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Abstract

A correct parametric approximation of the productivity distribution is essential to calculate

Gains From Trade (GFT) in heterogeneous firms models. This paper argues that heterogeneity

in productivity is best captured by Finite Mixture Models (FMMs). FMMs build on the ex-

istence of unobserved subpopulations in the data. As such, they are generally consistent with

models of firm dynamics differing between groups of firms and allow for a very flexible distribu-

tion fit. We find FMMs to increase this fit by more than 70% compared to currently considered

distributions. A GFT exercise with Portuguese data reveals that only FMMs approximate the

‘true gains’ reasonably well.
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1 Introduction

It is well-known that the choice of a parametric productivity distribution significantly affects Gains

From Trade (GFT) estimates (Head et al., 2014; Nigai, 2017; Bee and Schiavo, 2018) and alters

the channels through which trade affects welfare (Arkolakis et al., 2012; Bas et al., 2017; Melitz

and Redding, 2015; Fernandes et al., 2018). To date, however, there is no consensus on what

this parametric approximation should be. Some authors argue a single distributional form such as

Pareto (Axtell, 2001), Lognormal (Head et al., 2014) or Weibull (Bee and Schiavo, 2018) suffices

to define the productivity distribution. Others build on the idea that a single distribution can not

adequately capture the heterogeneity in productivity. This results in combinations of distributions

such as the Double-Pareto (Arkolakis, 2016), Double-Pareto Lognormal (Sager and Timoshenko,

2019) or Lognormal-Pareto (Nigai, 2017). Nevertheless, Dewitte (2020) demonstrates that none of

these currently considered distributions are able to provide a sufficiently good fit to the data.

This paper argues that heterogeneity in the productivity distribution can be captured most

adequately by Finite Mixture Models (FMMs). A FMM is essentially a weighted sum of an a priori

unknown number of individual densities. As such, it is a semi-parametric approximation that allows

for discrete subpopulations to define the overall distribution. The flexible, semi-parametric nature

of FMMs renders them favorable both from a theoretical and empirical point of view.

From a theoretical point of view, the generative process of a FMM corresponds to a simple

combination of the generative processes of the underlying individual densities. A FMM can there-

fore easily generalize, and is generally consistent with, existing models of firm dynamics. First,

FMMs allows to combine a specified generative process of firm dynamics across groups of firms to

capture additional, unspecified heterogeneity. Luttmer (2007), for instance, generalizes his single-

sector model with a finite mixture specification to a multi-sector model. This in order to capture

additional heterogeneity across industries and obtain a satisfactory fit to the data. Second, a finite

mixture specification is generally consistent with the mechanisms considered to differentiate firm dy-

namics between groups of firms. The differences in growth rates between financially constrained and

unconstrained firms by Cabral and Mata (2003), for instance, can be respecified into a finite mix-

ture specification. FMMs provide an empirical tool that can account for dynamics to differ between

groups of firms without having, but not excluding the possibility, to specify the mechanisms that

drive these differences a priori. These mechanisms can be left ‘unobserved’.

We illustrate the excellent empirical performance of FMMs using the domestic sales1 of the

population of active Portuguese firms in 2006. Our contributions to the literature are threefold.

First, we have access to a representative dataset on the sales distribution. This allows us to evaluate

the performance of parametric distributions on the complete productivity distribution as well as to

focus on both the left and right tail. Moreover, it insulates us from erroneous conclusions due to

truncated or unrepresentative data in the left tail of the distribution (Perline, 2005). Second, we

introduce a multitude of new, economically relevant distributions to the productivity distribution

1We rely on the distributional relation between productivity and positive domestic sales, under specific model
assumptions (Nigai, 2017; Dewitte, 2020), to evaluate parametric approximations of the productivity distribution.
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literature. Fitting and comparing up to 52 different distributions helps to reveal features of the data

that are of importance when deciding on a specific parametric distribution. Third, our analysis

relies on a clear statistical framework to distinguish between distributional fits. Based on the

Bayesian Information Criterion (BIC), the currently favored Double-Pareto Lognormal (Sager and

Timoshenko, 2019) and Lognormal-Pareto (Nigai, 2017) come in ranked sixteenth and thirty-first out

of 52 distributions respectively, while FMMs top the charts. Moreover, a Kolmogorov-Smirnov test

reveals that only FMMs provide a distribution fit that is not rejected by the data. FMMs reduce

the maximum deviation from the empirical Cumulative Distribution Function (the Kolmogorov-

Smirnov test statistic) by more than 70% compared to the Double-Pareto Lognormal distribution

and by more than 90% compared to the Lognormal-Pareto distribution. This performance is not

surprising, as we show that the Double-Pareto Lognormal and Lognormal-Pareto distribution can

be interpreted as constraints of the more general mixture specification.

A Gains From Trade application demonstrates the importance of correctly approximating the

productivity distribution in heterogeneous firms models à la Melitz (2003), and underlines the

straightforward implementation of FMMs into such models. We contribute to the literature provid-

ing quantitative expressions necessary to calibrate a heterogeneous firms model for all distributions

considered. Our calibration exercise reveals that when reducing variable trade costs by two thirds,

FMMs are able to track the ‘true GFT’ (obtained from the empirical distribution) closely, while a

single Lognormal distribution underestimates these GFT by ±11% and a Lognormal-Pareto distri-

bution overestimates them by ±13%.

The paper is organized as follows. In the following section we start by linking the large literat-

ure on the parametric approximation of size distributions, spanning the fields of efficiency analysis,

physics, regional and actuarial science, to the productivity distribution literature. From this over-

view, it becomes apparent that the literature on productivity distributions lacks a clear statistical

framework that differentiates between a sufficiently large number of alternative distributions over a

representative data range. We therefore establish a methodology that uniformly fits a large number

of distributions both to complete and truncated datasets, and present evaluation methods to differ-

entiate between these distribution in section 3. Our database on firm sales is discussed in section 4.

We provide our empirical results in section 5 and discuss the implications of these results for GFT

calculations in section 6. Section 7 concludes.

2 Literature Review

This section provides an overview of the literature related to firm size/productivity distributions. We

discuss why the Pareto distribution can only match the tail of size distributions while single hump-

shaped distributions such as the Lognormal or the Weibull distribution can not accurately match

both the tail and the bulk of the distribution. Size distributions are therefore best approximated by

a combination of distributions, of which we consider three types: mixture, piecewise composite and

multiplicative distributions. We argue that finite mixtures are preferable both from an empirical
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and theoretical point of view because of their flexible, semi-parametric nature.

2.1 Single distributions

The Pareto distribution has been dominating heterogeneous firms models (Melitz, 2003). Even

though the Melitz (2003)-model is not restricted to this distributional choice, its empirical perform-

ance (see for instance Axtell (2001); Gabaix (2009); Levy (2009); di Giovanni et al. (2011)) and

convenience led to a widespread reliance on the Pareto distribution for social welfare and economic

policy analysis.2 The fit of a Pareto distribution is usually evaluated using its Cumulative Distri-

bution Function (CDF), which follows a straight line on a log-log scale with the shape parameter

(k) as slope:

GP (x;xmin, k) = 1−
(xmin

x

)k
, x ≥ xmin. (1)

Figure 1 compares a fitted Pareto survival function (CDFc = 1−CDF) with the empirical survival

function of Portuguese firm-level sales in 2006 on a log-log scale for the complete dataset (upper

panel). It is immediately clear that the Pareto distribution is not a good fit to the complete

distribution due to the existence of a hump in the middle.3

The popularity of the Pareto distribution, however, rests on its ability to provide a close fit

to lower-truncated4 data with predominantly large observations.5 Just as every curved line looks

straight when one zooms in close enough, so too does the distribution of firm sales appear to

be straight when truncated sufficiently. Both the left (lower left panel) and right tail (lower right

panel) exhibit linearity of the CDF and survival functions respectively on a log-log scale, in line with

Pareto behavior in the tails of the distribution.6 The apparent straight line behavior of the tails can

therefore just as well be approximated by a surprisingly large class of distributions including, but not

restricted to, (finite mixtures of) the Exponential, Lognormal, Gamma and Weibull distributions.7

Proof of which is the performance of the Lognormal distribution in the lower panels of Figure 1.8

2See Arkolakis et al. (2012) for an overview of work relying on the Melitz-Pareto combination.
3See also the Probability Density Function (PDF) in Appendix Figure 2.
4An upper-truncated version of the Pareto distribution has also been used to explain the existence of zero trade

flows across country pairs (Helpman et al., 2008; Feenstra, 2018) and to demonstrate the relevance of heterogeneous
firms models (Melitz and Redding, 2014). A discussion on the economic relevance of, and an extension of the analysis
to, upper-truncated distributions falls outside the scope of this paper. The methodology set out in this paper allows
to truncate any kind of distribution both from above and/or below (see section 3).

5Note that the influential paper of Axtell (2001) does not rely on truncated data but unintentionally favors the
Pareto distribution due to data binning (Virkar and Clauset, 2014) and methodological choices (Clauset et al., 2009;
Bottazzi et al., 2015) characteristic of that time.

6The Inverse Pareto distribution is specified as

GIP (x;xmax, k) = 1−
(

xmax

x

)−k

, x ≤ xmax.

7Perline (2005) defines this class of distributions within the Gumbel domain of attraction.
8Even though Pareto and Lognormal distributions exhibit qualitatively different behavior in their upper tails,

their apparent quantitative similar behavior in the upper tail for Lognormals with large variance is well-documented
(Malevergne et al., 2011).
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Figure 1: Empirical survival function of Portuguese domestic sales in 2006 (upper panel) on a log-log
scale with fitted (Inverse) Pareto and (4-component mixture of) the Lognormal distributions. The
lower left and right panels focus on distributions fitted solely to the left and right tail respectively.
Notes: (Truncated) Distributions are fitted using maximum likelihood methods (cf. infra) to the complete and trun-

cated datasets independently. Tail truncation points are determined by the best-fitting (Inverse) Pareto distributions

according to the Kolmogorov-Smirnov statistic.
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These alternative hump-shaped distributions are claimed to provide a better fit to complete size

distributions (see Bee and Schiavo (2018) for the Weibull and Eeckhout (2004, 2009); Head et al.

(2014); Fernandes et al. (2018) for the Lognormal distribution). In the firm size literature, this

claim is usually supported by comparing their performance with a limited number of alternative

distributions, mostly Pareto, using the low-powered R-squared.9 Even though homogeneous hump-

shaped distributions such as the Lognormal can adequately fit the tail or the bulk of the empirical

distribution, they cannot do both simultaneously. This is easily observable from the upper panel

of Figure 1 where the single Lognormal distribution, when fitted to the complete size distribution,

does not fit the right tail of the complete productivity distribution while matching the bulk rather

satisfactorily.

2.2 Combined distributions

As single distributions are not capable of accurately matching both the bulk and the tail(s) of the

productivity distribution, recent research focuses on combinations of distributions. We consider

three types of combinations: mixture, piecewise composite and product distributions. To our know-

ledge, mixture distributions have not been fitted to the productivity distribution. Nevertheless,

current applications of both the piecewise composite and product distributions can be interpreted

as constraints of the more general mixture specification.

2.2.1 Mixture distributions

Finite Mixture Models (FMMs) are essentially a weighted sum of I individual densities mi(·):

g(x|Ψ) =
I∑

i=1

πimi(x|θi), πi ≥ 0,
I∑

i=1

πi = 1 (2)

where I represents the number of components or discrete subpopulations, πi is the probability

of belonging to component i, θi the component-specific parameter vector of density mi(·) and

Ψ = (π1, . . . , πI−1,θ1, . . . ,θI) is the vector of all model parameters (McLachlan and Peel, 2000).

They are also referred to as Latent Class Models (LCM) provided that the number of components,

and thus also the mixing parameter itself, does not have to be specified a priori but is determined

by the data. As such, a finite mixture model provides a semi-parametric approach ideal to fully

capture the heterogeneity of size distributions.10

The aptitude of Finite Mixture models has already been explored in the context of efficiency

analysis (see for instance Beard et al. (1997); Orea and Kumbhakar (2004); El-Gamal and Inanoglu

(2005); Greene (2005)), city sizes (Kwong and Nadarajah, 2019) and actuarial losses (Miljkovic and

Grün, 2016). It has, to our knowledge, not been applied to productivity distributions before.

9See Clauset et al. (2009) for an explanation as to why the R-squared has low power in a distributional context.
10A semi-parametric approach is to be favored over a nonparametric approach in the case of heavy-tailed distribu-

tions such as firm size. This is because the heavy tails renders nonparametric procedures less efficient (Clauset et al.,
2009; Dewitte, 2020).
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The generative process of a FMM corresponds to a simple combination of the generative processes

of the underlying individual densities and can therefore easily generalize, and is generally consistent

with, existing models of firm dynamics.11 First, FMMs allows to combine a specified generative

process of firm dynamics across groups of firms to capture additional, unspecified heterogeneity.

Luttmer (2007), for instance, generalizes his single-sector model with a finite mixture specification

to a multi-sector model. This allows to capture additional heterogeneity across industries and obtain

a satisfactory fit to the data. Similarly, Rossi-Hansberg and Wright (2007) argue the need to account

for cross-sectoral differences in their initial single-sector model specification to achieve an accurate

description of the cross-sectional size distribution of US firms.

Second, a finite mixture specification is generally consistent with the mechanisms that differen-

tiate firm dynamics between groups of firms. Firm dynamics are argued to differ between groups of

firms depending on whether or not they are financially constrained (Cooley and Quadrini, 2001; Cab-

ral and Mata, 2003; Desai et al., 2003; Albuquerque and Hopenhayn, 2004; Clementi and Hopenhayn,

2006; Angelini and Generale, 2008), innovate (Costantini and Melitz, 2008; Atkeson and Burstein,

2010), add or drop products (Klette and Kortum, 2004; Lentz and Mortensen, 2008), add or drop

management layers (Caliendo and Rossi-Hansberg, 2012; Caliendo et al., 2020), incur specific mar-

ket penetration costs (Arkolakis, 2016), et cetera. As (Rossi-Hansberg and Wright, 2007, p. 1641)

paraphrase Jovanovic (1982): “many of the mechanisms in the literature undoubtedly contributed

toward an explanation of establishment dynamics”. To date, however, it remains unclear which

mechanism, or mechanisms, dominate. There are “many sources of heterogeneity that support the

idea of discrete subpopulations likely to differ in important characteristics” (Perline, 2005, p.80).

Finite Mixture Models provide an empirical tool that can account for dynamics to differ between

groups of firms as determined by the data. As such, they can account for most, or even a com-

bination, of the proposed mechanisms without having to specify these mechanisms a priori. The

mechanisms can be left ‘unobserved’.

2.2.2 Piecewise composite distributions

Piecewise composite distributions have a probability density specified as:

g(x|θ) =







α1m
∗
1(x|θ1) if c0 < x ≤ c1

α2m
∗
2(x|θ2) if c1 < x ≤ c2
...

...

αIm
∗
I(x|θI) if cI−1 < x ≤ cI

(3)

where ∀i ∈ I : m∗
i (x|θi) =

mi(x|θi)
∫ ci
ci−1

mi(x|θi)dx
is the probability density function (PDF) of mi(x|θi)

11Note that while this paper conceptualizes the generality of FMMs from a generative perspective, it is not able
to provide evidence in favor of any specific generative process. See the methodology section (section 4), Appendix B
and the conclusion (Section 7) for a more elaborate evaluation of current limitations regarding this paper’s discussion
of (the generative processes of) FMMs.
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truncated at the cutoffs ci−1, ci. For this distribution to be well-behaved, additional differentiability

and continuity conditions are imposed that determine the value of both component cutoffs (ci) and

probabilities (αi) (Bakar et al., 2015), so that the vector of all model parameters reduces to the

combination of the component-specific parameter vectors: θ = (θ1, . . . ,θI).

While these composite distributions can be formed from many individual parametric distribu-

tions, applications mostly focus on Lognormal distributions with Pareto tails. The ‘Inverse Pareto-

Lognormal-Pareto’ distribution has been applied in the city size literature (Ioannides and Skouras,

2013; Luckstead and Devadoss, 2017), while the ‘Lognormal-Pareto’ version was applied by Nigai

(2017) to the Melitz (2003) model for GFT calculations. Dewitte (2020) generalizes the implement-

ation of the piecewise composite distributions to allow for any underlying density in three-, and

two- piecewise composite distributions, mainly focusing on Pareto-tailed piecewise composites.

From the distribution specification in equation 3, it can be observed that piecewise composite

distributions can be interpreted as mixtures of truncated densities with component probabilities

restricted to ensure continuity and differentiability (Scollnik, 2007).12 This contrasts with the

general mixture specification (eq. 2), where component probabilities can be interpreted as the

probability that an individual observation belongs to a certain group of observations. Moreover,

the generative process of piecewise distributions is rather ambiguous. It is for instance not clear yet

which firm dynamics could explain the existence of hard cutoffs that separate the Lognormal from

the Pareto distribution.

2.2.3 Product distributions

Alternatively, distributions can be combined into a product distribution: a probability distribution

constructed as the distribution of the product of random variables having two other known dis-

tributions. The product distribution mainly used in the literature, the Double-Pareto Lognormal

distribution, results from the product of a Lognormal with a (Double-)Pareto distributed random

variable (Reed and Jorgensen, 2004). This distribution is found to approximate city size distri-

butions well (Reed, 2002; Giesen et al., 2010), while Sager and Timoshenko (2019) applied the

distribution to Brazilian export data.

A generative process for this Double-Pareto Lognormal distribution exists (Reed and Hughes,

2002; Reed, 2002; Reed and Jorgensen, 2004) and is applicable to heterogeneous firms models

(Arkolakis, 2016). Interestingly, the Double-Pareto Lognormal distribution can be seen as a struc-

tured infinite mixture of Lognormal distributions (Reed, 2002, p.13).13 The Double-Pareto Lognor-

mal distribution can therefore be absorbed by the more flexible mixture distributions as specified

12This becomes even more clear when we rewrite the specification of the piecewise composite distribution (eq. 3)
as the weighted sum of truncated densities: g(x|θ) = α1I(c0 < x ≤ c1)m

∗
1(x|θ1) + α2I(c1 < x ≤ c2)m

∗
2(x|θ2) + . . .+

αII(cI−1 < x ≤ cI)m
∗
I(x|θI).

13In the context of firm size, this could mean that each age (= time since entry in the market) group of firms is
distributed Lognormally at a certain point in time. The reason the overall firm size distribution is not Lognormal is
that these groups of firms have not all been evolving for the same length of time. The overall distribution of size will
be a mixture of Lognormal distributions (across age groups) with time since entry as mixing parameter. When this
mixing parameter is exponentially distributed, firm size will be Double-Pareto Lognormally distributed.
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in equation 2. Whereas the Double-Pareto Lognormal may suffer from misspecification and/or

oversimplification by imposing a structure on the mixture distribution, a FMM allows the data to

determine the mixture structure needed to capture the heterogeneity that is present in the data.

3 Methodology

The literature review reveals the myriad of empirical evidence in favor of qualitatively very different

distributions fits to productivity. This points at the lack of a clear statistical framework that

differentiates between a sufficiently large number of distributions over a representative data range.

In this section, we establish a methodology that uniformly fits the large, but relevant, range of single

and combined distributions to both complete and truncated data. We then present statistical tests

to differentiate between the fitted distributions.

3.1 Distribution fitting

We rely on Maximum Likelihood (ML)14 over all firms b ∈ B to fit all considered distributions

to the data. We consider the (Inverse) Pareto, hump-shaped distributions (Lognormal, Weibull,

Fréchet, Gamma, Exponential and Burr) and combinations of these distributions in the form of

mixtures, piecewise composite or product distributions. We limit piecewise composite and product

distributions to available Pareto-tailed extensions of the considered hump-shaped distributions.15

In the case of FMMs, ML is wrapped in an Expectation-Maximization (EM) algorithm to estimate

the component probabilities. The estimation methods allow to fit the distributions to both complete

and truncated data. This will not only allow us to single out and focus on tail performance, but

also to generalize the proposed distributional fits to unrepresentative and/or truncated data.

3.1.1 (Inverse) Pareto

Complete data The ML estimator for the shape parameter k over all firms b ∈ B can easily be

obtained as

14The choice for Maximum Likelihood contrasts with the productivity distribution literature, where popular fitting
techniques rely on the minimization of squared errors between a log-linearization of the theoretical and empirical
PDFs/CDFs (Axtell, 2001; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015; Bas et al.,
2017; Nigai, 2017; Bee and Schiavo, 2018). Such methods, however, might not be apt to fit distribution functions.
For instance, reported parameters in the literature are, to our knowledge, not obtained from a regression procedure
restricted to estimate a properly normalized distribution function. Parameters obtained from an estimation procedure
must result in a probability density function that integrates to 1 over the range from the lower bound up to the upper
bound (due to its normalization properties) (Clauset et al., 2009). While it is possible to incorporate such constraints
in the regression analysis, it has never been reported to our knowledge. Moreover, it is unclear to which extent
the standard errors obtained from these methods are valid (Clauset et al., 2009; Bottazzi et al., 2015). Maximum
likelihood methods do not suffer from such problems.

15See Appendix Tables 1, 2 and 3 for an overview of the specifications for all distributions considered. Considered
distributions are chosen based on their occurrence in the economic literature.
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kIP =

[

1

B

B∑

b=1

ln
xmax

xb

]−1

, kP =

[

1

B

B∑

b=1

ln
xb

xmin

]−1

. (4)

The ML estimator of the scale parameters equals the maximum and minimum observation:

x̂min = min(x), x̂max = max(x), as the likelihood function is monotonically increasing (decreasing)

in xmin (xmax).

Truncated data The (Inverse) Pareto distribution is a special distribution, being truncated from

(above) below by definition.16 This means that the (upper) lower truncation point lies within the

parameter space of the distribution, and distribution fits can be optimized accordingly. The ML

estimator as specified above merely assumes the exogenously applied truncation points as scale

parameter.

Obtaining an accurate estimate for the (upper) lower bound is, however, vital to the accuracy

of the estimated shape parameter k̂. Choosing a (maximum) minimum too (high) low results in a

biased shape parameter, as one will be fitting a power-law to non-power-law data. Choosing a value

too (low) high, on the other hand, increases the statistical error and bias from finite size effects on

the shape parameter, as one discards legitimate data points. Moreover, it is widely documented

that the minimum and shape parameter of the Pareto distribution exhibit a positive correlation

(Eeckhout, 2004; di Giovanni and Levchenko, 2013; Head et al., 2014; Freund and Pierola, 2015;

Bee and Schiavo, 2018).

Many practices therefore co-exist to determine the (upper) lower truncation point, without

consensus on the best practice to determine this scale parameter of the (Inverse) Pareto-distribution.

In the case of the Pareto distribution, some rely on visual techniques, looking for a ‘kink’ in the

distribution above which the relationship between log rank and log size is approximately linear

(di Giovanni and Levchenko, 2013; Bas et al., 2017). Some use export sales, and assume as such

a truncation parameter equal to the minimum of sales, e.g. Freund and Pierola (2015). Others

determine their minimum to ensure a Pareto parameter large enough to deliver finite moments when

calibrating their theoretical models (Head et al., 2014; Bee and Schiavo, 2018). Still others estimate

the minimum, assuming a mixed Lognormal-Pareto distribution (Malevergne et al., 2011; Bakar

and Nadarajah, 2013; Nigai, 2017). Such methods are either subject to possibly large measurement

errors and inconsistencies or restrictive in their need to assume a distributional relation between

the bulk and the tail of the distribution.

In order to obtain an accurate estimate for the lower bound, we rely on a formal decision rule

developed by Clauset et al. (2009). For the ordered productivity set {xb; b = 1, . . . , B}, we evaluate

every xb as a potential (xmax) xmin, estimating the ML estimate of the power-law exponent k. We

16Fully truncated (both from below and above) Pareto distributions can be deduced from a truncated probability
density function (see eq. 6) and have been used in the economic literature (Helpman et al., 2008; Melitz and Redding,
2014; Feenstra, 2018).
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then use the Kolmogorov-Smirnov statistic to select the optimum (xmax) xmin. It is defined as the

cutoff which minimizes the maximum absolute deviation of the empirical from the theoretical CDF:

TKS,x̂max = sup
x≤x̂max

∣
∣
∣
∣
∣

1

B

B∑

b=1

■(xb ≤ x̂max)−GIP (x; k̂, x̂max)

∣
∣
∣
∣
∣

TKS,x̂min
= sup

x≥x̂min

∣
∣
∣
∣
∣

1

B

B∑

b=1

■(xb ≥ x̂min)−GP (x; k̂, x̂min)

∣
∣
∣
∣
∣
, (5)

where ■A is the indicator of event A.

3.1.2 Hump-shaped, piecewise composite and product distributions

Complete data The maximum likelihood of the considered hump-shaped distributions (Lognor-

mal, Weibull, Fréchet, Gamma, Exponential and Burr) is straightforward and estimation methods

are widely available. We also consider piecewise composite distributions as Pareto-tailed extensions

of these hump-shaped distributions. The ML estimator of these distributions has no closed form

and needs to be approached numerically, see Dewitte (2020). Pareto-tailed extensions in the form of

product distributions, on the other hand, are less generally available. We consider the Double-Pareto

Lognormal distribution (Reed and Jorgensen, 2004). This distribution is the result of multiplying

a Double Pareto, used by among others Arkolakis (2016), with a Lognormal distribution. Reducing

the parameter space of the Double Pareto allows us to consider the Left- and Right-Pareto Lognor-

mal distribution respectively. Also in this case, the ML estimator has no closed form solution and

needs to be approached numerically (Reed and Jorgensen, 2004).

Truncated data Consisting of individual truncated densities, the estimation of piecewise com-

posite distributions on truncated data is by its definition straightforward. Maximum likelihood

methods for the remaining hump-shaped and product distributions can easily be adapted by trun-

cating the distribution to be restricted within the domain of the data. The resulting truncated

probability density function (g∗(x)) is then specified within the (exogenously determined) bound-

aries x ∈
[
cl, cu

]
:

g∗(x) =
g(x)

G(cu)−G(cl)
. (6)

3.1.3 FMM

Complete data Direct maximum likelihood estimation of a FMM (see eq. 2) is not straightfor-

ward, since the number of components I is a priori unknown. The log-likelihood function can be

written as
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logL(x|Ψ) =

B∑

b=1

I∑

i=1

zbi [log(πi) + log(mi(xb|θi))] , (7)

where zbi is an unobserved component indicator equal to one if the observation xb originates

from subpopulation i and zero otherwise. Two steps need to be taken iteratively in order to be able

to maximize this equation. The Expectation (E)-step of the s-th iteration consists of determining

the conditional expectation of eq. 7 given the observed data and the current parameter estimates

from iteration s− 1:

Q(Ψ|Ψ(s−1)) = E
[

logL(x|Ψ)|x,Ψ(s−1)
]

=
B∑

b=1

I∑

i=1

π
(s)
bi [log(πi) + log(mi(xb|θi))] , (8)

where the missing data zni is replaced by the posterior probability that xb belongs to the ith

mixture:

π
(s)
bi = E

[

zbi|xb,Ψ(s−1)
]

=
π
(s−1)
i mi(xb|θ(s−1)

i )
∑I

i=1 π
(s−1)
i mi(xb|θ(s−1)

i )
. (9)

The Maximization (M)-step then, consists of maximizing the Q-function over the parameter

vector Ψ:

Ψ
(s) = max

Ψ

Q(Ψ|Ψ(s−1)). (10)

Each iteration updates the E- and M-step until the algorithm converges (See Miljkovic and Grün

(2016) and McLachlan and Peel (2000) for a more elaborate overview).

The validity of the proposed estimation technique does not depend on its ability to identify the

unobserved component indicator zbi. FMMs can be utilized in two ways. First, they can be used as

a semi-parametric, flexible approximation of the overall distribution. Second, they are model-based

clustering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While both

applications rely on the idea that discrete subpopulations define the overall distribution, the semi-

parametric approximation does not claim to correctly identify these subpopulations (zbi). This

paper relies on FMMs as a semi-parametric approximation of the productivity distribution. See

Appendix B for a more elaborate discussion on the difference between both applications and their

relevance for the current analysis.
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Truncated data The EM-algorithm can be adapted to fitting data only to truncated data within

the (exogenously determined) boundaries x ∈
[
cl, cu

]
. We specify the conditional densities

g(x|Ψ, cl ≤ x ≤ cu) =

∑I
i=1 πimi(x|θi)

G(cu|Ψ)−G(cl|Ψ)

=
I∑

i=1

πi
Mi(c

u|θi)−Mi(c
l|θi)

G(cu|Ψ)−G(cl|Ψ)

mi(x|θi)
Mi(cu|θi)−Mi(cl|θi)

=

I∑

i=1

ηimi(x|θi, cl ≤ x ≤ cu), (11)

with ηi > 0,
∑I

i=1 ηi = 1 and Mi the component-specific Cumulative Distribution Function.

The Q-function becomes

Q(Ψ|Ψ(s−1)) = E
[

logL(x|Ψ)|x,Ψ(s−1)
]

=

B∑

b=1

I∑

i=1

π
(s)
bi

[

log(ηi) + log(mi(xb|θi, c
l ≤ xb ≤ cu))

]

, (12)

where the posterior probability that xb comes from the ith mixture is not affected by the trun-

cation:

π
(s)
bi =

η
(s−1)
i mi(xb|θ(s−1)

i , cl ≤ xb ≤ cu))
∑I

i=1 η
(s−1)
i mi(xb|θ(s−1)

i ), cl ≤ xb ≤ cu)
=

π
(s−1)
i mi(xb|θ(s−1)

i )
∑I

i=1 π
(s−1)
i mi(xb|θ(s−1)

i )
. (13)

The M-step then again consists of maximizing the Q-function over the parameters Ψ. Iterating

over the E- and M-step until the algorithm converges provides us with distributions fitted to the

truncated data.

3.2 Distribution evaluation

We rely on multiple distinct criteria to differentiate between the distributions. First, we consider

whether the proposed parametric distribution is a sufficiently good fit to the data. We then differ-

entiate between distributions using information criteria.

Goodness of fit We follow Dewitte (2020) in evaluating the parametric distributions by sum-

marizing the distance between the empirical and parametric rth moment of the distribution by the

1- and ∞-norm:

Sr =
∑

y

∆r(y), T r = sup
y

∆r(y), (14)

where ∆r(y) is the normalized absolute deviation:
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∆r(y) =

∣
∣
∣
1
B

∑B
b=1 ■(xb ≥ y)xrb −

∫∞
y xrg(x|Ψ)dx

∣
∣
∣

1
B

∑B
b=1 x

r
b

. (15)

■(A) is the indicator of event A and µr
y =

∫∞
y xrg(x|Ψ)dx is the y-bounded, rth-moment of the

parametric distribution, with r taking positive values. Evaluated at the 0th-moment of the distribu-

tion, the test statistic T 0 corresponds with the Kolmogorov-Smirnov (KS) test statistic, quantifying

the largest distance between the empirical and parametric CDF. This is the sole specification of the

statistic specified on which we can rely to provide statistically underpinned claims regarding the

accuracy of the distributional assumption with respect to its empirical counterpart. Nevertheless,

Dewitte (2020) argues that evaluating these test statistics at higher moments of the distribution

(r > 0) can be informative on the distributional fit, especially relating to their use in heterogen-

eous firms models (see also section 6).17 Whereas the ∞-norm contains only information on the

largest distance, the 1-norm provides information on the distance between both distributions over

the complete distributional space, weighting all distances equally. The normalization factor allows

us to interpret the distances on a scale of zero to one for all moments, similar to the interpretation

of the standard KS test statistic.

As we rely on estimated parameters, asymptotic distributions are not available for the test

statistics. We therefore rely on a parametric bootstrap:

1. Assume B i.i.d. random variables with distribution G(·|Ψ);

2. Estimate the parameters Ψ of the distribution using MLE and calculate the rth moment

implied by the parametric distribution: µ̂r;

3. H0 : µ
r = µ̂r with test statistic t ∈ {Sr, T r};

4. Draw N bootstrap samples of size B from G(·|Ψ̂);

5. For each sample of the parametric distribution, calculate the bootstrapped test statistics

t∗ ∈
{
(S r̃)∗, (T r̃)∗

}
;18

6. The p-value is then defined as

p̂ =
1

N + 1

[
N∑

n=1

I (t∗n ≥ t) + 1

]

. (16)

The bootstrap exercise should therefore be interpreted as ‘the likelihood of observing a deviation

between the moments of the empirical and parametric distribution as large as t under the null

17We have no knowledge of statistical tests that evaluate distributional fits based on bounded higher moments of
the distribution.

18Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset at
our availability in the empirical section results both in a large computational burden but also a very precise estimation
of the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is
therefore negligent.
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hypothesis’, allowing us to evaluate whether the distributional assumption provides a good fit to

the evaluated moments of the distribution.

Information Criteria We differentiate between distributions based on the log-likelihood, the

Aikaike or Bayesian Information Criteria. When possible, we can differentiate between two distri-

butions based on the ratio of their likelihoods:

LR =

B∑

b=1

ln
g1(xb; ·)
g2(xb, ·)

(17)

with g1,2 the probability densities of the respective distributions. If these distributions are non-

nested (Vuong, 1989), the test statistic amounts to the sample average of this ratio, standardized

by a consistent estimate of its standard deviation. The null hypothesis states that both classes of

distributions are equally far (in the Kullback and Leibler (1951) divergence/relative entropy sense)

from the true distribution. If this is true, our test statistic will follow (asymptotically) a Gaussian

distribution with mean zero. If the null is false, and g1(·) is closer to the truth, the test statistic

diverges to +∞ with probability one. If g2(·) fits the data better, it diverges to −∞ (Vuong, 1989).

The Aikaike Information criterion penalizes the log-likelihood information for the number of

parameters (to avoid overfitting) and is defined as AIC = 2np − 2ln(L) with np the number of

parameters and ln(L) the log-likelihood. Similarly, the Bayesian Information criterion corrects for

the number of parameters as BIC = npln(B)− 2ln(L). Differentiation between distributions relies

then on te relative distance of the BICs: ∆BIC = BIC1 − BIC2. The value of ∆BIC implies

strong evidence in favor of distribution 1 if B > 10, moderate evidence if 6 < B ≤ 10 and weak

evidence if 2 < B ≤ 6 (Kass and Raftery, 1995). AIC and BIC statistics are considered adequate

when choosing the number of components for a suitable FMM (McLachlan and Peel, 2000).

4 Data

We use firm-level data from Portugal to evaluate the empirical performance of FMMs compared

to “traditional” distributions such as the Log-normal or Pareto distribution. The main source of

information is Sistema de Contas Integradas das Empresas (SCIE, Enterprise Integrated Accounts

System) in the year 2006, a dataset covering the universe of active Portuguese firms that has been

used already by, among others: (Carreira and Teixeira, 2016; Dias et al., 2016; Fernandes and

Ferreira, 2017; Bastos et al., 2018; Fonseca et al., 2018).19 It contains data both on firm-level sales

and number of employees. Moreover, each firm has a unique identification number that allows us

to link this dataset with a dataset on international trade.

The firm size distribution of Portugal was earlier the object of study by Cabral and Mata (2003),

who relied on a longitudinal matched employer-employee dataset covering all business units with

19A comparison between SCIE and the OECD SBDS database proves the full coverage of firms in our dataset for
the Portuguese economy (see Table 6).
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at least one wage earner in the Portuguese economy (Quadros de Pessoal). They provide evidence

that the firm size distribution of Portugal is not very different from other countries such as France,

the United States, Germany, Japan and the United Kingdom.

We rely on the distributional relation between productivity and positive domestic sales, under

specific model assumptions (Nigai, 2017; Dewitte, 2020), to evaluate parametric approximations of

the productivity distribution. Relying on domestic rather than total sales corrects for the impact of

international trade on the firm size distribution (di Giovanni et al., 2011). We reduce our dataset

discarding self-employed companies20, resulting in a dataset covering the positive domestic sales of

299,935 Portuguese firms in 2006.

5 Results

We fit the distributions to Portuguese domestic sales in the year 2006. We initially focus on fitting

the Pareto, Lognormal, combinations of Pareto and Lognormal and up to 5-component mixtures

of Lognormals to the complete data. This proves to be sufficient for our main message. We show

that our results hold when focusing on the tails of the data, can be extended to other economically

relevant distributions, are robust to sample selection and outliers and can be externally validated

on city size data.

5.1 Complete data

Single distributions can not sufficiently capture the heterogeneity of the productivity distribution.

Table 1 displays the selected distribution fits, ordered according to their log-likelihood. One im-

mediately observe that single parametric distributions provide the worst fits. This demonstrates

the need, as the evolution of the literature indicates (Nigai, 2017; Sager and Timoshenko, 2019),

to combine distributions in order to adequately capture heterogeneity in productivity. The Pareto

distribution, for instance, provides a really bad fit to the distribution with a Goodness of fit statistic

of up to 267 times bigger than the best fitting mixture of Lognormals.21.

Finite mixture models greatly improve the distributional fit, without over-fitting the data. Ac-

cording to the log-likelihood, distributions with a larger number of parameters provide a better fit

to the data, even when parameter correction (RAIC,BIC) is applied. The BIC values indicate that

the 4-component Lognormal provides the best fit to the data. This demonstrates that the perform-

ance of FMMs is not the result of over-fitting, but of FMMs being able to capture heterogeneity of

which other distributional forms are not capable. The currently favored Double-Pareto Lognormal

(Sager and Timoshenko, 2019) and Lognormal-Pareto (Nigai, 2017) distribution are ranked fourth

and eighth respectively. The structure imposed on a general mixture specification in order to at-

tain these specific piecewise composite or product distributions (see section 2.2) is therefore not

20Disregarding individual companies renders our dataset more comparable with earlier datasets used to evaluate
productivity distributions such as the ORBIS database used by Nigai (2017).

21The higher the Goodness of fit statistic, the larger the deviation between the empirical and parametric distri-
bution (see eq. 15)
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Table 1: Selected distribution fits to Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Lognormal 14 0.18 0.11 12,776 1 2+++

(0.10;0.25) (0.08;0.32)

4-comp. Lognormal 11 0.19 0.11 12,770 2 1

(0.09;0.25) (0.08;0.32)

3-comp. Lognormal 8 0.29 0.34 12,723 3 3+++

(0.10;0.24)** (0.09;0.32)**

Double-Pareto Lognormal 4 0.66 0.80 12,429 4 4+++

(0.09;0.25)*** (0.08;0.33)***

2-comp. Lognormal 5 0.53 0.71 12,401 5 5+++

(0.10;0.24)*** (0.09;0.32)***

Inv. Pareto-Lognormal-Pareto 4 0.81 1.01 12,231 6 6+++

(0.09;0.26)*** (0.08;0.34)***

Inv. Pareto-Lognormal 3 3.02 4.26 9,198 7 7+++

(0.09;0.24)*** (0.08;0.31)***

Lognormal-Pareto 3 2.56 3.78 8,721 8 8+++

(0.09;0.25)*** (0.08;0.32)***

Left-Pareto Lognormal 3 3.23 4.91 8,059 9 9+++

(0.10;0.25)*** (0.09;0.32)***

Right-Pareto Lognormal 3 2.82 4.38 8,028 10 10+++

(0.09;0.25)*** (0.08;0.32)***

Lognormal 2 2.93 5.03 7,372 11 11+++

(0.10;0.25)*** (0.08;0.33)***

Pareto 2 48.34 68.18 -436,227 12 12+++

(0.09;0.25)*** (0.08;0.33)***

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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warranted.

Finite mixture models are the sole parametric specifications that are not rejected by the data.

Focusing on goodness-of-fit criteria around the 0th moment, we observe that these follow the log-

likelihood ranking closely. The 4- and 5-component Lognormal distributions reduce the largest

deviation from the empirical CDF (T 0) by more than 70% (0.66−0.19
0.66 ×100) compared to the Double-

Pareto Lognormal distribution and by more than 90% compared to the Lognormal-Pareto distri-

bution. This pattern is consistent over the complete range of the data, as is apparent from the

cumulative error of the CDF fit (S0). Moreover, none of the currently favored parametric distri-

butions provide a good fit to the data. Only for the 4- and 5-component Lognormal distributions

the null hypothesis that the data originates from the proposed parametric distribution can not be

rejected.

Figure 222 provides a visual insight into the numerical results of Table 1. It plots the normalized

absolute deviation between the empirical and parametric CDF. The figure shows the large errors

related to the Lognormal distribution. Augmenting the Lognormal distribution with a Pareto right-

tail as in Nigai (2017) improves the fit only marginally. While it does provide a slightly better fit in

the right tail of the distribution, this comes at the cost of a worse fit to the left-tail of the distribution

and an almost equally bad fit to the bulk of the distribution as the Lognormal distribution. The

best-fitting Pareto-tailed Lognormal, the Double-Pareto Lognormal, does a better job at fitting

the distribution. However, it clearly lags behind in comparison with the 4-component Lognormal,

which only displays marginal errors both in the bulk and the tails of the data. This tail performance

becomes even more apparent when considering the Quantile-Quantile plot in Figure 3.

Figure 2: Normalized Absolute Deviation between the empirical and Double-Pareto Lognormal,
Lognormal-Pareto, Lognormal and 4-component Lognormal CDFs over the complete range of do-
mestic sales in Portugal, 2006.

22This representation of the results is essentially a visually more interpretable version of the Probability-Probability
plot (see Appendix Figure 3).
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Figure 3: Quantile-Quantile plot for the Double-Pareto Lognormal, Lognormal-Pareto, Lognormal
and 4-component Lognormal over approximately 99.99% of domestic sales in Portugal, 2006.
Note: Quantiles are capped at 600 for expositional purposes, leaving out approximately the upper 0.01% of the data.

5.2 Truncated data

Allowing for heterogeneity in distributions clearly provides a better fit when fitting the complete

distribution, but what about when we fit the tails only? This is mostly interesting from the Pareto

point of view, which is often claimed to be a good fit to the right tail of the productivity distribu-

tion.23

Table 2 displays the results of fitting the (Inverse) Pareto to the (left) right tail of the distribution

using the methods described in section 3. We recovered the best-fitting truncation point for the

(Inverse) Pareto distribution, assigning 8.53% and 6.07% of the data to the left and right tail

respectively. We reduced our dataset according to these truncation parameters and fitted truncated

mixtures of Lognormals to both tails of the distribution for comparison. This approach puts the

Pareto distribution twice in the advantage. First, it is free from a parametric specification for

the bulk of the distribution. Second, the truncation parameter is chosen in function of the best-

fitting (Inverse) Pareto distribution. As a result, the (Inverse) Pareto, as well as (mixtures of) the

Lognormal, provide a good fit to the tails according to the Kolmogorov-Smirnov test.

Nevertheless, despite the advantage for the (Inverse) Pareto distribution, it seems that (mixtures

of) the Lognormal distribution provide a significantly better fit to the tails of the data. (Mixtures

of) the Lognormal distribution have a higher log-likelihood and lower deviation from the empirical

CDF than the (Inverse) Pareto distribution. This results in the likelihood ratio test significantly

rejecting Pareto in favor of (mixtures of) the Lognormal distribution, which is in line with earlier

results reported in related literature (Clauset et al., 2009). When correcting for the number of

parameters, the BIC reveals that the single Lognormal distribution is sufficient to fit the tail only.

23Note that this argument carries the normative value that obtaining a good fit for larger firms is absolute,
regardless of the implications for the fit to smaller firms.
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A mixture of Lognormals insufficiently improves the fit in order to justify the corresponding increase

in number of parameters.

Table 2: Selected distribution fits to the tails of Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

Left tail (N=25,588, 8.53% of the data)

5-comp. Trunc. Lognormal 14 0.63 0.04 108,196.19*** 5 6+++

(0.32;0.85) (0.02;0.10)

4-comp. Trunc. Lognormal 11 0.61 0.04 108,195.05*** 4 5+++

(0.33;0.85) (0.02;0.09)

3-comp. Trunc. Lognormal 8 0.58 0.04 108,194.44*** 1 4+++

(0.33;0.86) (0.02;0.10)

2-comp. Trunc. Lognormal 5 0.77 0.06 108,189.93*** 3 3+++

(0.32;0.84)* (0.02;0.09)

Trunc. Lognormal 2 1.02 0.10 108,186.99*** 2 1

(0.32;0.85)** (0.02;0.09)**

Inv. Pareto 2 0.80 0.10 108,183.90 6 2++

(0.33;0.84)* (0.02;0.09)**

Right tail (N=18,217, 6.07% of the data)

5-comp. Trunc. Lognormal 14 0.62 0.03 -47,896.59*** 5 6+++

(0.39;1.00) (0.02;0.07)

Trunc. Lognormal 2 0.70 0.04 -47,897.86*** 1 1

(0.38;0.97) (0.02;0.08)

2-comp. Trunc. Lognormal 5 0.71 0.04 -47,897.99*** 2 3+++

(0.38;1.01) (0.02;0.08)

3-comp. Trunc. Lognormal 8 0.68 0.04 -47,898.60*** 3 4+++

(0.38;0.99) (0.02;0.08)

4-comp. Trunc. Lognormal 11 0.68 0.04 -47,898.62*** 4 5+++

(0.39;1.00) (0.02;0.08)

Pareto 2 0.86 0.08 -47,910.44 6 2+++

(0.38;0.99) (0.02;0.08)*

Notes: All distributions fitted using Maximum Likelihood.
Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic
with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
Similarly, ∗∗∗, ∗∗, ∗ indicate significance at 1%, 5% and 10% respectively for the likelihood ratio test between
(Inverse) Pareto and (mixtures of) the Lognormal distribution.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms
of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate
evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.

5.3 Extension to other distributions

The superior performance of FMMs is not limited to the Lognormal distribution. Appendix Table 7

displays the results of fits to the complete data expanding to FMMs of distributions often used in the

economic literature such as the Exponential, Gamma, Weibull, Burr and Fréchet distribution. Most
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of these mixtures are not able to match the performance of the Lognormal. Only the Burr distri-

bution provides an equivalent fit to the PDF and CDF.24 Compared to Pareto-tailed combinations

of distributions, we find that also mixtures of Weibull and Gamma are able to provide an improved

distribution fit. Overall, the currently favored Double-Pareto Lognormal (Sager and Timoshenko,

2019) and Lognormal-Pareto (Nigai, 2017) distribution are ranked sixteenth and thirty-first respect-

ively according to BIC, out of 52 considered distributions.

The consistent excellent performance of the Lognormal distribution can be motivated from two

perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with

sufficient components is assumed to be able to approach all distributions (McLachlan and Peel,

2000). From a generative perspective for individual components, the Lognormal distribution is the

realization of applying the Central Limit Theorem (CLT) in the log domain: firm heterogeneity

will approximately be Lognormal if it is the multiplicative product of many independent random

variables. This corresponds with extensions of heterogeneous firms models à la Melitz (2003) that

consider multi-dimensional firm heterogeneity, taking into consideration the product dimension

(Bernard et al., 2009) or uncertainty in demand and/or supply (see for instance De Loecker (2011);

Bas et al. (2017); Sager and Timoshenko (2019); Gandhi et al. (0)).

5.4 Robustness

We scrutinize the robustness of our results with a number of additional analyses. First, we examine

whether our results are not caused by sample selection. We therefore restrict our dataset to the

manufacturing sector only (see Appendix Table 8) and find the performance of FMMs to improve

relative to Pareto-tailed distributions. Second, we inspect whether our results are not due to outliers

in the tails of the distribution. We discard the first and last 1,000 observations of the dataset. Results

in Appendix Table 9 again confirm the superiority of FMMs.

We validate our approach externally fitting the considered distributions to the U.S. Census 2000

city size distribution data. This dataset has been subject to an extensive debate in the city size

literature, including the discussion between Eeckhout (2004, 2009) and Levy (2009).25 Appendix

Table 10 provides the test results, demonstrating that the city size distribution is neither Lognor-

mal, Pareto nor Pareto-tailed Lognormal. It is best approximated by a 2-component Lognormal

distribution (according to the BIC). These results provide an overview of the city size literature up

till now and are in line with the findings of Kwong and Nadarajah (2019).

6 Gains From Trade implications

In this section, we integrate the distribution fits from the previous section into a heterogeneous

firms framework à la Melitz (2003). This allows us to perform a GFT exercise along the lines of

24The Burr distribution fails to match higher moments of the data, however. See also section 6.
25The dataset is available at https://www.aeaweb.org/aer/data/sept09/20071478_data.zip.
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(Melitz and Redding, 2015; Bee and Schiavo, 2018) and investigate the importance of providing a

good fit to the productivity distribution for GFT calculations.

Our setup is a two-country symmetric heterogeneous firms model with a finite number of firms.26

The parameterization of our model is standard (Head et al., 2014; Melitz and Redding, 2015; Bee

and Schiavo, 2018). We work with two symmetric countries i and j and choose labor in one country

as the numeraire, so that W i = W j = 1. We choose fixed entry costs f e = 0.545 and set fixed costs

equal to one (f ii = f ij = 1). The elasticity of substitution is set to four.

Finally, we need to capture the heterogeneity distribution. Assuming a parametric distribution

and under the assumption of an infinite number of firms, we can calculate the necessary analytical

expressions using the distributional parameters from our empirical analysis to capture heterogeneity.

Following Nigai (2017), we can also capture heterogeneity directly from the empirical, finite, data.

To allow comparison between GFT obtained assuming a parametric distribution and GFT obtained

from the finite data, we perform a parametric bootstrap. This parametric bootstrap generates a

range of finite sample estimates under the hypothesis that the observed data is generated by a

certain parametric distribution, which can be compared with the observed finite data (Dewitte,

2020).

We calculate the changes in welfare due to a trade shock (Gains From Trade), which can be

written as log changes in real per-capita income due to an exogenous increase in variable trade costs

τij to τ ′ij . This can be further decomposed into the channels through which trade affects welfare:

trade costs (τ ij), the number of firms (M i), the probality of successful entry into the domestic

market (m0
ωii∗), the average productivity of firms exporting from i to j (mσ−1

ωij∗)
27 and the bilateral

trade share (λij):

100× ln
(Wi)′

Wi
= 100×−ln

(P i)′

P i
(18)

= 100×−
[

ln
(τ ij)′

(τ ij)
− 1

σ − 1

(

ln
(M i)′

M i
− ln

(m0
ωii∗)

′

m0
ωii∗

+ ln
(mσ−1

ωij∗)
′

mσ−1
ωij∗

− ln
(λij)′

λij

)]

.

Our exercise reduces the variable trade costs from τ ij = 3 to (τ ij)′ = 1. The obtained GFT

are displayed in Figure 4. This figure presents the parametric bootstrapped distribution of GFT

by means of box-plots delineating the 5th, 25th, 50th, 75th and 95th quantile. Empirical GFT are

indicated by the vertical blue line. Green circles are the average parametric finite sample GFT and

the parametric plug-in population estimates of GFT are shown by yellow diamonds.

We observe that heavy-(Pareto-) tailed distributions significantly overestimate GFT, while re-

latively light-tailed distributions underestimate GFT. Mixture models are the only distributions

that provide an approximation of GFT that is not rejected by the data. The distributions in Figure

4 are ordered according to their distance from the empirical GFT. As such, we can interpret the

26See Appendix C for a full workout of the model.
27We define average productivity here as average productivity unconditional on successful entry, in contrast to the

definition conditional on successful entry in (Melitz, 2003, p.1702).
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Figure 4: Gains from a reduction in variable trade costs τ ij = 3 to (τ ij)′ = 1.
Notes: Box-plots display the 5th, 25th, 50th, 75th and 95th quantile of the asymptotic distribution of parametric

finite sample GFT obtained from a bootstrap with 999 replications. Yellow diamonds represent the parametric plug-in

(population) estimates of GFT. Green circles are the average parametric bootstrapped finite sample GFT and the

empirical sample GFT are indicated by the vertical blue line. All sample values obtained from a sample of 299,935

firms.
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4-component Lognormal distribution as providing the closest fit to the GFT obtained from the

empirical distribution. Where the empirical values imply an increase in real income per capita of

19.01% when reducing variable trade costs from 3 to 1, the 4-component Lognormal distribution

closely predicts this to be 19.02%, as can be deduced from the parametric plug-in population es-

timates (yellow diamonds). Moreover, the close fit results in a very good approximation of the

empirical GFT, as can be deduced from the parametric bootstrapped finite sample GFT being at

least as small as the empirical GFT in more than 5% of the cases (the box-plot overlaps with the

vertical blue line). This contrasts with the simple Lognormal distribution underestimating the em-

pirical GFT by about 11% with 16.8% predicted GFT, and with the Lognormal-Pareto distribution

overestimating the empirical GFT by approximately 13%, with 21.55% predicted GFT.

Deviations from GFT calculations can be mainly attributed to errors in capturing the evolution

of average productivity of exporting firms and bilateral trade shares. Table 3 reports the weighted

components of welfare gains (see eq. 18) for all considered distributional forms, allowing us to

evaluate the channels trough which the differences in GFT between distributions come about. We

observe that the deviation of the parametric results compared to the empirical distribution are

relatively small for the changes in number of firms and in the probability of successful entry into

the domestic market. The largest differences can be found for the changes in average productivity

of exporting firms and in the trade shares. Heavy-tailed distributions largely underestimate the

positive effect of the increase in average productivity of exporting firms and the negative effect of

the increase in the bilateral trade shares compared to the empirical distribution, while the reverse

is true for lighter-tailed distributions.
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Table 3: Decomposition of procentual welfare gains from a reduction in variable trade costs τ ij = 3 → (τ ij)′ = 1.

Distribution Parms. ln
(Wi)′

Wi − ln
(τij)′

(τij)
1

σ−1
ln

(Mi)′

Mi
1

σ−1
ln

(m0

ωii∗ )′

m0

ωii∗

1
σ−1

ln
(mσ−1

ωij∗
)′

m
σ−1

ωij∗

− 1
σ−1

ln
(λij)′

λij

Pareto 2 - 1.10 - - - -

(-0.00;0.00)*** (1.10;1.10) (-0.22;-0.22)*** (-0.00;0.00)*** (0.00;0.00)*** (-0.88;-0.88)***

Left-Pareto Lognormal 3 0.16 1.10 -0.17 0.15 0.60 -1.51

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.58;0.62)*** (-1.53;-1.49)***

Inv. Pareto-Lognormal 3 0.17 1.10 -0.17 0.15 0.58 -1.49

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.56;0.60)*** (-1.51;-1.47)***

Lognormal 2 0.17 1.10 -0.17 0.15 0.53 -1.44

(0.17;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.51;0.55)*** (-1.46;-1.42)***

Right-Pareto Lognormal 3 0.18 1.10 -0.18 0.17 0.28 -1.19

(0.18;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.23;0.33)** (-1.24;-1.13)**

Empirical 0 0.19 1.10 -0.18 0.18 0.20 -1.10

4-comp. Lognormal 11 0.19 1.10 -0.18 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.18;0.22) (-1.13;-1.08)

5-comp. Lognormal 14 0.19 1.10 -0.19 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.19) (0.17;0.22) (-1.12;-1.07)

2-comp. Lognormal 5 0.19 1.10 -0.17 0.17 0.23 -1.13

(0.19;0.19) (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.22;0.25)*** (-1.15;-1.12)***

3-comp. Lognormal 8 0.19 1.10 -0.18 0.18 0.19 -1.09

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.16;0.22) (-1.12;-1.06)

Lognormal-Pareto 3 0.22 1.10 -0.22 0.22 0.02 -0.90

(0.20;0.21)*** (1.10;1.10) (-0.22;-0.20)*** (0.20;0.22)*** (0.04;0.14)*** (-1.04;-0.93)***

Double-Pareto Lognormal 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.20;-0.19)*** (0.19;0.20)*** (0.02;0.09)*** (-0.98;-0.90)***

Inv. Pareto-Lognormal-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.20;-0.18)* (0.18;0.20)*** (0.01;0.08)*** (-0.97;-0.89)***

Notes: Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ∗∗∗, ∗∗, ∗ indicate
the rejection of a signifcant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.
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Our results confirm the findings of Dewitte (2020) that a good fit to truncated average sales

proves to be a critical predictor of the performance of GFT calculations. A ranking of the distribu-

tions according to GFT performance does not closely follow the ranking of the fit to the 0th moment

of the distribution (the CDF). The Double-Pareto Lognormal, for instance, provides a closer fit to

the empirical CDF than the Right-Pareto Lognormal, but provides worse GFT approximations.

This can be attributed to the relatively heavy tail of the Double-Pareto Lognormal, resulting in a

large error when calculating higher moments of the distribution. As such, a ranking of distributions

based on the fit to average sales proves to be a better indicator of GFT performance, as can be

deduced from the statistics T 1 in Appendix Table 7.

These findings are not the result of a specific parametrization of the model. Figure 4 displays the

percentage errors in parametric GFT calculations relative to the empirical benchmark for different

parametrization scenarios. Our findings are robust for different values of the elasticity of substitution

(left upper panel) and fixed entry costs (left bottom panel), as well as for different starting values

for the iceberg trade costs (right upper panel) and for a reduction in fixed rather than variable trade

costs (right bottom panel).

7 Conclusion

This paper provides evidence that heterogeneity in the productivity distribution can be captured

most adequately by Finite Mixture Models. A clear statistical framework differentiates between the

fit of 52 distributions to domestic sales of the population of active Portuguese firms in 2006. The

flexible, semi-parametric nature of FMMs results in a substantial empirical performance improve-

ment compared to currently favored distributions in the firm size literature. Moreover, FMMs are

the only distributions providing an approximation of Gains From Trade that is not rejected by the

data.

Even though our results provide strong evidence in favor of FMMs, we take no stance on dis-

tribution type nor on the mixing parameter (or mechanism) that defines the underlying discrete

subpopulations. It is clear that the two are closely interconnected, and therefore not easily iden-

tifiable. Further research is necessary to be able to define which mechanisms result in multiple

individual densities defining the overall productivity distribution.

The idea of FMMs also opens many new venues for ongoing research. For instance, the mech-

anisms driving firm-level dynamics in aggregate growth models are determined by the parametric

approximation of the productivity distribution (see for instance Luttmer (2007); Arkolakis (2016)).

A correct parametric approximation is then essential to motivate the determinants of a firm’s pro-

ductivity growth. In relation to this, the estimation of productivity usually relies on a first-order

Markov process that is identical for the complete population. Concurrently, however, it is recognized

that productivity dynamics are endogenous to exporting (De Loecker, 2013), importing (Kasahara

and Rodrigue, 2008), innovation (Aw et al., 2011), management practices (Bloom and Reenen,

2011; Caliendo et al., 2020), et cetera. Introducing Finite Mixture Modeling into the estimation
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procedures would allow, semi-parametrically, to control for such discrete subpopulations without

the risk of model misspecification. Moreover, the potential identification of these subpopulations

provides the opportunity to discriminate between the many different mechanisms (see for instance

Cabral and Mata (2003); Klette and Kortum (2004); Rossi-Hansberg and Wright (2007); Atkeson

and Burstein (2010); Caliendo et al. (2020)) that drive the existence of such subpopulations. Also,

the propagation of firm-level volatility to the aggregate level mainly relies on a Pareto specification

for the right tail of the productivity distribution (Gabaix, 2011; di Giovanni and Levchenko, 2012;

Carvalho and Grassi, 2019). FMMs as well are sufficiently heavy-tailed to motivate granularity.
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Appendix A Additional Figures and table

A.1 Figures

Figure 1: Density comparison of the SCIE dataset with and without individual companies.
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Figure 2: Empirical probability density function of Portuguese firm productivity in 2006 (upper
panel) with fitted Pareto and (4-component) Lognormal densities. The lower left and right panels
focus in on the left and right tail respectively.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four. Distributions are fitted using maximum likelihood methods

(cf. infra) to the complete dataset.
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Figure 3: Probability-Probability plot for the Double-Pareto Lognormal, Lognormal-Pareto, Lognor-
mal and 4-component Lognormal over the complete range of domestic sales in Portugal, 2006.

Figure 4: Percentage errors in parametric GFT calculations relative to the empirical benchmark
for different values of the elasticity of substitution (left upper panel) and different fixed entry costs
(left bottom panel) for a reduction in variable trade costs

(
τ ij = 3 → (τ ij)′ = 1

)
. The right upper

panel displays percentage errors in parametric GFT for different starting values of the iceberg trade
costs

(
τ ij ∈ [1; 3] → (τ ij)′ = 1

)
. The bottom left panel showcases the error in parametric GFT for

a reduction in fixed exporting costs with different starting values
(
f ij ∈ [1; 3] → (f ij)′ = 1

)
.

Notes: Full lines represent the parametric population GFT, while shaded areas delineate the 5th and 95th quantile

of the parametric bootstrapped (999 replications) finite sample GFT. The Double-Pareto Lognormal has no finite

population GFT value.
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A.2 Tables

Table 1: Overview of all distributions considered.

Distribution Abbreviation Support Parameters

Change in parameters from

power transformation axb

Pareto P [xmin,∞[ k, xmin kb,
(

xmin

a

) 1
b

Inverse Pareto IP [0, xmax] k, xmax kb,
(

xmax

a

) 1
b

Lognormal LN [0,∞[ µ, V ar µ−lna

b
, V ar

b

Weibull W [0,∞[ k, s bk,
(

s
a

) 1
b

Exponential Exp [0,∞[ s W
(

b,
(

s
a

) 1
b

)

Burr B [0,∞[ k, c, s k, bc,
(

s
a

) 1
b

Fréchet F [0,∞] k, s bk,
(

s
a

) 1
b

Generalized Gamma GG [0,∞[ k, c, s bk, bc,
(

s
a

) 1
b

Gamma G [0,∞[ k, s GG
(

bk, b,
(

s
a

) 1
b

)

Finite Mixture Model FMM See ind. comp. Ψ See ind. comp.

Piecewise composite PC See ind. comp. θ See ind. comp.

Double-Pareto Lognormal DPLN [0,∞[ k1, µ, V ar, k2
k1

b
, bµ+ log(a), V ar, k2

b

Left-Pareto Lognormal LPLN [0,∞[ k1, µ, V ar k1

b
, bµ+ log(a), V ar

Right-Pareto Lognormal RPLN [0,∞[ µ, V ar, k2 bµ+ log(a), V ar, k2

b
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Table 2: Overview of the probability and cumulative density functions of single distributions con-
sidered.

Distribution PDF CDF

P
kxk

min

xk+1 1−
(
xmin

x

)k

IP kx−k
max

x−k+1 1−
(
xmax

x

)−k

LN 1
xV ar

√
2π
e−(lnx−µ)2/2V ar2 Φ

(
lnx−µ
V ar

)

W k
s

(
x
s

)k−1
e−

(

x
s

)k

1− e−
(

x
s

)k

Exp 1
se

−x
s 1− e−

x
s

B
kc
s

(

x
s

)c−1

(

1+
(

x
s

)c)k+1 1− 1
(

1+
(

x
s

)c)k

F k
s

(
x
s

)−1−k
e−

(

x
s

)−k

e−
(

x
s

)−k

GGa c
skΓ( k

c
)
xk−1e−

(

x
s

)c
1

Γ( k
c
)
γ(kc ,

(
x
s

)c
)

Ga 1
skΓ(k)

xk−1e−
x
s

1
Γ(k)γ(k,

x
s )

Notes: aΓ(x) stands for the Gamma function, while γ(s, x) stands for
the lower incomplete Gamma function with upper bound x.
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Table 3: Overview of the probability and cumulative density functions of combined distributions considered.

Distribution PDF CDF

FMM
∑I

i=1 πimi(x|θi)
∑I

i=1 πiM(x|θi)

PCa























































α1

1+α1+α2
m∗

1(x|θ1) if 0 < x ≤ c1

1
1+α1+α2

m∗
2(x|θ2) if c1 < x ≤ c2

α2

1+α1+α2
m∗

3(x|θ3) if c2 < x < ∞























































α1

1+α1+α2

M1(x|θ1)
M1(c1|θ1)

if 0 < x ≤ c1

α1

1+α1+α2
+ 1

1+α1+α2

M2(x|θ2)−M2(c1|θ2)
M2(c2|θ2)−M2(c1|θ2)

if c1 < x ≤ c2

1+α1

1+α1+α2
+ α2

1+α1+α2

M3(x|θ3)−M3(c2|θ3)
1−M3(c2|θ3)

if c2 < x < ∞

DPLNb

k2k1

k2 + k1

[

x
−k2−1

e
k2µ+

k2
2
V ar2

2 Φ

(

lnx− µ− k2V ar2

V ar

)

+

x
k1−1

e
−k1µ+

k2
1
V ar2

2 Φc

(

lnx− µ+ k1V ar2

V ar

)]

Φ

(

lnx− µ

V ar

)

−
1

k2 + k1

[

k1x
−k2e

k2µ+
k2
2
V ar2

2 Φ

(

lnx− µ− k2V ar2

V ar

)

−

k2x
k1e

−k1µ+
k2
1
V ar2

2 Φc

(

lnx− µ+ k1V ar2

V ar

)]

LPLNb k1x
k1−1e−k1µ+

k2
1
V ar2

2 Φc
(

lnx−µ+k1V ar2

V ar

)

Φ
(

lnx−µ

V ar

)

− xk1e−k1µ+
k2
1
V ar2

2 Φc
(

lnx−µ+k1V ar2

V ar

)

RPLNb k2x
−k2−1ek2µ+

k2
2
V ar2

2 Φ
(

lnx−µ−k2V ar2

V ar

)

Φ
(

lnx−µ

V ar

)

− x−k2ek2µ+
k2
2
V ar2

2 Φ
(

lnx−µ−k2V ar2

V ar

)

Notes: a ∀i ∈ I : m∗
i (x) =

mi(x)
∫ ci
ci−1

mi(x)dx
, b Φ and Φc stand for the standard normal and complementary standard normal cdfs.
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Table 4: Expression of the y-bounded rth moment (µr
y) for the single distributions considered.

Distribution µr
y Additional parameter restrictionsa

P − (y)r−k kωk
min

r−k k > r

IP kω−k
max

(ωmax)
r+k−(y)r+k

r+k -

LN e
r
(

rV ar2+2µ
)

2

[

1− Φ
(
lny−

(

rV ar2+µ
)

V ar

)]

-

Wc sσs−1Γ
(
σs−1
k + 1,

(y
s

)k
)

-

Expc sσs−1Γ
(
σs + 1, ys

)
-

Bb srk
[

B
(
r
c + 1, k − r

c

)
−B

( ( y
s

)c

1+
( y
s

)c ; rc + 1, k − r
c

)]

c > r, kc > r

Fc sσs−1
[

1− Γ
(

1− σs−1
k ,

(y
s

)−k
)]

k > r

GGc sσs−1

Γ( k
c
)
Γ
(
σs−1+k

c ,
(y
s

)c)
-

Gc sσs−1

Γ(k) Γ
(
σs − 1 + k, ys

)
-

Notes: a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite. b
B(a, b) stands for the

beta function, while B(x, a, b) stands for the lower incomplete beta function with upper bound x. c Γ(x) stands for the Gamma function,
while Γ(s, x) stands for the upper incomplete Gamma function with lower bound x.
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Table 5: Expression of the y-bounded rth moment (µr
y) for the combined considered.

Distribution µr
y Additional parameter restrictionsa

FMM
∑I

i=1 πi(µi)
r
y See ind. comp.

PC























































α1

1+α1+α2

(µ1)
r
y−(µ1)

r
c1

M1(c1)
+ 1

1+α1+α2

(µ2)
r
c1

−(µ2)
r
c2

M2(c2)−M2(c1)
+ α2

1+α1+α2

(µ3)
r
y

1−M3(c2)
if 0 < y ≤ c2

1
1+α1+α2

(µ2)
r
y−(µ2)

r
c2

M2(c2)−M2(c1)
+ α2

1+α1+α2

(µ3)
r
c2

1−M3(c2)
if c1 < y ≤ c2

α2

1+α1+α2

(µ3)
r
y

1−M3(c2)
if c2 < y < ∞

See ind. comp.

DPLN

−
k2k1

k2 + k1
e
k2µ+

k2
2
V ar2

2
yσs−k2−1

σs − k2 − 1
Φ

(

lny − µ− k2V ar2

V ar

)

−
k2k1

k2 + k1

1

r − k2
e

r2V ar2+2µr
2 Φc

(

lny − rV ar2 − µ

V ar

)

−
k2k1

k2 + k1
e
−k1µ+

k2
1
V ar2

2
yσs+k1−1

σs + k1 − 1
Φc

(

lny − µ+ k1V ar2

V ar

)

+
k2k1

k2 + k1

1

r + k1
e

r2V ar2+2µr
2 Φc

(

lny − rV ar2 − µ

V ar

)

k2 > r

LPLN

− k1e
−k1µ+

k2
1
V ar2

2
yσs+k1−1

σs + k1 − 1
Φc

(

lny − µ+ k1V ar2

V ar

)

+
k1

r + k1
e

r2V ar2+2µr
2 Φc

(

lny − rV ar2 + µ

V ar

) -

RPLN

− k2e
k2µ+

k2
2
V ar2

2
yσs−k2−1

σs − k2 − 1
Φ

(

lny − µ− k2V ar2

V ar

)

−
k2

r − k2
e

r2V ar2+2µr
2 Φc

(

lny − rV ar2 + µ

V ar

) k2 > r

Notes: a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite.
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Table 6: Coverage ratio of SCIE vs OECD SDBS database.

Number of Enterprises Total Employment Turnover

NACE Rev.2 1-9 10-19 20-49 50-249 > 250 Total 1-9 10-19 20-49 50-249 > 250 Total 1-9 10-19 20-49 50-249 > 250 Total

13 100 100 100
14 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100 100 100 100 100 100
16 100 100 100 100 100
17 100 100 100 100 100 100 100 100 100 100 100 100
18 100 100 100 100 100 100 100 100 100 100 100 100
19 100 100 100 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
21 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
22 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
23 100 100
24 100 100 100 100 100 100 100 100 100 100
25 100 100 100 100 100 100 100 100 100 100 100 100
26 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
27 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
28 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
29 100 100 100 100 100 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100
31 100 100 100 100 100 100 100 100 100 100 100 100 100 100
32 100 100 100 100 100 100 100 100 100 100 100 100 100 100
33 100 100 100 100 100 100 100 100 100 100 100 100
34 100 100 100 100 100 100 100 100 100 100 100 100
35 100 100 100 100 100 100 100 100 100 100 100 100
36 100 100 100 100 100 100 100 100 100 100 100 100 100 100
37 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
41 100 100 100 100 100 100 100 100 100 100 100 100 100 100
45 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
51 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
52 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
55 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
61 100 100 100 100 100 100 100 100 100 100 100 100
62 100 100 100 100 100 100 100 100 100 100 100 100
63 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100
70 100 100 100 100 100 100 100 100 100 100 100 100 100 100
71 100 100 100 100 100 100 100 100 100 100
72 100 100 100 100 100 100 100 100 100 100 100 100 100 100
73 100 100 100 100 100 100 100
74 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: Each cell corresponds to the ratio of our dataset compared to the data from the OECD structural SDBS database for the year 2006. Size classes are based
on total employment. Empty cells and absent industries are due to missing information from SBDS, even though the data is available in our SCIE database.
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Table 7: Distribution fits to Portuguese domestic sales in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b T 1
a S1

b Loglike RAIC RBIC

5-comp. Lognormal 14 0.18 0.11 3.08 2.37 12,776 1 3+++

(0.10;0.25) (0.08;0.32) (2.03;9.73) (0.82;26.24)

4-comp. Lognormal 11 0.19 0.11 2.78 0.13 12,770 2 2

(0.09;0.25) (0.08;0.32) (2.07;9.23) (0.83;24.67)

5-comp. Burr 19 0.19 0.12 - - 12,767 3 7+++

(0.10;0.25) (0.08;0.32) (-;-) (-;-)

4-comp. Burr 15 0.24 0.14 - - 12,754 4 6+++

(0.10;0.25)* (0.08;0.32) (-;-) (-;-)

3-comp. Burr 11 0.25 0.17 - - 12,748 6 4+++

(0.09;0.25)* (0.08;0.30) (-;-) (-;-)

2-comp. Burr 7 0.20 0.20 - - 12,745 5 1

(0.09;0.25) (0.08;0.32) (-;-) (-;-)

5-comp. Weibull 14 0.25 0.14 6.96 11.95 12,731 7 8+++

(0.10;0.25)** (0.08;0.31) (1.29;5.00)*** (0.59;13.45)*

3-comp. Lognormal 8 0.29 0.34 4.39 9.91 12,723 8 5+++

(0.10;0.24)** (0.09;0.32)** (2.34;11.34) (0.93;30.68)

5-comp. Gamma 14 0.26 0.16 7.27 0.09 12,639 9 9+++

(0.10;0.26)** (0.09;0.33) (1.29;5.11)*** (0.44;14.23)

Inv. Pareto-Burr 4 0.51 0.61 - - 12,561 10 10+++

(0.09;0.24)*** (0.08;0.33)*** (-;-) (-;-)

Inv. Pareto-Burr-Pareto 5 0.51 0.61 - - 12,561 11 11+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

5-comp. Exponential 9 0.32 0.23 7.96 0.15 12,548 12 12+++

(0.09;0.26)*** (0.09;0.31) (1.31;4.78)*** (0.40;12.83)

4-comp. Weibull 11 0.31 0.25 14.75 27.04 12,543 13 13+++

(0.09;0.25)*** (0.08;0.31) (0.87;3.44)*** (0.29;8.78)***

Burr-Pareto 4 0.73 0.95 - - 12,451 15 15+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

Burr 3 0.73 0.95 - - 12,451 14 14+++

(0.10;0.24)*** (0.08;0.31)*** (-;-) (-;-)

Double-Pareto Lognormal 4 0.66 0.80 - - 12,429 16 16+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)
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2-comp. Lognormal 5 0.53 0.71 8.70 10.15 12,401 17 17+++

(0.10;0.24)*** (0.09;0.32)*** (1.32;5.87)** (0.54;16.11)

Inv. Pareto-Lognormal-Pareto 4 0.81 1.01 - - 12,231 18 18+++

(0.09;0.26)*** (0.08;0.34)*** (-;-) (-;-)

4-comp. Gamma 11 0.40 0.63 11.95 0.26 12,173 19 19+++

(0.10;0.25)*** (0.08;0.32)*** (1.00;3.92)*** (0.26;10.38)

Inv. Pareto-Fréchet-Pareto 4 1.11 1.48 - - 11,953 20 20+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

3-comp. Weibull 8 0.69 0.92 20.31 39.45 11,855 21 21+++

(0.10;0.25)*** (0.09;0.31)*** (0.73;2.60)*** (0.23;6.78)***

4-comp. Exponential 7 0.57 0.89 13.91 0.36 11,801 22 22+++

(0.10;0.25)*** (0.09;0.32)*** (0.95;3.61)*** (0.34;9.44)

Inv. Pareto-Weibull-Pareto 4 1.60 2.00 - - 11,338 24 24+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Weibull-Pareto 3 1.60 2.00 - - 11,338 23 23+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Inv. Pareto-Gamma-Pareto 4 1.70 2.17 - - 11,249 26 26+++

(0.10;0.26)*** (0.08;0.35)*** (-;-) (-;-)

Gamma-Pareto 3 1.70 2.17 - - 11,249 25 25+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

Inv. Pareto-Exponential-Pareto 3 1.97 2.71 - - 11,044 27 27+++

(0.10;0.25)*** (0.09;0.33)*** (-;-) (-;-)

Exponential-Pareto 2 2.00 2.83 - - 11,012 28 28+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

3-comp. Gamma 8 1.00 1.56 19.47 0.62 10,288 29 29+++

(0.10;0.25)*** (0.09;0.32)*** (0.73;2.75)*** (0.30;7.18)

Inv. Pareto-Lognormal 3 3.02 4.26 45.72 127.97 9,198 30 30+++

(0.09;0.24)*** (0.08;0.31)*** (0.43;1.67)*** (0.16;4.36)***

Lognormal-Pareto 3 2.56 3.78 562.07 1683.18 8,721 31 31+++

(0.09;0.25)*** (0.08;0.32)*** (169.39;451.06)*** (371.67;1342.23)***

3-comp. Exponential 5 1.64 2.60 22.73 0.87 8,387 32 32+++

(0.09;0.25)*** (0.08;0.32)*** (0.67;2.36)*** (0.21;6.27)

Left-Pareto Lognormal 3 3.23 4.91 46.00 127.70 8,059 33 33+++

(0.10;0.25)*** (0.09;0.32)*** (0.41;1.58)*** (0.18;4.05)***

Right-Pareto Lognormal 3 2.82 4.38 19.27 49.88 8,028 34 34+++

(0.09;0.25)*** (0.08;0.32)*** (3.10;11.90)** (1.23;32.23)**

Lognormal 2 2.93 5.03 41.38 113.04 7,372 35 35+++
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(0.10;0.25)*** (0.08;0.33)*** (0.47;1.84)*** (0.17;4.76)***

2-comp. Weibull 5 2.10 3.19 35.20 72.85 6,442 36 36+++

(0.09;0.24)*** (0.08;0.31)*** (0.42;1.50)*** (0.16;3.80)***

2-comp. Fréchet 5 6.92 10.64 - - -3,041 37 37+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

5-comp. Fréchet 14 6.96 10.63 - - -3,045 40 40+++

(0.10;0.25)*** (0.09;0.31)*** (-;-) (-;-)

3-comp. Fréchet 8 6.96 10.63 - - -3,046 38 38+++

(0.09;0.25)*** (0.08;0.32)*** (-;-) (-;-)

4-comp. Fréchet 11 6.98 10.63 - - -3,047 39 39+++

(0.10;0.25)*** (0.09;0.32)*** (-;-) (-;-)

2-comp. Gamma 5 4.00 5.93 31.79 2.24 -3,381 41 41+++

(0.09;0.25)*** (0.08;0.32)*** (0.45;1.67)*** (0.14;4.45)

2-comp. Exponential 3 7.06 11.51 37.63 3.23 -18,112 42 42+++

(0.10;0.25)*** (0.08;0.33)*** (0.38;1.40)*** (0.14;3.52)*

Inv. Pareto-Weibull 3 9.18 16.52 54.06 123.38 -29,711 43 44+++

(0.10;0.25)*** (0.08;0.31)*** (0.26;0.92)*** (0.11;2.22)***

Weibull 2 9.18 16.51 54.06 123.40 -29,713 44 43+++

(0.09;0.25)*** (0.09;0.32)*** (0.25;0.90)*** (0.15;2.20)***

Fréchet 2 8.91 16.72 - - -32,908 45 45+++

(0.10;0.26)*** (0.08;0.33)*** (-;-) (-;-)

Fréchet-Pareto 3 8.91 16.72 - - -32,908 46 46.5+++

(0.10;0.25)*** (0.08;0.31)*** (-;-) (-;-)

Inv. Pareto-Fréchet 3 8.91 16.72 - - -32,908 46 46.5+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)

Inv. Pareto-Gamma 3 20.93 32.98 50.26 9.56 -104,785 48 48+++

(0.10;0.25)*** (0.08;0.33)*** (0.22;0.76)*** (0.13;1.81)***

Gamma 2 20.98 33.03 50.29 9.58 -104,878 49 49+++

(0.10;0.25)*** (0.08;0.32)*** (0.22;0.76)*** (0.11;1.71)***

Exponential 1 44.64 79.71 60.73 16.76 -299,935 50 50+++

(0.10;0.25)*** (0.09;0.33)*** (0.15;0.49)*** (0.11;1.08)***

Inv. Pareto-Exponential 2 44.64 79.71 60.73 16.76 -299,935 51 51+++

(0.09;0.24)*** (0.08;0.32)*** (0.15;0.51)*** (0.11;1.12)***

Pareto 2 48.34 68.18 - - -436,227 52 52+++

(0.09;0.25)*** (0.08;0.33)*** (-;-) (-;-)
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Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ∗∗∗, ∗∗, ∗ indicate

significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms of BIC (∆BIC) providing strong evidence

in favour of the first-ranked distribution (∆BIC > 10), moderate evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 8: Distribution fits to domestic sales of the Portuguese manufacturing sector in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Burr 19 0.24 0.02 -2,095 7 10+++

(0.25;0.66) (0.03;0.12)

5-comp. Lognormal 14 0.28 0.03 -2,095 3 5+++

(0.25;0.67) (0.03;0.12)

4-comp. Burr 15 0.24 0.02 -2,096 5 6+++

(0.25;0.67) (0.03;0.12)

3-comp. Burr 11 0.23 0.03 -2,099 4 3+++

(0.25;0.67) (0.03;0.12)

2-comp. Burr 7 0.22 0.02 -2,099 1 1

(0.25;0.66) (0.03;0.12)

3-comp. Lognormal 8 0.28 0.02 -2,101 2 2+++

(0.25;0.69) (0.03;0.12)

4-comp. Lognormal 11 0.27 0.02 -2,101 6 4+++

(0.25;0.67) (0.03;0.12)

5-comp. Weibull 14 0.34 0.03 -2,104 8 7+++

(0.26;0.65) (0.03;0.11)

5-comp. Gamma 14 0.31 0.04 -2,114 9 8+++

(0.26;0.66) (0.03;0.12)

4-comp. Weibull 11 0.40 0.04 -2,131 10 9+++

(0.26;0.65) (0.03;0.11)

5-comp. Exponential 9 1.29 0.15 -2,171 11 13+++

(0.25;0.66)*** (0.03;0.12)***

4-comp. Gamma 11 0.50 0.09 -2,178 12 15+++

(0.26;0.65) (0.03;0.12)

Inv. Pareto-Fréchet-Pareto 4 0.65 0.09 -2,187 13 11+++

(0.25;0.65)* (0.03;0.12)

Inv. Pareto-Burr 4 0.88 0.13 -2,197 14 12+++

(0.26;0.65)*** (0.03;0.12)**

Inv. Pareto-Burr-Pareto 5 0.88 0.13 -2,197 15 14+++

(0.25;0.69)*** (0.03;0.12)**

3-comp. Weibull 8 0.83 0.14 -2,222 16 17+++

(0.25;0.66)*** (0.03;0.11)**

2-comp. Lognormal 5 0.73 0.11 -2,232 17 16+++

(0.26;0.67)** (0.03;0.12)*

Double-Pareto Lognormal 4 1.08 0.17 -2,245 18 18+++

(0.26;0.66)*** (0.03;0.12)***

4-comp. Exponential 7 1.18 0.16 -2,251 19 20+++

(0.26;0.66)*** (0.03;0.12)***

Inv. Pareto-Lognormal-Pareto 4 1.27 0.18 -2,263 20 19+++

(0.25;0.66)*** (0.03;0.11)***

Burr-Pareto 4 1.18 0.25 -2,284 22 22+++

(0.26;0.67)*** (0.03;0.12)***

Burr 3 1.18 0.25 -2,284 21 21+++

(0.26;0.67)*** (0.03;0.12)***

Inv. Pareto-Gamma-Pareto 4 1.65 0.28 -2,346 23 24+++

(0.25;0.65)*** (0.03;0.12)***
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Inv. Pareto-Weibull-Pareto 4 1.62 0.28 -2,348 24 25+++

(0.25;0.68)*** (0.03;0.12)***

Gamma-Pareto 3 1.58 0.27 -2,355 26 26+++

(0.25;0.68)*** (0.03;0.12)***

Weibull-Pareto 3 1.58 0.27 -2,355 27 27+++

(0.27;0.67)*** (0.03;0.11)***

Exponential-Pareto 2 1.57 0.27 -2,355 25 23+++

(0.26;0.68)*** (0.03;0.12)***

Inv. Pareto-Exponential-Pareto 3 1.57 0.27 -2,355 28 28+++

(0.26;0.67)*** (0.03;0.12)***

3-comp. Gamma 8 1.01 0.20 -2,408 29 29+++

(0.26;0.68)*** (0.03;0.12)***

3-comp. Exponential 5 1.44 0.26 -2,608 30 30+++

(0.25;0.65)*** (0.03;0.12)***

Inv. Pareto-Lognormal 3 4.18 0.81 -2,875 31 31+++

(0.26;0.65)*** (0.03;0.12)***

2-comp. Weibull 5 2.19 0.43 -2,918 32 32+++

(0.25;0.66)*** (0.03;0.12)***

Lognormal-Pareto 3 3.25 0.64 -3,051 33 33+++

(0.25;0.67)*** (0.03;0.12)***

Left-Pareto Lognormal 3 4.39 0.89 -3,103 34 34+++

(0.25;0.65)*** (0.03;0.11)***

Right-Pareto Lognormal 3 3.51 0.73 -3,143 35 35+++

(0.26;0.66)*** (0.03;0.12)***

Lognormal 2 3.96 0.88 -3,250 36 36+++

(0.25;0.65)*** (0.03;0.11)***

2-comp. Gamma 5 3.35 0.71 -4,108 37 37+++

(0.25;0.65)*** (0.03;0.12)***

5-comp. Fréchet 14 8.11 1.79 -4,863 38 40+++

(0.26;0.67)*** (0.03;0.12)***

4-comp. Fréchet 11 8.35 1.80 -4,870 39 39+++

(0.25;0.66)*** (0.03;0.12)***

3-comp. Fréchet 8 8.59 1.82 -4,881 40 38+++

(0.26;0.67)*** (0.03;0.12)***

2-comp. Fréchet 5 9.55 1.92 -4,955 41 41+++

(0.25;0.67)*** (0.03;0.12)***

2-comp. Exponential 3 5.75 1.20 -5,550 42 42+++

(0.25;0.67)*** (0.03;0.12)***

Inv. Pareto-Weibull 3 9.91 2.42 -8,321 44 44+++

(0.26;0.65)*** (0.03;0.12)***

Weibull 2 9.91 2.42 -8,321 43 43+++

(0.26;0.67)*** (0.03;0.11)***

Inv. Pareto-Fréchet 3 10.04 2.61 -9,885 46 46+++

(0.26;0.68)*** (0.03;0.12)***

Fréchet-Pareto 3 10.04 2.61 -9,885 47 47+++

(0.25;0.69)*** (0.03;0.13)***

Fréchet 2 10.04 2.61 -9,885 45 45+++

(0.25;0.65)*** (0.03;0.11)***

Inv. Pareto-Gamma 3 20.68 4.43 -17,309 48 48+++

(0.26;0.67)*** (0.03;0.11)***

Gamma 2 20.72 4.44 -17,318 49 49+++
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(0.25;0.67)*** (0.03;0.12)***

Exponential 1 43.48 10.42 -41,128 50 50+++

(0.27;0.66)*** (0.03;0.12)***

Inv. Pareto-Exponential 2 43.48 10.42 -41,128 51 51+++

(0.26;0.65)*** (0.03;0.11)***

Pareto 2 49.14 9.43 -66,043 52 52+++

(0.26;0.65)*** (0.03;0.11)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 9: Distribution fits to Portuguese domestic sales leaving out the first and last 1,000 observa-
tions in 2006.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

4-comp. Lognormal 11 0.18 0.18 23,100 1 1

(0.09;0.24) (0.09;0.32)

5-comp. Lognormal 14 0.21 0.20 23,093 2 2+++

(0.09;0.24) (0.08;0.30)

3-comp. Lognormal 8 0.25 0.28 22,844 3 3+++

(0.10;0.25)* (0.09;0.31)*

5-comp. Weibull 14 0.33 0.27 22,764 4 4+++

(0.09;0.25)*** (0.08;0.32)

5-comp. Gamma 14 0.36 0.29 22,758 5 5+++

(0.09;0.24)*** (0.08;0.31)*

4-comp. Gamma 11 0.40 0.30 22,724 6 7+++

(0.09;0.24)*** (0.08;0.31)*

2-comp. Lognormal 5 0.29 0.26 22,695 7 6+++

(0.10;0.25)** (0.09;0.31)

4-comp. Weibull 11 0.40 0.29 22,691 8 8+++

(0.10;0.25)*** (0.08;0.31)*

4-comp. Exponential 7 0.60 0.34 22,544 9 9+++

(0.10;0.25)*** (0.08;0.33)**

5-comp. Exponential 9 0.59 0.36 22,541 10 10+++

(0.09;0.25)*** (0.08;0.32)**

3-comp. Burr 11 0.30 0.38 22,477 11 11+++

(0.09;0.26)*** (0.08;0.32)**

3-comp. Weibull 8 0.40 0.66 22,247 12 12+++

(0.09;0.24)*** (0.08;0.31)***

5-comp. Fréchet 14 0.67 0.56 22,240 13 13+++

(0.09;0.25)*** (0.08;0.32)***

3-comp. Gamma 8 0.56 0.88 22,132 14 14+++

(0.10;0.25)*** (0.09;0.32)***

4-comp. Fréchet 11 0.68 0.66 22,056 15 16+++

(0.09;0.26)*** (0.08;0.32)***

3-comp. Exponential 5 0.64 1.00 22,025 16 15+++

(0.10;0.25)*** (0.08;0.33)***

3-comp. Fréchet 8 0.67 0.65 21,911 17 17+++

(0.09;0.25)*** (0.09;0.33)***

2-comp. Burr 7 0.80 0.76 21,614 22 22+++

(0.09;0.25)*** (0.08;0.30)***

Inv. Pareto-Burr-Pareto 5 0.80 0.76 21,614 21 21+++

(0.09;0.24)*** (0.08;0.30)***

Inv. Pareto-Burr 4 0.80 0.76 21,614 19 19+++

(0.09;0.25)*** (0.08;0.32)***

Burr 3 0.80 0.76 21,614 18 18+++

(0.10;0.25)*** (0.08;0.32)***

Burr-Pareto 4 0.80 0.76 21,614 20 20+++

(0.09;0.24)*** (0.08;0.31)***

5-comp. Burr 19 0.80 0.76 21,614 23 24+++
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(0.09;0.25)*** (0.08;0.31)***

Double-Pareto Lognormal 4 1.04 1.36 21,592 24 23+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Lognormal-Pareto 4 1.18 1.51 21,179 25 25+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Lognormal 3 2.48 3.35 20,614 26 26+++

(0.10;0.25)*** (0.09;0.33)***

Right-Pareto Lognormal 3 2.02 3.25 20,585 27 27+++

(0.10;0.25)*** (0.08;0.33)***

Lognormal-Pareto 3 1.85 3.01 20,494 28 28+++

(0.10;0.25)*** (0.09;0.32)***

Left-Pareto Lognormal 3 2.49 3.70 20,423 29 29+++

(0.09;0.25)*** (0.08;0.33)***

Lognormal 2 2.35 3.68 20,407 30 30+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Fréchet-Pareto 4 1.46 2.06 20,193 31 31+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Weibull-Pareto 4 1.95 2.55 19,520 33 33+++

(0.10;0.25)*** (0.08;0.32)***

Weibull-Pareto 3 1.95 2.55 19,520 32 32+++

(0.09;0.25)*** (0.08;0.33)***

Inv. Pareto-Gamma-Pareto 4 2.06 2.75 19,441 35 35+++

(0.10;0.25)*** (0.09;0.32)***

Gamma-Pareto 3 2.06 2.75 19,441 34 34+++

(0.09;0.25)*** (0.09;0.34)***

2-comp. Weibull 5 1.31 2.24 19,404 36 38+++

(0.09;0.25)*** (0.08;0.32)***

Inv. Pareto-Exponential-Pareto 3 2.20 3.02 19,394 38 37+++

(0.09;0.24)*** (0.08;0.31)***

Exponential-Pareto 2 2.20 3.02 19,394 37 36+++

(0.09;0.24)*** (0.08;0.30)***

2-comp. Fréchet 5 1.49 2.25 19,272 39 39+++

(0.10;0.25)*** (0.08;0.32)***

2-comp. Gamma 5 2.30 3.50 16,675 40 40+++

(0.09;0.25)*** (0.08;0.32)***

2-comp. Exponential 3 3.73 5.90 13,268 41 41+++

(0.10;0.26)*** (0.08;0.33)***

Fréchet 2 7.68 12.96 -6,681 42 42+++

(0.09;0.26)*** (0.08;0.33)***

Fréchet-Pareto 3 7.68 12.96 -6,681 44 43.5+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Fréchet 3 7.68 12.96 -6,681 44 43.5+++

(0.10;0.25)*** (0.09;0.33)***

Inv. Pareto-Weibull 3 8.40 14.21 -8,737 46 46+++

(0.10;0.26)*** (0.09;0.33)***

Weibull 2 8.40 14.21 -8,738 45 45+++

(0.10;0.24)*** (0.09;0.31)***

Inv. Pareto-Gamma 3 15.94 24.26 -43,526 47 47+++

(0.09;0.26)*** (0.08;0.34)***

Gamma 2 15.94 24.27 -43,533 48 48+++

(0.09;0.24)*** (0.08;0.30)***
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Exponential 1 32.58 56.49 -139,654 49 49+++

(0.10;0.25)*** (0.08;0.32)***

Inv. Pareto-Exponential 2 32.58 56.49 -139,654 50 50+++

(0.10;0.25)*** (0.09;0.33)***

Pareto 2 37.07 55.02 -214,535 51 51+++

(0.09;0.25)*** (0.08;0.32)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.
+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 10: Distribution fits to the U.S. Census 2000 city size distribution.

Goodness of fit Information Criteria

Distribution Parms. T 0
a S0

b Loglike RAIC RBIC

5-comp. Burr 19 0.22 0.02 -6,004 3 9+++

(0.33;0.87) (0.02;0.09)

3-comp. Burr 11 0.25 0.02 -6,006 1 2++

(0.33;0.85) (0.02;0.10)

4-comp. Burr 15 0.32 0.02 -6,008 2 5+++

(0.33;0.83) (0.02;0.09)

5-comp. Lognormal 14 0.58 0.05 -6,016 6 6+++

(0.32;0.87) (0.02;0.10)

4-comp. Lognormal 11 0.60 0.05 -6,016 5 4+++

(0.32;0.82) (0.02;0.09)

3-comp. Lognormal 8 0.62 0.05 -6,017 4 1

(0.32;0.86) (0.02;0.09)

5-comp. Gamma 14 0.29 0.03 -6,033 7 10+++

(0.32;0.84) (0.02;0.09)

5-comp. Weibull 14 0.38 0.04 -6,037 9 12+++

(0.33;0.88) (0.03;0.10)

2-comp. Lognormal 5 0.71 0.05 -6,044 8 3+++

(0.33;0.82) (0.02;0.09)

2-comp. Burr 7 0.87 0.09 -6,056 10 7+++

(0.32;0.85)** (0.02;0.09)*

Right-Pareto Lognormal 3 1.33 0.17 -6,085 11 8+++

(0.31;0.84)*** (0.02;0.09)***

Double-Pareto Lognormal 4 1.39 0.17 -6,085 12 11+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Lognormal-Pareto 4 1.76 0.25 -6,135 14 14+++

(0.33;0.87)*** (0.02;0.09)***

Lognormal-Pareto 3 1.75 0.25 -6,135 13 13+++

(0.33;0.86)*** (0.02;0.10)***

4-comp. Weibull 11 0.69 0.08 -6,144 16 18+++

(0.32;0.82) (0.02;0.09)*

Inv. Pareto-Lognormal 3 1.90 0.27 -6,152 17 16+++

(0.33;0.84)*** (0.02;0.09)***

Lognormal 2 1.89 0.27 -6,152 15 15+++

(0.32;0.85)*** (0.02;0.09)***

Left-Pareto Lognormal 3 3.12 0.42 -6,152 18 17+++

(0.98;1.93)*** (0.14;0.29)***

4-comp. Gamma 11 0.99 0.11 -6,163 19 19+++

(0.33;0.84)** (0.02;0.09)**

5-comp. Fréchet 14 1.73 0.15 -6,172 21 21+++

(0.33;0.85)*** (0.02;0.09)***

4-comp. Fréchet 11 1.57 0.14 -6,174 20 20+++

(0.33;0.85)*** (0.02;0.09)***

5-comp. Exponential 9 1.94 0.11 -6,260 22 23+++

(0.32;0.86)*** (0.02;0.10)**

3-comp. Fréchet 8 1.61 0.17 -6,261 23 22+++

(0.32;0.83)*** (0.02;0.09)***
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4-comp. Exponential 7 1.79 0.14 -6,298 24 24+++

(0.32;0.84)*** (0.02;0.09)***

Inv. Pareto-Burr 4 2.17 0.30 -6,370 26 26+++

(0.33;0.85)*** (0.03;0.09)***

Inv. Pareto-Burr-Pareto 5 2.17 0.30 -6,370 28 28+++

(0.32;0.85)*** (0.02;0.10)***

Burr-Pareto 4 2.17 0.30 -6,370 27 27+++

(0.32;0.85)*** (0.02;0.09)***

Burr 3 2.17 0.30 -6,370 25 25+++

(0.32;0.84)*** (0.02;0.09)***

3-comp. Weibull 8 1.71 0.18 -6,393 29 29+++

(0.32;0.84)*** (0.02;0.10)***

Inv. Pareto-Fréchet-Pareto 4 3.05 0.40 -6,530 30 30+++

(0.33;0.83)*** (0.02;0.09)***

3-comp. Gamma 8 2.37 0.25 -6,532 31 32+++

(0.33;0.85)*** (0.02;0.09)***

2-comp. Fréchet 5 2.55 0.32 -6,538 32 31+++

(0.32;0.84)*** (0.02;0.09)***

3-comp. Exponential 5 2.76 0.28 -6,633 33 33+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Weibull-Pareto 4 3.60 0.48 -6,829 35 35+++

(0.32;0.86)*** (0.02;0.09)***

Weibull-Pareto 3 3.60 0.48 -6,829 34 34+++

(0.32;0.88)*** (0.02;0.10)***

Inv. Pareto-Gamma-Pareto 4 3.87 0.52 -6,848 37 39+++

(0.31;0.87)*** (0.02;0.09)***

Gamma-Pareto 3 3.87 0.52 -6,848 36 37+++

(0.32;0.84)*** (0.02;0.10)***

Inv. Pareto-Exponential-Pareto 3 3.96 0.54 -6,851 39 38+++

(0.32;0.82)*** (0.02;0.09)***

Exponential-Pareto 2 3.96 0.54 -6,851 38 36+++

(0.32;0.85)*** (0.03;0.09)***

2-comp. Weibull 5 2.96 0.32 -6,920 40 40+++

(0.32;0.87)*** (0.03;0.09)***

Fréchet-Pareto 3 4.60 0.64 -7,404 42 42.5+++

(0.32;0.85)*** (0.02;0.09)***

Inv. Pareto-Fréchet 3 4.60 0.64 -7,404 42 42.5+++

(0.33;0.85)*** (0.02;0.09)***

Fréchet 2 4.60 0.64 -7,404 41 41+++

(0.32;0.84)*** (0.02;0.09)***

2-comp. Gamma 5 4.23 0.54 -7,694 44 44+++

(0.32;0.86)*** (0.02;0.10)***

2-comp. Exponential 3 7.16 0.84 -8,488 45 45+++

(0.33;0.84)*** (0.03;0.09)***

Inv. Pareto-Weibull 3 8.31 1.13 -9,030 47 47+++

(0.32;0.85)*** (0.02;0.09)***

Weibull 2 8.31 1.13 -9,030 46 46+++

(0.32;0.82)*** (0.02;0.09)***

Inv. Pareto-Gamma 3 16.40 2.26 -13,169 48 49+++

(0.33;0.84)*** (0.02;0.09)***

Gamma 2 16.42 2.26 -13,171 49 48+++
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(0.32;0.87)*** (0.02;0.10)***

Exponential 1 37.71 5.58 -25,359 50 50+++

(0.32;0.87)*** (0.02;0.09)***

Inv. Pareto-Exponential 2 37.71 5.58 -25,359 51 51+++

(0.32;0.85)*** (0.02;0.09)***

Pareto 2 41.69 5.06 -31,612 52 52+++

(0.33;0.83)*** (0.02;0.09)***

Notes: All distributions fitted using Maximum Likelihood.

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic

with 999 replications. ∗∗∗, ∗∗, ∗ indicate significance of this test at 1%, 5% and 10% respectively.

+++, ++, + indicates the difference between this distribution’s BIC and the first-ranked distribution in terms

of BIC (∆BIC) providing strong evidence in favour of the first-ranked distribution (∆BIC > 10), moderate

evidence (6 < ∆BIC ≤ 10) and weak evidence (2 < ∆BIC ≤ 6) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.
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Table 11: Decomposition of procentual welfare gains from a reduction in variable trade costs τ ij = 3 → (τ ij)′ = 1.

Distribution Parms. ln
U′

i
Ui

ln
τ ′

ij

τij
ln

M′

i
Mi

ln
1−G(ω∗

ij)
′

1−G(ω∗

ij
)

ln
ω̃(ω∗

ij)
′

ω̃(ω∗

ij
)

ln
λ′

ij

λij

Pareto 2 - 1.10 - - - -

(-0.00;0.00)*** (1.10;1.10) (-0.22;-0.22)*** (-0.00;0.00)*** (0.00;0.00)*** (-0.88;-0.88)***

Weibull 2 0.15 1.10 -0.16 0.12 1.35 -2.26

(0.15;0.15)*** (1.10;1.10) (-0.16;-0.16)*** (0.12;0.13)*** (1.30;1.41)*** (-2.32;-2.21)***

Inv. Pareto-Weibull 3 0.15 1.10 -0.16 0.12 1.35 -2.26

(0.15;0.15)*** (1.10;1.10) (-0.16;-0.16)*** (0.12;0.13)*** (1.30;1.41)*** (-2.32;-2.21)***

Left-Pareto Lognormal 3 0.16 1.10 -0.17 0.15 0.60 -1.51

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.58;0.62)*** (-1.53;-1.49)***

Inv. Pareto-Lognormal 3 0.17 1.10 -0.17 0.15 0.58 -1.49

(0.16;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.56;0.60)*** (-1.51;-1.47)***

Lognormal 2 0.17 1.10 -0.17 0.15 0.53 -1.44

(0.17;0.17)*** (1.10;1.10) (-0.17;-0.17)*** (0.15;0.15)*** (0.51;0.55)*** (-1.46;-1.42)***

Right-Pareto Lognormal 3 0.18 1.10 -0.18 0.17 0.28 -1.19

(0.18;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.23;0.33)** (-1.24;-1.13)**

2-comp. Weibull 5 0.18 1.10 -0.13 0.11 0.57 -1.46

(0.18;0.18)*** (1.10;1.10) (-0.14;-0.13)*** (0.11;0.11)*** (0.56;0.59)*** (-1.48;-1.45)***

3-comp. Weibull 8 0.19 1.10 -0.19 0.18 0.25 -1.16

(0.18;0.19)*** (1.10;1.10) (-0.19;-0.19)*** (0.18;0.19)*** (0.25;0.26)*** (-1.17;-1.15)***

4-comp. Weibull 11 0.19 1.10 -0.18 0.17 0.22 -1.12

(0.19;0.19)*** (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.21;0.23)*** (-1.13;-1.11)***

5-comp. Weibull 14 0.19 1.10 -0.18 0.18 0.22 -1.12

(0.19;0.19)** (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.21;0.23)*** (-1.14;-1.11)***

Empirical 0 0.19 1.10 -0.18 0.18 0.20 -1.10

4-comp. Lognormal 11 0.19 1.10 -0.18 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.18;0.22) (-1.13;-1.08)

5-comp. Lognormal 14 0.19 1.10 -0.19 0.18 0.20 -1.10

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.19) (0.17;0.22) (-1.12;-1.07)

2-comp. Lognormal 5 0.19 1.10 -0.17 0.17 0.23 -1.13

(0.19;0.19) (1.10;1.10) (-0.18;-0.17)*** (0.16;0.17)*** (0.22;0.25)*** (-1.15;-1.12)***

3-comp. Lognormal 8 0.19 1.10 -0.18 0.18 0.19 -1.09

(0.19;0.19) (1.10;1.10) (-0.19;-0.18) (0.17;0.18) (0.16;0.22) (-1.12;-1.06)

Lognormal-Pareto 3 0.22 1.10 -0.22 0.22 0.02 -0.90

(0.20;0.21)*** (1.10;1.10) (-0.22;-0.20)*** (0.20;0.22)*** (0.04;0.14)*** (-1.04;-0.93)***
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Burr 3 - 1.10 - - - -

(0.20;0.21)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.03;0.12)*** (-1.02;-0.92)***

2-comp. Burr 7 - 1.10 - - - -

(0.19;0.20) (1.10;1.10) (-0.20;-0.18) (0.17;0.20) (0.10;0.22) (-1.12;-1.00)

3-comp. Burr 11 - 1.10 - - - -

(0.19;0.20)** (1.10;1.10) (-0.21;-0.18) (0.18;0.21) (0.08;0.20) (-1.11;-0.97)

4-comp. Burr 15 - 1.10 - - - -

(0.19;0.21)** (1.10;1.10) (-0.21;-0.18)** (0.18;0.21)** (0.07;0.20)** (-1.10;-0.96)**

5-comp. Burr 19 - 1.10 - - - -

(0.19;0.21)*** (1.10;1.10) (-0.22;-0.19)*** (0.18;0.22)*** (0.05;0.19)*** (-1.09;-0.94)***

Burr-Pareto 4 - 1.10 - - - -

(0.20;0.21)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.02;0.12)*** (-1.02;-0.91)***

Double-Pareto Lognormal 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.20;-0.19)*** (0.19;0.20)*** (0.02;0.09)*** (-0.98;-0.90)***

Fréchet 2 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)*** (0.00;0.01)*** (-0.89;-0.88)***

2-comp. Fréchet 5 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.10)*** (0.10;0.15)*** (0.00;0.01)*** (-0.89;-0.88)***

3-comp. Fréchet 8 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.11)** (0.11;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

4-comp. Fréchet 11 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.11)** (0.11;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

5-comp. Fréchet 14 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.15;-0.10)*** (0.10;0.15)** (0.00;0.01)*** (-0.89;-0.88)***

Fréchet-Pareto 3 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)*** (0.00;0.01)*** (-0.89;-0.88)***

Inv. Pareto-Burr 4 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.21)*** (0.02;0.11)*** (-1.00;-0.90)***

Inv. Pareto-Burr-Pareto 5 - 1.10 - - - -

(0.20;0.22)*** (1.10;1.10) (-0.21;-0.19)*** (0.19;0.20)*** (0.02;0.11)*** (-1.00;-0.90)***

Inv. Pareto-Fréchet 3 - 1.10 - - - -

(0.22;0.22)*** (1.10;1.10) (-0.14;-0.08)*** (0.08;0.14)** (0.00;0.01)*** (-0.89;-0.88)***

Inv. Pareto-Fréchet-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.19;-0.18) (0.18;0.19)** (0.01;0.07)*** (-0.96;-0.89)***

Inv. Pareto-Lognormal-Pareto 4 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.20;-0.18) (0.18;0.20)*** (0.01;0.08)*** (-0.97;-0.89)***

Inv. Pareto-Weibull-Pareto 4 - 1.10 - - - -
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(0.21;0.22)*** (1.10;1.10) (-0.18;-0.16)** (0.16;0.18) (0.00;0.05)*** (-0.93;-0.88)***

Weibull-Pareto 3 - 1.10 - - - -

(0.21;0.22)*** (1.10;1.10) (-0.18;-0.16)** (0.16;0.18) (0.00;0.05)*** (-0.93;-0.88)***

Notes: Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ∗∗∗, ∗∗, ∗ indicate

the rejection of a signifcant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.
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Appendix B Motivation and identification of generative processes

for mixture models

FMMs can be utilized in two ways. First, they can be used as a semi-parametric, flexible approx-

imation of the overall distribution, which is the case in this paper. Second, they are model-based

clustering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While

both applications rely on the idea that discrete subpopulations define the overall distribution, the

semi-parametric approximation does not claim to identify these subpopulations. In this appendix,

we conceptualize possible Data Generative Processes (DGPs) for FMMs based on theoretical and

empirical work in the economics literature. We then elaborate on the identification difficulties/op-

portunities of the underlying mixture components in the context of productivity distributions.

B.1 Generative processes

Many economic models rely on the assumption that the firm size distribution originates from firm

dynamics in productivity (see for instance Hopenhayn (1992); Luttmer (2007); Rossi-Hansberg and

Wright (2007); Costantini and Melitz (2008); Arkolakis (2016)). In this section, we will use a

simplified version of such productivity dynamics for explanatory purposes. Consider productivity

dynamics specified as a first-order autoregressive process:

lnωbt = c+ ρlnωbt−1 + ηbt, (1)

where ηbt is a white noise process with zero mean and constant variance σ2.

There exists empirical evidence arguing that productivity dynamics, and therefore the resulting

productivity distributions, are endogenous to exporting (De Loecker, 2013), importing (Kasahara

and Rodrigue, 2008), innovation (Aw et al., 2011), management practices (Bloom and Reenen, 2011;

Caliendo et al., 2020), . . . Overall, there are “many sources of heterogeneity that support the idea

of discrete subpopulations likely to differ in important characteristics . . . ” (Perline (2005),p.80).

In the case of exporting, the endogenous evolution of productivity results in an exporting pro-

ductivity premium. This can empirically be observed from the standard textbook comparison of

cross-sectional productivity densities between exporting and non-exporting firms (see Figure 5).

Building on equation 1, a simplified version of the empirical specification to identify such exporting

productivity premium, and replicate Figure 5, is essentially a specifically parametrized FMM:

lnωbt = α0 + β0EXPb + α1lnωbt−1 + β1EXPb × lnωbt−1 + ηbt

= EXPb [β0 + β1lnωbt−1] + (1− EXPb) [α0 + α1lnωbt−1] + ηbt, (2)

with EXPb a dummy variable that takes the value 1 when the firm b is an exporter and 0

otherwise.

Whereas the components are identified by means of an exporter dummy variable in this example,
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0.0
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log(Productivity)

Density

Firm type All Domestic Exporters

Figure 5: Productivity density of Portuguese firm productivity in 2006 for all, exporting- and non-
exporting firms.
Notes: Productivity is measured as domestic sales (relative to the mean) to the power of 1/(σ − 1) with σ, the

elasticity of substitution between varieties, set to four.

FMMs are a semi-parametric specification that remain agnostic about the (possibly multiple) de-

terminants of the unobserved components and allow the data to determine these components:1

lnωbt =
I∑

i=1

I
i
b

[
βi
0 + βi

1lnωbt−1

]
+ ηbt. (3)

B.2 Identification

As stated before, the use of FMM’s can focus on the semi-parametric, flexible approximation of the

overall distribution or on model-based clustering. This paper purely focuses on the semi-parametric

approximation, with good reason. First, we take no à-priori stance on distributional specification.2

Second, even if one is willing to assume distributional specification such as the Lognormal, the

underlying components remain unidentifiable in the current setting. As the overall distribution is

1Note that, for simplicity, we specify the variance to be constant between components. FMMs in the main analysis
allow for the variance to differ between components.

2The empirical evidence in this paper seems to favor a Lognormal specification. This can be motivated from two
perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with sufficient components
is assumed to be able to approach all distributions (McLachlan and Peel, 2000). From a generative perspective for
individual components, the Lognormal distribution is the realization of applying the Central Limit Theorem (CLT)
in the log domain: firm heterogeneity will approximately be Lognormal if it is the multiplicative product of many
independent random variables. Whereas firm heterogeneity reduces to firm-level productivity in the Melitz (2003)-
model, it has been argued to be multi-dimensional when taking into consideration for instance the product dimension
(Bernard et al., 2009) or uncertainty in demand and/or supply (see (De Loecker, 2011; Bas et al., 2017; Sager and
Timoshenko, 2019; Gandhi et al., 0) . . . )
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unimodal (see Figure 5), there is a large overlap between the underlying individual densities. These

individual densities will therefore be poorly identified. Indeed, Figure 6 displays the posterior

probability distribution for each component of the fitted 4-component Lognormal mixture from

the main text. Whereas well-identified components have a large weight near zero and 1, average

probabilities lie close to 0.25 in our case, and are therefore not well-identified. While the overall

distribution can be closely approximated, the large overlap of individual densities results in a large

uncertainty on which observation can be assigned to which density. Neither the parameter estimates

used to characterize the clusters nor the partitions derived can therefore be uniquely determined,

rendering the interpretation of results in terms of clustering futile (Follmann and Lambert, 1991;

Hennig, 2000; Grün, 2018; Grün and Leisch, 2008).

Class 1 Class 2 Class 3 Class 4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

20000

40000

60000

Posterior

Count

Figure 6: Posterior probability distribution for each component of the 4-components Lognormal
mixture.

Future research might resolve the identifiability problem relying on panel rather than cross-

sectional data. The problem as specified now is a problem in levels (the cross-section), where

it appears there is insufficient distance between different components for them to be identified.

From empirical evidence, however, it can be deduced that the different components likely originate

from differences in growth rates (Kasahara and Rodrigue, 2008; Aw et al., 2011; De Loecker, 2013;

Caliendo et al., 2020). Tracking the growth rates of individual firms over time might allow for the

variation needed to identify the components of the overall distribution.

This observation can be easily illustrated using simulated data. Building on the example of

the previous paragraph, imagine lnωbt follows an AR(1)-process with an exporting productivity

premium of 20%:

lnωbt = 1 + 1.2× EXPb + 0.7× lnωbt−1 + ηbt,

with ηbt ∼ N (0, 0.3). We simulate this evolution for 200 exporters (EXPb = 1) and 800 purely

domestic businesses over 10 years.3 The firm densities of the simulated data will look similar to

3When simulating, we allow for a run-in period of 90 years.
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Figure 5, with two densities largely overlapping but the exporter productivity density located on

the right of domestic firms density.

If we fit, as in our main analysis, a FMM on the cross-sectional data of a selected (the first)

year, we obtain a familiar posterior probability distribution (see Figure 7). Individual clusters are

not well-identified. Exploiting the panel dimension of the data,4 however, results in well-identified

components. As can be observed in Figure 8, the posterior probabilities predominantly take the

values zero or one. Once components are well-identified, one can try to determine which mechanisms

motivate the existence of FMMs from a generative perspective.

Class 1 Class 2
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Figure 7: Cross-sectional posterior probability
distribution for each component of the simulated
2-components normal mixture.

Class 1 Class 2
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Figure 8: Panel posterior probability distribu-
tion for each component of the simulated 2-
components normal mixture.

4Specifically, the EM estimation procedure is adapted to take into account panel data. The component probab-
ilities in our main analysis are specified over the complete data (eq. 9):

π
(s)
bi = E

[

zbi|ωb,Ψ
(s−1)

]

=
π
(s−1)
i mi(ωb|θ

(s−1)
i )

∑I

i=1 π
(s−1)
i mi(ωb|θ

(s−1)
i )

.

When working with panel data, we adapt this specification to take into account the time dimension:

π
(s)
bi = E

[

zbi|ωbt,Ψ
(s−1)

]

=
π
(s−1)
i

∏T

t=1 mit(ωbt|θ
(s−1)
i )

∑I

i=1 π
(s−1)
i

∏T

t=1 mit(ωbt|θ
(s−1)
i )

.

Note that the probabilities are specified to be constant over time, meaning that we do not allow for regime switching
in this exercise.
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Appendix C Heterogeneous firms model

This appendix provides a detailed description of the heterogeneous firms models relied upon in the

paper. We follow (Dewitte, 2020) in presenting a firm heterogeneous open economy model of Melitz

(2003) with a finite number of firms. The model features Constant Elasticity of Substitution (CES)-

demand and monopolistic competition between a finite number of firms who ignore their aggregate

impact (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), while remaining

agnostic on the parametric specification of firm-level heterogeneity. For the number of firms going

to infinity, the model is equivalent to the Melitz (2003)- model.

C.1 Setup

Demand Consumer preferences in country j ∈ J are defined over a finite number of horizontally

differentiated varieties (̟ ∈ Ωi) originating from country i ∈ I and are assumed to take the

Constant Elasticity of Substitution (CES) utility (U) form

U j =





I∑

i=1

∑

̟∈Ωi

qij (̟)
σ−1
σ d̟





σ
σ−1

, (4)

with σ the elasticity of substitution between varieties. Utility maximization defines the optimal

consumption and expenditure decisions over the individual varieties

qij(̟)

Qj
=

[
pij(̟)

P j

]−σ

, (5)

where the set of varieties consumed is considered as an aggregate good Q ≡ U and P is the CES

aggregate price index.

Supply There is a finite number of businesses (b ∈ B) which choose to supply a distinct horizontally-

differentiated variety. They are heterogeneous in terms of their productivity ωb ∈ [0,∞] drawn from

the unconditional Cumulative Distribution Function (CDF) G(ωb) after paying a fixed cost f ie in

terms of production factor Li to enter the market.5 There is zero probability of firm death.6 Supply

of the production factor to the individual firm is perfectly elastic, so that firms are effectively price

(W i) takers on the input markets. Once active, firms from country i have to pay a fixed cost f ij

to produce goods destined for country j. The cost function of the firm involves a fixed production

cost, iceberg trade costs τ ij > 1 and a constant marginal costs that depends on its productivity:

f ij +
(
τ ijqij

ω

)

W i. Profit maximization of the firm, then:

5As ωb is the sole heterogeneity component identifying individual firms, we drop the subscript b in further
derivations.

6The static specification in which there is zero probability of firm death follows most of the international trade
literature.
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max
qij

πij = max
qij

[

pijqij −
(

f ij − τ ijqij

ω

)

W i

]

= max
qij

[
(
qij
)σ−1

σ
(
Qj
) 1

σ P j −
(

f ij − τ ijqij

ω

)

W i

]

, (6)

results in an optimal quantity produced:

∂πij

∂qij
= 0

⇔
σ − 1

σ

(
qij
)− 1

σ
(
Qj
) 1

σ P j =
τ ijW i

ω

⇔

qij =

(
σ

σ − 1

τ ijW i

ω

)−σ

Qj
(
P j
)σ

. (7)

and an equilibrium price as a constant markup over marginal costs pij = σ
σ−1

τ ijW i

ω :

(
qij

(Qj)

)−1
σ

P j = pij

pij =
σ

σ − 1

τ ijW i

ω
. (8)

The realized revenue expression for firms from country i selling in destination j at time t can

then be expressed as:

xij = pijqij =
(
qij
)σ−1

σ
(
Qj
) 1

σ P j

=

(
σ

σ − 1

τ ijW i

ω

)1−σ

Qj
(
P j
)σ

(9)

C.2 Operating decisions

In line with (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), we assume

that the marginal firm ignores the impact its own production level on the aggregate economy. The

necessary productivity levels for serving each market are then determined by the zero cutoff profit

conditions.
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πij = 0 = pijqij −
(

f ij − τ ijqij

ωij∗

)

W i,

=

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ

Qj
(
P j
)σ − f ijW i −

(
σ

σ − 1

τ ijW i

ωij∗

)−σ

Qj
(
P j
)σ τ ij

ωij∗W
i,

=

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ

Qj
(
P j
)σ − f ijW i −

(
σ

σ − 1

)−σ (
τ ijW i

ωij∗

)1−σ

Qj
(
P j
)σ

,

=

(

1− σ − 1

σ

)(
σ

σ − 1

τ ijW i

ωij∗

)1−σ

Qj
(
P j
)σ − f ijW i,

⇔

σf ijW i =

(
σ

σ − 1

τ ijW i

ωij∗

)1−σ

Qj
(
P j
)σ

. (10)

Combining the zero cutoff profit conditions allows us to write the export cutoff as a function of

a foreign domestic productivity cutoff, variable and fixed costs and the wages:

ωij∗ =

(
W i

W j

) σ
σ−1

(
f ij

f jj

) 1
σ−1

(
τ ij

τ jj

)

ωjj∗. (11)

Similarly, we can combine the zero cutoff profit conditions from a single origin country, linking

the domestic and export productivity cutoffs:

ωij∗ =
τ ij

τ ii

(
P j

P i

) σ
1−σ

(
Qi

Qj

f ij

f ii

) 1
σ−1

ωii∗. (12)

In this paper, we focus on parameter values such that there is, in line with empirical evidence,

selection into exporting (ωij∗ > ωii∗). This implies

• A large fixed cost of exporting relative to the fixed cost of production. The revenue required

to cover the fixed export cost is then large relative to the revenue required to cover the fixed

production cost, implying that only firms of high productivity find it profitable to serve both

markets.

• A high home price index relative to the foreign price index, and a large home market relative

to the foreign market. Only high productivity firms receive enough revenue in the relatively

small and competitive foreign market to cover the fixed cost of exporting.

• Variable trade costs increase the exporting productivity cutoff relative to the zero-profit pro-

ductivity cutoff by increasing prices and reducing revenue in the export market.

The equilibrium value of these cutoffs are uniquely determined by the free entry condition,

requiring the probability of successful entry times the expected future value of entry conditional

upon successful entry to equal the sunk entry cost:
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J∑

j=1

E
[
πij |ω > ωij∗] = f ieW i

J∑

j=1

1

B

B∑

b=1

I
(
ω > ωij∗)πij = f ieW i

J∑

j=1

1

B

B∑

b=1

I
(
ω > ωij∗)

[

1

σ

(
σ

σ − 1

τ ijW i

ω

)1−σ

Qj
(
P j
)σ − f ijW i

]

= f ieW i

J∑

j=1

f ijW i 1

B

B∑

b=1

I
(
ω > ωij∗)

[( ω

ωij∗

)σ−1
− 1

]

= f ieW i

J∑

j=1

f ij

[

(
ωij∗)1−σ 1

B

B∑

b=1

I
(
ω > ωij∗)ωσ−1 − 1

B

B∑

b=1

I
(
ω > ωij∗)ω0

]

= f ie

J∑

j=1

f ij
[(
ωij∗)1−σ

mσ−1
ωij∗ −m0

ωij∗

]

= f ie, (13)

where we denote by mr
y the y-bounded, r-th sample moment of the productivity distribution.

For the number of firms going to infinity, the law of large numbers kicks in such that we replace

these sample moments with their continuous equivalent
(

µr(y) =
∫∞
y ωrg(ω)dω

)

, providing us with

the well-known continuous free-entry equation as specified by (Melitz, 2003).

Using the relation between productivity cutoffs (eq. 11), the free entry condition (eq. 13)

determines a unique equilibrium values of these cutoffs.7 Thus, a parametrization of the Melitz

(2003)-model in relation to firm heterogeneity relies solely on the bounded (by the respective pro-

ductivity cutoffs) 0th and (σ−1)th moments of the productivity distribution (Nigai, 2017; Dewitte,

2020).

C.3 Aggregation

Summing equation 9 across all active firms, we obtain an expression for aggregate trade between

country i and j:

Xij =

(
σ

σ − 1
τ ijW i

)1−σ

Qj
(
P j
)σ

M iemσ−1
ωij∗ (14)

The number of successful entrants
[
1−G(ωii∗)

]
M ie is specified as the ratio of aggregate over

average revenue:

7Sufficient conditions for this equilibrium to exist are that the term in brackets of equation (13) is (i) finite and

(ii) a decreasing function of the cutoffs (Melitz, 2003, p.1704). The second condition corresponds to g(x)x
1−G(x)

increasing

to infinity on (0,∞).
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M i =
[
1−G(ωii∗)

]
M ie =

Xi

E [xi]
. (15)

We can rewrite this number of firms, using the free entry condition, goods and labor market

clearing
(
Xi = W iLi

)
, as a function of exogenous variables:

M i =
W iLi

σ
(

f ie

1−G(ωii∗)
+
∑J

j=1
1−G(ωij∗)
1−G(ωii∗)

f ij
)

W i

=
Li

σ
(

f ie

1−G(ωii∗)
+
∑J

j=1
1−G(ωij∗)
1−G(ωii∗)

f ij
) . (16)

Assuming a two-country symmetric economy and setting the wage of the composite factor as

the numeraire, welfare can be calculated as the inverse of the price index

W
i = (P i)−1. (17)

The price index can be deduced from equation 14:

P j =

[(
σ

σ − 1
τ ijW i

)1−σ 1

λij

M i

1−G(ωii∗)
mσ−1

ωij∗

] 1
1−σ

, (18)

where we denote the bilateral trade share by λij = Xij

Xj .

The percentage changes in welfare from a change in variable trade costs (τ → τ
′) can then

written as:

100× ln
(Wi)′

Wi
= 100×−ln

(P i)′

P i
(19)

= 100×−ln
(P j)′

P j

= 100×−
[

ln
(τ ij)′

(τ ij)
− 1

σ − 1

(

ln
(M i)′

M i
− ln

1−G(ωii∗)′

1−G(ωii∗)
+ ln

(mσ−1
ωij∗)

′

mσ−1
ωij∗

− ln
(λij)′

λij

)]

= 100×−
[

ln
(τ ij)′

(τ ij)
− 1

σ − 1

(

ln
(M i)′

M i
− ln

(m0
ωij∗)

′

m0
ωij∗

+ ln
(mσ−1

ωij∗)
′

mσ−1
ωij∗

− ln
(λij)′

λij

)]

.
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C.4 Parametrization

In order to parametrize the previously described model, we need to parametrize two statistics related

to the productivity distribution: the 0th and (σ − 1)the y-bounded moments of the productivity

distribution (Nigai, 2017). As described in (Dewitte, 2020), this corresponds to the 0th and 1st y-

bounded moments of the sales distribution if the parametric distribution is stable under power-law

transformations.

Assuming a parametric distribution and under the assumption of an infinite number of firms,

we can calculate the necessary analytical expressions using the distributional parameters from our

empirical analysis to capture heterogeneity. This is the standard approach in the literature. Fol-

lowing (Nigai, 2017; Dewitte, 2020), we can also capture heterogeneity directly from the empirical,

finite, data. To allow comparison between GFT obtained assuming a parametric distribution and

GFT obtained from the finite data, we perform a parametric bootstrap. This parametric bootstrap

generates a range of finite sample estimates under the hypothesis that the observed data is generated

by a certain parametric distribution (Dewitte, 2020).

C.4.1 Continuum of firms

When there are an infinite number of firms, the parametrization of the heterogeneity distribution

consists of calculating the y-bounded 0th and 1st population moments of the sales distribution:

µr
y =

∫ ∞

y
xrg(x)dx. (20)

The analytical expressions of these parametric implied population moments are gathered in

Table 4 and 5 for all distributions considered. As bounded moments are not generally available, the

mathematical elaboration on how to obtain these expressions can be found in the section D.

C.4.2 Finite number of firms

Under the assumption of a finite number of firms in the economy, the parametrization of the model

consists of calculating the y-bounded 0th and 1st moment of the sales distribution:

mr
y =

1

B

B∑

b=1

I (x > y)xr. (21)

These moments can easily be retrieved if the data is available. To allow comparison between GFT

obtained assuming a parametric distribution and GFT obtained from the finite data, we perform a

parametric bootstrap. This parametric bootstrap generates a range of finite sample estimates under

the hypothesis that the observed data is generated by a certain parametric distribution:

1. Assume B i.i.d. random variables with distribution G(·|θ), with empirical finite sample mo-

ments mr
y for r = 0, 1, as specified in equation 21 and corresponding GFTB;
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2. Estimate the parameters θ of the distribution using MLE, calculate the parametric plug-

in population moments as specified in equation 20, µ̂r(y|θ̂) for r = 0, 1, and corresponding

ˆGFT (θ̂);

3. H0 : GFT = ˆGFT (θ̂);

4. Draw N bootstrap samples of size B from G(·|θ̂);

5. For each sample of the parametric distribution, calculate the bootstrapped sample moments

(mr
y)

∗ and calculate the corresponding GFT ∗
B.8

6. The p-value for the left-, and right-tailed test is then respectively specified as:

p̂l =
1

N + 1

[
N∑

n=1

I (GFT ∗
B ≥ GFTB) + 1

]

; p̂r =
1

N + 1

[
N∑

n=1

I (GFT ∗
B ≤ GFTB) + 1

]

.

(22)

The bootstrap exercise should therefore be interpreted as ‘the likelihood of observing GFT

as small or as large as GFTB under the null hypothesis that the observed data originates from

the parametric distribution G(·|θ)’, allowing us to evaluate whether the distributional assumption

provides a good fit to calculate GFT within the proposed model.

When calculating the bounded sample moments, complications can arise related to the lower

bound y. This lower bound is ex ante unknown, can take values not observed in the data and/or

resides in an unrepresentative part of the finite dataset.9 We address each issue below and argue

that these complications have little influence on our results.

1. y can take values within the boundaries of the data but are not observed. We use the ‘approx-

fun‘ interpolation function of the R base distribution to approximate the statistics for such

lower bounds.10 As the calculation of Gains From Trade (GFT) relies on domestic cutoffs

residing in the dense part of the productivity distribution, the influence of interpolation is

negligible.

2. y can take values below the lowest observed value in the data (y < xmin):

µr
y =

∑

■ (y < x < xmin)x
r

︸ ︷︷ ︸

unobserved

+
1

B

B∑

b=1

■ (x ≥ xmin)x
r

︸ ︷︷ ︸

observed

. (23)

8Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset at
our availability in the empirical section results both in a large computational burden but also a very precise estimation
of the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is
therefore negligent.

9We thank Gonzague Vannoorenberghe for pointing this out.
10All code available on request.
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The error arising from neglecting the unobserved part of the distribution is likely small as (i)

the smallest observation xmin in our dataset is rather small, (ii) the density in the unobserved

part is most likely very low and (iii) the relative weight of the observations in the unobserved

part is small (see also Figure 1).

3. As the presented model is a stylized model, it is conceivable firms produce below the model’s

implied zero-profit productivity cutoff, for instance when there is a positive expectation of

future profits (Impullitti et al., 2013). This can explain very low observed productivity values,

but will result in an unrepresentative left tail of the distribution (the lower the actual zero-

profit productivity cutoff, the more firms will have a positive expectation of future profits and

the denser the left tail of the distribution will be). This issue affects both the nonparametric

and parametric estimates, as the parametric distribution is fitted to the observed distribution.

Also in this case, however, provided the low density in the left tail of the distribution and the

low relative weight of the observations in the left tail, the influence of this issue is likely small.
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Appendix D Analytical expressions of µr
y

D.1 Pareto

µr
y =

∫ ∞

y
xr

kxkmin

xk+1
dx

= kxkmin

−yr−k

r − k
if k > r (24)

D.2 Inverse Pareto

µr
y =

∫ xmax

y
xr

kx−k
max

x−k+1
dx

= kx−k
max

xr+k
max − yr+k

r + k
(25)

D.3 Lognormal

µr
y =

∫ ∞

y
xr

1

xV ar
√
2π

e−(lnx−µ)2/2V ar2dx

=

∫ ∞

y
erlnx

1

xV ar
√
2π

e−(lnx−µ)2/2V ar2dx (26)

Note that

rlnx− (lnx− µ)2 /2V ar2 =
2V ar2rlnx− (lnx)2 − µ2 + 2µlnx

2V ar2

= −
(lnx)2 − 2(V ar2r + µ)lnx+

(

(V ar2r + µ)
)2 − (V ar2r + µ)2 + µ2

2V ar2

= −
[

lnx−
(

V ar2r + µ
)]2

2V ar2
+

(V ar2r + µ)2 − µ2

2V ar2

= −
[

lnx−
(

V ar2r + µ
)]2

2V ar2
+

r
(

rV ar2 + 2µ
)

2

so that
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µr
y = e

r
(

rV ar2+2µ
)

2

∫ ∞

y

1

xV ar
√
2π

e
−

[

lnx−
(

V ar2r+µ
)]2

2V ar2 dx

let z =
lnx−

(
rV ar2 + µ

)

V ar
, dz =

dx

xV ar

= e
r
(

rV ar2+2µ
)

2

∫ ∞

lny−
(

rV ar2+µ
)

V ar

1√
2π

e−
1
2
z2dx

= e
r
(

rV ar2+2µ
)

2

[

1− Φ

(

lny −
(
rV ar2 + µ

)

V ar

)]

(27)

D.4 Weibull11

µr
y =

∫ ∞

y
xr

k

s

(x

s

)k−1
e−

(

x
s

)k

dx

let z =
(x

s

)k
, dz =

k

s

(x

s

)k−1
dx

s.t. x = sz
1
k

=

∫ ∞

( y
s

)k
srz

r
k e−zdz

= sr
∫ ∞

( y
s

)k
z
(

r
k
+1

)

−1e−zdz

= srΓ

(
r

k
+ 1,

(y

s

)k
)

(28)

where Γ(, ) denotes the upper incomplete gamma function.

11The bounded moments of the exponential distribution are obtained setting k=1.
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D.5 Fréchet

µr
y =

∫ ∞

y
xr

k

s

(x

s

)−1−k
e−

(

x
s

)−k

dx

let z =
(x

s

)−k
, dz =

−k

s

(x

s

)−k−1
dx

s.t. x = sz−
1
k

= −
∫ 0

( y
s

)−k
srz−

r
k e−zdz, if k > 0

=

∫ ( y
s

)−k

0
srz−

r
k e−zdz

= sr
∫ ( y

s

)−k

0
z1−

(

r
k

)

−1e−zdz

= sr
[

1− Γ

(

1− r

k
,
(y

s

)−k
)]

if k > r (29)
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D.6 Burr

µr
y =

∫ ∞

y
xr

kc
s

(
x
s

)c−1

(
1 +

(
x
s

)c)k+1
dx

let z =
(x

s

)c
, dz =

c

s

(x

s

)c−1
dx

s.t. x = sz
1
c

=

∫ ∞

( y
s

)c
srz

r
c

k

(1 + z)k+1
dz, if c > 0

= srk

∫ ∞

( y
s

)c
z

r
c

1

(1 + z)k+1
dz

= srk

∫ ∞

( y
s

)c
z
(

r
c
+1

)

−1 1

(1 + z)k+1
dz

= srk

∫ ∞

( y
s

)c
z
(

r
c
+1

)

−1 1

(1 + z)k+1
dz

= srk

[
∫ ∞

0
z
(

r
c
+1

)

−1 1

(1 + z)k+1
dz −

∫ ( y
s

)c

0
z
(

r
c
+1

)

−1 1

(1 + z)k+1
dz

]

u =
z

1 + z
, du =

1

(1 + z)2

z =
u

1− u

= srk






∫ 1

0

(
u

1− u

)
(

r
c
+1

)

−1 1
(

1 + u
1−u

)k−1
du−

∫

(

y
s

)c

1+
(

y
s

)c

0

(
u

1− u

)
(

r
c
+1

)

−1 1
(

1 + u
1−u

)k−1
du






= srk

[
∫ 1

0
u
(

r
c
+1

)

−1 (1− u)k−1−
(

r
c
+1

)

+1 du

−
∫

(

y
s

)c

1+
(

y
s

)c

0

∫ ( y
s

)c

0
u
(

r
c
+1

)

−1 (1− u)k−1−
(

r
c
+1

)

+1 du






= srk






∫ 1

0
u
(

r
c
+1

)

−1 (1− u)k−
(

r
c
+1

)

du−
∫

(

y
s

)c

1+
(

y
s

)c

0
u
(

r
c
+1

)

−1 (1− u)k−
(

r
c
+1

)

duz






= srk

[

B

(r

c
+ 1, k − r

c

)

−B

( (y
s

)c

1 +
(y
s

)c ;
r

c
+ 1, k − r

c

)]

if c > r, kc > r (30)

where B(a, b) stands for the beta function, while B(x, a, b) stands for the lower incomplete beta

function with upper bound x.
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D.7 Generalized Gamma12

µr
y =

∫ ∞

y
xr

c

skΓ(kc )
xk−1e−

(

x
s

)c

dx

let z =
(x

s

)c
, dz =

c

s

(x

s

)c−1
dx

s.t. x = sz
1
c

=

∫ ∞

( y
s

)c
sr

z
r
c

Γ(kc )

(

sz
1
c

s

)(k−1)−(c−1)

e−zdz, if c > 0

=
sr

Γ(kc )

∫ ∞

( y
s

)c
z

r+k
c

−1e−zdz

=
sr

Γ(kc )
Γ

(
r + k

c
,
(y

s

)c
)

(31)

D.8 Finite Mixture Model

The statistics for a Finite Mixture Model can easily be obtained from the calculated statistics for

the underlying individual distributions on which the mixture consists. For a mixture of the form:

g(x|Ψ) =
I∑

i=1

πimi(x|θi), πi ≥ 0,
I∑

i=1

πi = 1, (32)

we obtain, due to its additivity and applying the sum rule in integration:

µr
y =

∫ ∞

y
xrg(x|Ψ)dx =

∫ ∞

y
xr

I∑

i=1

πimi(x|θi)dx =
I∑

i=1

πi

∫ ∞

y
xrmi(x)dx =

I∑

i=1

πi(µi)
r
y. (33)

D.9 Piecewise composite

µr
y =

∫ ∞

y
xrg(x|θ)dx

=







α1
1+α1+α2

(µ1)ry−(µ1)rc1
M1(c1)

+ 1
1+α1+α2

(µ2)rc1−(µ2)rc2
M2(c2)−M2(c1)

+ α2
1+α1+α2

(µ3)ry
1−M3(c2)

if 0 < y ≤ c2

1
1+α1+α2

(µ2)ry−(µ2)rc2
M2(c2)−M2(c1)

+ α2
1+α1+α2

(µ3)rc2
1−M3(c2)

if c1 < y ≤ c2
α2

1+α1+α2

(µ3)ry
1−M3(c2)

if c2 < y < ∞
(34)

12The bounded moments of the Gamma distribution are obtained setting c=1.
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D.10 Right-Pareto Lognormal

µr
y =

∫ ∞

y
xrk2x

−k2−1ek2µ+
k22V ar2

2 Φ

(
lnx− µ− k2V ar2

V ar

)

dx

= k2e
k2µ+

k22V ar2

2

∫ ∞

y
xσ−k2−2Φ

(
lnx− µ− k2V ar2

V ar

)

dx

dv = xσ−k2−2dx, v =
xσ−k2−1

σ − k2 − 1

u = Φ

(
lnx− µ− k2V ar2

V ar

)

, du = dΦ

(
lnx− µ− k2V ar2

V ar

)

= k2e
k2µ+

k22V ar2

2

[
xσ−k2−1

σ − k2 − 1
Φ

(
lnx− µ− k2V ar2

V ar

)]∞

y

− k2e
k2µ+

k22V ar2

2

∫ ∞

y

xσ−k2−1

σ − k2 − 1
dΦ

(
lnx− µ− k2V ar2

V ar

)

= k2e
k2µ+

k22V ar2

2

[

0−
xσ−k2−1
ij∗

σ − k2 − 1
Φ

(
lny − µ− k2V ar2

V ar

)]

− k2e
k2µ+

k22V ar2

2

∫ ∞

y

xσ−k2−1

σ − k2 − 1

1

xV ar
√
2π

e
−

[

lnx−µ−k2V ar2
]2

2V ar2 dx (35)

The last integral resembles the bounded moment condition of the Lognormal distribution solved

earlier with moment (r − k2) and mean (µ+ k2V ar2) so that

µr
y = −k2e

k2µ+
k22V ar2

2

xσ−k2−1
ij∗

σ − k2 − 1
Φ

(
lny − µ− k2V ar2

V ar

)

− k2e
k2µ+

k22V ar2

2

r − k2
e

(r−k2)
(

(r−k2)V ar2+2(µ+k2V ar2)
)

2

[

1

−Φ

(

lny −
(
(r − k2)V ar2 − (µ+ k2V ar2)

)

V ar

)]

(36)

Note that

ek2µ+
k22V ar2

2
+

(r−k2)
(

(r−k2)V ar2+2(µ+k2V ar2)
)

2

e
2k2µ+k22V ar2+(r−k2)

[

rV ar2+2µ+k2V ar2
]

2

e
2k2µ+k22V ar2+r2V ar2+2µr+k2rV ar2−k2rV ar2−2µk2+k22V ar2

2

e
r2V ar2+2µr

2

so that we get
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µr
y = −k2e

k2µ+
k22V ar2

2

xσ−k2−1
ij∗

σ − k2 − 1
Φ

(
lny − µ− k2V ar2

V ar

)

− k2

r − k2
e

r2V ar2+2µr
2 Φc

(
lny − rV ar2 − µ

V ar

)

(37)

D.11 Left-Pareto Lognormal

µr
y =

∫ ∞

y
xrxk1−1e−k1µ+

k21V ar2

2 Φc

(
lnx− µ+ k1V ar2

V ar

)

dx

= k1e
k2µ+

k22V ar2

2

[(−(y)σ−k2−1

σ − k2 − 1

)

− e−k1µ+
k21V ar2

2

∫ ∞

y
xσ−2+k1Φ

(
lnx− µ+ k1V ar2

V ar

)

dx

]

= −k1e
−k1µ+

k21V ar2

2

xσ+k1−1
ij∗

σ + k1 − 1
Φc

(
lny − µ+ k1V ar2

V ar

)

+
k1

r + k1
e

r2V ar2+2µr
2 Φc

(
lny − rV ar2 + µ

V ar

)

(38)

D.12 Double-Pareto Lognormal

µr
y =

k2k1

k2 + k1

∫ ∞

y
xrx−k2−1ek2µ+

k22V ar2

2 Φ

(
lnx− µ− k2V ar2

V ar

)

dx

+
k2k1

k2 + k1

∫ ∞

y
xrxk1−1e−k1µ+

k21V ar2

2 Φc

(
lnx− µ+ k1V ar2

V ar

)

dx

= − k2k1

k2 + k1
ek2µ+

k22V ar2

2

xσ−k2−1
ij∗

σ − k2 − 1
Φ

(
lny − µ− k2V ar2

V ar

)

− k2k1

k2 + k1

1

r − k2
e

r2V ar2+2µr
2 Φc

(
lny − rV ar2 − µ

V ar

)

− k2k1

k2 + k1
e−k1µ+

k21V ar2

2

xσ+k1−1
ij∗

σ + k1 − 1
Φ

(
lny − µ+ k1V ar2

V ar

)

− k2k1

k2 + k1

1

r + k1
e

r2V ar2+2µr
2 Φc

(
lny − rV ar2 − µ

V ar

)

(39)
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