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Abstract

In this paper, we revisit the well-known UK inflation model by Hendry (Journal of Applied Econometrics 2001,

16:255-275. doi: 10.1002/jae.615). We replicate the results in a narrow sense using the gretl and PcGive programs.

In a wide sense, we extend the study of model uncertainty using the Bayesian averaging of classical estimates (BACE)

approach as automatic model reduction strategy. We consider three different specifications to compare BACE variable

selection with Hendrys’ reduction. We find that BACE method can recover the path of non-trivial reduction strategy.

Keywords: BACE, gretl, model uncertainty, reduction strategy

1 Introduction

This paper concerns a replication of a model of UK inflation, 1875–1991, by Hendry (2001) based on data provided by JAE

services at (http://qed.econ.queensu.ca/jae/2001-v16.3/hendry). To replicate Hendrys’ procedure for modeling inflation

in the UK in a narrow sense, we used the gretl1 (see Cottrell & Lucchetti, 2018) and PcGive/Autometrics (see Doornik,

2009) program2. Our extension, in a wide sense, of Hendrys’ work employed the Bayesian averaging of classical estimates

(BACE) approach proposed by Sala-i-Martin, Doppelhofer, and Miller (2004) to compare model reduction strategies and

the variable selection procedure.

∗Correspondence to: Wyższa Szkoła Bankowa w Toruniu, Marcin Błażejowski, ul. Młodzieżowa 31a, 87-100 Toruń. Email:

marcin.blazejowski@wsb.torun.pl. Phone: +48566609245.
1Gretl is an open-source software for econometric analysis available at http://gretl.sf.net.
2We used gretl version 2019a and PcGive version 14.2 with Ox Professional version 7.20 on a PC machine running under Debian GNU/Linux 64 bit.
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When we consider the large number of variables, it is difficult to decide which model is the most appropriate for

analyzing the dependencies, i.e., to find the optimal set of variables in terms of goodness of fit measures. Using BACE,

we can obtain the most probable set of determinants along with posterior parameter estimates based on the whole model

space instead of making decisions based only on a single model. This approach is an alternative to the earlier and

familiar Bayesian model averaging (BMA) (see Fernández, Ley, & Steel, 2001; Ley & Steel, 2012), from which it differs

by having non-informative prior assumptions of regression parameters. Discussion on the effect of prior assumptions in

BMA is presented in Ley and Steel (2009). Sala-i-Martin et al. (2004) showed that the BACE approach may be understood

as Bayesian analysis in the situation where prior information is ”dominated” by the data. The parameter estimates are

averaged across all possible combinations of models obtained by means of OLS. In our case, the BACE analysis was

performed in the BACE 2.0 package for the gretl program3 (see Błażejowski & Kwiatkowski, 2018).

The remainder of the paper is structured as follows. In section 2, we discuss issues related to data transformation,

section 3 presents the research scenario for the replication in a narrow sense. In section 4 we consider model uncertainty

using BACE selection strategy (replication in a wide sense), section 5 concludes.

2 Data

In our paper and replication files, we used the same data sample period (1875–1991) and definitions as in Hendry (2001)4

with the following exceptions:

1. Profit markup (π∗
t ) was taken directly from the jaedfh4.dat file (part of the dfhdata.zip archive); this variable

exists as ”pistarn” in the JAE archive.

2. Short-long spread (Rs,t −Rl,t +0.006) was named St , similar to Clements and Hendry (2008, pp. 11).

3. Excess demand
(

yd
t

)

was taken directly from the jaedfhm.dat file (part of the dfhdata.zip archive); this variable

exists as ”gdpd” in the JAE archive.

4. The real exchange rate was defined as er,t = pt − p£,t − 0.52. We found an inaccuracy in the paper by Hendry

(2001) and data definitions in the JAE archive. The calculation of er,t = pt − p£,t + 0.52 (equation (3) in Hendry

(2001, pp. 263)) is misleading with the form of calculating er,t in the formula for ”pistarn” (readme.h.txt file)

and refers to subtracting (not adding) the intercept value (0.52).

5. According to formulas in the JAE archive (readme.h.txt file), the variable Unit labor costs in constant prices was

defined as (c− p)∗t = ct − pt +0.006× (trend −69.5)+2.37.

3 Research scenario

To replicate the Hendry (2001) results in a narrow sense, we proceed as follows. In the case of the initial model for all

52 variables, we received identical output to that in the original model (GUM52; residual standard deviation σ̂ = 1.21%,

3The BACE 1.2 package is available at http://ricardo.ecn.wfu.edu/gretl/cgi-bin/gretldata.cgi?opt=SHOW_FUNCS.
4Description of variables are available in table 6 in Appendix.
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Schwartz Criterion SC = −7.3). After excluding indicators from the initial model, we also received identical results

(GUMnoIndicators; σ̂ = 2.5%, SC = −6.63). In the next step, we added dummy variables Ib, Il , Im concerning outliers

in particular years to (GUMnoIndicators), and we obtained the same results as in the paper (GUMfirstReduction;

σ̂ = 1.16%, SC = −8.08). In the next step, the dummy variables Ib, Il , Im were substituted by one overall index, Id , and

once again, we obtained the same results (GUMsecondReduction; σ̂ = 1.15%, SC = −8.16). Finally, we expressed the

general model in terms of π
∗
t−1 with indicators restricted to Id (GUMfinal; σ̂ = 1.15%, SC = −8.33). At this point, we

had the following specification:

∆pt = f (∆pt−1,y
d
t−1,m

d
t−1,n

d
t−1,U

d
t−1,St−1,Rl,t−1,∆pe,t ,∆pe,t−1,∆Ur,t−1,

∆wt−1,∆ct−1,∆mt−1,∆nt−1,∆Rs,t−1,∆Rl,t−1,∆po,t−1, Id,t ,π
∗
t−1;εt). (1)

After the reduction of model (1) at a 1% significance level5, we obtained Hendrys’ model (6) (Hendry, 2001, pp. 267) and

(FinalModel; σ̂ = 1.14%, SC =−8.66) in our notation. Detailed results are available in the table 1.

Table 1: Comparison of Hendrys’ estimates and the replication results

Hendrys’ model (6) Replication in gretl Replication in Autometrics

yd
t−1 0.180

(0.032)
0.184
(0.032)

0.184
(0.032)

∆mt−1 0.187
(0.028)

0.182
(0.028)

0.182
(0.028)

St−1 −0.834
(0.088)

−0.834
(0.087)

−0.834
(0.087)

∆Rs,t−1 0.618
(0.106)

0.619
(0.106)

0.619
(0.106)

π
∗
t−1 −0.186

(0.024)
−0.186
(0.024)

−0.186
(0.024)

∆pe,t 0.265
(0.025)

0.265
(0.025)

0.265
(0.025)

Id,t 0.038
(0.002)

0.038
(0.002)

0.038
(0.002)

∆po,t−1 0.041
(0.010)

0.041
(0.010)

0.041
(0.010)

∆pt−1 0.267
(0.027)

0.268
(0.026)

0.268
(0.026)

R2 0.975 0.975 0.975

σ̂ 1.14% 1.14% 1.14%

SC −8.66 −8.66 −8.66

Standard errors in parentheses.

According to results in table 1, we found minor differences in the coefficient estimates for four variables—yd
t−1,

∆mt−1, ∆Rs,t−1, and ∆pt−1—and two differences in standard errors for St−1 and ∆pt−1. The remaining coefficients and

the model statistics were identical. In his paper, Hendry used the PcGets automatic model selection procedure with a 1%

significance level for the model (1) to check the correctness of the simplification6. We repeated this automatic model

selection procedure using Autometrics for model (1), and we obtained the same estimates as in GUMfinal in gretl (i.e.,

with slight differences compared to model (6) in Hendrys’ paper). We suppose that these differences are due to the

precision of the computers used for calculations, the 32 or 64 bits software or precision involved in data storage.

5Hendry and Krolzig (2001) classified simplification at a 1% significance level as a ”conservative” strategy and at a 5% significance level as a

”liberal” strategy. Currently these strategies are renamed the ”small” and ”standard” target size (see Doornik & Hendry, 2013).
6See subsection 4.3 in Hendry (2001).

3



4 BACE analysis

In order to perform replication in a wide sense, we analyzed model selection procedure employing the BACE approach.

This procedure enables searching the whole model space and selecting the most probable regressions. The BACE also

enables calculations of the averages of the posterior means and standard deviations of parameters as well as posterior

inclusion probabilities (PIP). The posterior inclusion probability is the probability that, conditional on the data but un-

conditional with respect to the model space, the independent variable is relevant in explaining dependent variable. PIP is

calculated as the frequency of appearance in Marcov chain of a given variable in all considered models (see Doppelhofer

& Weeks, 2009; Koop, Poirier, & Tobias, 2007). We assumed three scenarios for BACE analysis:

1. GUM52—we used all 52 available explanatory variables (including trend and outliers).

2. GUMId—we used Id composite indicator which captures the 22 large outliers and elements of π
∗.

3. GUMfinal—we used Id and π
∗ variables.

4.1 GUM52 results

We formulated the following initial inflation model (GUM52) for the UK in 1875-1991:

∆pt = f
(

∆pt−1,y
d
t−1,m

d
t−1,n

d
t−1,U

d
t−1,er,t−1,ct−1,St−1, pt−1, po,t−1,Rl,t−1,∆pe,t−1,∆pe,t ,

∆Ur,t−1,∆wt−1,∆ct−1,∆mt−1,∆nt−1,∆Rs,t−1,∆Rl,t−1,∆po,t−1, trend,outliers; εt

)

. (2)

Trend, individual-year indicators (outliers) and the rest of the variables, are defined identically as in Hendry (2001). The

whole model space in GUM52 (including intercept) was equal to 252 = 4,503,599,627,370,496. The total number of

Monte Carlo iterations was 5,000,000 (including 25% burn-in draws). Model prior was set to uniform, which means

that all possible specifications are equally probable (or, in other words, we do not prefer any of 252 possible specifica-

tions). Additionally we performed jointness analysis based on JLS measure introduced in Ley and Steel (2007), because

it can identify independence, substitutes and complements between variables in the regression model (see Doppelhofer &

Weeks, 2009).

Results of BACE analysis for the GUM52 are in table 2. We can draw the following conclusions:

1. We found that 6 out of 7 variables from Hendrys’ final model (excluding Id and π
∗) are highly probable (PIP≥ 2/3).

The 7th variable, i.e. yd
t−1 (GDP excess demand), is lowly probable (PIP < 1/3). Instead of yd

t−1 we obtained ∆nt−1

(nominal National Debt), which is classified as medium probable variable (1/3 ≤ PIP < 2/3). We can find a

possible explanation of this discrepancy using jointness analysis. According to jointness results, variable yd
t−1 is a

strong substitute for ∆nt−1 with value of JLS(y
d
t−1,∆nt−1) =−2.0431 (Doppelhofer & Weeks, 2009), hence we can

say that these two variables swap between each other.

2. Individual-year indicators can be divided into three groups:
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Table 2: BACE posterior inclusion probabilities and posterior estimates of regression coefficients for the GUM52

PIP Avg. Mean Avg. Std. Dev. PIP Avg. Mean Avg. Std. Dev.

I1921 1.0000 -0.1522 0.0194 ∆nt−1 0.5937 0.0357 0.0378

I1915 1.0000 0.1046 0.0143 I1916 0.5621 0.0223 0.0249

I1922 0.9999 -0.1224 0.0183 I1944 0.3638 -0.0085 0.0144

I1975 0.9978 0.0729 0.0178 I1918 0.3142 0.0052 0.0213

I1917 0.9959 0.1006 0.0279 I1914 0.3017 -0.0060 0.0117

I1881 0.9947 -0.0494 0.0146 po,t−1 0.2861 0.0011 0.0025

∆pt−1 0.9943 0.2964 0.0641 pt−1 0.2427 -0.0008 0.0145

∆pe,t 0.9938 0.1741 0.0447 ct−1 0.2414 0.0013 0.0130

I1880 0.9938 0.0499 0.0151 const 0.2258 0.0024 0.0241

∆mt−1 0.9919 0.2419 0.0590 I1901 0.2224 -0.0039 0.0096

St−1 0.9912 -0.6809 0.1572 I2,t 0.2174 0.0016 0.0047

I1980 0.9899 0.0499 0.0159 ∆Ur,t−1 0.2041 -0.0309 0.0865

I1973 0.9891 -0.0579 0.0162 trend 0.1922 <0.0001 0.0001

I1971 0.9887 0.0447 0.0143 Rl,t−1 0.1668 0.0099 0.0501

I1943 0.9852 -0.0538 0.0171 nd
t−1 0.1636 -0.0006 0.0022

I1945 0.9759 -0.0472 0.0162 ∆ct−1 0.1511 0.0095 0.0371

∆Rs,t−1 0.9743 0.5235 0.1778 md
t−1 0.1442 -0.0010 0.0085

I1900 0.9710 0.0401 0.0149 yd
t−1 0.1336 0.0056 0.0275

I1919 0.9578 0.0532 0.0222 ∆pe,t−1 0.1232 0.0037 0.0192

∆po,t−1 0.9308 0.0417 0.0199 I1941 0.1223 -0.0012 0.0067

I1920 0.9248 0.0469 0.0221 ∆wt−1 0.1126 0.0046 0.0337

I1940 0.8781 0.0375 0.0206 I1974 0.1119 0.0004 0.0089

er,t−1 0.8070 -0.0361 0.0238 Ud
t−1 0.1070 0.0004 0.0188

I1970 0.8030 0.0261 0.0177 ∆Rl,t−1 0.1027 0.0115 0.1362

I1942 0.7439 -0.0266 0.0206 I1946 0.0979 0.0005 0.0049

I1939 0.6401 0.0193 0.0184 I1979 0.0943 0.0003 0.0050

(a) highly probable: 1880, 1881, 1900, 1915, 1917, 1919, 1920, 1921, 1922, 1940, 1942, 1943, 1945, 1970, 1971,

1973, 1975, 1980 (18 variables).

(b) medium probable: 1916, 1939, 1944 (3 variables).

(c) lowly probable: 1901, 1914, 1918, 1941, 1946, 1974, 1979 (7 variables).

The results coincided with a set of variables included into composite indicator Id which captures the 22 large

outliers. The only exception is the indicator for 1918, which according to our analysis is lowly probable (PIPI1918
≈

0.31).

3. Although the π
∗ is not directly present in the GUM52, variable er (being an element of π

∗) is also highly probable

(PIPer ≈ 0.81).

In our opinion BACE variable selection results for GUM52 are close to Hendrys’ final selection. It is worth to mention

that these two selections can not be compared directly, because in GUM52 we do not have two important components,

i.e. Id and π
∗, since we considered their elements separately. Having the above in mind we are convinced that in order

to maintain the comparability of results we should replace individual-year indicators by the Id composite indicator and

include elements of π
∗7.

7Profit markup is defined as follows: π
∗
t = 0.25er,t −0.675(c− p)∗t −0.075(po − p)t +0.11I2,t +0.25 where (c− p)∗t = ct − pt +0.006× (trend −

69.5)+2.37.
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4.2 GUMId results

Since BACE results for GUM52 exhibit the important role of individual-year indicators, we decided to include the Id

composite indicator as defined in Hendry (2001, pp. 266). Additionally, we reconstructed variables used in π
∗ according

to Hendry (2001, pp. 267) to make results more comparable with GUMfinal. As a result we replaced variables c and po

by their equivalents in constant prices, i.e. (c− p)∗ and (po − p) respectively and we included lagged I2, so we got the

following model specification (GUMId):

∆pt = f
(

∆pt−1,y
d
t−1,m

d
t−1,n

d
t−1,U

d
t−1,er,t−1,St−1,Rl,t−1,∆pe,t ,∆pe,t−1,∆Ur,t−1,∆wt−1, pt−1,

∆ct−1,∆mt−1,∆nt−1,∆Rs,t−1,∆Rl,t−1,∆po,t−1, I2,t−1,(c− p)∗t−1,(po − p)t−1, Id,t ; εt

)

. (3)

The whole model space in GUMId (including intercept) was equal to 224 = 16,777,216. Model prior was set to uniform

and the total number of Monte Carlo iterations was 1,000,000 (including 25% burn-in draws). The posterior results are in

table 3.

Table 3: BACE posterior inclusion probabilities and posterior estimates of regression coefficients for the GUMId

PIP Avg. Mean Avg. Std. Dev.

Id,t 1.0000 0.0377 0.0016

Hendrys’ selection







































∆pe,t 1.0000 0.2454 0.0271

St−1 1.0000 -0.8516 0.1218

∆pt−1 1.0000 0.2473 0.0382

∆Rs,t−1 0.9999 0.6263 0.1262

∆mt−1 0.9997 0.1878 0.0384

∆po,t−1 0.9975 0.0480 0.0121

yd
t−1 0.9884 0.1456 0.0466

π
∗
t−1























(c− p)∗t−1 0.9827 0.0882 0.0262

(po − p)t−1 0.9460 0.0132 0.0066

const 0.8366 -0.0479 0.0297

er,t−1 0.6377 -0.0226 0.0221

I2,t−1 0.3387 -0.0045 0.0079

Ud
t−1 0.2621 -0.0143 0.0303

pt−1 0.1542 0.0002 0.0021

∆nt−1 0.1397 0.0023 0.0087

∆ct−1 0.1236 0.0042 0.0203

∆Rl,t−1 0.1163 0.0223 0.1067

Rl,t−1 0.1101 0.0047 0.0321

nd
t−1 0.1095 0.0002 0.0012

∆pe,t−1 0.1019 0.0019 0.0113

md
t−1 0.1004 0.0004 0.0047

∆wt−1 0.0982 -0.0025 0.0219

∆Ur,t−1 0.0925 -0.0025 0.0238

According to results presented in table 3, BACE procedure gives the same set of UK inflation factors as in Hendry

(2001). Variables selected in model (6) in Hendry (2001) are top 8 most probable variables with PIP > 0.988. The next 5

most probable variables indicated by BACE procedure are elements of π
∗.
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4.3 GUMfinal results

In the next step we considered scenario using Id and π
∗ directly. The BACE analysis was performed for the set of

20 variables (including the intercept) defined in GUMfinal (model (1)), so the total number of possible models was

220 = 1,048,576. We assumed that all possible specifications were equally probable. The BACE results, obtained after

1,000,000 Monte Carlo iterations, are presented in table 4.

Table 4: BACE posterior inclusion probabilities and posterior estimates of regression coefficients for the GUMfinal

PIP Avg. Mean Avg. Std. Dev.

Hendrys’ model (6)























































π
∗
t−1 1.000000 −0.186844 0.025828

Id,t 1.000000 0.037903 0.001573

∆pe,t 1.000000 0.264119 0.025146

St−1 1.000000 −0.856166 0.090581

∆pt−1 1.000000 0.279046 0.033585

yd
t−1 0.999996 0.193686 0.036891

∆Rs,t−1 0.999949 0.609606 0.114351

∆mt−1 0.999936 0.173201 0.029831

∆po,t−1 0.987283 0.038862 0.011714

Ud
t−1 0.610013 −0.041815 0.040875

nd
t−1 0.194672 0.000631 0.001692

Rl,t−1 0.151855 0.006635 0.022907

∆Rl,t−1 0.126007 0.026201 0.111685

∆pe,t−1 0.105244 0.002085 0.011372

md
t−1 0.104247 −0.000513 0.004491

∆Ur,t−1 0.097311 −0.002368 0.024480

const 0.095136 0.000021 0.000643

∆ct−1 0.090481 −0.000170 0.010168

∆nt−1 0.089092 0.000461 0.004619

∆wt−1 0.085100 −0.000306 0.012303

According to the results in table 4, the set of variables used in the BACE analysis can be divided into 3 groups:

highly probable determinants (π∗
t−1, Id,t ,∆pe,t ,St−1,∆pt−1,y

d
t−1,∆Rs,t−1,∆mt−1,∆po,t−1) with PIP ≥ 0.987, medium prob-

able (Ud
t−1) with PIP = 0.61 and lowly probable (nd

t−1,Rl,t−1,∆Rl,t−1,∆pe,t−1,m
d
t−1,∆Ur,t−1,const,∆ct−1,∆nt−1,∆wt−1)

with PIP ≤ 0.195. Our results are consistent with Hendrys’ paper because the highly probable determinants according to

the BACE approach are the same as in model (6).

In addition, BACE approach allows models to be ranked according to their posterior probabilities. Table 5 presents

the posterior probability, coefficient estimates and model statistics for the top 10 models. The most probable model M1

has the posterior probability 0.200. The second probable model M2, with probability 0.095, is model (6) in Hendry (2001)

and FinalModel in our notation. These two best models differ only by the variable Ud
t−1, i.e., the excess labor demand.

Although the posterior probability of the highest ranked model M1 was more than twice as large as that for the second

model M2, an inference based only on M1 leaves out 80% of the posterior probability mass. The ”conservative” model

reduction strategy dropped Ud
t−1, leading to M2, while the ”liberal” strategy leads to M1, which includes Ud

t−1. This

result confirms that the ”conservative” model reduction strategy is relevant in the case of modeling UK inflation. Variable

Ud
t−1 with PIP = 0.61 can not be classified as a highly probable determinant, which confirms that this variable should be

dropped from FinalModel. The posterior probabilities of the other models P(M3 | y), . . . ,P(M10 | y) are less than 0.038.

These models differ from the two best models only by the least probable variables, and they do not contribute substantial
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Table 5: Coefficient estimates and model statistics for top 10 models

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(M j | y) 0.200 0.095 0.037 0.035 0.026 0.024 0.023 0.023 0.022 0.021

π
∗
t−1 −0.187

(***)

−0.186
(***)

−0.194
(***)

−0.196
(***)

−0.168
(***)

−0.177
(***)

−0.190
(***)

−0.185
(***)

−0.188
(***)

−0.188
(***)

Id,t 0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.037
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

∆pe,t 0.265
(***)

0.265
(***)

0.263
(***)

0.262
(***)

0.262
(***)

0.263
(***)

0.262
(***)

0.264
(***)

0.264
(***)

0.268
(***)

St−1 −0.857
(***)

−0.834
(***)

−0.882
(***)

−0.872
(***)

−0.833
(***)

−0.854
(***)

−0.860
(***)

−0.874
(***)

−0.850
(***)

−0.857
(***)

∆pt−1 0.287
(***)

0.268
(***)

0.288
(***)

0.272
(***)

0.264
(***)

0.283
(***)

0.279
(***)

0.287
(***)

0.291
(***)

0.286
(***)

yd
t−1 0.188

(***)

0.184
(***)

0.216
(***)

0.223
(***)

0.191
(***)

0.192
(***)

0.188
(***)

0.177
(***)

0.187
(***)

0.189
(***)

∆Rs,t−1 0.625
(***)

0.619
(***)

0.572
(***)

0.547
(***)

0.635
(***)

0.633
(***)

0.611
(***)

0.652
(***)

0.601
(***)

0.605
(***)

∆mt−1 0.178
(***)

0.182
(***)

0.167
(***)

0.167
(***)

0.162
(***)

0.168
(***)

0.174
(***)

0.176
(***)

0.176
(***)

0.177
(***)

∆po,t−1 0.037
(***)

0.041
(***)

0.041
(***)

0.045
(***)

0.042
(***)

0.038
(***)

0.037
(***)

0.038
(***)

0.037
(***)

0.036
(***)

Ud
t−1 −0.069

(**)

−0.062
(**)

−0.062
(**)

−0.069
(**)

−0.075
(**)

−0.076
(**)

−0.064
(**)

nd
t−1 0.003

(–)

0.004
(–)

Rl,t−1 0.051
(–)

0.028
(–)

∆Rl,t−1 0.118
(–)

∆pe,t−1 0.020
(–)

md
t−1 −0.006

(–)

∆Ur,t−1 −0.043
(–)

R2 0.976 0.975 0.977 0.975 0.976 0.977 0.977 0.977 0.977 0.977

R
2

0.974 0.973 0.975 0.974 0.974 0.974 0.974 0.974 0.974 0.974

σ̂ 1.11% 1.14% 1.11% 1.13% 1.11% 1.11% 1.12% 1.12% 1.12% 1.12%

SC −8.67 −8.66 −8.65 −8.64 −8.64 −8.64 −8.64 −8.64 −8.64 −8.64

(***) significance at 1%, (**) significance at 5%, (–) insignificance at 10%, R
2

stands for the adjusted R2, and P(M j | y) denotes the posterior model

probability of model M j .

information in this case.

5 Conclusions

Replication of Hendrys’ model (6) for UK inflation in a narrow sense was performed in two alternative programs (gretl

and PcGive/Autometrics) and brought the same results, in line with the original paper. In our opinion slight differences

comes from the precision of the computers architecture used for calculations or changes in data storage. In the replication

in a wide sense, we used BACE as an automatic variable selection procedure. Taking into account the whole model

space, we obtained the same set of determinants as in Hendrys’ paper. All considered specifications (GUM52, GUMId and

GUMfinal) indicate almost the same set of significant variables. The only difference was for specification with initial

set of all 52 variables (GUM52), where the nominal National Debt was replaced by GDP excess demand, but referring

directly to the findings from jointness results these variables were strong substitute. BACE selection strategy for two

other specifications (GUMId and GUMfinal) gave the same set of relevant variables in explanation of UK inflation as in

Hendry (2001). According to our research, BACE selection procedure recovered the path of reduction strategy used in

the original paper. Moreover we can say that BACE, which takes into account model uncertainty, can properly select

significant factors from the wide range of possible determinants.
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Appendix

Table 6: List of variables and their definitions used in paper

Variable Definition

Yt real GDP, £ million, 1985 prices

Pt implicit deflator of GDP (1985=1)

Mt nominal broad money, £ million

Rs,t three-month treasury bill rate, fraction p.a.

Rl,t long term bond interest rate, fraction p.a.

Rn,t opportunity-cost of money measure

Nt nominal National Debt, £ million

Ut unemployment

W popt working population

Ur,t unemployment rate, fraction

Lt employment

Kt Gross capital stock

Wt wages

Ht normal hours (from 1920)

Pe,t world prices, (1985=1)

Et annual-average effective exchange rate

Pnni,t deflator of net national income, (1985=1)

Pcpi,t consumer price index, (1985=1)

Po$,t commodity price index, $

md
t money excess demand

yd
t GDP excess demand

st short–long spread

nd
t excess demand for debt

er,t real exchange rate

π
∗
t profit markup

Ud
t excess demand for labour

po,t commodity prices in Sterling
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