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Abstract 

Using recent findings from brain sciences, we relax the implicit CAPM assumption of 

sufficient brain resources, and model human brain as solving two optimization problems 

instead of one, which are:  1) Optimal resource allocation in the brain. 2) Mean-variance 

optimization. A security market line with varying slopes (flat, upwards, and downwards) 

arises depending on the resource allocation decisions in the brain. Size, value, and 

momentum effects also emerge in this enriched framework. This suggests that the classical 

CAPM is not misspecified. Rather, what appears as misspecification may be the result of 

ignoring the optimal resource allocation problem in the brain.   
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Optimal Resource Allocation in the Brain and the Capital Asset 

Pricing Model 

 

The CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966) is the most widely used 

model of risk-return trade-off in finance (Levy and Welch 2017).4 It posits that expected 

returns and betas should be positively related. However, in violation of this basic prediction, 

the observed security market line (SML) is generally too flat (see Fama and French (2004) for 

a comprehensive review).5 Intriguingly, there are specific times when this relationship is 

positive such as months when inflation is low or negative (Cohen, Polk, and Vuolteenaho 

2005), days when news about inflation, unemployment, or Federal Open Markets 

Committee (FOMC) interest rate decisions are scheduled to be announced (Savor and 

Wilson 2014), periods of pessimistic investor sentiment (Antoniou et al 2015), periods when 

margin requirements are relaxed by the Federal Reserve (Jylha 2018), and overnight 

(Hendershott et al 2019). Why is this relationship only positive at specific times, while flat or 

even downward sloping at other times? In this article, we show that relaxing the implicit 

CAPM assumption of sufficient brain resources provides a unified explanation for the 

varying SML slopes, along with providing explanations for size, value, and momentum 

effects. Our results suggest that CAPM may not be misspecified. Rather, what appears as 

misspecification may be the result of ignoring the optimal resource allocation problem in 

the brain.  

 Brain architecture (see Alonso et al (2014) and references therein) suggests an 

optimal resource allocation mechanism in the brain. We incorporate this mechanism into 

CAPM and model investors as solving, instead of one, two optimization problems which are 

as follows: 1) Optimal resource allocation in the brain. 2) Mean-Variance Maximization. We 

 
4 Some studies (such as Murphy (1990), Kim (1997), Jostova and Philipov (2005), Fu, Murphy, and Benzschawel 

(2015), and Wu (2018)) report favorable outcomes for CAPM. 

 
5 Fama and French (2016) find deviations from the implications of the model, such as related  to beta, size, 

value and momentum that have persisted in varying degrees since early studies by Black, Jensen, and Scholes 

(1972), Stoll and Whaley (1983), Fama and French  (1993), and Jegadeesh and Titman (1993) among others.  

Based on this poor empirical record, it has been suggested that there is misspecification in CAPM, and 

additional risk factors have been suggested that improve the model (Fama and French 2016, 2011, 1993). Over 

the last decade, only the momentum factor has persisted in generating average returns that are abnormally 

high relative to those expected by the CAPM (Blitz 2020).  
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show that this enrichment to the standard CAPM framework explains why the SML slope is 

positive at specific times only, while staying flat or even downward sloping at other times. 

The enriched framework also explains the major CAPM anomalies such as size, value, and 

momentum. 

A sufficient condition for CAPM to apply is for investors to be mean-variance 

maximizers. Recent studies in neuroscience have found evidence that the human brain 

separately encodes these two moments of investment payoffs (see Bossaerts (2009) and 

references therein, Fukunaga et al 2018). Expected reward is encoded in the subcortical 

projection areas of the dopamine neurons, in particular, the ventral striatum, whereas brain 

regions involved in risk (variance) encoding include right and left insula, and thalamus. The 

executive part of the brain then constructs value from the statistics of gambles (Bossaerts 

2009).6  

Research in brain sciences has established that when there are multiple tasks for a 

person to conduct, each task is assigned to a particular system of neurons that coordinate 

their electrical firings to process information inputs that enable carrying out that task. Each 

of these systems of neurons, which require energy and other biological resources to carry 

out their tasks via neural firings, compete for the scarce resources with other systems in the 

brains. The ‘central executive system’ (CES) located in the lateral prefrontal cortex of the 

brain allocates finite resources to different systems of neurons with task performance 

dependent on resource allocation (see Alonso et al (2014) and references there in). With 

respect to the valuation of an asset, or a gamble, separate encoding of reward and risk are 

conducted in the brain, which are then combined to generate an integrated value in the 

executive part of the brain (Bossaerts 2009). It follows then that the two tasks involved in 

asset valuation (estimating expected cashflows and the risk of the cashflows) are performed 

by distinct systems of neurons that compete for scarce brain resources. In this article, we 

allow the resource constraint in the brain to bind. That is, the possibility that sufficient brain 

resources may not be allocated to either or both tasks has been considered here.  

 
6 Evidence from decision neuroscience indicates that certain/immediate rewards are disproportionately 

favoured over long-term/risky rewards (McClure 2004). Andreoni and Sprenger (2012) find that such direct 

preference for certainty explains the findings in their experiments well. Siddiqi (2017) and Siddiqi and Anwar 

(2020) explore the implications of such direct certainty preference for financial innovations. 
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Figure 1 - Slope and Intercept of SML 

Slope and intercept of SML changes with the ratio 
𝑚2𝑚1 where 𝑚1 is the fraction of required 

brain resource allocated to estimating expected cashflows, and 𝑚2 is the fraction of 

required brain resources allocated to cashflow risk estimation. When optimal resource 

allocation in the brain shifts towards risk, 
𝑚2𝑚1 rises, and SML rotates in the counter clockwise 

direction. When optimal resource allocation shifts towards expected cashflows, 
𝑚2𝑚1 falls, and 

SML rotates in the clockwise direction.  

 

Figure 1 illustrates the main result in the paper regarding SML slopes (proposition 1). The 

fraction of required brain resources allocated to expected cashflow estimation is denoted by 𝑚1, whereas the fraction of required brain resources allocated to cashflow risk estimation is 

denoted by 𝑚2. Figure 1 shows that when optimal resource allocation in the brain shifts 

towards risk, that is when 
𝑚2𝑚1 rises, SML rotates in the counter clockwise direction, and when 

optimal resource allocation shifts in favor of expected cashflow estimation, SML rotates in 

the clockwise direction. We argue that specific periods when the empirically observed SML 

slope is positive are periods with high  
𝑚2𝑚1 (see section 2.2).  

Acknowledging that brain resources are scarce gives rise to a resource-rational view 

of the brain in which cognition is viewed as arising from the optimal allocation of limited 
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brain resources (see Alonso et al (2014) and references therein, Leider and Griffiths 2020). 

Research in cognitive science has established that relying on informative starting points and 

then attempting to adjust them appropriately is a robust strategy consistent with optimal 

allocation of limited brain resources, and this strategy is universally employed in the brain 

(see Leider et al (2018) and references therein). In the context of cashflow analysis, it 

follows that when analyzing a firm, a resource-rational brain, leverages the cashflow 

analysis of a similar firm that has been analyzed earlier, and then makes appropriate 

adjustments instead of starting from scratch for each firm. For example, if one has already 

analyzed the impact of a potential new entrant on a firm 𝑞, then while analyzing the impact 

on another similar firm 𝑠, the resource-rational brain leverages the analysis for 𝑞 and makes 

adjustments for differences between 𝑞 and 𝑠. We also consider the possibility that the 

starting point may not come from a specific firm. Rather, investors have a sector or industry 

schema which provides the starting point. In that case, 𝑞 is interpreted as representing an 

industry or sector average.  

If the resource constraint in the brain does not bind, then full adjustment is reached, 

and the cashflow analysis of 𝑞 and 𝑠 do not get entangled. In other words, when the 

resource constraint in the brain does not bind, then starting points do not matter as there 

are no traces of 𝑞 left in the cashflow analysis for firm 𝑠. That is, even though a resource-

rational brain relies on informative starting points, the implicit assumption here is that 

cashflow analysis involves simple enough tasks so that full adjustments away from the 

starting points are reached; hence, rational expectations are formed. In this article, we relax 

this implicit assumption and allow the resource constraint in the brain to bind. It follows 

that the cashflow analyses of 𝑠 and 𝑞 are entangled. As the two tasks in cashflow analysis 

are estimating expected cashflows and the risk of cashflows with each task performed by a 

separate brain system, it follows that expected cashflows of 𝑠 are entangled with the 

expected cashflows of 𝑞, and the cashflow risk of 𝑠 is entangled with the cashflow risk of 𝑞. 

The intuition behind figure 1 is now easy to see. When 𝑚2 rises, the influence of the 

starting point (𝑞) in the estimated risks of 𝑠 firms diminish; hence, the cross-sectional 

variation in estimated risks across firms rises. This allows betas to explain the cross-sectional 

variation in expected returns better; hence, the slope of SML rises, and the intercept falls 

(counter clockwise rotation of SML). When 𝑚1 falls, the influence of the starting point (𝑞) in 
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the expected returns of 𝑠 firms get stronger, which diminishes the cross-sectional variation 

in expected returns, making it easier for a given variation in betas to explain the variation in 

expected returns. Hence, the slope of SML rises, and the intercept falls (counter clockwise 

rotation of SML) when 𝑚1 falls. In other words, a rise in 
𝑚2𝑚1 rotates SML in the counter 

clockwise direction. The opposite happens (SML rotates in the clockwise direction) when 
𝑚2𝑚1 

falls.  

When optimal resource allocation in the brain favors expected cashflows over risk of 

cashflows, that is, when 𝑚1 > 𝑚2, then the cross-sectional variations in the impacts of 

cashflow entanglements automatically give rise to both size and value effects (see section 

2.3).  Combining this with the implications for the slope of SML, it follows that size and value 

effects should only be observed when the SML is flat or downward sloping. This is consistent 

with the empirical findings in Hendershott et al (2019). The resource-rational view of the 

brain provides an explanation for the momentum effect as well, which is explained by 

temporary shifts in relative resource allocation in the brain concerning momentum winners 

and losers (section 2.5). 

Overall, by viewing human cognition as the optimal use of limited computational 

resources (Leider and Griffiths 2020), we integrate the ‘bottom-up’ understanding of 

cognitive architecture as established by research in brain sciences (see Alonso et al (2014) 

and references therein) with the top-down view of functional rationality (expected utility or 

mean-variance maximization) as developed and typically applied in economics and finance. 

It follows that, instead of one, the human brain solves two optimization problems: 1) 

Optimal resource allocation in the brain. 2) Mean-Variance maximization. The most 

surprising aspect of this enrichment is that major CAPM anomalies are reconciled suggesting 

that CAPM is not misspecified after all. An advantage of this approach is that instead of 

taking biases as given and studying their implications7, we dig deeper into the 

neurobiological underpinnings of choice. In this view, biases emerge due to the way finite 

brain resources are optimally allocated in the brain.  

 
7 In particular, Siddiqi (2018) and Siddiqi (2019) assume anchoring bias and study its implications for CAPM and 

option pricing respectively. This article bridges the gap between these articles and the neurobiology of choice.  
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In section 1, we summarize evidence from decision neuroscience pertaining to how the 

resource-rational brain processes information, and how this evidence is broadly consistent 

with the notion of functional rationality (mean-variance analysis or expected utility 

maximization) as applied in economics and finance. In section 2, we adjust the classical 

CAPM model for optimal resource allocation in the brain and study its properties. We show 

how varying SML slopes as well as size, value, high-alpha-of-low-beta, and momentum arise 

in the adjusted framework.  Section 3 concludes with suggestions for further research.  

 

1. Information Processing in the Resource-Rational Brain 

What happens when information reaches the human brain? In economics, a black-box 

approach to information absorption is typically taken with an implicit assumption that 

information, when it reaches the brain, is accurately processed. In terms of actual brain 

processes, research in brain sciences has established that when information reaches the 

brain, a mental template or schema, is first activated, which influences information 

absorption.8 Brain imaging studies show that schemas lead to rapid assimilation of schema-

consistent information, which makes reliance on schemas critically important for the 

resource-rational brain.9   

 A schema can be conceived as a scaffold or a blueprint, representing a higher-level 

knowledge structure integrating lower-level units. Neurologically, it is a brain template that 

involves systems of neurons across various brain regions talking to each other, with each 

system constituting a particular unit in the schema. That is, schemas contain units as well as 

relationships between these units. For example, for a car schema, units could be car body 

and wheel, with the relationship that car body contains four wheels. For a firm schema, 

 
8 Schemas have long been known to be used by the brain in memory formation and recall (Bartlett 1932, 

Bransford and Johnson 1972, Anderson and Pearson 1984). See Hampson and Morris (1996), Anderson (2000), 

and Pankin (2013) for an overview of schema theory. A sample of recent literature in neuroscience that 

explores the neural basis of schemas and their role in information absorption includes Tse et al (2007), van 

Kesteren et al (2010), Tse et al (2011), van Kesteren et al (2012), Ghosh and Gilboa (2014), Ghosh et al (2014), 

Brod et al (2015), Spalding et al (2015), Sweegers et al (2015), Gilboa and Marlatte(2017), and Ohki and Takei 

(2018). 

 
9 Tse et al 2007, Gilboa and Marlatte 2017. See Ohki and Takei (2018) and references therein.  
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units could be expected cashflows and risk of cashflows with an integration of these units 

creating value. Schemas, by only containing the essential details, simplify the world. They 

provide useful starting points, and in the process, speed-up processing of relevant 

information. Several demonstrations of how schemas shape our thought processes exist in 

the cognitive science literature.10  

We posit that when information about a firm arrives, a relevant schema is activated 

that provides a useful starting point to process that information. If it’s a prominent firm 

then a scheme dedicated to it may already exist in the brain. However, if it is an average or a 

typical firm then there may not be a dedicated schema for it. In that case, a related schema 

may be activated. There are two strong possibilities: 1) The schema of a prominent firm in 

the same sector is activated with adjustments made for the differences between the two 

firms. 2) The schema is not based on any specific firm. Rather, it represents the average 

behavior in the sector. Adjustments are then made for differences between average 

behavior in the sector and firm behavior. Note that irrespective of the nature of activated 

schemas, they provide useful starting points to the resource-rational brain.   

 Relying on a starting point (supplied by a schema) and then spending brain resources 

to appropriately adjust it to suit a particular situation is consistent with the resource rational 

view of the brain (Leider et al 2018, Leider and Griffiths 2020). We have been doing this 

throughout our lives. For example, a child may initially only have a schema for a horse (large 

with four legs, hair, and a tail). However, when she encounters a cow, she may make sense 

of that by accessing and appropriately modifying the horse schema. She may eventually 

integrate horse, cow and other animal schemas to form an overarching schema for four-

legged animals with each animal type a specific instance of the generic animal schema, 

obtained by applying appropriate modifications.  Similarly, investors are expected to have 

clustered similar firms together and have created a schema for them, either based on a 

prominent firm in the sector, or may have a generic schema for the cluster that captures the 

average behavior without representing a specific firm.  

Given that schemas are critically important for the resource-rational brain, the 

existence of asset valuation schemas in the brain is expected. Neuroscience research points 

 
10 For example, see chapter 2 in Stangor (2011) 
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to ventromedial prefrontal cortex (vmPFC) as the key area involved in processing 

information through a schema where information from multiple regions in the brain is 

integrated.11 So, if there are asset-valuation schemas in the brain, then the involvement of 

vmPFC is necessary for their working. Intriguingly, research in brain sciences has established 

that vmPFC is the key brain region involved in constructing willingness-to-pay, and that 

vmPFC does so by integrating information from multiple sources (other brain regions) 

(Sescousse et al 2013, Levy and Glimcher 2012, Peters and Buchel 2010, Rangel and Hare 

2010, Hare et al 2008, Wallis 2007, Plassmann et al 2007). The finding that multiple sources 

are integrated to construct willingness-to-pay in vmPFC points to the existence of asset-

valuation schemas.   

As schemas are higher-level structures that integrate lower-level units, what are the 

associated lower-level units in an asset-valuation schema? Bossaerts (2009) discusses 

neuroscience evidence showing that brain separately encodes expected reward and reward 

variance12 when confronted with a gamble, and these statistics are constantly re-evaluated, 

suggesting that vmPFC in the brain constructs value based on the statistics of gambles. This 

indicates that brain has architecture for mean-variance analysis. So, the functional or top-

down view of rationality in economics and finance is supported by the ‘bottom-up’ evidence 

from neuroscience.  

As expected cashflows and the risk of cashflows are the two key units involved in 

constructing value or willingness-to-pay, it follows that relying on starting points (either 

provided by a prominent firm in the sector or by a sector average schema) and making 

adjustments has two key tasks: appropriately modifying the expected cashflow of the 

starting point, and appropriately modifying the risk of the starting point. Research in brain 

sciences has established that, where there are multiple tasks, different brain systems 

(systems of neurons) are assigned to each task. These systems compete for scarce resources 

that are allocated by a ‘central executive system’ (CES) located in the lateral prefrontal 

cortex with relative task performance dependent on how the brain resources are allocated 

between them (Alonso et al 2014). It follows that the two tasks involved in valuation 

 
11 van Kesteren et al 2010, Tse et al 2011, Ghosh et al 2014, Brod et al 2015. 
12 Fukunaga et al (2018) present evidence that risk is primarily encoded in the brain as variance of possible 

outcomes.  
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(modifying the expected cashflows starting point, and modifying the risk starting point) are 

performed by distinct brain systems that compete for scarce brain resources.  

In the next section, we take a modern derivation of CAPM (as in Frazzini and 

Pederson (2014)) and adjust it for such reliance on starting points. This transforms the 

decision problem underlying CAPM from just mean-variance maximization to mean-variance 

maximization in the context of optimal resource allocation in the resource-rational brain.  

 

2. CAPM adjusted for Optimal Resource Allocation in the Brain 

We start with a modern derivation of CAPM (such as in Frazzini and Pedersen (2014)), and 

add a twist that incorporates information processing via schemas in the brain. As in Frazzini 

and Pedersen (2014), we consider an overlapping generations (OLG) economy. Each agent 

lives for two periods. Agents that are born at 𝑡 aim to maximize their utility of wealth at 𝑡 +1. Their utility functions are identical and exhibit mean-variance preferences. They trade 

securities 𝑠 = 1, ⋯ , 𝑆 where security 𝑠 pays dividends 𝑑𝑡𝑠and has 𝑛𝑠∗ shares outstanding, and 

invest the rest of their wealth in a risk-free asset that offers a rate of 𝑟𝐹. 

The market is described by a representative agent who maximizes: 

max 𝑛′{𝐸𝑡(𝑃𝑡+1 + 𝑑𝑡+1) − (1 + 𝑟𝐹)𝑃𝑡} − 𝛾2 𝑛′Ω𝑡𝑛  

where 𝑃𝑡 is the vector of prices, Ω𝑡 is the variance-covariance matrix of 𝑃𝑡+1 + 𝑑𝑡+1, and 𝛾 is 

the risk-aversion parameter. 

It follows that the price of a security, 𝑠, is given by: 

𝑃𝑡𝑠 = 𝐸(𝑋𝑡+1𝑠 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                                               (2.1) 

where security 𝑠 payoff is 𝑋𝑡+1𝑠 = 𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠   

and the aggregate market payoff is: 𝑋𝑡+1𝑀 = 𝑛1∗(𝑃𝑡+11 + 𝑑𝑡+11 ) + 𝑛2∗(𝑃𝑡+12 + 𝑑𝑡+12 ) +∙∙∙∙∙∙∙∙∙∙∙∙ +𝑛𝑆∗(𝑃𝑡+1𝑆 + 𝑑𝑡+1𝑆 ). 
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2.1 Using Schemas 

Bossaerts (2009) discusses evidence from decision neuroscience indicating that two key 

gamble statistics of expected reward and reward variance are encoded separately in the 

brain. Expected reward is encoded in the subcortical projection areas of the dopamine 

neurons, in particular, the ventral striatum, whereas brain regions involved in risk encoding 

include right and left insula, and thalamus. As discussed in the previous section, the key 

brain region involved in estimating willingness-to-pay is vmPFC, which constructs value by 

integrating information coming from other brain regions (Levy and Glimcher 2012). As 

schemas are high-level structures that integrate lower-level units and the key region 

involved in processing information via schemas is also vmPFC, valuation is consistent with 

schema reliance.  

In line with 2.1, we propose that the valuation schema in the brain has the following 

structure: 

𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠 𝑡𝑜 𝑃𝑎𝑦 =  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑠 − (𝑟𝑖𝑠𝑘 𝑎𝑣𝑒𝑟𝑠𝑖𝑜𝑛) ∗ (𝑅𝑖𝑠𝑘 𝑜𝑓 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑠)1 + 𝑅𝑖𝑠𝑘𝐹𝑟𝑒𝑒 𝑅𝑎𝑡𝑒  

As can be seen from the above general form of a valuation-schema, in our context, the two 

units that need to be estimated are expected cashflows and the risk of cashflows. 

 Based on the evidence summarized in section 1 (see the discussion in Alonso et al 

(2014) for a more detailed review of neuroscience evidence), we build a resource allocation 

model applicable to value construction as follows. We assume that the representative agent 

analyses the total earnings or cashflows of a firm to estimate equity value. This analysis has 

two tasks. Task 1 is estimating the expected future earnings or cashflows of the firm, 

whereas Task 2 requires estimating the risk of future earnings or cashflows. Apart from 

these two tasks, we combine all other tasks that the brain may be engaged in at the time of 

analysis and refer to this aggregate as Task 3. Each task is performed by a separate brain 

system, which alone is responsible for that task. Systems are made-up of neurons, which 

demand resources. Resource deficit implies underperformance in the task.  

We assume that the agent relies on a pre-existing schema to help with these tasks. 

The pre-existing schema may belong to a similar firm that the agent has analysed earlier, or 
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it could be a generic schema for the sector. In both cases, we use 𝑞 to denote the relevant 

starting point.  

Denoting total earnings of 𝑞 and 𝑠 at 𝑡 + 1 by 𝜋𝑡+1𝑞
 and 𝜋𝑡+1𝑠  respectively, Task 1 is: 

 𝐸′(𝜋𝑡+1𝑠 ) = 𝐸(𝜋𝑡+1𝑞 ) − 𝑚1𝐷1                                                                                                        (2.2) 

where 𝐷1 = 𝐸(𝜋𝑡+1𝑞 ) − 𝐸(𝜋𝑡+1𝑠 ) is the correct adjustment needed, and 𝑚1 is the fraction of 

correct adjustment achieved.  

Task 2 is: 𝐶𝑜𝑣′(𝜋𝑡+1𝑠 , 𝜋𝑡+1𝑀 ) = 𝐶𝑜𝑣(𝜋𝑡+1𝑞 , 𝜋𝑡+1𝑀 ) − 𝑚2𝐷2                                                                           (2.3) 

where 𝐷2 =  𝐶𝑜𝑣(𝜋𝑡+1𝑞 , 𝜋𝑡+1𝑀 ) − 𝐶𝑜𝑣(𝜋𝑡+1𝑠 , 𝜋𝑡+1𝑀 ) is the correct adjustment needed 𝑚2 is the fraction of correct adjustment achieved and 𝜋𝑡+1𝑀  is the aggregate earnings of all 

firms in the market.  

As in Alonso et al (2014), we assume that each system is selfish and cares only about 

performance in its own task. The resources that can be allocated to each system, 𝑙 ∈{1, 2, 3}, are in the set ∅𝑙 = [0, 𝜑𝑙̅̅ ̅]. The amount of resources needed to carry out a task 

perfectly is denoted by 𝜑𝑙 ∈ ∅𝑙. The amount of resources a system gets is denoted by 𝑦𝑙. A 

system seeks 𝑦𝑙 = 𝜑𝑙. We assume that there is a benefit function 𝜗𝑙(𝑦𝑙; 𝜑𝑙) associated with 

each task that the CES computes. The benefit function takes it maximum value when 𝑦𝑙 =𝜑𝑙. When 𝑦𝑙 < 𝜑𝑙, there is a loss. When there are too many resources, 𝑦𝑙 > 𝜑𝑙, there is no 

benefit. It could even be damaging as too much attention could be counterproductive. In 

any case, we assume that the benefit function is non-increasing when 𝑦𝑙 ≥ 𝜑𝑙. 
We follow Alonso et al (2014) in defining the following benefit function (without loss 

of generality): 

 𝜗𝑙(𝑦𝑙; 𝜑𝑙) = {𝛼𝑙𝑢𝑙(𝑦𝑙 − 𝜑𝑙)   𝑖𝑓 𝑦𝑙 ≤ 𝜑𝑙0                        𝑖𝑓 𝑦𝑙 > 𝜑𝑙                                                                                     (2.4) 

where 𝑢𝑙(0) = 0, 𝑢𝑙′(0) = 0, 𝑢𝑙′(𝑧) > 0, and 𝑢𝑙′′(𝑧) < 0 for all 𝑧 < 0. 
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Under (2.4), it immediately follows that as the gap between the resources needed to 

successfully complete a task and the resources made available to the task (𝜑𝑙 − 𝑦𝑙) 

increases, benefit from the task falls.  

We define 𝑚1 and 𝑚2 as follows: 

𝑚1 = 𝑦1𝜑1                                                                                                                                               (2.5) 

𝑚2 = 𝑦2𝜑2                                                                                                                                               (2.6) 

So, 𝑚1 and 𝑚2 are fractions of required resources allocated to Task 1 (expected cashflows) 

and Task 2 (cashflow risk) respectively, which is taken to be the same as the fraction of 

correct adjustment without loss of generality. When the required resources are made 

available, tasks are flawlessly completed and rational expectations are formed in both Task 

1 and Task 2. And, when there is a resource deficit, the adjustment process is affected in 

proportion with the deficit.  

  As in Alonso et al (2014), we assume that the optimization problem that the ‘Central 

Executive System’ (CES) in the brain solves is as follows: 𝑚𝑎𝑥{𝑦1, 𝑦2, 𝑦3} 𝜗1(𝑦1; 𝜑1) +  𝜗2(𝑦2; 𝜑2) + 𝜗3(𝑦3; 𝜑3) 

   𝑠. 𝑡   𝑦1 + 𝑦2 + 𝑦3 ≤ 𝑘 

         𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0 

Assuming a binding resource constraint (𝜑1 + 𝜑2 + 𝜑3 ≥ 𝑘), to characterize an interior 

solution, we take the simplest case of a quadratic benefit function that meets the criteria for 

such a function (as explained in 2.4): 𝜗𝑙(𝑦𝑙; 𝜑𝑙) = −𝛼𝑙(𝑦𝑙 − 𝜑𝑙)2                                                                                                            (2.7) 

The interior solution is (corner solutions are also easy to characterize): 

𝑦𝑙 = 𝜑𝑙 − 1𝛼𝑙( 1𝛼1 + 1𝛼2 + 1𝛼3) [𝜑1 + 𝜑2 + 𝜑3 − 𝑘]         𝑓𝑜𝑟 𝑙 ∈ {1, 2, 3}                                 (2.8) 
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For Task 1 and Task 2, plugging (2.8) in (2.5) and (2.6) leads to: 

𝑚1 = 𝜑1 − 1𝛼1( 1𝛼1 + 1𝛼2 + 1𝛼3) [𝜑1 + 𝜑2 + 𝜑3 − 𝑘]
𝜑1                                                                     (2.9) 

𝑚2 = 𝜑2 − 1𝛼2( 1𝛼1 + 1𝛼2 + 1𝛼3) [𝜑1 + 𝜑2 + 𝜑3 − 𝑘]
𝜑2                                                                   (2.10) 

The key point of (2.9) and (2.10) is that the fraction of required resources allocated to Task 1 

and Task 2 depend on relative task importance and the resources needed to successfully 

complete the task. For example, consider the case when all tasks are equally important: 𝛼1 = 𝛼2 = 𝛼3 = 1, and 𝜑1 = 90, 𝜑2 = 60, 𝜑3 = 30 and 𝑘 = 100. Here, the idea is that 

more resources are needed for estimating expected cashflows (Task 1) than risk of 

cashflows (Task 2). This fits well with the observation that analysts spend most of their time 

in estimating cashflows (Basu et al 2013). With these parameter values, 𝑚1 = 0.704 and 𝑚2 = 0.556. If relative task importance changes, for example, 𝛼1 = 2 and 𝛼2 = 0.5, then 𝑚1 = 0.873 and 𝑚2 = 0.238.   

 Denoting 𝑐𝑠𝑡+1 = 𝑒𝑠𝑡+1𝜋𝑠𝑡+1 and 𝑐𝑞𝑡+1 = 𝑒𝑞𝑡+1𝜋𝑞𝑡+1 as P/E ratios of 𝑠 and 𝑞 respectively 

(inclusive of dividends) at 𝑡 + 1, realizing that total market equity value of firm 𝑠 at 𝑡 + 1 is 𝑒𝑠𝑡+1 = 𝑛𝑠∗(𝑃𝑡+1+𝑠 𝑑𝑡+1𝑠 ), where 𝑛𝑠∗ is the number of shares of firm 𝑠 outstanding, and 

similarly for 𝑞,  𝑒𝑞𝑡+1 = 𝑛𝑞∗ (𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ), it follows from (2.2) and (2.3) that: 𝐸′(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )=  𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )+ (1 − 𝑚1) (𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) 𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1 − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ))                        (2.11) 
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𝐶𝑜𝑣′(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )=  𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )+ (1 − 𝑚2) (𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1 − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )) 

                                                                                                                                                             (2.12) 

where the aggregate market payoff, 𝑋𝑡+1𝑀 = 𝑛1∗(𝑃𝑡+11 + 𝑑𝑡+11 ) + 𝑛2∗ (𝑃𝑡+12 + 𝑑𝑡+12 ) +∙∙∙∙∙∙∙∙∙∙∙∙+𝑛𝑆∗(𝑃𝑡+1𝑆 + 𝑑𝑡+1𝑆 ), with 𝑚1 and 𝑚2 given in (2.9) and (2.10) respectively.  

 

2.2 Generalized CAPM 

A sufficient condition for classical CAPM to hold is that investors are mean-variance 

optimizers with an implicit assumption that the resource constraint in the brain does not 

bind. In this article, we relax this implicit assumption and consider what happens when the 

resource constraint in brain does bind. So, the decision problem an investor faces is not just 

how to allocate finite wealth across various assets, but also how to allocate finite brain 

resources to various tasks involved in mean-variance optimization. In other words, investors 

are solving not just one but two optimization problems. In the previous section, the 

optimization problem of allocating brain resources to the tasks of estimating future 

cashflows and the risk of cashflows is solved. In this section, we use the solution of that 

optimization problem as an input into the mean-variance optimization problem of wealth 

allocation across various assets.  

 The resource rational brain relies on informative starting points and optimally 

allocates scarce brain resources to various tasks.  With a binding resource constraint in the 

brain, it follows that less than required resources are generally allocated, and the cashflow 

analysis of a firm, say 𝑠, gets entangled with the cashflow analysis of the starting point, 𝑞. 

Assuming that CES computes the simplest benefit function (quadratic) in allocating 

resources, the fraction of required resources allocated to expected cashflow estimation is 

given in (2.9), whereas the fraction of required resources allocated to cashflow risk 

estimation is given in (2.10). The estimated expected cashflows and the risk of cashflows for 𝑠 are then entangled with the corresponding quantities for 𝑞, and are given in (2.11) and 
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(2.12) respectively. What are the implications of such entanglements for CAPM? This is the 

questions that we answer next. 

 We consider the following two cases: 

1) Sector schema is based on a prominent firm. That is, the starting points come from a 

specific firm, 𝑞. 

2) Sector schema is not based on a specific firm, rather, it is a generic schema representing 

the average behavior in the sector. That is, 𝑞 does not represent a specific firm. Rather, it 

represents the average behavior in the sector.  

Similar results are obtained in both cases. However, for completeness both cases are 

considered here. 

 

2.2.1 Sector schema is based on a firm 

We re-state the pricing relation that follows from mean-variance optimization given in (2.1) 

here: 

𝑃𝑡𝑠 = 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ) − 𝛾𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                   (2.13) 

So, in this optimization problem for firm 𝑠, estimates of expected payoff, 𝐸′(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ),  

and the risk of payoff, 𝐶𝑜𝑣′(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) are needed. These estimates depend on the 

solution to the optimal brain resource allocation problem, and are given in (2.11) and (2.12).  

Plugging these estimates from (2.11) and (2.12) into (2.13), we get: 

𝑃𝑡𝑠 =
𝐸(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 )+(1−𝑚1)(𝐸(𝑃𝑡+1𝑞 +𝑑𝑡+1𝑞 )𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1−𝐸(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ))−

𝛾{𝐶𝑜𝑣(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ,𝑋𝑡+1𝑀 )+(1−𝑚2)(𝐶𝑜𝑣(𝑃𝑡+1𝑞 +𝑑𝑡+1𝑞 ,𝑋𝑡+1𝑀 )𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1−𝐶𝑜𝑣(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ,𝑋𝑡+1𝑀 ))} 1+𝑟𝐹   

                                                                                                                                                             (2.14) 

where 𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) and 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) are the corresponding estimates of a 

similar firm 𝑞.  
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The share price of 𝑞 is given by: 

𝑃𝑡𝑞 = 𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) − 𝛾𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                  (2.15) 

Converting (2.15) and (2.14) into expected return expressions: 

𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑞 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 )                                                                            (2.16) 

𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑠 {𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )
+ (1 − 𝑚2) (𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1 − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))}
− (1 − 𝑚1)𝑃𝑡𝑠 (𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) 𝑛𝑞∗ 𝑐𝑠𝑡+1𝑛𝑠∗𝑐𝑞𝑡+1 − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ))                       (2.17) 

For simplicity, in what follows, we set 𝑐𝑠𝑡+1~𝑐𝑞𝑡+1. That is, 𝑞 and 𝑠 are expected to have the 

same P/E ratios at 𝑡 + 1.  

To fix ideas, initially it is useful to assume that there are just two firms in the market, 𝑠 and 𝑞 before generalizing to 𝑁 firms. Multiplying (2.16) by 𝑤𝑞 = 𝑛𝑞∗ 𝑃𝑡𝑞𝑃𝑡𝑀 , which is the weight 

of firm 𝑞 in the market portfolio (𝑃𝑡𝑀is the price of aggregate market portfolio), multiplying 

(2.17) by 𝑤𝑠 = 𝑛𝑠∗𝑃𝑡𝑠𝑃𝑡𝑀 , and adding: 

𝐸[𝑅𝑡+1𝑀 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑀 {𝑉𝑎𝑟(𝑋𝑀)+ (1 − 𝑚2)(𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗)}− (1 − 𝑚1)𝑃𝑡𝑀 (𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 )𝑛𝑞∗ − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )𝑛𝑠∗) 

⇒ 𝛾= (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹)𝑃𝑡𝑀 + (1 − 𝑚1)(𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 )𝑛𝑞∗ − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )𝑛𝑠∗){𝑉𝑎𝑟(𝑋𝑀) + (1 − 𝑚2)(𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗)}   (2.18) 
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Substituting (2.18) into (2.16) and (2.17) and simplifying leads to: 

𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1) (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))] ∙ 𝛽𝑞∙ ( 11 + (1 − 𝑚2)(𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠))                                                                     (2.19) 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1) (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))]
∙ 𝛽𝑠 ( 1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚2)(𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)) − (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 }              (2.20) 

Extending the analysis to a large number of 𝑞 type firms, with each 𝑞 spawning multiple 𝑠 

type firms, then the following generalized CAPM expressions are obtained: 𝐸[𝑅𝑡+1𝑞 ]
= 𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1) ∑ ∑ (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))𝑠𝑞 ] ∙ 𝛽𝑞
∙ ( 11 + (1 − 𝑚2) ∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 )                                                                                    (2.21) 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1) ∑ ∑ (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))𝑠𝑞 ]
∙ 𝛽𝑠 ( 1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚2) ∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 ) − (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 } (2.22) 

In a given cross-section of firms, the following two quantities are constant: 

ℎ = ∑ ∑(𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞                                                                                                        (2.22𝑎) 

𝑔 = ∑ ∑ (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))𝑠𝑞                                                                                 (2.22𝑏) 
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It follows that the generalized CAPM expression can be written as: 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1)𝑔] ∙ 𝛽𝑠 (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚2)ℎ )
− (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 }                                                                                (2.22𝑐) 

 

If the resource constraint in the brain is not binding, that is, both 𝑚1 and 𝑚2 are equal to 1, 

then the above generalized CAPM expression converges to the classical CAPM expression as 

can be easily verified.  

 Given evidence that investor attention is highly asymmetric with a lion’s share 

devoted to prominent large market-cap firms (Fang and Peress 2009), we assume that they 

are the 𝑞 firms. It follows that  𝑤𝑞 ≫ 𝑤𝑠. So, it is possible that for some firms in a given 

sector, 𝑤𝑞𝛽𝑞 < 𝑤𝑠𝛽𝑠; however, when aggregated across all firms in the sector and then 

across all sectors in the market, we expect ∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠) = ℎ𝑠𝑞 > 0. Similarly, even 

though it is possible for some firms in a given sector to be such that 𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) <𝑤𝑠𝐸(𝑅𝑡+1𝑠 ), when aggregated across all firms in the sector and then across all sectors in the 

market, we expect ∑ ∑ (𝑤𝑞𝐸(𝑅𝑡+1𝑞 ) − 𝑤𝑠𝐸(𝑅𝑡+1𝑠 ))𝑠𝑞 = 𝑔 > 0.  

 

2.2.2 Sector schema is based on average behavior 

Suppose market is divided into clusters with each cluster comprising of similar firms.  There 

is a sector schema for each cluster based on the average behavior in the cluster. That is, 𝑞 

does not denote a specific firm, rather the average behavior in the sector. It is easy to verify 

that a generalized CAPM expression very similar to (2.22c) is obtained with the only 

difference being that ℎ = 𝑔 = 0. 
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The generalized CAPM expression with sector average as the starting point is: 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹)] ∙ 𝛽𝑠 (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1))
− (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 }                                                                                (2.22𝑑) 

The results do not depend on whether we take ℎ > 0 and 𝑔 > 0 or set ℎ = 0 and 𝑔 = 0. We consider both cases for completeness.  

(2.22c) (or equivalently, (2.22d)) is the key equation corresponding to CAPM when 

resource constraint in the brain binds. As can be easily verified by plugging-in 𝑚1 = 1 and 𝑚2 = 1 in (2.22c) or (2.22d), when the resource constraint in the brain does not bind, the 

classical CAPM expression is recovered.  

 

2.2.3 Varying SML Slopes 

As can be seen from (2.22c) or (2.22 d), expected return varies with beta; however, this 

variation is different from the variation under the classical CAPM. Taking the partial 

derivative in (2.22c) with respect to beta: 𝜕𝐸[𝑅𝑡+1𝑠 ]𝜕𝛽𝑠 = [𝛿𝑀 + (1 − 𝑚1)𝑔1 + (1 − 𝑚2)ℎ ] ∙ 𝑚2𝑚1                                                                                        (2.22𝑒) 

where 𝛿𝑀 = (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹). 

It is clear from (2.22e) that the slope of SML varies positively with 
𝑚2𝑚1. As this ratio rises, the 

slope of SML increases. It does not matter whether we take large market-cap firms to be 𝑞 

firms (ℎ > 0, 𝑔 > 0) or take the sector averages as the hypothetical 𝑞 firms (ℎ = 0, 𝑔 = 0). 

We get the same result in both cases. 

 One may note that a more accurate measure of SML slope is not the partial 

derivative in (2.22e) but the total derivative as when beta changes, one expects the weight 

of the firm in the aggregate market portfolio to change (𝑤𝑠) as well. After all, market price 

changes with beta.  
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The corresponding total derivative can be written as: 

  𝑑𝐸[𝑅𝑡+1𝑠 ]𝑑𝛽𝑠 = [𝛿𝑀 + (1 − 𝑚1)𝑔1 + (1 − 𝑚2)ℎ ] ∙ 1𝑚1∙ {𝑚2 − (1 − 𝑚2) 𝑤𝑞𝛽𝑞𝑤𝑠2 𝜕𝑤𝑠𝜕𝛽𝑠 + (1 − 𝑚1) 𝑤𝑞𝑤𝑠2 𝜕𝑤𝑠𝜕𝛽𝑠 }                                (2.22𝑓) 

If 
𝜕𝑤𝑠𝜕𝛽𝑠 > 0, even if quite small, then for low enough values of 

𝑚2𝑚1, the slope of the SML is 

downward sloping. Proposition 1 follows. 

 

Proposition 1 (Varying SML slopes) The slope of the Security Market Line (SML) can be 

upwards, flat, or downwards, depending on the relative resource allocation (
𝒎𝟐𝒎𝟏) in the 

brain. When 
𝒎𝟐𝒎𝟏 rises, the slope steepens. It flattens (could be downward sloping) when 

𝒎𝟐𝒎𝟏 

falls.  

 

Next, we present a numerical example that illustrates proposition 1. 

 

2.2.2 A Numerical Example 

To illustrate proposition 1, we take a numerical example with a total of 6 firms in the market 

belonging to the same sector or cluster. Their expected firm-level payoffs and covariance of 

payoffs with the aggregate market payoff are given in Table 1. We assume that the sector 

average is used as a starting point. That is, the 𝑞 firm is a hypothetical firm. We set risk-

aversion coefficient at 𝛾 = 0.1, and the risk-free rate at 3%. By definition, the variance of 

aggregate market payoff, 𝑉𝑎𝑟(𝑋𝑀𝑡+1),  is the sum of all firm-level covariances, and 

aggregate market value at 𝑡, 𝑃𝑀, is the sum of all market values at 𝑡. 
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Total market value of a firm’s equity at 𝑡 follows (from 2.14 slightly modified): 

𝑉𝑠 = 𝑛𝑠∗𝑃𝑡𝑠 = 𝐸(𝑛𝑠∗(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ))+(1−𝑚1)(𝐸(𝑛𝑞∗ ( 𝑃𝑡+1𝑞 +𝑑𝑡+1𝑞 ))−𝐸(𝑛𝑠∗(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 )))−𝛾{𝐶𝑜𝑣(𝑛𝑠∗(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ),𝑋𝑡+1𝑀 )+(1−𝑚2)(𝐶𝑜𝑣(𝑛𝑞∗ (𝑃𝑡+1𝑞 +𝑑𝑡+1𝑞 ),𝑋𝑡+1𝑀 )−𝐶𝑜𝑣(𝑛𝑠∗(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ),𝑋𝑡+1𝑀 ))} 1+𝑟𝐹   

The equity value of each firm under rational expectations, 𝑚1 = 1 and 𝑚2 = 1, as well as 

with insufficient resource allocation to risk, 𝑚1 = 1 and 𝑚2 = 0.1, are given in Table 1. The 

beta of each firm can be inferred from: 

𝛽𝑠 = 𝐶𝑜𝑣(𝑛𝑠∗(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ), 𝑋𝑀𝑡+1)𝑃𝑀𝑉𝑎𝑟(𝑋𝑀)𝑛𝑠∗𝑃𝑡𝑠  

 

Table 1 

 Expected Payoffs  

at 𝑡 + 1 𝐸(𝑛∗(𝑃𝑡+1 + 𝑑𝑡+1)) 

Risk of Payoffs 

at 𝑡 + 1 𝐶𝑜𝑣(𝑛∗(𝑃𝑡+1 + 𝑑𝑡+1), 𝑋𝑀𝑡+1) 

Equity Value at 𝑡 𝑛∗𝑃𝑠 𝑚1 = 1, 𝑚2 = 1 

Equity Value at 𝑡 𝑛∗𝑃𝑠 𝑚1 = 1, 𝑚2 = 0.1 

S1 100 20 95.15 94.05 

S2 105 25 99.51 98.86 

S3 110 30 103.88 103.67 

S4 120 35 113.11 113.33 

S5 125 40 117.48 118.13 

S6 130 45 121.84 122.94 𝑉𝑎𝑟(𝑋𝑀𝑡+1) - 195   𝑃𝑀    650.97 650.97 

Average (𝑞 

firm) 

115 32.5   
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Figure 2. The slope of SML varies with relative resource allocation in the brain. When 

resource allocation in the brain favors risk estimation (
𝑚2𝑚1 rises), SML rotates in the counter 

clockwise direction. When the resource allocation in the brain favors estimation of expected 

cashflows (
𝑚2𝑚1 falls), SML rotates in the clockwise direction.  

 

Expected returns vs beta are plotted in figure 2 for the following combinations of 𝑚1 and 𝑚2: 
𝑚2𝑚1 = 0.1 (𝑚1 = 1, 𝑚2 = 0.1), 

𝑚2𝑚1 = 0.5 (𝑚1 = 1, 𝑚2 = 0.5), 
𝑚2𝑚1 = 0.75 (𝑚1 = 1, 𝑚2 =0.75), 

𝑚2𝑚1 = 1 (𝑚1 = 1, 𝑚2 = 1), and 
𝑚2𝑚1 = 1.05 (𝑚1 = 0.95, 𝑚2 = 1). As can be seen from 

figure 2, when 
𝑚2𝑚1 rises, SML tilts in the counter clockwise direction.  

 

2.2.3 Empirical Evidence on Varying Slopes 

Empirical evidence suggests that at specific times, the slope of SML is steeper, whereas the 

slope is flat or downward sloping at other times. The times when the observed slope is 
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steeper are consistent with resource allocation in the brain favoring risk. That is, 
𝑚2𝑚1 is higher 

at such times: 

1) Cohen et al (2005) find that months of low or negative inflation correspond to the 

positive slope of SML. Such months are times of low or depressed aggregate demand; which 

naturally are periods of heightened risk for businesses. So, one expects both 𝛼2, and 𝜑2 to 

rise. It follows that optimal resource allocation in the brains of investors is expected to shift 

towards risk in such months. Hence, 
𝑚2𝑚1 rises, which steepens SML. 

2) Savor and Wilson (2014) find that SML is steeper on days of major macroeconomic 

announcements (unemployment, inflation, and interest rate decisions by FOMC). As this is 

macro risk news being released on such days, more brain resources are needed to 

accurately estimate the risk of cashflows. That is, 𝜑2 rises. This shifts the optimal resource 

allocation in the brain towards risk. Consequently, 
𝑚2𝑚1 rises and SML steepens. 

3) Antoniou et al (2015) report that periods of pessimistic investor sentiment correspond to 

a steeper SML slope. As pessimistic sentiment means that risk consideration in the CES is 

stronger, 𝛼2 rises. It follows that optimal resource allocation in the brain shifts towards risk, 𝑚2𝑚1 rises and SML steepens. 

4) Jylha (2018) finds that tightening of margin requirements by Federal Reserve on stocks 

corresponds with flattening of SML. Federal Reserve was given the mandate to monitor and 

adjust margin requirements on stocks after the 1929 stock market crash which triggered the 

Great Depression. The idea was to check the optimistic sentiment when markets are 

booming unsustainably to make any subsequent fall less damaging. It follows that margin 

requirement tightening tends to correspond to periods of optimistic sentiment (booming 

stock market) when the optimal resource allocation in the brain shifts away from risk. That 

is, 𝛼2 falls. Hence, 
𝑚2𝑚1 falls in such periods, which flattens SML.  

5) Hendershott et al (2019) find that SML has a positive slope with a negative intercept 

overnight (close-to-open) whereas it has a negative slope with a positive intercept during 

the day (open-to-close). At-open, due to the break of 16-18 hours in trading overnight, there 

could be a large deviation between the previous day’s close and this morning’s open. Hence, 
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risk consideration is more important at open. Furthermore, at open, more brain resources 

are needed to incorporate global risks as reflected by performances in other markets. So, 

one expects both 𝛼2, and 𝜑2 to rise at such times. It follows that, at open, optimal resource 

allocation in the brain shifts towards risk estimation. It follows that 
𝑚2𝑚1 is higher at open, 

which rotates the SML in counter clockwise direction. This temporary increase in 
𝑚2𝑚1 is 

gradually reversed as the day progresses, causing the SML to rotate back in the clockwise 

direction.  

 

2.3 Special Case 1: Cashflow-Schema CAPM 

In this section, we consider the case when 𝑚1~1. This captures the case when substantially 

more resources are allocated to estimating expected cashflows when compared with the 

risk of the cashflows. From (2.9), this corresponds to a situation when the relative 

importance of estimating expected cashflows is significantly greater: 𝛼1 > 𝛼2. Given the 

importance given to earnings-level news (Basu et al 2013), we conjecture that this is the 

case which is typically observed. We call this special case, the cashflow-schema CAPM. In 

terms of SML slope, having resource allocation in the brain favoring earnings estimation 

implies that 
𝑚2𝑚1 is small, which flattens the SML slope. 

The corresponding generalized CAPM expression when 𝑞 is a prominent large-cap firm in 

the sector is obtained by plugging 𝑚1 = 1 in (2.22c): 

𝐸[𝑅𝑡+1𝑠 ] =  𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑞 ∙ (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚2)ℎ )                            (2.23) 

where ℎ = ∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 . 

The corresponding generalized CAPM expressions when 𝑞 is the sector average: 

𝐸[𝑅𝑡+1𝑠 ] =  𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑞 ∙   (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1))                         (2.23𝑎) 
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It is intriguing to note that the above generalized CAPM expressions have the same form as 

the classical CAPM with only one difference: a factor that multiplies 𝛽 appears. For further 

analysis, it is useful to write (2.23) and (2.23a) in the following equivalent form: 

 𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹 = 𝛼𝑠 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑠                                                                          (2.24) 

where 

𝛼𝑠 = (𝑤𝑞𝛽𝑞𝑤𝑠 − 𝛽𝑠(1 + ℎ)) (1 − 𝑚2)𝛿𝑀1 + (1 − 𝑚2)ℎ                                                                         (2.24𝑎) 

ℎ = ∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞  and 𝛿𝑀 = 𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹 

(Add and subtract 𝛽𝑠(𝐸[𝑅𝑀] − 𝑅𝐹) from the right-hand-side in 2.23 and re-arrange to get 

2.24). Note, that if 𝑞 is the sector average then ℎ = 0. 
 Writing the generalized CAPM as in (2.24) is useful as it highlights that the impact of 

a binding resource constraint in the brain is to give rise to an additional term alpha in the 

classical CAPM expression. One can directly see from (2.24a) that this additional term or 

alpha is bigger from small- beta and small-size stocks in a given cross-section of stocks.  

 

2.3.1 High-alpha-of-low-beta, value, and size effects 

(2.23) and (2.23a) show that in the generalized (cashflow-schema) CAPM, there is an 

additional multiplicative factor, which multiplies 𝛽. For a firm 𝑠 whose schema is created by 

modifying the schema of a similar firm 𝑞, this additional multiplicative factor is equal to: 

𝑓 = (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚2)ℎ )                                                                                             (2.25) 

However, if sector averages are used as starting points then: 

𝑓 = (1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1))                                                                                           (2.25𝑎) 
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Proposition 2 shows the emergence of high-alpha-of-low-beta in the cashflow-schema 

CAPM 

 

Proposition 2 (High-alpha-of-low-beta) In a given cross-section of stocks, a stock with low 

beta outperforms a stock with large beta on a risk-adjusted basis, all else equal. 

Proof 

Suppose there are two stocks 𝑠 and 𝑠′ such that 𝛽𝑠 < 𝛽𝑠′ . Risk-adjusted return on 𝑠 is given 

by: 𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 = {1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)} × 1𝑣 × (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) 

where 𝑣 is a constant in a given cross-section: 𝑣 = 1 + (1 − 𝑚2)ℎ 

Risk-adjusted return on 𝑠′ is given by: 

𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′ = {1 + (1 − 𝑚2) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠′ − 1)} × 1𝑣 × (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) 

As 𝛽𝑠 and 𝛽𝑠′  appear in the denominator on R.H.S, it follows that: 

𝐸[𝑅𝑡+1𝑠 ]−𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ]−𝑅𝐹𝛽𝑠′    

Similar proof follows for the case when 𝑞 represents the sector average by setting ℎ = 0 ∎ 

 

The high-alpha-of-low-beta effect can also be directly seen in (2.24a) as with ℎ being a 

constant or 0 in a given cross-section:  𝜕𝛼𝑠𝜕𝛽𝑠 = − (1 − 𝑚2)𝛿𝑀(1 + ℎ)1 + (1 − 𝑚2)ℎ < 0                                                                                              (2.26) 
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From (2.26), one can also directly see that high-alpha-of-low-beta is a stronger effect when 

the market risk-premium, 𝛿𝑀, is larger. 

 

Proposition 3 (Size effect) In a given cross-section of stocks, a stock with a lower weight in 

the market portfolio outperforms a stock with a higher weight on a risk-adjusted basis, all 

else equal 

Proof 

Suppose there are two stocks 𝑠 and 𝑠′ such that 𝑤𝑠 < 𝑤𝑠′ . Following the same steps as in 

the proof of proposition 2, it is easy to see that  
𝐸[𝑅𝑡+1𝑠 ]−𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ]−𝑅𝐹𝛽𝑠′ .  

∎ 

One can also see size-effect directly in (2.24a): 𝜕𝛼𝑠𝜕𝑤𝑠 = − (𝑤𝑞𝛽𝑞𝑤𝑠2 ) (1 − 𝑚2)𝛿𝑀1 + (1 − 𝑚2)ℎ < 0                                                                                       (2.27) 

As with high-alpha-of-low-beta, size is a stronger effect when market risk-premium, 𝛿𝑀 is 

larger, and does not depend on whether ℎ is positive or 0.  

Intriguingly, in cashflow-schema CAPM, an effect similar to value effect is seen as 

well.  Value effect refers to the finding that a stock with low price to fundamentals tends to 

outperform a stock with high price to fundamentals.  Suppose there are two stocks 𝑠 and 𝑠′ 
that have similar fundamentals (expected payoff and the risk of payoff). That is, 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ) ≈ 𝐸(𝑃𝑡+1𝑠′ + 𝑑𝑡+1𝑠′ ), and 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) ≈ 𝐶𝑜𝑣(𝑃𝑡+1𝑠′ + 𝑑𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ). 

Assume that 𝑃𝑠 < 𝑃𝑠′ . That is, stock 𝑠 is cheaper with the same fundamentals; hence, is a 

value stock.  

 If there is a value effect, then it must be so that  𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′  
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In other words, the risk-adjusted return on a low price-to-fundamentals stock should be 

greater if there is a value effect.  

To see if the above is true, start from: 

𝑃𝑠 = 𝐸(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 )−𝛾{𝐶𝑜𝑣(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ,𝑋𝑡+1𝑀 )+(1−𝑚2)(𝐶𝑜𝑣(𝑋𝑡+1𝑞 ,𝑋𝑡+1𝑀 )𝑛𝑞∗𝑛𝑠∗−𝐶𝑜𝑣(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ,𝑋𝑡+1𝑀 ))} 1+𝑟𝐹 < 𝑃𝑠′ =
𝐸(𝑃𝑡+1𝑠′ +𝑑𝑡+1𝑠′ )−𝛾{𝐶𝑜𝑣(𝑃𝑡+1𝑠′ +𝑑𝑡+1𝑠′ ,𝑋𝑡+1𝑀 )+(1−𝑚2)(𝐶𝑜𝑣(𝑃𝑡+1𝑞′ +𝑑𝑡+1𝑞′ ,𝑋𝑡+1𝑀 )𝑛𝑞′∗𝑛𝑠′∗ −𝐶𝑜𝑣(𝑃𝑡+1𝑠 +𝑑𝑡+1𝑠 ,𝑋𝑡+1𝑀 ))} 1+𝑟𝐹 . Assuming 

the same fundamentals across the two stocks, 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ) ≈ 𝐸(𝑃𝑡+1𝑠′ + 𝑑𝑡+1𝑠′ ), and  𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) ≈ 𝐶𝑜𝑣(𝑃𝑡+1𝑠′ + 𝑑𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ), it follows that: 

𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ > 𝐶𝑜𝑣(𝑃𝑡+1𝑞′ + 𝑑𝑡+1𝑞′ , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗  

⇒ 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ > 𝐶𝑜𝑣(𝑃𝑡+1𝑞′ + 𝑑𝑡+1𝑞′ , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗  

⇒ 𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 > 𝑤𝑞′𝛽𝑞′𝑤𝑠′𝛽𝑠′                                                                                                                            (2.28) 

It follows immediately from (2.23) and (2.23a) that: 

𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′  

Proposition 4 follows. 

 

Proposition 4 (Value effect) In a given cross-section of stocks, a stock with low price to 

fundamentals outperforms a stock with high price to fundamentals on a risk-adjusted 

basis. 

 

One can also see an effect similar to value in (2.24a): 𝜕𝛼𝑠𝜕𝑤𝑞𝛽𝑞 = (1 − 𝑚2)𝛿𝑀{1 + (1 − 𝑚2)ℎ}𝑤𝑠 > 0                                                                                              (2.29) 
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So, alpha is larger for a stock whose schema is spawned by a firm that has a larger market-

weighted beta or alpha is larger for a stock that belongs to a sector with high average risk. 

This phenomenon is similar to value effect because two stocks could be otherwise identical 

except for the fact that one’s schema is spawned by a firm with a larger market-weighted 

beta or it belongs to a sector with high average risk. Such a stock is likely to have a lower 

price. As with size and high-alpha-of-low-beta effects, this effect is also stronger when the 

market risk-premium, 𝛿𝑀, is larger. 

 A common theme across high-alpha-of-low-beta, size and value effects as they arise 

here is that all three effects are weaker in a booming stock market (presumably when 

market-wide risk-premium is low). This can be directly seen from (2.26), (2.27), and (2.29). 

Intriguingly, Blitz (2020) find that high-alpha-of-low-beta, size and value are substantially 

weaker in the stock market boom decades of the 1990-1999 and 2010-2019. To our 

knowledge, there is no other approach that makes this prediction, pointing to a promising 

area for future research seeking empirical validation of the model developed here.  

  

2.4 Special Case 2: Risk-Schema CAPM 

Here, we set 𝑚2~1. We refer to this as risk-schema CAPM. This corresponds to a situation 

where substantially more resources are devoted to estimating risk when compared with the 

expected payoff estimation. Such a situation may arise in specific times when risk 

considerations are particularly important, for example, when macroeconomic 

announcement regarding unemployment, inflation, and monetary policy are made, or at-

open, when there is a risk of opening prices being substantially different from the previous 

days close, and one needs to consider what has happened in other markets when this 

particular market was closed. The complexity of the risk task is higher at such times as well 

as the importance of the risk task.  That is, in (2.9) and (2.10), 𝜑2 > 𝜑1 and 𝛼2 > 𝛼1. With 

these values, it follows that 𝑚2 > 𝑚1. It follows that SML has steeper slope as well at such 

times.  
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The following generalized CAPM expression is obtained by setting 𝑚2 = 1 in (2.22c): 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) + (1 − 𝑚1)𝑔] ∙ 𝛽𝑞 − (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 }    (2.30) 

If 𝑞 represents the sector average, then the corresponding CAPM expression is obtained by 

setting 𝑔 = 0 above: 

𝐸[𝑅𝑡+1𝑠 ] = 1𝑚1 {𝑅𝐹 + [(𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹)] ∙ 𝛽𝑞 − (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠 }                             (2.31) 

 It is immediately obvious that, in risk-schema CAPM, the relationship between beta 

and excess stock return is steeper than what the classical CAPM predicts as beta is 

multiplied by a factor larger than excess market return. Larger the beta, bigger the 

improvement over classical CAPM prediction. Furthermore, the implied risk-free rate is 

smaller than what the classical CAPM predicts and is likely negative: 

𝑅𝐹′ = 𝑅𝐹 − (1 − 𝑚1)𝐸(𝑅𝑡+1𝑞 ) 𝑤𝑞𝑤𝑠                                                                                                (2.32) 

It is straightforward to see that large size (market capitalization) stocks do better in this 

version as the implied risk-free rate is larger for them 

Proposition 5 presents the key differences between the two versions of CAPM. 

 

Proposition 5 (Differences between the two versions) CAPM when substantially more 

brain resources are allocated to expected cashflows estimation (Cashflow-Schema CAPM) 

differs from the CAPM when substantially more brain resources are allocated to risk 

estimation (Risk-Schema CAPM) in the following ways: 

1) The former has a flatter relationship between beta and expected returns, whereas 

the latter has a steeper relationship between beta and expected returns. 

2) The implied risk-free rate is smaller in the latter and is likely negative. 

3) Small size, and low beta stocks do better in the former whereas large size, and high 

beta stocks do better in the latter. 
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2.5 The Momentum Effect as Underreaction/Overreaction to News  

Momentum effect arises in the generalized CAPM as an underreaction/overreaction to news 

phenomenon. Given that earnings estimation and risk estimation are the two tasks in 

constructing value, and the accuracy of these estimates depend on relative resource 

allocation to these tasks, any change in relative resource allocation matters.  Assuming an 

interior solution to the optimal resource allocation problem with a binding resource 

constraint, and a quadratic benefit function as discussed in section 2.1, it follows from (2.9) 

and (2.10): 

𝑚1 = 𝜑1 − 1𝛼1( 1𝛼1 + 1𝛼2 + 1𝛼3) [𝜑1 + 𝜑2 + 𝜑3 − 𝑘]
𝜑1                                                               (2.33𝑎)   

𝑚2 = 𝜑2 − 1𝛼2( 1𝛼1 + 1𝛼2 + 1𝛼3) [𝜑1 + 𝜑2 + 𝜑3 − 𝑘]
𝜑2                                                               (2.33𝑏)  

 

For momentum winners, one expects risk-consideration to become temporarily less 

important. That is, we expect 
𝛼1𝛼2 to rise for momentum winners. For momentum losers, one 

expects risk consideration to become temporarily more important. That is, 
𝛼1𝛼2 falls for such 

stocks. From (2.33a) and (2.33b): 𝜕𝑚1𝜕 (𝛼1𝛼2) > 0 𝑎𝑛𝑑 𝜕𝑚2𝜕 (𝛼1𝛼2) < 0 

Hence, 𝑚1 rises and 𝑚2 falls for momentum winners. These changes create underreaction 

to good news and overreaction to bad news among momentum winners. For momentum 

losers,  𝑚1 falls and 𝑚2 rises, creating underreaction to bad news and overreaction to good 

news among momentum losers. When these temporarily changes are gradually reversed, 

momentum winners see a further price appreciation, whereas momentum losers see a 

further price decline.  
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News can take either of the following forms: a change in expected earnings or a change in 

risk. We consider both. 𝜕𝑃𝑡𝑠𝜕𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ) = 𝑚11 + 𝑟 

Adding the change in 
𝛼1𝛼2 to the above: 

𝑑𝑃𝑡𝑠𝑑𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )= 𝑚11 + 𝑟 − 𝜕𝑚1𝜕 (𝛼1𝛼2) {𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )}
+ 𝜕𝑚2𝜕 (𝛼1𝛼2) {𝑛𝑞∗𝑛𝑠∗ 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )}                 (2.34) 

Similarly, a change in risk with a change in 
𝛼1𝛼2 also considered is: 

𝑑𝑃𝑡𝑠𝑑𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )= − 𝛾𝑚21 + 𝑟 − 𝜕𝑚1𝜕 (𝛼1𝛼2) {𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 )}
+ 𝜕𝑚2𝜕 (𝛼1𝛼2) {𝑛𝑞∗𝑛𝑠∗ 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 )}                 (2.35) 

 

2.5.1 Differential Impact of Good vs Bad News 

From (2.34) and (2.35), the differential impact of good news vs bad news follows both for 

momentum winners as well as for momentum losers. Consider momentum winners first. For 

such stocks, 𝑚1rises and 𝑚2 falls because 
𝛼1𝛼2 temporarily rises. If good news arrives in the 

form of an increase in earnings, it follows from (2.34) that the price does not rise as much as 

it otherwise would have in the absence of changes in 𝑚1 and 𝑚2.  Note, that we have 

assumed that 
𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 ) − 𝐸(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 ) > 0 and 
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𝑛𝑞∗𝑛𝑠∗ 𝐶𝑜𝑣(𝑃𝑡+1𝑞 + 𝑑𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) − 𝐶𝑜𝑣(𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) > 0, which follow if 𝑞 firm is a prominent 

large market-cap firm. Similar effects are seen if the good news arrives in the form of a 

reduction in risk.  It is straightforward to see that there is overreaction to bad news among 

momentum winners. When the temporary changes in 𝑚1 and 𝑚2 are gradually reversed, 

momentum winners see a price appreciation.  

For momentum losers, 𝑚2 rises and 𝑚1 falls as 
𝛼1𝛼2 temporarily falls. It is clear from (2.34) 

and (2.35) that when bad news arrives for such stocks (either earnings reduction or risk 

increase), the fall in price is moderated by these changes. However, when good news 

arrives, the same effects cause an overreaction. When the temporary changes in 𝑚1 and 𝑚2 

are gradually reversed, momentum losers see a price reduction. 

 

3. Conclusions 

A sufficient condition for CAPM to hold is that investors are mean-variance maximizers with 

an implicit assumption that the resource constraint in the brain does not bind. In this article, 

we have relaxed this implicit assumption and have considered what happens when the 

resource constraint in the brain does bind. With a binding resource constraint, human brain 

needs to solve two rather than just one optimization problem, which are: 1) Optimal 

resource allocation in the brain. 2) Mean-variance optimization. We show that with a 

binding resource constraint, a generalized CAPM expression is obtained, which contains the 

classical CAPM as a special case. This special case is only obtained if the resource constraint 

in the brain does not bind. Varying SML slopes follow depending on the relative resource 

allocation in the brain. When the resource allocation in the brain favors risk estimation, SML 

steepens, and when the resource allocation in the brain favors earnings estimation, SML 

flattens and could even be downward sloping. Features akin to size, value, and high-alpha-

of-low-beta, are observed in the generalized CAPM when SML is flat or downward sloping. 

Momentum effect also arises as an underreaction/overreaction to news phenomenon due 

to temporary shifts in relative resource allocation in the brain. Overall, the results in this 

article suggest that the classical CAPM is not misspecified. Rather what appears as 
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misspecification may be the result of ignoring the optimal resource allocation problem in 

the brain.   

An intriguing prediction of the approach developed in this article is that high-alpha-

of-low-beta, size, and value effects are weaker in booming stock markets (when market-

wide risk-premium is low). A closer examination of this prediction is a natural subject for 

future research.   
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