusively to obtain the monopoly profit.  

Optimal unit royalty policies. In view of Corollary 1, to completely characterize optimal 

pure royalty policies, we need to find optimal pure royalty policies for the region where k < 1/2 

and k < c (region OAHG in Figure 1). The next proposition presents the result.  

Proposition 2 Optimal unit royalty policies for firm 1 are as follows: 

(1) Suppose the innovation is non drastic (c < 1/2). Then the unique optimal policy for firm 1 

to license the innovation to firm 2 is using unit royalty r = c.  

(2) Suppose the innovation is drastic (c ≥ 1/2). If k < 1/2, the unique optimal policy for firm 1 

to license the innovation to firm 2 is using unit royalty r = 1/2. If k ≥ 1/2, it is optimal for firm 1 

to not license the innovation and use it exclusively to obtain the monopoly profit.  

Proof: See the Appendix. ■ 

Figure 2 presents optimal pure royalty policies for firm 1 in the (c, k) plane.  

 

 

 

 

 

 

 

 

Optimal fixed fee policies. By Corollary 1, if c ≥ 1/2 (drastic innovations) and k ≥ 1/2 (the 

region above line AH in Figure 1), not licensing is superior to combinations of unit royalties and 

fixed fees, so not licensing is also superior to fixed fee policies. To completely characterize 

optimal fixed fee policies, we look at the rest of the regions. 
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Proposition 3 The unique optimal fixed fee policy for firm 1 is to set f = φ2
k(r) − φ2

k(c) and it 

has the following properties.  

(1) If c < 2/5, the fixed fee policy is superior to not licensing for all k.  

(2) If 2/5 < c < 2/3, there is a decreasing function k0(c) such that the fixed fee policy is 

superior to not licensing if k < k0(c) and not licensing is superior to the fixed fee policy if k > 

k0(c). 

(3) If 2/3 < c < 1, the fixed fee policy is superior to not licensing if k < 1/3 and not licensing is 

superior to the fixed fee policy if k > 1/3. 

Proof: See the Appendix. ■ 

Figure 3 presents optimal fixed fee royalty policies for firm 1 in the (c, k) plane. If c < 2/5, 

fixed fee is superior to not licensing for any k. If c ≥ 2/5, fixed fee is superior to not licensing if k 

is below XFT and not licensing is superior if k is above XFT. The function k0(c) in Proposition 3 

is given by the curve XF. The line AG has equation k = 1 – c and the line AB has equation k = (1 

+ c)/3. As XF meets line AB at point X and AG at point F, note that k0(2/5) = (1 + 2/5)/3 = 7/15 

and k0(2/3) = 1 – 2/3 = 1/3. 

 

 

 

 

 

 

 

5. Comparing unit royalty and fixed fee policies 

We can now compare optimal royalty and fixed fee policies. Consider the curve XF in Figure 

3 (representing the function k0(c)) and the 45 degree line OA (that has equation k = c). As k0(c) is 
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decreasing, k0(2/5) = 7/15 > 2/5 and k0(1/2) < k0(2/5) < 1/2, there is unique point of intersection 

of curve XF and line OA and it corresponds to 2/5 < c < ½,  see Figure 4.1).  

 

 

 

 

 

 

 

Denote by Y the point of intersection of OA and XF and by Z the point of intersection of OA 

and BT. From Corollary 1(1), in the region above the line OA (c < 1/2 and k ≥ c), the optimal unit 

royalty policy r = c is superior to both fixed fee and not licensing. From Corollary 1(2), in the 

region above the line AH (c > 1/2 and k > 1/2), not licensing is superior to both fixed fee and 

royalty. Consider the region TFYAH. In this region not licensing is superior to fixed fee 

(Proposition 3) and the optimal unit royalty policy r = 1/2 is superior to not licensing 

(Proposition 2), so the unit royalty policy r = 1/2 is superior to both fixed fee and not licensing. 

Therefore, the region OYFTG (as shown in Figure 4.2) is where we need to look at the payoffs 

from fixed fee and royalty policies to see which one is higher. 
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Proposition 4 For firm 1, fixed fee, unit royalty and not licensing compare as follows.  

(1) Suppose 0 < c < 1/2. Unit royalty policy is superior to both fixed fee and not licensing if k 

> c/2 and fixed fee is superior to both unit royalty and not licensing if k < c/2.  

(2) Suppose 1/2 ≤ c < 1. There is a function k1(c) such that fixed fee is superior to both unit 

royalty and not licensing if k < k1(c), unit royalty policy is superior to both fixed fee and not 

licensing if k1(c) < k < 1/2 and not licensing is superior to both unit royalty policy and fixed fee if  

k > 1/2. 

Proof: See the Appendix. ■ 

In figure 5, the line OM has equation k = c/2 and the curve MUV represents the function k1(c). 

As shown in figure 5, there is c0 between 2/3 and 1 (specifically, c0 = 1/ ) such that k1(c) is 

increasing for 1/2 ≤ c < c0 and decreasing for c0 < c < 1. 

 

 

 

 

 

 

 

For non drastic innovations (c < 1/2), fixed fee is superior to both unit royalty and no 

licensing in the region OMS and unit royalty is superior to both fixed fee and not licensing above 

the line OM. For drastic innovations (c ≥ 1/2), fixed fee is superior to both unit royalty and no 

licensing in the region SMUVG, unit royalty is superior to both fixed fee and not licensing in the 

region MAHV and not licensing is superior to both fixed fee and unit royalty above the line AH. 

Recall that (see Figure 1) when firm 1 uses combinations of royalties and fixed fees, not 

licensing is superior to licensing only above the line AH (that is, when c ≥ 1/2 and k > 1/2); for 

all other cases licensing is the best choice.  

N

H 1/2 

A 

F 

X 

1/3 B 

1/2 

c 

T 

O 2/3 1 

Figure 5 

k 

2/5 

Z 

W 

S 

G 

Y 

L 
V 

c0 

M

U 



 13 

Figure 6 summarizes the above discussion.  

 

 

 

 

 

 

 

Therefore, Figure 6 shows that fixed fee is superior to unit royalties (and no licensing) even 

if the patent is incumbent, provided that the capacity constraint is strong enough, both in the case 

of drastic innovation and non-drastic innovation. The intuition is the following. Under pure fixed 

fee, the patentee and the licensee have the same marginal costs. Therefore, the revenues from 

licensing come from the fee required to the licensee. In contrast, under unit royalty, the patentee 

maintains the cost differential with the rival, and it gets additional revenues from the royalty. 

When the patentee is an outsider, it does not care about the cost differential with the rival 

(Kamien and Tauman, 1986), and fixed fee is preferred. At the opposite, when the patentee and 

the licensee compete in the same market (the inside case), maintaining a competitive position 

with respect to the rival is important for the patentee (Wang, 1998). Therefore, unit royalty is 

preferred. Consider now the capacity constraint. When k is low, the output produced by the 

patentee is low. Therefore, firm 1 does not care for its cost advantage over the licensee. 

Consequently, fixed fee is preferred. The opposite is true when k is high, that is, the quantity 

produced by firm 1 is large: in this case, the cost differential is important, and unit royalty is 

preferred.  

Finally, even if the capacity constraint has been kept exogenous, it can be easily 

endogenized. Suppose firm 1 chooses, without any cost, the level of k before the game starts, 

anticipating that the subsequent optimal licensing policy depends on k. Consider first the case of 

non-drastic innovation (c<1/2). If k<c/2, by Proposition 4, the optimal licensing policy is fixed 

fee. In this case, the profits of firm 1 are φk
F = (1 − k)k/2 + (1 − k)2/4 − (1 − c − k)2/4, which are 

1/2 

no licensing 

1/2 
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Figure 6 
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strictly increasing in k. If k>c/2, by Proposition 4, the optimal licensing policy is unit royalty. In 

this case, by Corollary 1 and Proposition 4, when k< 1/3, the profits of firm 1 are φk
R = (1 + c − 

k)k/2 + c(1 − c − k)/2, which are strictly increasing in k, and when k>1/3 the profits of firm 1 are 

πk
R = (1 + c)2/9 + c(1 − 2c)/3, that do not depend on k. Therefore, with non-drastic innovation, 

firm 1 chooses a sufficiently high k such that the capacity constraint is not binding. Consider 

now the case of drastic innovation (c>1/2). In this case, firm 1 cannot do better than getting the 

monopolistic profits. By Figure 6, monopolistic profits can be obtained by setting any k>1/2. 

Therefore, even in the case of drastic innovation, firm 1 chooses to be not capacity constrained. 

6. Conclusions 

We introduce a capacity constraint for an innovator and we discuss optimal licensing in a 

Cournot duopoly. Our model links the two models that are usually considered in the literature, 

namely outside innovator and unconstrained inside innovator. We consider unit royalties, fixed 

fees, and combinations of unit royalties and fixed fees. We show that a fixed fee is used if and 

only if the capacity constraint is sufficiently strong. Therefore, fixed fee might be preferred by 

the patentee even if the innovator competes with the licensee. 

Appendix 

Proof of Lemma 1 Lemma A1 below characterizes equilibrium of Dk(r). Lemma 1 follows from 

Lemma A1. ■ 

Figure A1 presents different regions of Lemma A1 in the (c, k) plane. The line BA has equation k 

= (1 + c)/3; the line BE has equation k = 1/3; the line AG has equation k = 1 − c; the line AH has 

equation k = 1/2. The line OA is the 45 degree line (k = c). 
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Lemma A1: For any 0 < c < 1, The Cournot duopoly Dk(r) has a unique (Cournot-Nash) 

equilibrium. The equilibrium price pk(r), quantities q1
k(r), q2

k(r) and profits φ1
k(r), φ2

k(r) are as 

follows. 

(1) The following holds if the innovation is non drastic (c < 1/2): 

(i) If k ≥ (1 + c)/3 [(c, k) above line BA] then k ≥ 1(r) for all 0 ≤ r ≤ c. For all 0 ≤ r ≤ c: 

q1
k(r) = 1(r) = (1 + r)/3, q2

k(r) = 2(r) = (1 − 2r)/3, φ1
k(r) =  (1 + r)2/9, φ2

k(r) =  (1 − 
2r)2/9 and pk(r) = (1 + r)/3. 

(ii) If k ≤1/3 [region OBES] then k ≤ 1(r) for all 0 ≤ r ≤ c. For all 0 ≤ r ≤ c: q1
k(r) = k, q2

k(r) 

= (1 − r − k)/2, φ1
k(r) = (1 + r − k)k/2, φ2

k(r) =  (1 − r − k)2/4, pk(r) = (1 + r − k)/2. 

(iii)If 1/3 < k < (1 + c)/3 [region BAE] there is 0 <  r0 < c such that the equilibrium outcome 

is the same as (1)(i) for 0 ≤ r ≤ r0 and it is the same as (1)(ii) for r0 ≤ r ≤ c.  

(2) The following holds if the innovation is drastic (c ≥ 1/2): 

(i) If k ≥ 1/2 [(c, k) above line AH] then k ≥ 1(r) for all 0 ≤ r ≤ c.  The equilibrium outcome 

is the same as (1)(i) for all 0 ≤ r < 1/2. For 1/2 ≤ r ≤ c: q1
k(r) = 1/2, q2

k(r) = 0, φ1
k(r) 

= 1/4, φ2
k(r) = 0, pk(r) = 1/2 (firm 1 obtains the monopoly profit, firm 2 drops out). 

(ii) If k < min{1 − c, 1/3}[region SEFG] then k ≤ 1(r) for all 0 ≤ r ≤ c. The equilibrium 

outcome is same as (1)(ii). 

(iii)If 1/3 ≤ k < 1 − c [region EAF], there is 0 <  r0 < 1/2 such that the equilibrium outcome is 

the same as (1)(i) for 0 ≤ r < r0 and it is the same as (1)(ii) for r0 ≤ r ≤ c.  

(iv) If 1 − c ≤ k < 1/3 [region FTG] then there is 1/2 <  r1 < c such that the equilibrium 

outcome is the same as (1)(ii) for 0 ≤ r < r1. For r1 ≤ r ≤ c: q1
k(r) = k, q2

k(r) = 0, φ1
k(r) 

= (1 − k)k, φ2
k(r) = 0, pk(r) = 1 − k. 

(v) If max{1 − c, 1/3} < k < 1/2 [region FAHT], there is 0 <  r0 < 1/2 and 1/2 <  r1 < c such 

that the equilibrium outcome is the same as (1)(i) for 0 ≤ r < r0, the same as (1)(ii) for 

r0 ≤ r < r1 and the same as last part of (2)(iv) for r1 ≤ r ≤ c. 

Proof: To prove the lemma, first consider the standard case of a Cournot duopoly with two firms 

1,2 in which firm 1 has unit cost 0 and firm 2 has unit cost r and there is no capacity constraint. 

In that case, profit functions of 1,2 are: 

 φ1(q1, q2) = (1 − q1− q2) q1  and φ2(q1, q2) = (1 − q1− q2) q2 − r q2 

The (unique) best response of firm 1 to q2 is: choose q1 = (1 − q2)/2 if q2 < 1 and q1 = 0 if q2 ≥ 1. 
The (unique) best response of firm 2 to q1 is: choose q2 = (1 − r − q1)/2 if q1 < 1 − r and q1 = 0 if 

q2 ≥ 1 − r.  

Denote by BR1, BR2 the best response functions of 1,2.  

Case 1: If r < 1/2, then 1/2 < 1 − r and BR1, BR2 are drawn below: 
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Thus, when there is no capacity constraint, the unique equilibrium is ( 1(r), 2(r)). Solving q1 = 

(1 − q2)/2 and q2 = (1 − r − q1)/2, we have 1(r) = (1 + r)/3 and 2(r) = (1 − 2r)/3.  

Case 2: If r ≥ 1/2, then 1/2 ≥ 1 − r and BR1, BR2 are drawn below: 

 

 

 

 

 

 

 

 

Thus, when there is no capacity constraint, the unique equilibrium is 1(r) = 1/2 and 2(r) = 0.  

Capacity constraint: when firm 1 has a capacity constraint k > 0: The (unique) best response of 

firm 1 to q2 is: choose q1 = min{(1 − q2)/2, k} if q2 < 1 and q1 = 0 if q2 ≥ 1. The (unique) best 
response of firm 2 to q1 is: choose q2 = (1 − r − q1)/2 if q1 < 1 − r and q1 = 0 if q2 ≥ 1 − r.  

For the case r < 1/2, there are two possibilities: (i) k ≥ 1(r) and (ii) k < 1(r).  

q1 

q2 

1 − r 1/2  1(r) 

 2(r) 

(1 − r)/2 

1 

BR1 

BR2 

Figure I 

q1 

1 − r 1/2 

(1 − r)/2 

1 

BR1 

BR2 

Figure II 

q2 
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Case 1(a): k ≥ 1(r)  In this case, modifying Figure I, BR1, BR2 are as follows (BR1 is drawn 

below for  1(r) ≤ k < 1/2; for k > 1/2, BR1 will be the same as in Figure I). 

 

 

 

 

 

 

 

In this case the capacity constraint does not alter equilibrium outcome. The equilibrium is the 

same as in the case of no constraints.  

Case 1(b): k < 1(r)  In this case, modifying Figure 1, BR1, BR2 are as follows. 

 

 

 

 

 

 

 

 

As seen from Figure 1(b), in this case the unique equilibrium has q1
k(r) = k, q2

k(r) = (1 − r − k)/2.   

For the case r ≥ 1/2, there are three possibilities: (i) If k ≥ 1/2, (ii) 1 − r ≤ k < 1/2 and (iii) k < 1 − 
r. If k ≥ 1/2, from Figure 2, the equilibrium is the same as in with no capacity constraint: q1

k(r) = 

1/2, q2
k(r) = 0. If 1 − r ≤ k < 1/2, the situation is as in Figure II(a). 

 

 

q1 

q2 

1 − r 1/2 1(r) 

2(r) 

(1 − r)/2 

1 

BR1 

BR2 

Figure I(a) 

k 

q1 

q2 

1 − r 1/2 

q2
k(r)  

(1 − r)/2 

1 

BR1 

BR2 

Figure I(b) 

q1
k(r) = k 
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Observe from Figure 2(a) in this case, the equilibrium is 1(r) = k and 2(r) = 0.  

If k < 1 − r, the situation is as in Figure II(b). 

 

 

 

 

 

 

 

 

 

Observe from Figure II(b) in this case, the equilibrium is 1(r) = k and 2(r) = (1 − r − k)/2.  

Now we are in a position to prove the lemma. 

Proof of part (1) Suppose the innovation is non drastic, that is, c < 1/2. Since 0 ≤ r ≤ c, in this 

case r < 1/2 so that 1 − r > 1/2 and figures I(a)-(b) apply. Note that 1(r) = (1 + r)/3 is increasing 

in r. Since 0 ≤ r ≤ c, We have 1(0) = 1/3 ≤ 1(r) ≤ 1(c) = (1 + c)/3.  

q1 

q2 

1 − r 1/2 

(1 − r)/2 

1 

BR1 

BR2 

Figure II(a) 

k 

q1 

1 − r 1/2 

(1 − r)/2 

1 

BR1 Figure II(b) 

k 

q2
k(r)  

q2 
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(i) If k ≥ (1 + c)/3, then k ≥ 1(r) for all 0 ≤ r ≤ c and so Figure I(a) applies for all 0 ≤ r ≤ c. This 

proves part (1)(i). 

(ii) If k ≤ 1/3, then k ≤ 1(r) for all 0 ≤ r ≤ c and so Figure I(b) applies for all 0 ≤ r ≤ c. This 

proves part (1)(ii). 

(iii) If 1(0) = 1/3 < k < 1(c) = (1 + c)/3, then there is 0 <  r0 < c such that k ≥ 1(r) for 0 ≤ r ≤ r0 

and k < 1(r) for r0 < r ≤ c. So figure I(a) applies for 0 ≤ r ≤ r0 and figure I(b) applies for r0 < r ≤ 
c. This proves part (1)(iii).  

Proof of part (2) Suppose the innovation is drastic, that is, c ≥ 1/2. In this case, if 0 ≤ r < 1/2, 

then 1/2 < 1 − r and if 1/2 ≤ r ≤ c, then 1/2 ≥ 1 − r.  

If 0 ≤ r < 1/2, then figures I(a)-(b) apply. Thus, if k ≥ 1(r), then q1
k(r) = 1(r), q2

k(r) = 2(r). If k 

< 1(r), then equilibrium has q1
k(r) = k, q2

k(r) = (1 − r − k)/2.  

If 1/2 ≤ r ≤ c, then figures II(a)-(b) apply. Thus, if k ≥ 1/2, then q1
k(r) = 1/2 and q2

k(r) = 0. If 1 − 
r ≤ k < 1/2, then q1

k(r) = k and q2
k(r) = 0. If k < 1 − r, then q1

k(r) = k and q2
k(r) = (1 − r − k)/2.  

(i) If k ≥ 1/2, then the conclusion for 1/2 ≤ r ≤ c is immediate. For 0 ≤ r < 1/2, we have 1(r) < 

1(1/2) = 1/2, so k ≥ 1(r) and figure I(a) applies. This proves part 2(i).  

(ii) If k < min{1 − c, 1/3}, then for 0 ≤ r < 1/2, we have 1(r) > 1(0) = 1/3, so k < 1(r) and 

figure 1(b) applies. For 1/2 ≤ r ≤ c, we have 1 − r ≥ 1 − c, so k ≤ 1 − r and figure II(b) applies. 

This proves part (2)(ii).  

(iii) If 1/3 ≤ k < 1 − c, then for 1/2 ≤ r ≤ c, we have 1 − r ≥ 1 − c, so k ≤ 1 − r and figure II(b) 

applies. Consider 0 ≤ r < 1/2. Note that 1(0) = 1/3 and 1(1/2) = 1/2. Since c ≥ 1/2, we have 1/2 
≥ 1 − c. Thus 1/3 ≤ k < 1/2, that is, 1(0) ≤ k < 1(1/2). As 1(r) is increasing in r, it follows that 

there is 0 ≤ r0 < 1/2 such that for 0 ≤ r ≤ r0 we have k ≥ 1(r) and figure 1(a) applies and for r0 ≤ 
r ≤ 1/2, we have k < 1(r) and figure I(b) applies. This proves part (2)(iii). 

(iv) If 1 − c ≤ k < 1/3, then for 0 ≤ r < 1/2, we have 1(r) > 1(0) = 1/3, so k < 1(r) and figure 

I(b) applies. For 1/2 ≤ r ≤ c, we have 1 − c ≤ 1 − r ≤ 1/2. Since k < 1/3, we have k < 1/2. As 1 − r 

is decreasing in r, it follows that there is 1/2 < r1 ≤ c such that for 0 ≤ r < r1 we have k < 1 − r 

and figure II(b) applies. For r1 ≤ r ≤ 1/2, we have 1 − r ≤  k < 1/2 and figure II(b) applies. This 

proves part (2)(iv). 

(v) If max{1 − c, 1/3} < k < 1/2, then for 1/2 ≤ r ≤ c, we have 1 − c ≤ 1 − r ≤ 1/2. Since 1 − c < k 

< 1/2 and 1 − r is decreasing in r, it follows that there is 1/2 < r1 ≤ c such that for 0 ≤ r < r1 we 

have k < 1 − r and figure II(b) applies; for r1 ≤ r ≤ 1/2, we have 1 − r ≤  k < 1/2 and figure II(a) 

applies.  
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Consider 0 ≤ r < 1/2. As 1(0) = 1/3, 1(1/2) = 1/2, we have 1(0) < k < 1(1/2). As 1(r) is 

increasing in r, it follows that there is 0 < r0 < 1/2 such that for 0 ≤ r ≤ r0 we have k ≥ 1(r) and 

figure I(a) applies and for r0 ≤ r ≤ 1/2, we have k < 1(r) and figure I(b) applies. This proves part 

(2)(v). ■ 

Proof of Proposition 1 

Proof of part (1) Consider a non drastic innovation (c < 1/2). The result is proved by looking at 

the following cases.  

Case (i): k ≥ (1 + c)/3: By Lemma A1(1)(i): q1
k(r) = 1(r), q2

k(r) = 2(r) and the Cournot price 

pk(r) = (1 + r)/3 is at most pk(c) = (1 + c)/3 < 1/2 (since c < 1/2). As pk(r) is increasing in r and 

pk(r) < 1/2, it follows that in this case φM (p
k(r)) is increasing in r and so is πk(r). In this case it is 

optimal for firm 1 to set r = c; in that case by (1), the fixed fee is zero. So the optimal licensing 

policy for firm 1 the pure royalty policy (zero fixed fee) with r = c.  

Case (ii): k ≤1/3: By Lemma A1 (1)(ii): q1
k(r) = k, q2

k(r) = (1 − r − k)/2 and the Cournot price 

pk(r) = (1 + r − k)/2. As φM (p) is maximum at p = 1/2, the choice of r that gives pk(r) = 1/2 will 

maximize φM (p
k(r)). Setting pk(r) = 1/2 gives r = k. As pk(r) is increasing in r, φM (p

k(r)) is 

increasing for r < k and is maximum at r = k. Since r ≤ c, the optimal choice is (a) r = k if k < c 

and (b) r = c if k ≥ c. By (1), the fixed fee is positive if r = k and it is zero if r = c. 

Case (iii): 1/3 < k < (1 + c)/3: By Lemma A1(1)(iii): there is 0 < r0 < c such that if 0 ≤ r ≤ r0, 

then we have the standard Cournot outcome. Then as in Case (i), φM (p
k(r)) is increasing for 0 ≤ r 

≤ r0, so it is sufficient to consider r0 ≤ r ≤ c, in which case by Lemma 1(iii), the outcome is the 

same as in Case (ii). So the optimal choice is (a) r = k if k < c and (b) r = c if k ≥ c.  

Proof of part (2) Consider a drastic innovation (c ≥ 1/2). The result is proved by looking at the 

following cases.  

Case (i): k ≥ 1/2: By Lemma A1(2)(i): if 0 ≤ r ≤ 1/2, then the equilibrium outcome is the standard 
Cournot outcome. Then as in Case 1(i), φM (p

k(r)) is increasing for 0 ≤ r ≤ r0, so it is sufficient to 

consider 1/2 ≤ r ≤ c, in which case firm 2 drops out of the market and firm 1 obtains the 

monopoly profit. Setting any r with1/2 ≤ r ≤ c is an optimal policy. However, these are 

redundant licensing policies as they give the same outcome (monopoly profit for firm 1) as not 

licensing. In this case not licensing is optimal for firm 1.  

Case (ii): k < min{1 − c, 1/3}: By Lemma A1(2)(ii): for any 0 ≤ r ≤ c, the outcome is the same as 

in Lemma A1(1)(ii). So the Cournot price is pk(r) = (1 + r − k)/2. As φM (p) is maximum at p = 

1/2, the choice of r that gives pk(r) = 1/2 will maximize φM (p
k(r)). Setting pk(r) = 1/2 gives r = k. 

As k < 1/3 and c ≥ 1/2, We have k ≤ c. So the optimal choice for firm 1 is r = k. 
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Case (iii): 1/3 ≤ k < 1 − c: By Lemma A1(2)(iii): there is 0 <  r0 < 1/2 such that the for 0 ≤ r < r0, 

we have the standard Cournot outcome. Then as in Case 1(i), φM (p
k(r)) is increasing for 0 ≤ r ≤ 

r0, so it is sufficient to consider r0 ≤ r ≤ c, in which case by Lemma 1(2)(iii), the outcome is the 

same as in Case (ii). Therefore as in Case (ii), the optimal choice is r = k. 

Case (iv): 1 − c ≤ k < 1/3: By Lemma A1(2)(iii): there is 1/2 <  r1 < c such that for 0 ≤ r < r1, the 

outcome is the same as in Lemma A1(1)(ii). So the Cournot price is pk(r) = (1 + r − k)/2. As φM 

(p) is maximum at p = 1/2, φM (p
k(r)) is maximum when pk(r) = 1/2. Setting pk(r) = 1/2 gives r = 

k. Since k < 1/3 and 1/2 <  r1, it follows that k < r1. So for 0 ≤ r < r1, φM (p
k(r)) is maximum at r = 

k. By Lemma A1(2)(iii): φM (p
k(r)) is a constant for r1 ≤ r ≤ c, it follows that the optimal choice 

in this case is r = k. 

Case (v): max{1 − c, 1/3} < k < 1/2: By Lemma A1(2)(v): there is 0 <  r0 < 1/2 and 1/2 <  r1 < c 

such that the outcome is the same as (1)(i) for 0 ≤ r < r0, same as in (1)(ii) for r0 ≤ r < r1 and the 

same as last part of (2)(iv) for r1 ≤ r ≤ c. So πk(r) is increasing for 0 ≤ r < r0 and constant for r1 ≤ 
r ≤ c. For r0 ≤ r < r1 πk(r) is maximum at r = k. Note that (1 + r0)/3 = k, so r0 = 3k − 1 < k (since k 

< 1/2). Also note that  k < 1/2 < r1. Thus r0 < k < r1. So in this case also the optimal choice is r = 

k. ■ 

Proof of Proposition 2 

In view of Corollary 1, to completely characterize optimal pure royalty policies, we need to find 

optimal pure royalty policies for the region where k < 1/2 and k < c (region OAHG in figure A1). 

Proof of part (1) Consider the case where c < 1/2 (non drastic innovation) and k < c (region OAS 

in figure A1). Recall that πk
R(r) = φ1

k(r) + rq2
k(r). 

Case 1: k ≤ 1/3 [region OZES]. By Lemma A1(1)(ii), we have 

(2.1) πk
R(r) = (1 + r − k)k/2 + r(1 − r − k)/2 

As πk
R(r) is increasing for all r <1/2 and c < 1/2, its unique maximum over 0 ≤ r ≤ c is attained at 

r = c and firm 1 obtains πk
R(r) = φ1

k(c) + cq2
k(c). If firm 1 does not license, it would obtain φ1

k(c). 

Since q2
k(c) > 0, we conclude that the unit royalty policy with r = c is superior to not licensing.  

Case 2: 1/3 < k < (1 + c)/3 [region ZAE]. By Lemma A1(1)(iii), there is 0 <  r0 < c such that  

(2.2) πk
R(r) = (1 + r)2/9 + r(1 − 2r)/3 

for 0 ≤ r ≤ r0 and πk
R(r) is given by (2.1) for r0 ≤ r ≤ c. Note that the expression in (2.2) is 

increasing for all r <1/2. As r0 < c  < 1/2, it follows that πk
R(r) is increasing for 0 ≤ r ≤ r0. As the 

expression in (2.1) is also increasing, we conclude that the unique maximum of πk
R(r) is attained 

at r = c. As in Case 1, the unique optimal unit royalty policy is r = c and this policy is superior to 

not licensing.  
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Together with the conclusion of Corollary 1(1), this completes the proof of part (1). 

Proof of part (2) Consider the case where c ≥ 1/2 (drastic innovation) and k < 1/2 (region SAHG 

in figure A1).  

Case 1: k < min{1 − c, 1/3}[region SEFG]. Then by Lemma A1(2)(ii), πk
R(r) is given by (2.1) for 

all 0 ≤ r ≤ c and its unique maximum is attained at r =1/2. By not licensing, firm 1 obtains φ1
k(c) 

< φ1
k(c) + rq2

k(c) = πk
R(c) ≤ πk(1/2). So the unique optimal unit royalty policy has r =1/2 and it is 

superior to not licensing.  

Case 2: 1/3 ≤ k < 1 − c [region EAF]. Then by Lemma A1(2)(iii)), there is 0 <  r0 < 1/2 (r0 = 3k − 
1) such that πk

R(r) is given by (2.2) for 0 ≤ r ≤ r0 and it is given by (2.1) for r0 ≤ r ≤ c. As the 

expression in (2.2) is increasing for r <1/2, it follows that πk
R(r) is increasing for 0 ≤ r ≤ r0. As 

the unique maximum for the expression in (2.1) is attained at r =1/2, we conclude that the unique 

optimal unit royalty policy has r =1/2. By not licensing, firm 1 obtains φ1
k(c)  < φ1

k(c) + cq2
k(c) = 

πk
R(c) ≤ πk(1/2), so this policy is superior to not licensing.  

Case 3: 1 − c ≤ k < 1/3 [region FTG]. Then by Lemma A1(2)(iv), there is 1/2 <  r1 < c such that 

for 0 ≤ r < r1, πk
R(r) is given by (2.2) and for r1 ≤ r ≤ c, the payoff from unit royalty is the same 

as not licensing. Since 1/2 <  r1, the unique maximum of the payoff at (2.2) is attained at r = 1/2 

and this payoff is higher than the payoff at not licensing. We conclude that the unique optimal 

pure royalty policy has r =1/2 and this policy is superior to not licensing.  

Case 4: max{1 − c, 1/3} < k < 1/2 [region FAHT]. Then by Lemma A1(2)(iv), there are 0 <  r0 < 

1/2 < r1 such that πk
R(r) is given by (2.2) for 0 ≤ r ≤ r0, given by (2.1) for r0 ≤ r ≤ r1 and the 

payoff is the same as not licensing for r1 ≤ r ≤ c. So the unique maximum is attained at r = 1/2 

and this payoff is higher than the payoff at not licensing. We conclude that the unique optimal 

pure royalty policy has r =1/2 and this policy is superior to not licensing.  

Together with the conclusion of Corollary 1(2), this completes the proof of part (2). ■ 

Proof of Proposition 3 

Recall that the maximum fixed fee that firm 1 can set is f = φ2
k(0) − φ2

k(c) (provided this fee is 

non-negative) and the payoff of firm 1 under this fixed fee is πk
F = φ1

k(0) + φ2
k(0) − φ2

k(c).  

Non drastic innovations First consider the case of non drastic innovations, that is, c < 1/2.  

Case I: k ≤ 1/3 [region OBES in figure 3]. By Lemma A1(1)(ii), φ1
k(0) = (1 − k)k/2, φ2

k(0) = (1 − 
k)2/4, φ1

k(c) = (1 + c − k)k/2. Since φ2
k(0) > φ2

k(c), the fee is positive. So we have  

(3.1) πk
F = (1 − k)k/2 + (1 − k)2/4 − (1 − c − k)2/4 
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By not licensing, firm 1 obtains φ1
k(c). Note that πk

F − φ1
k(c) = c(2 − 4k − c)/4. Since k ≤ 1/3, We 

have 2 − 4k ≥ 2 − 4/3 = 2/3 > 1/2 > c. Hence πk
F > φ1

k(c), so in the region OBES, licensing by 

fixed fee is superior to not licensing.  

Case II: k ≥ (1 + c)/3 [(c, k) above line BA in figure 3]. By Lemma A1(i), φ1
k(0) = 1/9, φ2

k(0) = 

1/9, φ1
k(c) = (1 + c)2/9 and φ2

k(c) = (1 − 2c)2/9. Note that φ2
k(0) > φ2

k(c) for all 0 < c < 1/2. So  

(3.2) πk
F = 1/9 + 1/9 − (1 − 2c)2/9 = 2/9 − (1 − 2c)2/9   

By not licensing, firm 1 obtains φ1
k(c) = (1 + c)2/9. Note that πk

F  − φ1
k(c) = c(2 − 5c)/9. Thus 

licensing by fixed fee is superior to not licensing if 0 < c ≤ 2/5 and not licensing is superior to 
licensing by fixed fee if 2/5 < c < 1/2. 

Thus, in figure 3, for c < 2/5, fixed fee is superior to not licensing for the region above the line 

BX, while for 2/5 < c < 1/2, not licensing is superior to fixed fee for the region above the line XA.   

Case III: 1/3 < k < (1 + c)/3 [region BAE in figure 3]. By Lemma A1(1)(iii), φ1
k(0) = 1/9, φ2

k(0) 

= 1/9, φ1
k(c) = (1 + c − k)c/2 and φ2

k(c) = (1 − c − k)2/4. Note that φ2
k(0) − φ2

k(c) is positive if 

and only if c + k > 1/3. Since c + k > k > 1/3, we have φ2
k(0) > φ2

k(c). So we have  

(3.3) πk
F = 1/9 + 1/9 − (1 − c − k)2/4 = 2/9 − (1 − c − k)2/4   

By not licensing, firm 1 gets φ1
k(c). Let m(k, c) = πk

F − φ1
k(c). Note that m(1/3, c) = c(2 − 3c)/12 

> 0 (since c < 1/2). Also note that ∂m(k, c)/∂k = k/2 – c. 

Case 1: c ≤ 1/6. In this case k/2 > c for any k > 1/3, so m(k, c) is increasing in k. Since m(1/3, c) 

> 0, in this case m(k, c) > 0 for all 1/3 < k < (1 + c)/3. So licensing by pure fixed fee is superior 

to not licensing.  

Case 2: 1/6 < c < 1/5. In this case 1/3 < 2c < (1 + c)/3.  

Case 2(a): 1/3 < k < 2c. Then m(k, c) is decreasing in k. Note that m((1 + c)/3, c) = c(2 − 5c)/9, 

which is positive for 1/6 < c < 1/5. So in this case m(k, c) > 0 for all 1/3 < k < (1 + c)/3.  

Case 2(b): 2c ≤ k < (1 + c)/3. Then m(k, c) is non-decreasing or increasing in k. Since m(1/3, c) > 

0, in this case m(k, c) > 0 for all 1/3 < k < (1 + c)/3.  

From cases 2(a) and 2(b), we conclude that if 1/6 < c < 1/5, then licensing by fixed fee is 

superior to not licensing. 

Case 3: 1/5 ≤ c < 1/2. In this case 2c ≥ (1 + c)/3, so k/2 < c for any k < (1 + c)/3. So m(k, c) is 

decreasing in k. Note that m((1 + c)/3, c) = c(2 − 5c)/9.  

Case 3(a): 1/5 ≤ c ≤ 2/5. Then m((1 + c)/3, c) ≥ 0. Since m(k, c) is decreasing in k, in this case 

m(k, c) > 0 for all 1/3 < k < (1 + c)/3. So licensing by fixed fee is superior to not licensing.  
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Proof of part (1) From cases 1, 2(a)-(b) and 3(a) we conclude that fixed fee is superior to not 

licensing in the region BXV in figure 3. As fixed fee is also superior in the region above the line 

BX (Case II) and below the line BV (Case I), we conclude that for any k, fixed fee is superior to 

not licensing when c < 2/5. This proves part (1).   

Case 3(b): 2/5 < c < 1/2. Then m((1 + c)/3, c) < 0 < m(1/3, c). Since m(k, c) is decreasing in k,   

there is k0(c) such that m(k0(c), c) = 0, m(k, c) > 0 for 1/3 < k < k0(c) and m(k, c) < 0 for k0(c) < k 

< (1 + c)/3. 

So licensing by fixed fee is superior to not licensing if 1/3 < k < k0(c) and not licensing is 

superior to licensing by fixed fee if k0(c) < k < (1 + c)/3. We note that 

(3.4) k0(c) = 2c − (  )/3  

Note that k0(c) is decreasing in c. 

Proof of part (2) when 2/5 < c < 1/2 The curve XW in figure 3 presents k0(c) when 2/5 < c < 1/2. 

Thus licensing by fixed fee is superior to not licensing in the region VXWE and not licensing is 

superior to licensing by fixed fee in the region XAW. As fixed fee is superior to not licensing 

below the line VE (case I) and not licensing is superior to licensing by fixed fee above the line 

XA (case II), it follows that when 2/5 < c < 1/2, licensing by fixed fee is superior to not licensing 

in the region below XW and not licensing is superior to licensing by fixed fee in the region above 

XW. This proves part (2) for 2/5 < c < 1/2. 

Drastic innovations  

Now we consider the case of drastic innovations, that is, c ≥ 1/2. It is already shown in Corollary 
1(2) that if c ≥ 1/2 and k ≥ 1/2, not licensing is superior to licensing by fixed fee. So consider c ≥ 
1/2 and k < 1/2 (the region SAHG in figure 3). 

Case I: k < min{1 − c, 1/3}[region SEFG]. By Lemma A1(2)(ii), πk
F is given by (3.1) and as 

there, licensing by fixed fee is superior to not licensing.  

Case II: 1 − c ≤ k < 1/3 [region FTG]. By Lemma A1(2)(iv), φ1
k(0) = (1 − k)k/2, φ2

k(0) = (1 − 
k)2/4, φ1

k(c) = (1 − k)k and φ2
k(c) = 0. Note that φ2

k(0) > φ2
k(c) and  

πk
F = (1 − k)k/2 + (1 − k)2/4 – 0 = (1 − k)(1 + k)/4    

By not licensing, firm 1 obtains φ1
k(c). Noting that πk

F − φ1
k(c) = (1 − k)(1 − 3k) > 0 (since k < 

1/3), in this region fixed fee is superior to not licensing.   

Case III: max{1 − c, 1/3} < k < 1/2 [region FAHT]. By Lemma A1(2)(v), φ1
k(0) = 1/9, φ2

k(0) = 

1/9, φ1
k(c) = (1 − k)k and φ2

k(c) = 0. Note that φ2
k(0) > φ2

k(c) and πk
F = 1/9 + 1/9 – 0 = 2/9. By 

not licensing, firm 1 obtains φ1
k(c). Note that πk

F − φ1
k(c) = (3k − 1)(3k − 2)/9. Since in this 

region, 1/3 < k < 2/3, we have πk
F < φ1

k(c), so not licensing is superior to licensing by fixed fee.   
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Proof of part (3) From cases (I)-(III) it follows that c > 2/3, licensing by fixed fee is superior to 

not licensing below the line FT (which has equation k = 1/3) and not licensing is superior to 

above the line FT. This proves part (3).  

Case IV: 1/3 ≤ k < 1 − c [region EAF]. By Lemma A1(2)(iii), φ2
k(0) > φ2

k(c) and πk
F is given by 

(3.3). Let m(k, c) = [πk
F − φ1

k(c)]. Note that m(1/3, c) = c(2 − 3c)/12 > 0 (since in this region c < 

2/3). Also recall ∂m(k, c)/∂k = k/2 – c. Since in this region c > 1/3, we have 1 – c < 2c. As k < 1 – 

c, we have k/2 < c, so m(k, c) is decreasing in k.  

Note that m(1 – c, c) = (c – 1/3)(c – 2/3) < 0 (since 1/3 < c < 2/3). Thus m(1 – c, c) < 0 < m(1/3, 

c). Since m(k, c) is decreasing in k, there is k0(c) such that m(k0(c), c) = 0, m(k, c) > 0 for 1/3 < k 

< k0(c) and m(k, c) < 0 for k0(c) < k < 1 – c (note that k0(c) is given by (3.3)). 

So licensing by fixed fee is superior to not licensing if 1/3 < k < k0(c) and not licensing is 

superior to licensing by pure fixed fee if k0(c) < k < (1 + c)/3. In this region, we have 1/2 < c < 

2/3. The curve WF in figure 3 presents k0(c). Licensing by fixed fee is superior to not licensing in 

the region WEF and not licensing is superior to licensing by pure fixed fee in the region WAF. 

Proof of part (2) when 1/2 < c < 2/3  From cases (I)-(IV) and Corollary 1(2) it follows that if 

1/2 < c < 2/3, licensing by fixed fee is superior to not licensing below the curve WF and not 

licensing is superior to licensing by fixed fee above the curve WF. ■ 

Proof of Proposition 4 

In view of the discussion just preceding Proposition 4, to complete the proof of the proposition it 

remains to see how fixed fee and unit royalty compare in the region OYFTG in the figure below. 

 

 

 

 

 

 

 

Non drastic innovations First consider c < 1/2. By Proposition 2, in this case the optimal pure 

royalty policy has r = c. Note that 1/3 < k0(c), so min{c, 1/3} < k0(c). 
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Case 1: k ≤ min{c, 1/3} [region OZES in figure A3]. In this by Lemma A1(1)(ii), πk
F (the payoff 

of firm 1 from fixed fee policy) is given by (3.1) (see the proof of Proposition 3) and the payoff 

of firm 1 from the optimal pure royalty policy r = c is given by  

(4.1) πk
R = φ1

k(c) + cq2
k(c) = (1 + c − k)k/2 + c(1 − c − k)/2 

From (3.1) and (4.1), we note that πk
R − πk

F = (c/2)(k − c/2). Since c < 1/2, we have c/2 < 1/3, so 

c/2 ≤ min{c, 1/3}. Thus fixed fee is superior to unit royalty if k < c/2 and unit royalty is superior 

to fixed fee if c/2 < k ≤ min{c, 1/3}. The line OM in figure A4 corresponds to k = c/2. 

 

 

 

 

 

 

Case 2: 1/3 < k < min{c, k0(c)} [region ZYWE in figure A3]. In this case by Lemma A1(1)(iii),  

πk
F is given by (3.3) (see the proof of Proposition 3) and πk

R is given by (4.1). From (3.3) and 

(4.1), πk
R − πk

F  = (3c – 3k + 1)(3k – 3c + 1)/36. Since in this region k < c, the term 3c – 3k + 1 is 

positive. Since k > 1/3 and c < 1/2, we have 3k – 3c + 1 > 1 – 3/2 + 1 = 1/2 > 0. Thus πk
R > πk

F. 

So pure royalty is superior to pure fixed fee in this region. 

Proof of part (1) From Cases 1 and 2 it follows that for c < 1/2, fixed fee is superior to unit 

royalty in the region OMS and unit royalty is superior to fixed fee in the region OYWM. This 

proves part (1) of Proposition 4.   

Drastic innovations Consider c ≥ 1/2. By Proposition 2, in this case the optimal pure royalty 

policy has r = 1/2.  

Case 3: 1/2 ≤ c ≤ 2/3 and k < 1/3 [region SEFL in figure A3]. In this case by Lemma A1(2)(ii), 

πk
F is given by (3.1) and the payoff of firm 1 from the optimal pure royalty policy r = 1/2 is 

given by  

(4.2) πk
R = φ1

k(1/2) + (1/2)q2
k(1/2) = (3 − 2k)k/4 + (1 − 2k)/8 

From (3.1) and (4.2), πk
R − πk

F = ck/2 + c2/4 – c/2 + 1/8 and  

(4.5) πk
R − πk

F > 0 if and only if k > k1(c) where k1(c) = 1 – 1/4c – c/2.  

Note that dk1(c)/dc = 1/4c2 – 1/2, so  
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(4.6) dk1(c)/dc > 0 if and only if c < 1/ .  

As 1/  > 2/3, it follows that k1(c) is increasing for 1/2 ≤ c ≤ 2/3. Note that k1(1/2) = 1/4 > 0 and 

k1(2/3) = 7/24 < 1/3. Thus 0 < k1(c) < 1/3 for any 1/2 ≤ c ≤ 2/3. So in this case fixed fee is 

superior to unit royalty if 0 < k < k1(c) and unit royalty is superior to pure fixed fee if k1(c) < k < 

1/3. The curve MN in figure A5 corresponds to k1(c). Note that at c = 1/2, we have k1(c) = c/2, so 

the curve of k1(c) meets the line OM (that has equation k = c/2) of figure A4 at M. 

 

 

 

 

 

 

 

Case 4: 2/3 < c < 1 and k < 1/3 [region LFTG in figure A3]. In this case by Lemma A1 (parts 

(2)(ii), (2)(iv)), πk
F is given by (3.1), πk

R is given by (4.2) and as in the previous case, (4.5) and 

(4.6) hold. Denote c0 ≡ 1/ . 

Case 4(a): 2/3 < c < c0 and k < 1/3: In this case k1(c) is increasing. Note that k1(2/3) = 7/24 > 0 

and k1(c0) = 1 – 1/  < 1/3. Thus 0 < k1(c) < 1/3 for any 2/3 < c < c0. So in this case fixed fee is 

superior to unit royalty if 0 < k < k1(c) and unit royalty is superior to pure fixed fee if k1(c) < k < 

1/3. The curve NU in figure A5 presents the k1(c) when 2/3 < c < c0. 

Case 4(b): c0 < c < 1 and k < 1/3: In this case k1(c) is decreasing. Recall k1(c0) < 1/3. Also k1(1) 

= 1/4 > 0. Thus 0 < k1(c) < 1/3 for any c0 < c < 1. So in this case fixed fee is superior to unit 

royalty if 0 < k < k1(c) and unit royalty is superior to pure fixed fee if k1(c) < k < 1/3. The curve 

UV in figure A5 presents the k1(c) when c0 < c < 1. 

Proof of part (2) The curve MUV in Figure A5 represents k1(c) for 1/2 ≤ c < 1. Note that k1(c) is 

increasing for 1/2 ≤ c < c0 and decreasing for c0 < c < 1. From Cases 3, 4(a) and 4(b) it follows 

that for c ≥ 1/2, fixed fee is superior to unit royalty in the region SMVG and unit royalty is 

superior to fixed fee in the region MWFTV. This proves part (2) of Proposition 4. ■ 
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