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Abstract

This paper puts forward a new instrumental variables (IV) approach for linear panel data
models with interactive effects in the error term and regressors. The instruments are trans-
formed regressors and so it is not necessary to search for external instruments. The proposed
method asymptotically eliminates the interactive effects in the error term and in the regressors
separately in two stages. We propose a two-stage IV (2SIV) and a mean-group IV (MGIV) esti-
mator for homogeneous and heterogeneous slope models, respectively. The asymptotic analysis
for the models with homogeneous slopes reveals that: (i) the v/ NT-consistent 2SIV estimator
is free from asymptotic bias that could arise due to the correlation between the regressors and
the estimation error of the interactive effects; (ii) under the same set of assumptions, existing
popular estimators, which eliminate interactive effects either jointly in the regressors and the
error term, or only in the error term, can suffer from asymptotic bias; (iii) the proposed 2SIV
estimator is asymptotically as efficient as the bias-corrected version of estimators that elimi-
nate interactive effects jointly in the regressors and the error, whilst; (iv) the relative efficiency
of the estimators that eliminate interactive effects only in the error term is indeterminate. A
Monte Carlo study confirms good approximation quality of our asymptotic results and compe-
tent performance of 2SIV and MGIV in comparison with existing estimators. Furthermore, it
demonstrates that the bias-corrections can be imprecise and noticeably inflate the dispersion

of the estimators in finite samples.
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1 Introduction

Panel data sets with large cross-section and time-series dimensions (N and T, respectively) have
become increasingly available in the social sciences. As a result, regression analysis of large panels
has gained an ever-growing popularity. A central issue in these models is how to properly control
for rich sources of unobserved heterogeneity, including common shocks and interactive effects (see
e.g. Sarafidis and Wansbeek (2020) for a recent overview). The present paper puts forward a novel
estimation approach for this class of models and offers new insights into the literature.

Broadly speaking, there are two popular estimation approaches currently advanced in the field.
The first one involves eliminating the interactive effects from the error term and the regressors
jointly in a single stage. Representative methods include the Common Correlated Effects approach
of Pesaran (2006), which involves least-squares on a regression model augmented by cross-sectional
averages (CA) of observables; and the Principal Components (PC) estimator considered first by
Kapetanios and Pesaran (2005) and analysed subsequently by Westerlund and Urbain (2015). The
second approach asymptotically eliminates the interactive effects from the error term only. The
representative method is the Iterative Principal Components (IPC) estimator of Bai (2009a), further
developed by Moon and Weidner (2015, 2017), among many others. An attractive feature of CA
(as well as PC) is that it permits estimation of models with heterogeneous slopes. On the other
hand, an advantage of IPC is that it does not assume regressors are subject to a factor structure.

In models with homogeneous slopes, Westerlund and Urbain (2015) showed that both CA and
PC estimators suffer from asymptotic bias due to the incidental parameter problem (recently, Juodis
et al. (2020) provided additional results on the asymptotic properties of CA and some further
insights). A similar outcome was shown by Bai (2009a) for the IPC estimator. Thus in all three
cases, bias correction is necessary for asymptotically valid inferences. In addition, the CA estimator
requires the so-called rank condition, which assumes that the number of factors does not exceed
the rank of the (unknown) matrix of cross-sectional averages of the factor loadings. On the other
hand, TPC involves non-linear optimisation, and so convergence to the global optimum might not
be guaranteed (see e.g. Jiang et al. (2017)).

This paper puts forward an instrumental variables (IV) approach, which differs from the afore-
mentioned ones because it asymptotically eliminates the interactive effects in the error term and
the regressors separately in two stages. In particular, for models with homogeneous slopes, in the
first stage we project out the interactive effects from the regressors and use the transformed re-
gressors as instruments to obtain consistent estimates of the model parameters. Thus, it is not
necessary to search for external instruments. In the second stage, we eliminate the interactive
effects in the error term using the first-stage residuals, and run another IV regression. That is, IV
regression is performed in both of two stages. The resulting two-stage IV (2SIV) estimator is shown
to be v/ NT-consistent and asymptotically normal. For models with heterogeneous slopes, we pro-
pose a mean-group IV (MGIV) estimator and establish v/ N-consistency and asymptotic normality.
Norkuté et al. (2020) adopted a similar approach for estimation of dynamic panels with interactive
effects, assuming cross-sectional and serial independence of the idiosyncratic disturbances. The
asymptotic results established in this paper is completely new as weak cross-section and time-series
dependence in idiosyncratic errors are permitted. The weak dependence assumption is typically
employed by the IPC literature such as Bai (2009a).

In this paper, we offer new insights into the literature by comparing the asymptotic properties



of 2SIV with those of IPC, PC and CA. Such a task was not considered by Norkuté et al. (2020).
To be more specific, we analytically clarify why our two-stage approach successfully makes the 251V
estimator free from asymptotic bias, whilst IPC, PC and CA are subject to biases under the same
conditions. In brief, this is because estimating factors separately in two stages for 2SIV makes the
endogeneity caused by the estimation errors asymptotically negligible, whereas this is not the case
for the remaining estimators. Moreover, our analysis reveals that 2SIV is asymptotically as efficient
as the bias-corrected versions of PC and CA, whereas the relative efficiency of the bias-corrected
IPC estimator is indeterminate, in general. This is because the IPC estimator does not necessarily
eliminate the factors contained in the regressors and also it requires transformation of the regressors
due to the estimation effects. A Monte Carlo study confirms good approximation quality of our
asymptotic results and competent performance of 2SIV and MGIV in comparison with existing
estimators. Furthermore, the results demonstrate that the bias-corrections of IPC and PC can be
imprecise and noticeably inflate the dispersion of the estimators in finite samples.

The remainder of this paper is organised as follows. Section 2 introduces a panel data model
with homogeneous slopes and interactive effects, and describes the set of assumptions employed.
Section 3 studies the asymptotic properties of the proposed 2SIV estimator. Section 4 puts forward a
mean-group IV estimator for models with heterogeneous slopes and establishes its properties in large
samples. Section 5 provides an asymptotic comparison among 2SIV, IPC, CA and PC. Section 6
studies the finite sample performance of these estimators, and Section 7 concludes. Proofs of main
theoretical results with necessary lemmas are provided in Appendices A-D. Proofs of auxiliary
lemmas are relegated to Online Supplement. A Stata algorithm that implements our approach, has
been recently developed by Kripfganz and Sarafidis (2020) and is available to all Stata users.!

Notation: Throughout, we denote the largest eigenvalues of the N x N matrix A = (a;;) by
tmax (A), its trace by tr(A) = va:l aii, its Frobenius norm by ||A| = /tr(A’A). The projection
matrix on A’ is Po = A(A’A)"!A’ and M = I — P4a. C is a generic positive constant large
enough, Cyp, is a small positive constant sufficiently away from zero, §3 = min{N,T}. We use

N, T — oo to denote that N and T pass to infinity jointly.

2 Model and assumptions

We consider the following panel data model:

/ . _ 01,0
Yit = Xuﬂ +u;; u = ht + €t

070 (2'1)
Xit:]-‘@' ft + Vi ’L:].,,N, tzl,...,T,

where y;; denotes the value of the dependent variable for individual ¢ at time ¢, x;; is a k x 1 vector
of regressors and f is the corresponding vector of slope coefficients. u; follows a factor structure,
where hY denotes an 75 x 1 vector of latent factors, ¢! is the associated factor loading vector, and &
denotes an idiosyncratic error. The regressors are also subject to a factor model, where f? denotes
an r1 X 1 vector of latent factors, I‘? is a r1 X k matrix of factor loadings, and v;; is an idiosyncratic

error of dimension k x 1.

Remark 2.1 Permitting different sets of interactive effects in x;; and u;: is essential in order to

study in detail the properties of the estimators that eliminate the factors in the error term and

1See http://www.kripfganz.de/stata/xtivdfreg.html.



the regressors separately (like our approach), or in the error term only (like the Iterative Principal
Components (IPC) estimator of Bai (2009a)). This is because in practice there is no reason why
X;+ and u;; should contain identical sets of factors or loadings. This remark does not apply to the
estimators which extract factors in x; and u; jointly (like the estimators considered by Pesaran
(2006) and Westerlund and Urbain (2015)).

The model above has been employed in a wide variety of fields, including in economics and
finance. Estimation of this model has been studied by Pesaran (2006), Bai and Li (2014), Westerlund
and Urbain (2015), Juodis and Sarafidis (2020), Cui et al. (2020) to mention a few.

Stacking Eq. (2.1) over t, we have

yvi=X;B+uw; w=He?+e,

2.2
X; =FI} +V,, (22)

where y; = (yi1, ..., vir), Xi = (%1, ,xir)/, FO = (£, £2)', HO = (hY,--- hY), ¢ =
(€i1, -+ yeir) and V= (vip, ..., vir) .

We propose an IV estimation approach that involves two stages. In the first stage, the com-
mon factors in X; are asymptotically eliminated using principal components analysis. Next, the
transformed regressors are used to construct instruments and estimate the model parameters. To
illustrate the first-stage IV estimator, suppose for the moment that F° is observed. Pre-multiplying
X; by Mgo yields

MzoX; = Mpo'V;. (2.3)

Assuming V; is independent of €;, H? and ¢?, it is easily seen that E[XMgpou;] = E[V/Mgo(H @)+
gi)] = 0. Together with the fact that MgoX; is correlated with X; through V;, MgoX; can be
regarded as an instrument for X;.

The first-stage (infeasible) estimator is defined as

N -1 N
~inf ’ ’
Bisiv = (Z XiMFUXi> ZXiMFUYi~ (2.4)

=1 =1

In the second stage, the space spanned by HC is estimated from the residual ﬁi”f =y; — Xlﬁmj

and then it is projected out. To illustrate, suppose for the moment that H? is also observed; one
can instrument X,; using MgoMpoX;. Note that E[XMpoMpgou;] = E[V;MgoMyog;] = 0. The
(infeasible) second-stage IV (2SIV) estimator of 3 is given by

N -1 N
B\;T;];v = (Z X;MFOMHUXz’> > X;MpoMypoy;. (2.5)
i=1 i=1
In practice, F® and HO are typically unobserved. As it will be discussed in detail below, in
practice we replace these quantities with estimates obtained using principal components analysis,
as advanced in Bai (2003) and Bai (2009a).2
To obtain our theoretical results it is sufficient to make the following assumptions:

2ry and 7o are treated as given. In practice, 1 can be estimated from the raw data {Xz}f\’: , using methods

already available in the literature, such as the information criteria of Bai and Ng (2002) or the eigenvalue-based
tests of Kapetanios (2010) and Ahn and Horenstein (2013). r2 can be estimated in the same way from the residual
covariance matrix. An asymptotic justification of such practice is provided in Bai (2009b, Section C.3). In the Monte
Carlo section of the paper we show that these methods provide quite accurate determination of the number of factors.



Assumption A (idiosyncratic error in y) We assume that
1. E(git) = 0 and Eley|31° < C for some § > 0;

2. Let 0,5 = E (e;5e5¢). We assume that there exist 0,5 and G, |0ij.st| < 745 for all (s,t), and

|oij.st] < st for all (i,7), such that

N N T T N N T T
NI DY a<C T Y 5u<C NTITTHY N NS ol <O
s=1t=1 3 j

i=1 j=1

3. For every (s, t), E||N~ 1/2 ZZ 1 [Eiscit — 04 st) H4 <C.
4. For each j, IEHN_l/QT_l/2 Zfil Zle [eiej — E (Eitajt)]ga?Hz < C. Additionally, for each
s, [EHN*l/?T*l/2 Zi\il Zthl [eiscit — E (ei58i)] g?”2 < C, where g = (£, h))".
5 N-l7—2 Zf\il Z;\Ll ZSTFl 2221 E;‘q:l 232:1 ’cov(sislsiSQ,sjtlam)’ <C.
Assumption B (idiosyncratic error in x) Let ¥;; 4 =E (visv;-t). We assume that
1. vy is group-wise independent from e, E(vyy) =0 and E ||Vit|\8+‘s < C;

2. There exist T;; and Tot, || Xij st|| < Tij for all (s,t), and || | < Tst for all (i, ), such that

N N T T

N N T T
NI M 7 <C Ty Y 7e<C; NT'TC 1ZZZZ||2”,5,§||§0.

i=1 j=1 s=1t=1 i=1 j=1 s=1 t=1

Additionally, the largest eigenvalue of E (V,; V%) is bounded uniformly in i.
3. For every (s,t), E[|[N~1/2 Zz 1 [Visvi, — 3 5] ||4 <C.

4. For each j, I[-E|‘N*1/2T*1/2 Zfil Z?:l P ® [Vth]t E (vitv;t) ] ||2 < C. Additionally, for
each s, IEHN*l/?T*l/2 Zf\; ZZ;I [Vivie — E (Vi vit)] g?||2 <C.

1 N N T T T T
5. N~'T2 Zi:l Zj:l 251:1 252:1 Ztlzl Zt2:1 ’COV(V;'slvisw V;‘tlvjtz)| <C.

Assumption C (factors) E[f?||* < C, T'FOF° 25 2% as T — oo for some non-random
positive definite matriz £%. E|h?||* < ¢, T-'HYH? 25 2% as T — oo for some non-random

positive definite matrix 2%.

NN mory 2, T as N — 00, and

as N — oo for some non-random positive

Assumption D (loadings) IEHI‘OH4 <c =
Ellpf]* < 0.0 = NS el > 0 5 ¥
definite matrices X and X . In addition, 1"? and @
hY.

are independent groups from e;, Vi, £ and

Assumption E (identification) The matriz T~ X} MgpoX; has full column rank and E | T~ X MgoX; ||2+25

C for all i.

Assumptions A and B permit weak cross-sectional and serial dependence in ¢;; and vy, in a
similar manner to Bai (2009a). Assumptions C and D on the moments and the limit variance of
factors and factor 1oadings are standard and in line with Bai (2009a). Note that these assumptions
permit that T-'GYG? N EG, a positive semi-definite matrix, where G° = (F°, H?). Assumption

E is sufficient for identification of heterogeneous slope coefficients.



3 Estimation of models with homogeneous slopes
We propose the following two-stage IV procedure:

1. Estimate the span of F° by f‘, defined as /T times the eigenvectors corresponding to the 74
largest eigenvalues of the 7' x T matrix N 17! Zfil X;X!. Then estimate 3 as

N -1y
Bisry = (Z X;MfX,) > XiMgyi. (3.1)
=1

i=1

2. Letu; =y; — XiBlSIV' Define H to be /T times the eigenvectors corresponding to the r

largest eigenvalues of the 7' x T matrix (NT)~! Zf\;l u;u}. The second-stage estimator of 8

is defined as follows:®

N -1 N
Bosry = (Z XiMfMﬁXz) ZXiMfMﬁyi. (3.2)

=1 i=1

In order to establish the asymptotic properties of these estimators, we first expand (3.1) as

follows:
1 & - 1 X
\/W(EISIV -B)= ( E X<MAX»> — V"X M-u, (3.3)
(2 F G i Fo .
NT £ JNT ;
The following Proposition demonstrates v NT-consistency of the first-stage estimator, 31 SIV:

Proposition 3.1 Under Assumptions A-E, we have

N N
NPT N "X IMw; = N™V2T 712 " ViMpou; + bor + bir + barp + O, (VNTS )
i=1 =1
with
N N
bop =— N~'/207 123 NN Y (X0) T TV Mpou;;
=1 =1

N N
T 1
b1F _ < ZZE(V;V}L)I\(}]L/(TO)fl(TleO/FO)leOIHOLP?

N N N
T 1
e 20 D0 DTV T TRV VAT (X0) T (T R R TR !

N 1

bop = — 4/ = ——
2 T NT

i=1
where X0 = SN TV /N, = = NL 2N E(VIV)), and N=V2T7-1/25° N V/Mgou;, bor, bip
and bap are Op(1) when N/T — C. Consequently,

VNT(B1srv — B) = Op(1).

ettin . = H'H)-'H Gi, an alternative second-stage estimator can e efine: y
3Letting ¢, H'H) 'H' lternat d-stag t be defined b

_1 ~
( i\f:l X;M/I;Xi) fvzl X;Mi:()’i — Pﬁui). We do not discuss this estimator since the finite sample

performance was slightly worse than that of ﬁ251v~



Proposition 3.1 implies that ,@1 grv Is consistent but asymptotically biased. Rather than bias-
correcting this estimator, we show that the second-stage IV estimator is free from asymptotic bias.

To begin with, we make use of the following expansion:

N —1
. 1 : 1
VNT (Bygpy — B) = (NT ;XiMfMﬁXi> s ;X MzMgu;. (3.4)

The next proposition provides an asymptotic representation of Bz SIV-

Proposition 3.2 Under Assumptions A-E, as N,T — co, N/T — C, we have

N -1 N
- 1 1 _
VNT(Bysry — B) = (NT ;:1 X;MFOMHUXZ) TNT ‘§: X/ MgoMpoe; + O,(VNT)

N

N -1
:<N1TZV§V1-> Z lei + Op(VNTGSS).

Proposition 3.2 shows that the effects of estimating F° from X; and H from 1; = y; *Xiﬁwlv are
asymptotically negligible. Moreover, 32 g1y is asymptotically equivalent to a least-squares estimator
obtained by regressing (y; — H'¢?) on (X; — FOTY).

To establish asymptotic normality under weak cross-sectional and serial error dependence, we

place the following additional assumption, which is in line with Assumption E in Bai (2009a).

Assumption F plimN ! Zf\il Zjvzl VieieiV;/T = B, and Vie; BN N(0,B), for

some non-random positive definite matriz B.

1 N
/NT Zi:].

Using Proposition 3.2 and Assumption F, it is straightforward to establish the asymptotic distri-
bution of BQS]V:

Theorem 3.1 Under Assumptions A-F, as N,T — oo, N/T — C, we have
~ d
VNT(Bosry — B) — N(0,¥)
where ¥ = A"TBA~L.

Note that despite the fact that our assumptions permit serial correlation and heteroskedasticity
in v;; and €44, Bz g1y 1s not subject to any asymptotic bias. We discuss this property in more detail
in Section 5.

As discussed in Bai (2009a) and Norkuté et al. (2020), in general consistent estimation of W is not
feasible when the idiosyncratic errors are both cross-section and time-series dependent. Following

Norkuté et al. (2020) and Cui et al. (2020), we propose using the following estimator:

& A BA (3.5)
with
R 1 X R 1 X
_ / R R . = ! i .
A= NT E XZMFMHX“ B = NT g XZMFMHuZuiMHMFX“

where u; =y; — Xiﬁzsﬂ,. In line with the discussion in Hansen (2007), it can be shown that when
{V};, et} follows a certain strong mixing process over ¢ and is independent over 4, T - ¥ -2, 0as
N, T — o0, N/T — C.



4 Models with heterogeneous slopes

We now turn our focus on models with heterogeneous coefficients:

yi =XiB; +H@) +&;,
X; = F'TY + v,.

We first consider the following individual-specific estimator
a INAX V=1 N xr.
B; = (X!MzX,) ' X/ My
Proposition 4.1 Under Assumptions A-E, for each i we have
VI(B, — B,) = (T XMpoX,) " x 772X Mypou; + O, (051) + Oy (TV/2633)

and
T-1/2X! Mpou; - N(0, ;)
where Q; = T plimy_, ZZ:1 Zle Uity E(visvl) and G; = Mpow; = (U1, -+, Uir)’
We also consider inference on the mean of 8,. We make the following assumptions.

Assumption G (random coefficients) B, = B + e;, where e; is independently and identically
distributed over i with mean zero and variance ¥g. Furthermore, e; is independent with 1"?, go?,
gjt, Vit, £ and hY for all i, j,t.

Assumption H (moments) For each i, E||T’1/2V§F0H4 <C, ||~ zF )t < C,
Bl A= YL, eVt < ¢ BT 2 [vivi - 3] < ¢
B[N 5 (VIVE—E(VIVE) DY < C, and 0 < Conin < |5 < C.

We propose the following mean-group IV (MGIV) estimator:

N
Buary =N Z Bi- (4.2)
i=1
Theorem 4.1 Under Assumptions A-E and G-H, we have

N
VNBrgry —B) =N~/ Zei + Op(N*/AT71) + O (NT%/%) + 0, (N2537),

i=1
such that for N3/T* — 0 as N,T — oo, we obtain
~ d
VN(Byary — B) —— N(0,3p).
Furthermore, f)g -3 250, where

- 1
Sp=—

N_1 (Bi = Brarv)Bi = Buarv)'- (4.3)

] =

i=1



5 Asymptotic comparison of BQSW with existing estimators

This section investigates asymptotic bias properties and relative efficiency of the 2SIV, IPC, PC
and CA estimators for the models with homogeneous slopes. For this purpose, let G? = (F° H?)
denote a T' x r matrix. We shall assume that G”G°/T RS 2 > 0, a positive definite matrix. Note
that, together with Assumption C, this implies that F* and H® are linearly independent of each
other (and can be correlated), which is slightly stronger than Assumption C.

5.1 2SIV estimator

Recall that X; = FOI‘? + V; and u; = H%Y + ¢,. Proposition 3.2 in Appendix B demonstrates
that under Assumptions A-E (N‘lT_1 Zi\; X;MfMﬁXi) VNT (Bzﬂv - ﬁ) can be expanded
as follows:

N N
1 Z 1 Z [ e
i=1 i=1

where
N N
— 070y =10 0/ (~~0\—1 0 .
born = N1/2NT1/2ZZF/T L5+ (Yo) ™ ei) Ve
1=15=1
N N N
_ 07 (~~0\ =170 0/(~0\—1 0.
birn = N1/2N2T1/2 ZZZF (X)L (Vies) ) (Xy) i
=1 (=1 j=1
N N HO/HO -1
_ 07 (A0 — 1170 0 0y—1,0
boprr = Tm NWTZZL (Y*)"'r)ViS.H (T) (X)) "y,
i=1 j=1

with 3, = % Zjvzl E (sje;-). It is easily seen that (see proof of Proposition 3.2) bory = O, (N_1/2)7
bipy = 0, (N~/2) and bopy = O, (T~1/?).
Hence, we have

N N
1 !/ 1 !
i=1 i=1

5.2 Asymptotic bias of Bai’s (2009a) IPC-type estimator

It is instructive to consider a PC estimator that is asymptotically equivalent to Bai (2009a) but
avoids iterations:
N N -1 N
Basrv = (Z XgMﬁXz) ZX;‘Mﬁy
i=1 i=1
Observe that this estimator projects out H from (Xi,¥;), but it does not eliminate F from X;. H
is estimated using the residuals of the first-stage IV estimator, 4; = y; — Xi,Bl STV
Using similar derivations as in Section 5.1, Proposition 5.1 below shows that (N iy N XgMﬁXi) X

VvVNT (52 SIv — ,8) has the following asymptotic expansion:

Proposition 5.1 Under Assumptions A-E, we have

N

1 1

WE X/ Mgu; = \/J\TE X Mppo€; + bogr + by + bag + O, (\/ Toy ) (5.2)
=1 =1



with

N N

1 :
b =~ e 2 2 XM
=1 j=
N N -1
T 1 oo ((HYHO 0\—1, Om (.t )
b = = NM“;;XiH( T (Ye) " @jE (<fei/T)
N 0rpy0\ 1!
N 1 H H
boy = —) == > XIMpoX H (] (Y0) 1l
. v XM (Fr-) e,

where a;; = cpg’('rg)_lcp?, X;=X;,—N! Zévzl aypXy and X, = % Z;Vﬂ E (sjsg).

The above asymptotic bias terms are identical to those of the IPC estimator of Bai (2009a). As a
result, it suffices to compare BQSIV with BQSIV. Incidentally, as shown in Bai (2009a), the term
by tends to a normal random vector, which necessitates the transformation of the regressor matrix
to X;; see equation (5.3) below.

The terms bog, b1y and bay in (5.2) are comparable to the terms bory, b1y and bopy,
respectively, in (5.1). One striking result is that bog, b1y and bey are not asymptotically ignor-
able, whereas borpg, b1y and bopy are. This difference stems solely from the fact that BQS v
asymptotically projects out FOF? from X; and HY%! from u; separately, whereas Bz sV brojects
out HY from u; only. Therefore, the asymptotic bias terms of BZSIV, bom, big and boy, contain
correlations between the regressors X; and the disturbance u;(= H%¢? + €;) since the estimation
error of H contains u;. Recalling that X; = FOI‘? + V;, such correlations are asymptotically
non-negligible because HF°/T = O, (1) and Zf\;l ¢¥vec(IY) /N = 0, (1).

On the other hand, Bz g7y asymptotically projects out FOI‘? from X; as well as H? from u;.
Therefore, bory, biry and bopy contain correlations between MgoX; = MgoV; and u;. Since
V;, H%¢? and €; are independent of each other, such correlations are asymptotically negligible. As
a result, our estimator st v does not suffer from asymptotic bias.

Using similar reasoning, it turns out that in some special cases, some of the bias terms of
,[§2 srv may disappear as well. For instance, when F* C HY, we have MgoX,; = MgoV; because
MpoF° = 0. Thus, by = O, (N_l/g) and boy = 0, (T‘l/Q) although by g remains O, (1). Note
that under our assumptions all three bias terms, bog, b1y and boy, are asymptotically negligible

only if H = F°, which can be a highly restrictive condition in practice.*

5.3 Asymptotic bias of PC and CA estimators

Pesaran (2006) and Westerlund and Urbain (2015) put forward pooled estimators in which the
whole set of factors in X; and u; are estimated jointly, rather than separately. This difference

makes these estimators asymptotically biased. To show this, we rewrite the model as
Z; = (yi,Xi) = G°A} + U,
where

v o

4When ;5 ~ i.i.d.(0,0%), boy remains Op(1) whilst by and boy become asymptotically negligible. See
Corollary 1 in Bai (2009a).



Define

N
T =Ny AAY = ( NTEN T (B8 L) T+ X0 N TR ) .
i=1

N7 0BTy Y,

In the PC approach of Westerlund and Urbain (2015), a span of G is estimated as VT times the
eigenvectors corresponding to the first r largest eigenvalues of ZZI\; Z;Z)/N, which is denoted by

CA}Z. The resulting PC estimator is defined as

N
Bpe = (Z X;MazXZ) ZX;Mazyi.
i=1 i=1

In line with Pesaran (2006), the CA estimator of Westerlund and Urbain (2015) approximates a

span of G by a linear combination of Z = N ! Zil Z;. The associated CA estimator is given by

N - N
BCA = (Z X;MZXz) ZX;MZ}%‘-
i=1 i=1
As discussed in Westerlund and Urbain (2015), both PC and CA are asymptotically biased due
to the correlation between the estimation error of éz and {X;,u;}. The estimation error of éz
contains the error term of the system equation U;, which is a function of both V; and €;. Therefore,
the estimation error of éz is correlated with Mg X; and Mgu;, which causes the asymptotic bias.
In what follows, we shall focus on the PC estimator as the bias analysis for the CA estimator is
very similar.

Following Westerlund and Urbain (2015), we expand (N’lT*1 Zf\;1 X;Maz Xi) VNT (BPC - ﬂ)

as follows:

Proposition 5.2 Under Assumptions A-E

N N
1 1
—— Y XMg u;= —— Y Vie; +big +bac + bsg + 0, (VNTS]
i G, i< P NT )
NT & VNT & ( )
T1 &
bio = -\ 22 (07,0) (YR) " AJE (Ujei/T);
i=1 j=1
N N N —1
T 1 _ B GO/Go GO/HO
b = e 2 2 (0.0 (e At (U ATy (S ) S
i=1¢=1 j=1
N N -1
[T 1 ViU, GYG%\ ' GUH?
bapr = —4] —— i3 AV 0y )

It is easily seen that big, beg and bzg are all O, (1). Note that the asymptotic bias terms are

functions of Ag and T?\7 which depend on the slope coefficient vector 3.

5.4 Relative asymptotic efficiency of 2SIV, IPC, PC and CA estimators

Finally, we compare the asymptotic efficiency of the estimators. To make the problem tractable

and as succinct as possible, we shall assume that e;; is i.i.d. over ¢ and ¢ with E (g;;) = 0 and
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E (aft) = 02. In this case, it is easily seen that the asymptotic variance of st v is

N —1
U =2 <pth—1T—1 > V;Vi> :

i=1

Next, using Proposition 5.2, consider the bias-corrected PC estimator

N -1
BPC = IBPC - N1/2T1/2 <Z V2V1> (blG + bQG + bgg)

i=1

We can see that the asymptotic variance of the bias-corrected PC estimator is identical to W.
Therefore, the 2SIV and the bias-corrected PC estimators are asymptotically equivalent.

Consider now S, srv- Noting that by tends to a normal distribution, and following Bai (2009a),
the bias-corrected estimator with transformed regressors can be expressed as:

i=1

N -1
~% ~4
Basty = Basry — N'V2T/? (Z XgMHO-’Q) (bir + bas),

where
. N N
Basrv = <Z X;MHL’Xz) > X Moy (5.3)
i=1 i=1
The asymptotic variance of this bias-corrected estimator is given by

N -1
U =2 <pth1T1 > X;MHOX,;> .
i=1

There exist two differences compared to ¥. First, in general MgoX; # MpgoV; as the factors
in X; may not be identical to the factors in u;. Second, regressors are to be transformed as
X, =X, - Nt Eé\,:l a;¢Xy. Therefore, ¥ — ¥ can be positive semi-definite or negative-semi-
definite. Thus, the asymptotic efficiency of the bias-corrected IPC estimator of Bai (2009a) relative
to 2SIV and the bias-corrected PC/CA estimators, is indeterminate. However, in the special case
where FO C H?, we have Mo X; = MgoV;, with V; = V; — N1 Zévzl ai¢ V. The second term
of V; is O,,(N‘l/z) because V; and a; are independent. Hence, in this case U = ¥, and the
bias-corrected IPC estimator is asymptotically as efficient as the bias-corrected PC/CA estimator
and 2SIV.

6 Monte Carlo Simulations

We conduct a small-scale Monte Carlo simulation exercise in order to assess the finite sample be-
haviour of the proposed approach in terms of bias, standard deviation (s.d.), root mean squared
error (RMSE), empirical size and power of the t-test. More specifically, we investigate the perfor-
mance of 2SIV, defined in (3.2), and MGIV defined in (4.2). For the purposes of comparison, we
also consider the (bias-corrected) IPC of Bai (2009a) and the PC estimator, labeled as (BC-)IPC
and (BC-)PC respectively, the CA estimator, as well as the mean-group versions of PC and CA
(denoted as MGPC and MGCA), which were put forward by Pesaran (2006), Westerlund and Ur-
bain (2015) and Reese and Westerlund (2018). The t-statistics for 25TV and MGIV are computed
using the variance estimators defined by (3.5) and (4.3), respectively. The t-statistics for IPC, PC

and CA estimators and their MG versions (if any) employ analogous variance estimators.

11



6.1 Design

We consider the following panel data model:

k My
Yit = Q; + Z Beieir + wir;  wip = ZVgifg,t + it (6.1)
{=1 s=1

t=1,...,N, t = —49,...,T, where the process for the covariates is given by

My
Toir = poi + D Aif O F v 1=1,2,.,N; t=—49,—48,..T. (6.2)
s=1
We set k = 2, m,, = 2 and m, = 3. This implies that the first two factors in u;, f7, and f5,, are
also in the DGP of zy; for £ = 1,2, while f3, is included in x4; only. Observe that, using notation
of earlier sections, h = (fY,, £3,)" and £ = (f%,, 3, f9.). °

The factors fgﬁt are generated using the following AR(1) process:

£ =prafli 1+ (= p3) Pl (6.3)

where prs = 0.5 and (54 ~4.5.d.N(0,1) for s =1, ..., 3.

The idiosyncratic error of y;;, €;;, is non-normal and heteroskedastic across both ¢ and ¢, such
that ;s = c.oi(eir — 1)/V2, € ~ i.d.d.x3, with o2 = mipe, i ~ i.d.d.x3/2, and ¢, = t/T for
t = 0,1,...,T and unity otherwise. We define m, = ¢2/ (my +§€2) which is the proportion of
the average variance of u;; due to ;. This implies ¢2 = m,m, (1 — m.) "', We set ¢2 such that
T, € {1/4, 3/4}.

The idiosyncratic errors of the covariates follow an AR(1) process

Vit = poceit—1 + (1 — p2 ) Pwie;  weie ~i.4.d.N(0,62), (6.4)

for £ =1,2. We set p, ¢ = 0.5 for all .

We define the signal-to-noise ratio (SNR) as SNR := (87 + 83) ¢2s2% where p, = py, for
¢ = 1,2. Solving for ¢2 gives ¢2 = ¢2SNR (ﬂf + ﬂ%)fl. We set SNR = 4, which lies within the
values considered by Bun and Kiviet (2006) and Juodis and Sarafidis (2018).

The individual-specific effects are generated by drawing initially mean-zero random variables as

pii = puec; + (1= p )P0, (6.5)

where of ~ i.i.d.N(0,1), wg; ~ i.i.d.N(0,1), for £ = 1,2. We set p, = 0.5 for £ = 1,2. Subse-
quently, we set

ap =a+tal, e = e+ pg, (6.6)
where a = 1/2, 1 =1, po = —1/2, for £ =1, 2.

Similarly, the factor loadings in u;; are generated at first instance as mean-zero random variables
such that 7% ~ 4.i.d.N(0,1) for s = 1,...,m, = 2, £ = 1,2; the factor loadings in x1;; and xa;; are
generated as

Vo5 = s + (L= p2 o) *Eesis si ~ 1.0.d.N (0, 1); (6.7)

5Tables E1-E3 in Appendix E present results for a different specification, where my = 3 and mgy = 2. To save
space, we do not discuss these results here but it suffices to say that the conclusions are similar to those in Section
6.2.
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Wi = prastiy + (1= p2 1) *61sis &aai ~ 0.4.d.N(0,1); (6.8)
V94 = py23yer + (1 — P§,23)1/2523i; §23i ~.1.d.N (0, 1). (6.9)

The process (6.7) allows the factor loadings to f{),t and fzo’t in z1;; and x9;; to be correlated with
the factor loadings corresponding to the factor specific in u;;. On the other hand, (6.8) and (6.9)
ensure that the factor loadings to fgt in z1;+ and x9; can be correlated with the factor loadings
corresponding to the factors f{),t and fg)t in u;;. We consider py 11 = py,12 = pv,21 = Pv,22 = P~,13 =

p~,23 = 0.5. The factor loadings that enter into the model are then generated as

r9=r°4 1 (6.10)
where 0 0 0 0 0 0
* * *
0 7(1)1' 7(1)“ V%M 0 7(1)1' 7%)11‘ 7%11‘
* *
i = Y2i ’7621' 7%21' and I';" = Voi 7%)51‘ 7%2i
0 73 723 0 73 723

Observe that, using notation of earlier sections, v, = (4{;,79;) and T ; = (79;,73;,7%;)’ with
V0 = (Vi VPeis V%) for £ = 1,2. Tt is easily seen that the average of the factor loadings is
E(T9) =T We set

. 7" M 1/4 1/4 —1
M= 10 0% 9 | = 1/2 -1 1/4 |]. (6.11)
0 s 79 0 1/2 1/2

The slope coefficients in (6.1) are generated as

Bri = P+ 13 Boi = B2+ Nsis (6.12)

such that 57 = 3 and P = 1. In the case of homogeneous slopes, we impose p; = p, f1; = (1 and

B2i = 2, whereas in the case of heterogeneous slopes, we specify n,; ~ i.i.d.U [—¢, +¢], and

N = [(202/12]7% ppga+ (1= p2) " i,

where £g,; is the standardised squared idiosyncratic errors in x¢;;, computed as

gﬁ[i =

NS TE
[Nl Zf\; (Ugi*”zg) ]

with vT?i =71 Zz;l Vs E =N"! ZZ]\LI vj?i, for £=1,2. Weset c=1/5, pg =04 for £ =1,2.

We consider various combinations of (T, N),i.e. T € {25,50,100,200} and N € {25,50, 100,200}.
The results are obtained based on 2,000 replications, and all tests are conducted at the 5% signif-
icance level. For the size of the “t-test", Ho : B¢ = 7 for £ = 1,2, where 8 and 9 are the true
parameter values. For the power of the test, Hy : B, = 519 + 0.1 for £ = 1,2 against two sided
alternatives are considered.

Prior to computing the estimators except for CA and MGCA , the data are demeaned using
the within transformation in order to eliminate individual-specific effects. For the CA and MGCA
estimators, the untransformed data are used, but a T' x 1 vector of ones is included along with the
cross-sectional averages. The number of factors m, and m, are estimated in each replication using

the eigenvalue ratio (ER) statistic proposed by Ahn and Horenstein (2013).
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6.2 Results

Tables 1-3 report results for 51 in terms of bias, standard deviation, RMSE, empirical size and
power for the model in (6.1).°

Table 1 focuses on the case where N = T = 200 and ,, alternates between {1/4,3/4}. Consider

first the homogeneous model with 7w, = 3/4. As we can see, the bias (x100) for 2SIV and MGIV
is very close to zero and takes the smallest value compared to the remaining estimators. The bias
of BC-IPC is larger in absolute value than that of IPC but of opposite sign. This may suggest that
bias-correction over-corrects in this case. MGPC and PC perform similarly and exhibit larger bias
than IPC. Last, both CA and MGCA are subject to substantial bias, which is not surprising as
these estimators may require bias-correction in the present DGP.
In regards to the dispersion of the estimators, the standard deviation of 251V and PC is very similar,
which is in line with our theoretical results. For this specific design, IPC takes the smallest s.d.
value among the estimators under consideration. On the other hand, when it comes to the bias-
corrected estimators, bias-correction appears to inflate dispersion and thus the standard deviation
of BC-IPC and BC-PC is relatively large (equal to 0.805 and 0.885, respectively). As a result, 25TV
outperforms BC-IPC and BC-PC, with a s.d. value equal to 0.586.

In terms of RMSE, IPC appears to perform best, although this estimator is not recommended
in practice due to its asymptotic bias. 2SIV takes the second smallest RMSE value, followed by
MGIV. CA and MGCA exhibit the largest RMSE values, an outcome that reflects the large bias of
these estimators.

Next, we turn our attention to the model with heterogeneous slopes and m,, = 3/4. In comparison
to the homogeneous model, all estimators suffer a substantial increase in bias; the only exception
is MGIV, which has the smallest bias. MGPC and MGCA are severely biased, both in absolute
magnitude as well as relative to the remaining inconsistent estimators. The s.d. values of MGIV
and MGPC are very similar and relatively small compared to the other estimators. The smallest
RMSE value is that of MGIV.

We now discuss the results in the lower panel of Table 1, which correspond to w, = 1/4.
The relative performance of the estimators is similar to the case where m, = 3/4, except for a
noticeable improvement in the performance of BC-IPC. Thus, the results for BC-IPC and IPC are
quite comparable, suggesting that the bias-correction term is close to zero and so over-correction
is avoided. The results for 2SIV are very similar to those for m, = 3/4, which indicates that the
estimator is robust to different values of the variance ratio. The conclusions with heterogeneous
slopes for m, = 1/4 are similar to those for 7, = 3/4

In regards to inference, the size of the t-test associated with 2SIV and MGIV is close to the
nominal value of 5% under the setting of homogeneous slopes. The same appears to hold true for
BC-IPC when m, = 1/4, although there are substantial distortions when m, = 3/4. The t-test
associated with BC-PC is oversized when 7, = 3/4 and the distortion becomes more severe with
7wy = 1/4. CA and MGCA have the largest size distortions. In the case of heterogeneous slopes,
MGIV performs well and size is close to 5%. MGPC and MGCA have substantial size distortions
regardless of the value of 7.

Table 2 presents results for the case where (N,T) = (200,25) (i.e. N is large relative to T')

6The results for B2 are qualitatively similar and so we do not report them to save space. These results are
available upon request.
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and (N,T) = (25,200) (N is small relative to T') for m, = 3/4. In the former case, 2SIV performs
best in terms of bias. IPC has the smallest RMSE, followed by 2SIV. CA has the largest bias
and RMSE. In the case of heterogeneous slopes, MGIV has smaller absolute bias than MGPC
and MGCA. Therefore, MGIV is superior among mean-group type estimators, which are the only
consistent estimators in this design. In the case where T is large relative to IV, 251V and MGIV
again outperform BC-IPC, BC-PC and CA in terms of bias, standard deviation and RMSE.

In regards to the properties of the t-test, 2SIV and MGIV have the smallest size distortions
relative to the other estimators, and inference based on 2SIV and MGIV remains credible even for
small values of NV or T'. Moreover, 2SIV and MGIV exhibit good power properties, whereas MGPC
has the lowest power when N is small relative to T'.

Table 3 shows the bias of the estimators, scaled by vV NT (v/N) for different values of N = T
with m, = {1/4,3/4} when the slopes are homogeneous (heterogeneous). The performance of 2SIV
and MGIV is in agreement with our theoretical results. More specifically, the bias monotonically
decreases as the sample size goes up. In contrast, for w, = 3/4 it appears that a relatively large
sample size is necessary so that bias-correction works for BC-IPC. BC-PC appears to require even
larger sample sizes.

In a nutshell, the results presented in Tables 1-3 and the associated discussion above suggest that
2SIV and MGIV have good small sample properties and outperform existing popular estimators for

the experimental designs considered here.

7 Conclusions

We put forward IV estimators for linear panel data models with interactive effects in the error
term and regressors. The instruments are transformed regressors, and so it is not necessary to
search for external instruments. Models with homogeneous and heterogeneous slope coefficients
have been considered. In the former model, we propose a two-stage IV estimator. In the first stage,
we asymptotically projects out the interactive effects from the regressors and use the defactored
regressors as instruments. In the second stage, we asymptotically eliminate the interactive effects
in the error term based on their estimates using the first-stage residuals. We established the v/ NT-
consistency and the asymptotic normality of the 2SIV estimator. For the heterogeneous slopes, we
put forward a mean-group IV estimator (MGIV) and established v/N-consistency and asymptotic
normality.

Having derived the theoretical properties of our IV estimators, we compared the asymptotic
expressions of our 2SIV estimator, IPC of Bai (2009a), PC and CA of Westerlund and Urbain
(2015) and Pesaran (2006), for the models with homogeneous slopes. Under the conditions similar
to those in Bai (2009a), it has emerged that 2SIV is free from asymptotic bias, whereas the remaining
estimators suffer from asymptotic bias. In addition, it is revealed that 2SIV is asymptotically as
efficient as the bias-corrected versions of PC and CA, while the relative efficiency of the bias-
corrected TPC estimator is generally indeterminate. The theoretical results are corroborated in a
Monte Carlo simulation exercise, which shows that 2SIV and MGIV perform competently and can

outperform existing estimators.
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Table 1: Bias, root mean squared error (RMSE) of the estimators of 31, and size and power of the associated
t-tests when m, = {1/4,3/4} and N =T = 200.

Homogeneous Slopes Heterogenous Slopes

Estimator Bias S.D. RMSE Size Power Bias S.D. RMSE Size Power
(X100) (x100) (x100) (X100) (x100) (x100)
Ty = 3/4
2SIV 0.003 0.586 0.586 5.5 100.0 0.583 0.960 1.122 7.9 100.0
BC-IPC —0.149 0.805 0.818 21.9 100.0 0.238 1.246 1.268 10.0 100.0
1PC 0.020 0.528 0.528 6.1 100.0 0.408 1.061 1.137 6.4 100.0
BC-PC 0.306 0.885 0.937 19.7 100.0 0.891 1.181 1.479 17.9 100.0
PC —0.638 0.589 0.868 21.2 100.0 —0.081 0.969 0.973 4.5 100.0
CA 1.859 0.806 2.026 80.1 100.0 2.469 1.131 2.716 64.3 100.0
MGIV 0.000 0.593 0.592 5.1 100.0 0.014 0.958 0.958 4.2 100.0
MGPC —0.650 0.595 0.882 21.5 100.0 —0.636 0.963 1.154 8.7 100.0
MGCA 1.623 0.722 1.776 72.4 100.0 1.693 1.064 1.999 38.3 100.0
Ty =1/4
2SIV —0.002 0.573 0.572 6.0 100.0 0.559 0.992 1.138 9.0 100.0
BC-IPC —0.073 0.438 0.444 6.1 100.0 0.100 1.645 1.648 8.7 100.0
1PC —0.073 0.437 0.443 6.3 100.0 0.107 1.645 1.648 8.8 100.0
BC-PC 2.786 2.520 3.756 72.4 100.0 3.446 2.785 4.430 65.8 100.0
PC —0.638 0.576 0.859 20.2 100.0 —0.097 0.993 0.998 4.7 100.0
CA 2.083 0.920 2.278 84.4 100.0 2.645 1.229 2.916 69.0 100.0
MGIV —0.002 0.582 0.582 5.4 100.0 —0.008 0.980 0.979 4.5 100.0
MGPC —0.646 0.586 0.872 20.3 100.0 —0.649 0.983 1.177 9.5 100.0
MGCA 1.789 0.788 1.955 76.5 100.0 1.827 1.111 2.138 42.4 100.0

Table 2: Bias, root mean squared error (RMSE) of the estimators of 31, and size and power of the associated
t-tests when m, = 3/4, N = 200, T = 25 and N = 25, T' = 200.

Homogeneous Slopes Heterogeneous Slopes

Estimator Bias S.D. RMSE Size Power Bias S.D. RMSE Size Power
(x100) (x100) (x100) (x100) (x100) (x100)
N =200, T =25
2SIV 0.126 1.941 1.944 6.7 99.8 1.519 2.156 2.637 12.4 100.0
BC-IPC —1.180 2.610 2.864 23.6 97.6 —0.070 2.911 2911 17.1 98.1
IPC 0.374 1.870 1.906 8.7 99.9 1.301 2.234 2.585 12.9 100.0
BC-PC 0.825 2.746 2.867 12.7 99.8 2.185 2.842 3.584 20.9 100.0
PC —0.211 2.756 2.763 11.6 99.7 1.145 2.842 3.063 12.6 99.8
CA 2.084 2.000 2.888 21.4 100.0 3.404 2.218 4.062 37.8 100.0
MGIV 0.482 2.534 2.578 9.9 99.4 0.606 2.687 2.754 10.8 99.6
MGPC —0.414 2.554 2.587 9.0 99.0 —-0.279 2.737 2.751 9.9 98.0
MGCA 1.850 2.127 2.819 15.9 100.0 1.914 2.334 3.018 14.8 100.0
N =25, T =200
2SIV 0.016 1.715 1.715 9.2 99.9 0.480 2.736 2.777 8.7 97.7
BC-IPC —2.552  9.303 9.644 65.0 79.1 —2.679 10.032 10.381 51.4 69.5
IPC 0.639 2.883 2.953 14.8 98.2 0.939 3.885 3.996 13.2 91.1
BC-PC 2.547 5.525 6.083 29.5 95.7 2.910 6.102 6.759 24.5 87.7
PC —5.703 2.103 6.078 82.5 57.8 —5.413 3.011 6.194 426 33.2
CA 5.971 3.267 6.805 64.3 100.0 6.277 4.086 7.489 39.9 99.7
MGIV 0.038 1.742 1.742 6.6 99.9 0.036 2.725 2.725 5.6 94.7
MGPC —6.047 2.179 6.427 83.6 48.3 —5.997 3.018 6.713 48.3 26.5
MGCA 4.705 2.610 5.380 54.6 100.0 4.689 3.416 5.801 32.0 99.5
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Table 3: Scaled bias of the estimators of ;.

Estimator\N =T

2SIV
BC-IPC
IPC
BC-PC
PC

CA
MGIV
MGPC
MGCA

2SIV
BC-IPC
IPC
BC-PC
PC

CA
MGIV
MGPC
MGCA

Homogeneous Slopes

Heterogeneous Slopes

(V'NT x Bias) (VN xBias)
25 50 100 200 25 50 100 200
Ty = 3/4
0.162 0.044 0.015 0.005 0.094 0.068 0.075 0.082
—0.142 —-1.228 —0.771 —0.298 0.003 —0.148 —0.027 0.034
0.551 0.384 0.116 0.040 0.145 0.092 0.053 0.058
0.753 0.771 0.604 0.612 0.195 0.166 0.143 0.126
—-1.061 —-1.390 —1.317 —1.277 —0.174 —0.137 —0.063 —0.011
1.509 2.353 3.157 3.718 0.356  0.387 0.383  0.349
0.258 0.072  0.025 —0.001 0.058 0.006 —0.001 0.002
—1.229 —-1.463 —1.351 —1.301 —0.240 —0.205 —0.138 —0.090
1.228 1.891 2.604 3.245 0.256 0.266 0.262 0.239
Ty = 1/4

—0.037 —0.011 —0.015 —0.003 0.067 0.069 0.080 0.079
—0.068 —0.031 —0.061 —0.146 0.003 0.004 0.013 0.014
—0.047 —0.018 —0.055 —0.146 0.008 0.007 0.015 0.015
7.650 6.461 5.771 5.571 1.698 0.962 0.668 0.487
—1.643 —1.408 —1.332 —1.276 —0.267 —0.138 —0.054 —0.014
2.157 3.261 3.875 4.167 0.484 0.507 0.459 0.374
—0.009 0.025 —0.031 —0.003 0.009 —0.004 0.004 —0.001
—1.740 —1.462 —1.376 —1.292 —0.339 —0.210 —0.129 —0.092
1.610 2.425 3.036 3.578 0.335 0.339 0.314 0.258
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Appendices: Proofs of the main theoretical results

In Appendices A-D, proof of main theoretical results with necessary Lemmas are provided. Proofs of used
lemmas are available in Online Supplement.

Appendix A Lemmas and proof of Proposition 3.1

Throughout the appendix, we use C' to denote a generic finite constant large enough, which need not
to be the same at each appearance. Denote the projection matrix Pa = A(A’A)flA' and the residual
maker Ma = I — Pa for a matrix A. Let 2 be r1 X r1 diagonal matrix that consist of the first T1
largest eigenvalues of the T' x T matrix (NT) ™! Zi\le X;X!.. Then by the definition of eigenvalues and F,

FE = (NT)™! Ziil XiX;f. It’s easy to show that E is invertible following the proof of Lemma A.3 in
Bai (2003). Then

N

N N
F_F'R = % Y FrvViEET 4 % S VirVEUFE T 4 % S viviFs" (A1)
i=1

i=1 i=1

where R = (NT)™! Zf\; T'TYFY”FE. Following the proof of Lemma A.3 in Bai (2003) again, we can
show that R is invertible.

Lemma A.1 Under Assumptions B to D, we have
a) T7'|F ~ F'R|* = 0, (dy7)
T (F - F'R)'F® = 0,(dy7) ,
E=0,(1),R=0,(1),27"' =
d RR — (T7'FYF°)~' =0,(05
€) Mg — Mgo = Op(0x7)

“HF -F°R)H’ = 0,(051), T ' (F — F'R)'F = 0,(657) ,
Op(l) :R_l = Op(l) 5
2)

N
(f) NN TOVE - FR) = 0,(N 1) + 0,(N " /2533),

=1
Lemma A.2 Under Assumptions A to D, we have

N

(@) N7V DT (B — FR™Y)| = Oy(657)
i=1
N

®) N @ IT T VIE - FOR)| = O,(357)

=1

N
(©) N7' S T (F —FOR)|| T VI(F - FOR)|| = O, (5x7)
=1

Lemma A.3 Under Assumptions A to D, we have

N
—1/22—1/2 (RN S
N~YV2T ZriF Mou;
=1
N N
—3/2p—1/2 0/ R0y — 110
— N2t ZZF/(T) TV Mau,
=1 £=1

N N
— NT32p1/2 Z Z Oy (X)) (TTFE) T F ViV Mo + O, (N VPT265) + 0,(057)

i=1 £=1
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Lemma A.4 Under Assumptions A to D, we have

N N

N3/2p-1/2 Z Z rY(Y%) ' TV Moy,
i=1 £=1
N N

— NTIRPTEN N Y (00) T TV Mo,
i=1 £=1

N
+N—5/2 3/2222 0/ TO FZVZVhI\O/(-rO) ( —lFO/FO)— FO/U1+O ( 1/25]\]'1")
Lemma A.5 Under Assumptions A to D, we have
N
N—3/2p—3/2 Z Z I‘?'(To)fl(TﬁlF’Fo)le'VZV},Mi;ui
i=1 £=1

N3/2p=3/2 Z Z Y (Y%) (T 'FYE) T EYE (VoV)) Myou; + Oy (TY2657) + Op (N 2T~ /25 1)

i=1 £=1

Lemma A.6 Under Assumptions A to D, we have

N
N—V2p-1/2 ngMﬁui
i=1
N
—N"1/2p1/2 Z V! Mpou; — N~3/2773/2 Z Z ViVRDY (XN TTIFYEY) TR ws + O, (NV2TV26353)
=1 1=1 h=1

Lemma A.7 Under Assumptions A to D, we have

N N N N
1 ZZVQVhI‘?L’(TO)’l(T’IFO’FO)’l(T LpOy,) = ZZE (VIV)DY (Y0~ (T PV FO) RV H !
i=1 h=1 i=1 h=1

N N N
o 20 D ST (X TRV VTR (X) T (T ER) R H ] + 0,12

N
1 07 0\—1 — 190/ 0\ —1 0/ . 1 0r 0\—1 — 190/ 0\ — 10/ 0,0 —1
ﬁ;r (X)) HT'FYFY) T FY SMpou; = ﬁ;r (X)) H T FYFY) T FY SMpoH 00 + O, (55k)
which are Op(1), where X; = X; — N~ * Zé\;l X, Y9 'r?, v, = v, - N ! Zé\;l V.Y (r%)-'re?,
YO =N MY and == N"'S ) E(VeV)).

Proof of Proposition 4.1. With Lemmas A.3; A.4, A.5, we have

N
—1/2—1/2 0/ g0/
N~V2p ZI‘Z-F Mo u;
=1
N N
N3/2p-1/2 Z Z rY(r%'rv,Mpou,

i=1 £=1
N N N

4+ NT¥/2p3/2 Z Z Z I‘?'(TO)*I‘%V}V;LI‘?L’(TO)A (TﬁlFO/FO)leO'ui

i=1 £=1 h=1

N N
N~3/2p=3/2 Z Z oY (Y%) (T FYE) T EYE (VoVY) Mgou; + Oy (TY2657) + Op(NV2T 72551,

i=1 £=1
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and with Lemma A.6,

N
N_1/2T_1/QZV§M§u,-

=1
N N
=NTPTTEN T VIMpow; — N7 N N VIV, (00) T T EYEY) TR w + O, (NPT 267
i=1 i=1 h=1

Then, we have

N
—1/2—1/2 IN
N T E Vz-l\/IFuZ

=1

N
=NTPTTPN X Mpow —N‘3/2T_3/QZZVV Y (%) YT 'FUFO) IRy,
i=1 i=1 h=1

N3/2p—3/2 Z ZI‘?'(TO)A(TﬁlFo'FO)leO'E (VzV%) Myou; + Op(Nl/le/Qég,%)
i=1 ¢=1

N
T N _
Z Mpou; + N + 4/ T2 + O, (NY2TV2533)

T\

where
1 N N
_ ' 0/ (A0 =1 (= 1420720y —1 (= 14207
a, = —NTZZvlvhrh(r) (T'FYFO) (T 'Fu;)

N
_ 1 0/ 0y—1 — 1420/ 0\ — 140/ .
a2——ﬁz (X)) (T F'F ) F"3XMpou;

with Vi = V; = N30 vy (x0)7'r?, Y0 = N7' Y DO and £ = N7 YL E(VeVY). Ap-
plying Lemma A.7 to a; and as, we can derive that N~1/27~1/2 Zil X' Mau; = Op(N_l/QTl/Q) +
Op(NY2T=1/2) 4 O, (NV2TY252) and

N
Z M/I;ui =

T~

N
Z "Mpou; + by + by + O, (NV?T12533)

f
where
T N N
b = — /N ZZ VVh I‘%’(TO) (TﬁlFO/FO)ilFO,HOLP?
i=1 h=1
T N N N
/N ZZZFO/ .ro I‘?E(VZV@I‘%’(TO)_I(T_IFO/FO)_lFO/HOQO?
IN 1 &
_ 0/ (A0 —1 =107 g0\ — 1407 0 0
by = TNT 11‘,(1() (T7'FYF°) ' FYESMpoH )

as required. With the facts that N ~* Ziil lT=Y2X,)% =

= 0,(1), [Mg—Mgol|| = Op(d1) and N T~ 3 ViMpoVi—
N7ITUSY VIV, = 0,(T") we have

N N
NTTTHY XM = NTITTH Y VIV = 0, (0xr) + Op(T7Y)
=1

i=1

so that, with continuous mapping theorem, v/ NT(/B1SIV — B) = Op(1). This completes the proof. O
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Appendix B Lemmas and proofs of Proposition 3.2 and Theorem 3.1

Let Z be 7“2 X T2 dlagonal matrix that consist of the first ro largest eigenvalues of the T X T matrix

A Z ;1. Then by the definition of eigenvalues and H, HEZ = N~ 'T~! Z WaH. It's easy
to show that = is invertible following the proof of Proposition A.1 (i) in Bai (2009a) given IBISIV - B =
Op(N~Y27=1/2) Then

H-HR

—N_IT_lzX (B - 5151\/)(,3 /31SIV) ﬁE

i=1

. (B.1)
+NTITT ZX B- /3151\/) HE '+ N7 Zuz B - ,31SIV) HE™
i=1 i=1
N N N
+NTITTY CHOQUEH A+ NTITTNY e HYHE T 4 NTITT Y el HE
i=1 i=1 i=
where R = T_I'I'LPH/ITIE'_1 with YO = N ™! El ) @Y. Following the proof of Proposition A.1 (ii) in

Bai (2009a), we can show that R is invertlble

Lemma B.1 Under Assumptions A to D, we have

a) T H-H"R|* = 0,(3x7),
T HH - H'R)H® = 0,(632), T (H - H'R)H = 0,(532),
E=0,1),R=0,(1),E ' =0,(1),R™" = 0,(1).
d RR —(T"'"HH") ™' = 0,(602),
— Mo = Op(6n7)
N
(f) N7 gep(H - HOR) = Op(N71) + Op(N V2557
=1

Lemma B.2 Under Assumptions A to D, we have

N
ST VAVITHE - HORY sl = 0,(552),

N

(®) N7 @l IIT T VI(H - HOR)|| = 0,(0x7),
=1
N
() N7'Y|TTIVIH - HOR)||[|T7(H - HR)'eil| = Op(3n7)

i=1

Lemma B.3 Under Assumptions A to D, we have

N N
—>V. V!
— N VM-Mauw; = —— Y V/\MpoMpoe:
F H
Ti:l NT i=1
N N

— NTPTTEN N " Vieng) (Y0) @) + Op(dyt)

i=1 h=1
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Lemma B.4 Under Assumptions A to D, we have

N
—1/2m—1/2 (ENUEN SR S
N~V E IYF" MM,
=1
N N
—3/2m—1/2 0 0\—140
— N2l § E rY(Y)) ' T ViIMsMu;
=1 £=1

N—3/2p=3/2 Z Z Oy (X0) T (TTFE) T F Vi VMM, + O, (6x7) + Op(N~2T2532)
i=1 £=1
Lemma B.5 Under Assumptions A to D, we have
N N
N—3/2p—3/2 Z ZI‘?/(TO)71(TﬁlF/FO)ilF/VgV/gM%\MI/_\IUi _ Op(Tl/Q(S;,%) + Op(N1/2T71/251§%)
i=1 (=1
Lemma B.6 Under Assumptions A to D, we have

N N N N

1 07 0 1 [ 0\ =110~/ 0
W ZZF T ) I‘ZV(M’\M u; = —W ZZFZ (T ) FZVEMFUMHUEZ'
=1 £=1 i=1 £=1
N N N
NTRTTVEN NN Y (00) T T Vienel (Y2) !
i=1 £=1 h=1

N N N
N—3/2p=3/2 ZZZ (") 'Y VE.H(T 'HYH) (1) !

Proof of Proposition 3.2. By Lemmas B.3, B.4, B.5 and B.6 and the fact that MoX; = MoV, we
can derive that

N N
XM-Mau; = —— i+ b b b 1
T; =My \/72:: i€ +borm +birg +bopy + o0, (1)
with
11 v .
born = a7 g D DTV (X)) TIT] @) (X)) Vies
1 U
biry = Nz N2T1/ Z ZI‘O' (r"'ry (V}ej) t,o;)/(Ti)_ltp?
N7 Nﬁ ) HO/HO -1
born = T1/2 N3/2T ZZFO, 1F?V;ESHO< T ) (Y3) i,

B = % YL E(e56)), where bors = Op (N7'/?), bipsr = O, (N7'/?) and by = O, (T7'/?). Hence,

we have
T T
I X' M~Mau;, = —— Viei + o0, (1
VNT Z:; FH VNT ; » (1)

In addition, it is easily shown that

N N
1 ’ 1 ’ —1
~NT E XiMMg X — ~NT E ViVi=Op(dyr)

=1 =1

This completes the proof.(]
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Proof of Theorem 3.1. By Proposition 3.2 we have
N N
VNTBosry = B) = (NT'T7H Y VIV) L NTPT2N " Vie 4+ O, (NVT%6,:3).
i=1 =1

A ZZ\L ViV, 25 A and N~Y/27~1/2 Zl\i Vie; BN N(0,B) by Assumption F, together with
=1 =1
continuous mapping theorem yield the required result. [J

Appendix C Lemmas and proofs of Proposition 4.1 and Theorem 4.1
Lemma C.1 Under Assumptions A to D, we have
(a) |IT"'ei(F” — FR™)| = Op(dn7)
() |77 Vi(F ~F'R)| = Op(6y7)
Lemma C.2 Under Assumptions A-E and G-H, we have
T2 X Mau; = T72X(Mpoui + Oy (T2657) .
Proof of Proposition 4.1. It’s easy to show that
1T XIMSX, — T X Mpo Xl < 177X |12 [ Mg — Mo || = O, (37
with Lemma A.1(f), we have 8, — 8; = Op(T~"/?) + 0, (652), we can derive that
VIB, - 8) = (T7'XiMgX,)  x T/ X (Mg,
= (T7'XMXs) ' x T7Y2X Myow; + O, (T"/?633)
= (T7'XMpoX,) ' x T72X[Myou; + O, (551) + O, (T"/2652)
which implies that Theorem. As #t; = Mpow;, T~ Y2X Mgou; = T~ Y2Vin, = T~1/? 23:1 Vielie, and

the term .
T72X! Mgou; - N(0, €2;)

where Q; = T~ 'plim_, 23:1 E?:l G50t E(Visviy). This completes the proof. OJ
Lemma C.3 Under Assumptions A-E and G-H, we have
(a) sup [T7 =Op(N'*)
1<i<N

N T N
(b)  sup [NTVETTVEN VY| = sup [NTVETTVEN TN Ceivi, DY = Op(NYY)

1SisN =1 ISisN t=1 £=1

N
(¢) sup [NT'TTND ElE (VoVy) F|| = 0, (N
1<i<N 5:1

N
(d) sup NTVETTVEIN(VIV, —E(ViVe)) T = Op(N'Y)
lsish =1
Lemma C.4 Under Assumptions A-E and G-H, we have
(@) sup [T'el(B” —FR™)| = 0,(6xF) + Op(NV/*T ™) 4 O, (N V4T 12)
(b)  sup [|T'VI(F — FR)|| = O,(N'/*537)

1<i<N

Lemma C.5 Under Assumptions A-E and G-H, we have

N
() N7VPT7HS T XiMgus — X{Mypous| = O, (N'/?637).
=1
b TIX!M~X; — T X/ MgoX;|| = O, (NY?52
(0)  sup || iVIpAi — iMpoXil| = Op( NT) -

1<i<N

23



Proof of Theorem 4.1. Under Assumptions A-E and G-H, we have

N N N
\/N(IBJWGIV - 5) =N72 Z(ﬁz - ﬁ) = N7 Z(ﬁl N ﬂi) + NTH2 Zei
i=1 i=1 =t
where
N N
NTVEY (B -8 = NV (XIMX) T X Mg,
i=1 i=1
N N
=N (KM X)X Mo NS (RIMEX) XM, — (XM X)X Mo,
i=1 =1
N N
SN2 (XiMpo X)X Mo+ N7V Y [(XIMEXD) T = (XM X) 7 XiMpou
i=1 =1
N
+ NN [(XéMﬁXi)_l - (XQMFoXi)_l} (XiMgu; — XiMpou;)
=1
N
+ NN (XM Xi) (XM — X Mpou;)
=1

=D + D2 + D3 + Dy
We first consider the terms Dz, D3, and D4. Since
T ' X MpoX; =T 'V MgV, =T 'V, V, — T 'VF (FVF°) 'FYV;
=T 'E(ViVi)+ (T7'ViV, = TT'E(ViV,)) - T 'ViF (F"F°) 'F"V,
we have

sup [T ' X[ MpoX; — T 'E(ViV))|

1<i<N

=172 sup ||T7VA(VIVi —E(VIV)| + sup ||T~V2VIF|?||(FVF%) |

1<i<N 1<i<N
:OP(N1/4T71/2)—&—Op(Nl/QT*l).
Furthermore, since
(T XiMpoXi) ™' = [TT'E(ViVy)] ™
=(T7' X[ MpoX;) ' [TT'E(VV,) = T ' XiMgpo Xi] [T 'E(V, V)]
=[TT'E(ViV)| T TTE(ViV:) — T X Mpo X [T E(Vi V)]
+ (T X MpoXs) ™! — [TT'E(VIV) T[T E(VIVY) — T X Mpo XS] [T7E(ViV)] ™

we have
sup [[(T7'XiMgoX;) ™' = [TT'E(VIV)]
1<i<N

< sup [[TT'E(VIV)H* sup [[T'E(ViVi) — T XiMpoXi]|
1<i<N 1<i<N

+ sup (T XiMpoXs) ™' = [T 'E(ViV)] |l sup [TE(ViVi) = T ' XiMgoXi|| sup [T 'E(ViVi)] |

1<i<N 1<i<N 1<i<N

= sup |[T'E(ViV;) — T ' X MgpoX]| - C*

1<i<N

+ sup (T XiMpoXi) ™ — [TT'E(VIV)] || - [0p(NV'T71%) + O,(NV?*T71)] - C

1<i<N

Since VN /T — 0, we can see that the second term is sup, ;< v [|[(T~ ' X{MgoX;) ™' — [T 'E(V;V,)] '] -
op(1), which means that the first term dominates the second term, thus

sup (T 'XiMpoXs) ™! = [T'E(VIVY)] Y = Op(NYATV2) 4 O,(NV2T7Y) (C.1)
1<i<N
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and
sup [|(T7' XiMpoX,) || = Op(1) (C.2)

1<i<N
as Sup; <;<y I[T'E(ViV)] 7Y < €L < C. Similarly, by Lemma C.5 (b), we can show that
sup [[(T7'XiMgXs) ™' — (T XiMpoXs) || = Op(N'/2557) (C.3)
1<i<N
With the above facts, we have

N
D2 <NV T X Mpou | - sup (T XM X)) ™ = (T X MpoXs) ™|
i=1 ==

=0,(NT™'257)

N
IDs ]| <NTVETTEY T IXIMpu, — XiMpow|| - sup [[(T7 XIMX) ™! — (T X MpoX,) ||

= 1<i<N
:OP(N(S;/%)
and
N
Dl SN D RiMpus — XiMpou] - sup I XiMgo )| = O (N 83)
=1 ==

Consider ;. Since

X Mpou; = ViH’p) — VIFY(FYF°) 'FYHp) + Vie; — VIF (FVF%)'F¢;

we have
N
Dy =N~V Y (X(MgpoX:) ' X Mgou,
=1
N N
=NTY2 Y I(XiMpoXi) ! — (B(ViV) X Mgous + N7V2 Y E(VIVH)] VI ]
i=1 i=1
N N
— NTVENCER(VIVY)] T VIFCEYE) RO RG] + N2 CE(VIVL)] T Ve
=1 =1
N
— NN R(VIV)] T VIEO(FVE) TR,
i=1

With (C.1), we can show that the first term is O, (N34T~ + O, (NT~3/2). It’s easy to show that the last
term is O,(N'/2T~1'). For the second term, we have

N N T
EINTV2Y B(VIVA]TVEGLT = BNV DN E(VIVI)] i ol

i=1 i=1 s=1

N N T T
—tr (N2 3TN S EVIVA) T Bvivi) B el WDE(V; V) )
i=1 j=1 s=1 t=1
N N T T

<SCNTIY NS OS EVIVOITEV V)T IS BB DEC] 1151

i=1 j=1 s=1 t=1

N N T T
<CON~'1772 Z Z Z Z 12.0]| < CT™?

i=1 j=1 s=1 t=1

by Lemma B.2. then the second term is Op(T71/2)‘ Analogously, the third term can be proved to be
Op(T_l/Q). Thus, D, = Op(N3/4T_1) + OP(NT_3/2) + OP(T_l/Q).

25



Combining the above terms, we have

N
NTEN (B, = B,) = Op(N/'T7Y) 4+ Op(NT™/%) + O, (NV2557).

i=1

Consequently, we obtain
N

\/N(ﬂMGIV -B)= N2 Zei + op(1)
i=1
and by a standard central limit theorem

\/N(E]WGIV - B) i> N(07 ZB)~

Finally consider f}g. Since ,/éz — ,@MGIV = Bl -8, — (BMG[V — ,6) + e;, we have
~ 1 L o ~ /
g = N_1 Z (51 - BJMGIV) (51 - 5MGIV)
i=1
1 o=, 1 =y ~ r

N—1;eiei+N—1 2 (ﬂi_ﬂi) (ﬂi_ﬂl) TN

1 (5 TR '
“N_-1 Z (,32 - /87,) &~ N_1 2 € (,31 - Bz)

1 - TR o ’
N1 Z (IBMGIV - ﬁ) ®~ N1 Zei (ﬁMczv - 5)

1=1

i 2 (3. 8) (o ) - 575 2 (Buene - 9) (B2

(BIVIGIV - ﬂ) (BZMGIV - ,B)l

WE

i=1

s
Il
-

Since B; — B; = O, (T™/?) and Byary — B = Op (NV2), Ja = 0, (T7Y), Js = 0, (N71), Is =
Op (N—1/2T—1/2) and Jo = Op (N—1/2T—1/2). Next, as \/% Zi\; e; N (0,3g), J6 = Op (N—l/z)
and Jr = Op (N_l/Q). Noting that e; is independent of X; and u;, a similar argument for Theorem 4.1
yields that

—1

o
N——
0]
NS

I

(TT'XIMSX,) T7' X Mause;

N
1 ~
\/N—1;(ﬂ1_ﬂ

1
W

1

T7'E(ViVi)] ™ T7'Viwe]

Al
= O0p (N**T7") + 0, (NT™*?) + 0, (N'?557%) ,

thus, J4 and Js are O, (N'/*T~1)+0, (NI/QT_3/2)—|—O (5X,ZT) Combining all, we have S5 = — Zil ee+

0p (1) so long as NT™3 — 0 as N,T — oco. As 121 €€ — g =0y (Nil/Q),gﬁ—Eﬁ_QOaS
required.[]

Appendix D Lemmas and Proofs of Propositions 5.1 and 5.2
Lemma D.1 Under Assumptions A-E

N N N
1 / o _ 1 /
U 2 XM =~ 2D auXoMge:
i=1

i=1 j=1

N\ -1
H'H 0y—1 0
N1/2T3/2 ZX MAE H ( T ) (Yo) ¢,
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O, (VNT6yT)
where ai; = @) (Y3) ') and B = + Z;\le E (sjsg) .

Lemma D.2 Under Assumptions A-E

N
ZXM S ZXQMHU&-Z

\/f ZZ ) e
Oy (VNT

i=1 j

where X; =X; — N~ ! Z;\le a;; X5

Lemma D.3 Under Assumptions A-E

-1
HO/H 0r_1
N1/2T3/2 ZX MAE H ( T ) (Ye)

/N 1 HOHO\ ™' _ _
= ZXMHUZ H°< 7 ) (T0) ') + 0, (VNTOS) -

Proof of Proposition 5.1 Under Assumptions A-E, by Lemmas D.1, D.2 and D.3, we have

N
1 / 1 / 0 0 1 /
—— ) XIMau; = —— > XIM-H@?+ —— ) X/Mze;
/NT Z H NT Z H ¥ /NT Z H

as required.[]
Proof of Proposition 5.2 Under Assumptions A-E, following Westerlund and Urbain (2015) we have

N N
NTETTENCVIMG e = NTVATTY2 N T ViMpoes + Op(NYAT2557)
i=1 i=1
N N N
NPT TVIMG B! = —NTYPTTVE N N CVIULAR (TR) T ) + O (NPT 257
=1 i=1 h=1
N
N-V2p-1/2 Z F?/FO/Mazei — _N"3/2p-1/2 Z Z F?', / 1A0E(U e)+ 0 (N1/2T1/25 3 3)

=1 =1 j=1

N N N N
NTVETTUEN CTYEYMg HO@) = N2 ZZZ [T, 0(Y%) " AJE(USUL)AL(TR) ')
=1 i=1 j=1 h=1

+ O, (NPT 2537)



where Y = N7! Zi\;l AIAY . and

N N
NTRTTEN VIMges = NTVATTVR N T ViMgos; + O (NPT %63)

=1 i=1

N N
N~z Z VM H 0 = —N~1/2771/? Z VIUA @0 + O, (NY2T2533)
i=1 =1
N N
N-V/2p—1/2 Z I‘?'FO'Mzsi — _N"V2p-1/2 Z[F?/’ 0’]/_&_/E(Ij’si) + Op(Nl/ZTl/Q(S;,?’T)
i=1 i=1
N N
N-V2p-1/2 Z F?/FO/MZHO(p? — N~Y2p-1/2 Z[F?/7 OI]Ai/E(ﬁ/fJ)]&np? + Op(Nl/QTl/Q(SK%)

=1 =1

where U=N"'3"" U;and A~ = A'(AA)" with A= N~ ST LAY,
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1 Proofs of Lemmas

A Proofs of Lemmas in Appendix A

Proof of Lemma A.1. For the proofs of (a) to (d), and (f), see Proof of Lemma 4 in Supplemental
Material, Norkuté et al. (2020). For (e), we decompose the left hand side term as

M. — Mpo = T 'F(F - F°R)' - T~ '(F - F'R)R'F” — T~ 'F" (RR’ - (T*lFO’FO)*l)FO'
then it will be bounded in norm by

TR |7~ (F — FOR)|| + |R|||T~2F° |7~ /*(F — F'R)|| + |T~/*F° |2 |RR — (T'FVF°) |
=0, (Sn7)

with (a), (c), (d) and the facts that |T~2/2F||2 = r, and E[|T-/2F%)|?2 < C by Assumption C. This
completes the proof. [J
Proof of Lemma A.2. Consider (a). With the equation (A.1), we have

N
NN T e (FO ~ FR Y|
=1

N N N N
<N Y P YD EF T VIR TR NPT Y T Y VY FUR R

i=1 =1 i=1 {=1

N N
+ NPT TN Y eV ViE|IETR Y|
i=1 {=1

Since 27! = 0,(1) and R™! = O,(1) by Lemma A.1 (c), we omit |2~ 'R~!||, which is O,(1), in
the following analysis. The first term is bounded in norm by

N N
T-1/2 (N*l 3| HT*/%;FOH) HN*T*1 Zr‘gvgﬁH
=1 _

With Assumptions A and C, we have

T T T T
E|T~2eFO? =T~ Y Eleisea) EEVE) S T71 Y Y 6uey/EIF2E|E]? < C.

s=1t=1 s=1t=1

then E(N-' SN DY~ 1/2/F0) < N~ 30N \/IE||I‘?||2E||T*1/2€;F0H2 < C by Assumption
D, which then implies that

N
NTEY CITIT 2 F | = O, (1) (A.2)
i=1



By Lemma A.1 (h), we have
N R N N N
N7t Z FV, Y =N-11"! Z R'FYV,IY + N~171 Z(F —~F°R)V,IY
=1 =1 /=1 (A3)
=0,(N~YV27=Y2) L O,(N71).

With the above two equations, the first term is O, (N~Y/2T~1) + O,(N~'T~1/2). The second term
is bounded in norm by

N N
NTRTRN RYINTRTVR Y VY I T PR TR = O (N T2 Y2)
i=1 £=1

where N=1 N (DY) N—12T7-1/2 0N €l V,TY|| = O,(1) can be proved by following the way
in the proof of (C.4). Consider the third term. Easily, we can prove E||T~2¢;||> < C. By
Cauchy-Schwartz inequality, we have

N T T N
E[NT'T Y BV VF| = 1EHT*1 S (vt ZE(vgsva))siSfEHQ
/=1 s=1t=1 =1
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(A.4)
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by Assumptions A, B2, and C. With Assumption B5, we can follow the way of the proof of Lemma
A.2(i) in Bai (2009a) to show that E||N~1/27~1 Zév:l e;[VeV), —E(V,V}) |F°||> < C. Using the
similar argument of (C.4), with the above three moment conditions, we obtain

N
N7 ITPINT 26| = Op(1)
i=1

N N
N7 ITYNINTIT Y el (VeVy) FOl = 0,(1)

i=1 =1
B Z [ i Z VeV = E(VV) ) = 0p(1)
Thus, with Lemma A.1 (a), the third term is bounded in norm by
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which suggest from
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given [IN“'N B vi)| < NTUSN B, vi)| < NTESN VE[ViPE[[vi]?2 < C and As-
sumption B. Collecting the above three terms, the claim holds.
Consider (b). Replacing F — FOR by its expression (A.1), we have
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Ignoring ||E7!| and following the arguments of the first term in the proof of (a), the first term is
Op(NTY2T=1) 4 O (N7IT~Y/2) + O, (N~Y/2T=1/25,2). The second term is bounded in norm by
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by Assumption B2 and
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given E|[N-Y27-1/2 5" (VIV, — E(ViV))TY|? < C by Assumption B4. With (A.5) and
Lemma A.1 (a) and (d), the third term is bounded in norm by
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because E||N~1T~! Zévzl VIE (V,V})F°||? < C, which can be proved by following the way of the
proof of (C.6), and

2
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(A.8)
by Assumption B2. Combining the above three terms, (b) holds.
Consider (c). In the proof of (b), we only require E|[¢?||*> < C with respect to ;. Then, we
can follow the argument in the proof of (b) to show that
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With the above equations, the proof of (c) is analogous to that of (a), in which we replace ||T'Y|| by
1T~ 1V'(F F°R)||. This completes the proof. [J
Proof of Lemma A.3. As MAF = 0, the term on the left hand is equal to N~1/27—1/2 Zf\il Y (F0—

FR-!Y Mgu;. With the equation (A.1), it can be decomposed as
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We consider A;. It’s easy to show that N~! Ziil IT?1112]] = Op(1), then,
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by Lemma A.1(b), A.2(a) and u; = H¢? + ¢;. In addition, we have
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by Assumption C and || 7~/2F|| = \/ry. Since MgF = Mf(FOA—f‘R—l), N-2=12 5N Ie? (RO -
FR)u;| = O,(NV2T/2632) and N=1/27-1/2 5N |09||||F/w|| = O, (N'/2T/2), A, is bounded

in norm by

N N
NPT TYI(FC — FR YD) Mpw | - ([N Y CFVLY|[R[IET
i=1 £=1

N
=N"VETTURY R (FC — FRTY) Mgl - [Op(N 1) + Oy (N7V2T71/2)]
i=1

N
SNTVRTTEY DY [[(FO = FR7) wil| - [O,(N ™) + Op(N~H2T712)]

i=1

N
+ NTVETTVE Y DN wil] - |77 (F ~ FRTY'EF| - [Op(N7Y) + Op(N7V2T713)]
i=1

:OP(N_I/QTl/Z‘s]?sz) + Op(éxsz)
with (C.5) and Lemma A.1(b). With the definition of R, Ay and A3 can be reformulated as
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Combining the above three terms, we can complete the proof. R
Proof of Lemma A.4. Note that Mpo — Mﬁ = Pﬁ — Ppo and Pf = T 'FF’. We can derive



that
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We first consider the last three terms. Consider the term Bs. By Lemmas A.1 (c) and (A.9), B is
bounded in norm by

N N
N7 IEYTTHE — FOR) wil| - [NTVETTYE Y CTIVIEC] - (X0) IR = Oy (657
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given the fact that N=1/27-1/25" " TIV,F0 = 0,(1). Bj is bounded in norm by
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by Lemmas A.1 (f) and (A.9). B4 is bounded in norm by
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by Lemma A.1 (d), and N~1 va:l ITY||T~/2u;|| = O,(1) which can be proved similar to (A.10).
B, is decomposed as
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Since N1 Zi\; [TV T~ FYw;|| = O,(1), which can be proved by following the argument in
(A.10), the term By 5 is bounded in norm by
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by Lemmas A.1 (d), (f).



We consider the term B ;. By (A.1), By is decomposed as
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The term B; 1.1 is bounded in norm by

N N
NZRTEN DT g - INTYRTTYR Y TOVIE)?
i=1 =1
< (@ EOF) @ EE) TR R () P = Op(N AT

by Lemma A.1 (e). Similarly, we can show the term By ;5 is bounded in norm by
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by Lemma A.1 (f). By 13 is the leading term, which is reformulated as
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For the term B; ; 4, it is bounded in norm by
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the first term is bounded in norm by
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by Lemmas A.1 (a), (A.5) and (A.8). The second term is bounded in norm by
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by Assumptions B2, C and D. Then By 14 = Op(Tl/Q(S* )+ Op(dnr ) Combining the above terms,
we complete the proof. [J
Proof of Lemma A.5. By substracting and adding terms, we have
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Consider C;. As Mf =1Ir— T_ll?‘l?"7 it is bounded in norm by
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Consider the first term. Following the argument in the proof of Lemma A.2(i) in Bai (2009a), we
can show that |[N—1/27~1 Zévzl FY(V,V,—E(V,V}))H’|| = O,(1). In addition, similar to (A.8),
we can show that |[N~1/2T-1S°N (V,V}, —E(V,V}))HC|| = O,(1). The first term is bounded in
norm by
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norm by
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by the above three facts. This completes the proof. 1 R
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— N71/2T73/2 ZV;(:/E\‘R71 _ FO)(TleO/FO)leO/ui

i=1

N
_ N—l/ZT—?)/Q ZV;(ﬁR_l _ FO)(RRI _ (T—lFO/FO)—l)F()/ui

i=1

N N
— NPT 32N VIFOR(F - FOR)'w; — N~V2T732 3 " Vi(F — F'R)(F — F'R)'u;

=1 i=1

N
_ N71/2T73/2 ZV{LFO(RR/ o (TleOIFO)fl)FO/ui
i=1
=Dy + D2 + D3 + Dy + D5

We first consider the last four terms. Following the argument in the proof of Lemma A.2(b),
we can prove that N~1 "N [IT-1V(F — FOR) 2] = Op(633) and N-' SN [ T-1V/(F
FOR)|||T~Y2FY¢;|| = O,(6y5). Then with Lemma A.1 (a) and (d), D, is bounded in norm by

N
NY2TV2 NV TITTIVIE - FOR)| )| - | T EYHC|RR — (T FYFO) TR
i=1

N
+ N2 NTUS | TTIVE - FOR)[|TV2FYe | - [[RR — (T FOF) 7| [R T
i=1
:OP(NI/QTI/QCS;]%)

Following the argument in the proof of Lemma A.2(a), we derive N~* 32N | T-1/2V/FO|||| 71 (F—
F°R)’e;|| = O,(d5%). Then, Dj is bounded in norm by

N
N2 NS T AVE|f | - |7 (F - FOR)HO|[R |
i=1

N
+ N2 NTEY T AVIE[|TTHE - FOR) e - IR = Op(N'/2557)
=1

by Lemmas A.1 (b), (c). Since N=' 3N | T-1V/(F — FOR)|[|¢?|| = 0, (dx2), D4 is bounded in
norm by

N
NYETY2NTUY | TTIVIE - FOR)|¢f)| - |77 E - FOR)HY|
i=1

N
+ NPV NS DT VR - FOR)|TH(F - FORY e = O, (NVATV253)
i=1
by Lemmas A.1(b) and A.2(c). Dj is bounded in norm by
N
N2 NS TPV - 7 E R [RRY — (1 EE) |

i=1

N
+ NP2 NN VIR T PR e | - [RRY — (T EVFY) | = O,(N'2637)
i=1

11



by Lemma A.1(d).
Now consider the term D;. With (A.1), we decompose the term Dy as follows

N N
N—3/2T—3/2 Z Z VthI‘(})L/(TO)_l(T_lFOIFO)_lFO’ui
i=1 h=1

3/2T 5/2 Z Z V/FOF IFO/F)fl(TO)fl(TleO/FO)leO/ui

N N
3/2T 5/2 ZZ VVh V/ ( 1F0lﬁ‘)_1(TO)_1<T_1F0/FO>_1FOIILL‘

V’Vh _ (V;Vh))V;Lf‘(Tleo’f‘)*l(TO)*l(T*IFO’FO)*lFO’ui

HMZ Il

N
N-3/27-5/2 Z
—D11+D12+D13+D14
We consider the last three terms Dy 5, D1 .3, and D 4. D 5 is bounded in norm by
N N R
T2 NI T VIR T P - [N TRTTVR Y T VLE

i=1 h=1
< (T FYE) (T EYE) T PE (%) |

N
=0p(T71/2) - [N"V2T7Y2 3 TR VIF| = Oy(d37)
h=1
y (C.5). As ||E(T*1V;Vh)|| < T;1, by Assumption B2, D; 3 is bounded in norm by

N N
NTRTEN N T P [E (VEVL) IIVLE] - (I FF) () (@ BYF) T 2R
i=1 h=1

N N
=NTIRTEN N T || (ViVa) [[[[VLE]] - Op(1)
i—1 h=1

N N
SN N (TR + I T e DIT T E (VEVA) 1T 2 VEEC IR - Op(1)

1=1 h=1
N N R
+ NTRTVEY N (T PHO Y|+ I Pl DIT TR (ViVR) [T 2VAl| T2 (F — FOR)|| - Oy (1)
i=1 h=1
N N N N
<NTIEYC Z T 2VLE| - 0,(1) + N7/ Z DTl T e IT72VELE - 0,(1)
=1 h=1 i=1 h=1

N N N N
+N73/2T1/2szihHSO?HHT*l/thH'Op(fsz?rlT)JrN*S/le/zZZ all T V2ellIT72 V| - Op(05T)
i=1 h=1 1=1 h=1

The first term is O, (N ~'/2) since E(N~! ZZ 1 Zh LTl 9T ~2V, FO|) is bounded by

N N
N33 7 JEl QY PEI 712V, FO ]2 < ON- P

1 h=1

Mz
an

[

by Assumption B2, C and D. Similarly, we can show that the second term is O,,(N*I/Q)7 while the
third and the fourth terms both are O, (N~Y/2T1/251.). Thus, Dy 3 is O, (N~Y2)+0,(N~V2TV/251).
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D, 4 is decomposed as following

N—3/2p=5/2 (ViVy, —E(V]Vy)) V,F'R(T'FVF) "1 (X0) {7 'FVFO) ' FYH )

-

&
Il
-

— N73/2p=5/2 (VIV), = E(ViVy)) VL, E'R(T'FYE) (Y (T 'FYF°) ~'F%;

@
Il
-

— N73/2p=5/2 (ViV), —E(ViV,)) V), (F — FOR) (T FYE) " L(Y0) YT~ FYFO) 1R H

M= 11
1= 1= 1=

N
Il
-
>
Il
_

— N73/2775/2 (ViVy, — E(ViV,))V, (F — F'R) (T 'FVF)(X0) (T 'FVF) 'F,

WE
M=

s
I
—
>
Il
—

=Dia1+Dia2+Dia3+Dias

Consider Dy 4.1. As vec (ABC) = (C' ® A)vec(B) for any comfortable matrices A, B and C, Dy 41
is bounded in norm by

N N
Hvec (N=*272 3" SO (VIV, — E(VIV4) - VREOR(T'EYR) 1 (X0) (T FYF°) ' FUHC - )
h=11i=1

:HN—3/2T—5/2 Z (Z oV @ (VIV}, — (V;Vh)))

X vec (I,c . V;FO . R(T*lFO’F)*l(TO)*l(TleO’FO)*lFO’HO) H

N N
:HN—3/2T—5/2 Z (Z ¥ @ (VIV), — IE(VQV,J))
h=1 =1

x (RETFVE) L (00) (T FUE) VR ) 9 1 -Vec(VﬁlFO)H

N N
NIRRT oV @ (VIV, = B(VIVA)) | - Ivec(VLE)|
h=1 =1
< [IRJ|I(T *1F°’f>*1||||<r0>*1||||<T*1F°'F0>*1||||T*1F0’H°H||Iku

N T T
0, N Y VTS o 6 (vl — Bk ) 1T S vt
h=1 i=1 t=1 s=1
:Op(Til/Q)
by Lemma A.1 (¢) and because
N N T T
BN S NS S @ (vievhe — B ) I S v )
h=1 i=1 t=1 s=1

T
<N~ 12 E|[N-1/2T~ 1/222;800/@9 VitVi, — E(Vitvgt))HQ]EHT‘l/?X;VhsfS’HQSC’
=1t s=

by Assumption B4 and E|T~1/2 Zé L vnsfY||? < €, which can be proved easily by Assumption
B2. Similarly, we can show that D; 42 is Op(T 1/2), while ID; 453 and Dy 44 both are O (5N1T)
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Collecting D1.4,1 to D1.4,4, D1.4 = Op (6;/71«) Thus

N
N2 N V(Mg — Mpo)u;
i=1
N N

- _ N—3/2T—3/2 Z Z VthI‘%’(TO)_l(T_lFO’FO)_lFO’ui 4 Op(N1/2T1/2(5;/§)«

i=1 h=1

This completes the proof. [
Proof of Lemma A.7. Denote

N N
- 1 / 0/ (~r0\ —1 (o — 100 — 1 fr— 10/
ar=— +r E E V, VL (X)) (T FYF°) " (I F'w,)

i=1 h=1

N
1
_ N Z 0/ TO 1F0/FO)_1FO/EMFoui

with X; = X;— N1 0 X, rY(r%) 119, v, = V(=N v, i (r%)-1r?, 10 = N

In addition, & = N=1 S E(V,V)).
Here we investigate the stochastic order of a; and as. a; is decomposed as

1 N N
o ﬁ v/V FOI(TO)fl(TleO/FO)fl(TleOIUi)
i=1 h=
1 N N
NT2 ZZ]E FO/ TO) ( 1FO/FO)_1F0/H0(/D?

=1
1 N N N
o D0 D0 ST () T ITYE(VE VAT (X0) T (TR E) R HO!

N N
1
_ SN (ViV = E(ViVy)DY (X)) (T FUF°) T FYH )

1 N 00/
Zi:l I‘L Fz .

N N N
1
+ SO V(YY) I (VVE = E(ViVA)TY (X)) "N (T 'FYFO) T FYH )

N2T?
i=1 h=1 =1
| NN
— NT? Z Z nghrgl(TO)fl(TleO/FO)leOIEi
i=1 h=1
| N NN
N2T Z Z Z F?I(TO)_1F?V2VhF2/(TO)_1(T_lFOIFO)_lFO/é:i
i=1 h=1 (=1
As |[E(ViVy)|| < T7, by Assumption B2, the first term is bounded in norm by

N7 1ZZIIEVW (1= a1 e o1 e 11 A i &

i=1 h=1

N N
‘memunr 0,(1) = 0,(1)

IN

with N~ 3200, S50, Tl ITR I < N7 320, o0l 7anENR?IPEITR 2 < N7 3200, 000, 7an <

C? by Assumption B2. Similarly, we can show that the second term is O,(1). The third term is
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bounded in norm by

N N
Hvec (N’lT*2 Z Z (V;Vh _ ]E(VQVh))F?L/(TO)*l(T’IFO/FO)’lFO’HOLp?) H
i=1 h=1
N N
=72 NN TS o @ (VIV — B(VIVL))TY Jvee(X) (T FF) 17 FVR) |
1 h=1

i

M=
M=

T
Z @) ® ( (VieVie — ]E(Vitvlht))rgl>

=1

<T-1/2. HN71T71/2

‘ IO EYE) | T FORY|

s
Il
-
>
Il
-
o~

:OP(T_1/2)

Similarly, we can show that the forth term is O, (T ~1/2). The fifth term is bounded in norm by

N N N N
/ 0r 0\—1 — 1 0/r0\ =110/ / ! 0/ 0\—1 — 10/ 0\ —110/
;;vivhrh (YO)~ LT~ LFYF%) 1RV, +"NT2;;(VthE(ViV;L))Fh (Y°)~H(T~'FYF°)1F EH

|77

Similar to the argument in the proof of the first term, the former term is O,(7T~1/2). Similar to the
argument in the proof of the third term, the latter is O,(7~1). Then the fifth term is O, (T~'/2).
The sixth term is bounded in norm by

N
TN 12 T2 IT 2 F e || (CO) T PIN 2T 2 Y T V(T FYEO) | = 0,(T717)
=1 =1

thus a; = Op(1) and

N N
1
a; =— DSOS CE(VIVATY (X)) THT T FYFO) T FUH )

N N N
1
o D0 D0 STV () IYR(VEVATY (X0) (T EYR) RO ! + 0, (T 12),

N2T2
i=1 h=1/(=1
Next, we have
1 N
ay=— 4= > V(X)) (TTFYF) T F SMpoH' ]
=1

N N
1 07 (A0 —1 (= 10/ 00 — 10/ 1 0/ (Ar0\—1 (= 10/ 0\ — 110/ 50 (070 — L0/
7213(1() (T7'FYFO)~'F zsi+ﬁ2ri(r) (T'FYFO) 'RV SFO(FOFO)~1FYg;
The first term is bounded in norm by
N
NTEY AL - e M T BYEO) |- T P SMpo HY | = T [FYEMpo H| - Oy (1)

<THFYEH| - 0, (1) + T~ [FYSEO||(T~ FYFO) [T FYH|| - 0, (1)
=T7H[FYEH"| - 0,(1) + T7HFYSF| - 0,(1) = 0,(1)

because T~ !|FYSH|| = 0,(1) and T~ |FYEFY|| = O, (1), where the former holds because

T T T T N
T*HEHFO’EHOH — N7 1]EHZZZf0f0’E v Vit H < NSO ST ST E(IE) 1))
o s=1t=1 i=1 . s=1t=1i=1
SNTITTNYON N ORI 2R 27 < CT ZZ@ <C
s=1t=1 i=1 s=1 t=1
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and the latter also holds whose proof is similar to that of the former. The second is equal to

N N
— N27! ZZP?’(I%*1 TIFYF%)~ ZZf E(V},Vei)€ir

=1 4=1 =1 =1
N T T N

NI NN E(Vive) Y TV en(X0) " (T FUFO) Y
(=1 s=1t=1 i=1

which is bounded in norm by

N T T N
Ty Y Z? YTVl - IHOE) I FYEO) |

/=1 s=1 =1
T T N

—1/2. P INTY2Y T ||| - Op(1) = O, (N2
> Full > TYeullllE] - 0p(1) = O )
s=1t=1 i=1

becanse T~ Y7 $°7 2 BIN-V2 SN D[] < T XL, S A [EIN 12 TN TV, |PE[£) <
cT! Zstl Zthl 75t < C by Assumption B2, A1, C and D. The third term is bounded in norm by

N
T2 NTES RO 2R e | - [[(C0) T (T EYEO) Y2 T R SE| = O0,(T7Y?)

i=1

Then ay = O,(1) and
| X
A= Z 0y ()T FYFO) T FYSMpoH 9! + O, (557)-
This completes the proof.

B Proofs of Lemmas in Appendix B

Proof of Lemma B.1. With 8,4, — 8 = O,(N~Y2T-1/2)  we can follow the argument in
the proof of Proposition A.1(4i), Lemma A.3 and Lemma A.4(iii) to prove this lemma. Thus, we
omitted the details. O

Proof of Lemma B.2. Consider (a). With (B.1), we have

N
N TRV T (H - HOR) e
N N R R R
<NPT? Z [t Al Z &iXy(B = Bisrv)(B — Brsry) X HE ™|
i=1 =1

N N
HNTETTEY TRV e Xe(8 - ByupHE |
i=1 =1

N N N N
FNTT2Y TV Y etue(B = Brsry ) X(HE | + N72T72 Y 7| T7V2V||| ) eiH el HE |

i=1 =1 i=1 =1
N N N N

HNTETEY YTV Y el HYHE T + N 72T 72 Y T2V eleeHE |
i=1 =1 i=1 =1

The first term is bounded in norm by

N N
N NTAVIT el N7 Y IT 2P T PHINE I8~ Brsiv P = Op(18—Busiv|I®)
i=1 =1
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thus, the first term is O,(8+). Similarly, we can prove that the second and the third terms both are
O,(||1B — BlSIVH) = O,(N~1/2771/2). Following the argument in the proof of Lemma A.2(b), the
last three terms are O, (6 y2). Consequently, N ! Zf\il | T=Y/2V, ||| T~ Y (H-—H'R) ;|| = O, (637
Consider (b). With (B.1), N"' >N || |7~ V/}(H — H°R)|| can be decomposed into six
terms. The three terms involved of 8 — B,y are O,([|8 — Bisrvl) = Op(N~Y2T=1/2). The
remaining three terms can be proved to be Op((S]:,zT) by following the argument in the proof of
Lemma A.2(a), then we have (b).
Following the way in the proof of Lemma A.2(c), we can prove (c¢). This completes the proof.
O
Proof of Lemma B.3. Since

Mir\Mﬁ — MgoMpgo = Myo (Mﬁ — MHO) + (M/I; - MFO)MHD + (Mﬁ — MFO)(Mﬁ - MHO)
we have
N N
NPT N CVIMeMgw; — N™V2T712 Y " ViMpo Mppoe;
i=1 =1

N N
=N"127712 N " ViMpo (Mg — Myo)u; + N~V2T712 3 " Vi(Myg — Mypo)Mpou;

i=1 i=1

N
+ N~V2p-1/2 Z V;(Mﬁ — Mpo)(Mg — Mppo)u;
i=1
=F, +Fy 4+ T3
Now we consider the term Fy. Since Mg — Mpo = —T’l(I/-\I ~H'R)R'HY — Tleo’R(I/-\I —
HOR) — T‘l(ﬁ _ HOR)(ﬁ ~H'R) - T-'H(RR' — (T—1H0’H0)_1)H0’, we have

N
N=2T=2 N "V Mpo (Mg — Mo

=1

N
— _ N71/2T73/2 Z V;(I/_:\[Rfl o HO)(TleO/HO)leO/ui

=1
N A~
_ N—1/2T—3/2 ZV;(HR_l _ H0>(RR/ _ (T_IHO/HO)_l)HO/ui
=1
N R N R R
— NPT VIHOR(H - HOR) v, — N™V2T732 ) " Vi(H - HOR)(H - H'R)'u,
=1 1=1

N
_ N71/2T73/2 ZV;HO(RR/ _ (TleOIHO)fl)HO/ui

=1
N o~ o~

+ N-Y2=3/2 N viR? (FUFY) TR (H - HOR)H'y
=1
N ) R

+ N71/2T*3/2 Z V;FO (F(]/FO)_ F()/HOR(H o H()R)/ui
=1

N
+ N—1/2T—3/2 ZV;FO (FOIFO)*l FOIHO(RRI o (T_lHOIHO)_l)HOlui
i=1
=F11+Fio4+Fis+Fi4a+Fis5+Fieg+Fi7+Fis
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We first consider the terms ;5 to [F; g. Note that u; = HocpgJ + €;, [F1.2 is bounded in norm by

N
NYETV2NTUY T VIH - HOR)||l@f)] - |7 HYHY | RR — (T THYH) R

i=1

N

FNVE NS TV - BOR)|[72H e |- [RR - (T HYEO) R
i=1
:Op(N1/2T1/25R,§£)

by Lemma B.1(e), (f) and Lemma B.2 (b) and N~! Zfil HT‘lV’i(ITI — H'R)|||T-Y?HY¢;|| =
O,(65%), which can be proved similar to the argument in the proof of Lemma B.2 (b). Similar
to the proof of Lemma B.2(a), we have N~1 SN |T=Y2V/HO||T-L(H — H'R)'e; | = 0, (657,
then F; 3 is bounded in norm by

N
NV NTE STV 0] |7 (B - BOR)HO|R]
=1

N
+ NVE N TTAVIEY|ITHH - HOR) e - R = Op(NY?637)

i=1
by Lemmas B.1(b), (¢). Fy 4 is bounded in norm by
N A~ A~
NP2 NS T VIE - HOR) ) 7 (- HORY )|
i=1

N
+ NV2TVZNTIN T IVIH - HOR)||T7 (H - HOR)'si| = O, (NV2T25 )

i=1
by Lemmas B.1(b) and Lemmas B.2 (b), (c). F; 5 is bounded in norm by
N
NYENTYNTTAVIEY Q0] 7T HYHYIRR — (T THYHO) |
i=1

N
+ N1/2T—1/2 N1 Z ||T_1/2V;HOH||T_1/2H0/EiH . ||RR/ _ (T—IHO/HO)—lH — Op(N1/2(5;/72«)

i=1

by Lemma B.1(f). Similarly, we can prove that Fy g, Fq.7 and F; g both are Op(Nl/QcSX,:QF). Consider
the term Fq ;. With (B.1) and the definition of R, we have

HR ' - H°

N
=N~ Z Xi(B — Brsiv)(B - B1SJV)/X;}AI(T71HO,I;I)71(Tg)fl

i=1

N
+NTITTNY XG(B — Bispy )W H(TTTHYH) (YY) !

=1
N N

NS (8 = Brgpy ) XTI TTHYE) T (Y) T 4+ NS HOQDe H(T T HYH) (X))
=1 =1

N N
+N! Z Eicpg/(Tg,)*1 + NI Z eie;ITI(TleO'I:I)*l(T?O)*l
i=1

i=1
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we can decompose the term F; ; as follows

N
_ N71/2T73/2 ZV;(ﬁRil _ HO)(TleO/HO)leO/ui

i=1

N N
— N—3/2T—3/2 Z Z V;Eh(P%’(T?D)_l(T_lHOIHO)_lHO/ui
i=1 h=1

N N
_ N—3/2T—5/2 Z Z V;Hso%s/hﬁ(T—lHO/IfI)—l(—r?a)—l(T—lHO/HO)—lHOIUi
i=1 h=1

N N
_ N73/2T75/2 Z Z Vgehezﬁ(TleO/I:I)fl(Tg)fl(TleOIHO)leO/ui
i=1 h=1

N N
NS TS OVIXG(B — Brsn ) (8 — Brsyy) X4 B(TTHYH) T (00 (T HYHY) T HY
i=1 h=1

N N
— N3RPT Z Z ViXu(B - 5151V)U;LH(T71HOTAI)71(T?a)fl(TleO/HO)AHO'ui
i=1 h=1

N N
_ N—3/2T—5/2 Z Z Vguh(ﬂ o ﬁlS[v)’XﬁlI/-\I(T_lHOII:I)_I(T?(,)_l(T_lHO/HO)_lHO’uZ-
i=1 h=1
=F111+Fii2+Fiis3+Fiia+Firis5+Fiase

We consider the last five terms Fy 1.5 to Fy.1.6. F1.1.2 is bounded in norm by

N N
N7 T AVIEOT T g - INTVETTN Y @R BT THYE) (7 HYHS) TR (eg)
i=1 h=1

N
=0,(1) - [NTV*T1 Y pher H
h=1

N N

<O(T™2) - INTPTN " @Ref HOY|R| 4 O, (1) - [INTHPT7Y2 Y ™ e [[IIH — HOR || = O, (33T)
h=1 h=1

by Lemmas B.1(a). As E (Viep) = 0, we can follow the argument in the proof of I, 4, we can prove

that Fi1.1.3 = O, (5;,%) F1.1.4 is bounded in norm by

N
N'PTY2|B = Bigpy|*- N7 YT AV[IT 1 2wy
i=1

N
X NN TP () (T HYE) (7 T HYES) || T AR TR
h=1
:Op(Nfl/QTfl/Q)

With definitions of uy, and u;, Fy 15 is bounded in norm by

N N

HVGC(N_?)/QT_I/Q Z Z ViXu (B~ B1SIV)‘P2/(T2;)_1‘P?)
i=1 h=1

N N

[T 3T ST VI (8 — By ) BT HYH) (1)) !
i=1 h=1
N N N R

||V ST S VXA (B — By )Jup BTTTHYE) () (T HYRY) T HY
i=1 h=1
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The first term is equal to ||(N /2T~ 1/22 1PV @V )vec(N Zthl Xh(ﬂ—,glslv)cpg’('rg)_l)”,
then is bounded in norm by

N N
INTVETTVEY o @ Vi NTE Y T X R I (C) M- T8 — Busv
=1 h=1

:OP(T1/2||6 _ /EISIV”) _ OP(N—I/Q)

The second term is bounded in norm by

N
Nl/z”ﬂ‘ﬂwzv”'N_leT_l/sz‘HH‘P?H'||(Tg)_1||||(T_1H0/HO )7l N 1Z||T VX7 e H|
=0, (N8 = Bysrv ) - 1ZIIT VAT e H
h=1
<O,(N'?|1B = Bisivl) - IZIIT VX IT Y2, B[R
h=1

N
+ Op(NV21B = Bugpv ) - TVANT' Y NT 12X |71 %6, 1T~ (H - HOR)|
h=1

=0,(T~"%) + 0y (657)
by Lemma B.1(a), (c). The third term is bounded in norm by

N N
N8 = Bispv | - N7 T2V |72 H Y| - NTEY T 2K 1T 2|
i=1 h=1

T PHI (T EYE) T I(0) (T THYEO) T = Op(NY28 = Bispv ) = 0,(T?)

Then F1.1A5 = OP((SR[;“)
With the definitions of u;, and u;, F; 1 is bounded in norm by

(I 2SS VIHOG(8 — Bysry VX HYR) (1)
i=1 h=1

N N
[N NN Vien(B - Busry) XA H(TTTHYE) (X)) !
=1 h=1

N N
T HN73/2T75/2 Z Z Vi (8 — BlSIV)/X%I’_\I(TleOII:I)fl(-rg)fl(TleO/HO)leO/Ei
i=1 h=1

N N
<SN'Y2IB = Byspyll - N NTAVEOIQ - N7 llen 72X 1T HI (7 HYH) T I0)
i=1 h=1
+ N7V = Brspll - NTEY S NQIT T A Vien 1T Xl |7 PHI (T HYH) T IIe)
h=11i=1

N N
+NY2B = Brgpy| - NTUY T AVIHC | TP HY g | - NS T g || T2 K|
=1 h=1
x ||~ RH]||(TTHYE) () T IIT T THYHS)

:Op(N1/2||/3 - BlSIVH) = OP(T_l/Q) .
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Combining the above terms and noting that F; = —N~3/27-3/2 25\7:1 Zthl V’iehgog’(T?p)_l (T-'HYH")"'HYu; =
O,(T~1/?), we can show that

F, = —N—3/2T—3/QZZV’shsoh Y0) "1 + 0, (53
=1 h=1

o =1 oN—1T
Consider the term Fy. Since Mg—Mgo = —T~'F° (%) (FR™!—F") _F0 [RR’ - (%) } (FR -
FO) — T-Y(F - FOR)R'F” — T—(F — F'R)(F — F'R)' — T~ F° (RR' - (T—lFO’FO)_l) FY we
have
N
N-V2p-1/2 Z V(Mg — Mpo)Mypoe;

=1

. N FO/FO 1 R
,N*1/2T73/2 Z V;FO ( i > (FR71 o FO)/MHOEi
i=1

N 1

—1/2m—3/2 & nli} ’ FUF? rp -1 0y/ )

~ N7V2732N VIR | RR - 7 (FR™" — F°)'Mppe;
i=1

N
— N7V2732 N VI(F - F'R)R'F” Mg,
=1
N o~ A~
~ N7M2T732 N " VI(F - FOR)(F — F'R) Mypoe;
=1
N 1
— N3Ny R? (RR' — (T7'FVF%) )FO’MHoei
=1
=Fo1 +Foo+Faz+Foy+ Fas.

For the terms Fs 5 to Fs 5, we can easily show that

(fR_l — FO)IEZ'
T

1 L || VRO . .
”FZQHSWNE:H\}T |IRR = (171 FF) '
=1

N = —
[N 1 V! F° S ||FR- = FOYHO|| ||/ HOHO H¢,
+ ZH 7 HRR/ o (TleO/FO) H ) H
TN <& || VT T
i=1
=0p (\/N(SJ:IZ%F) )
HIF ” < N1/2i f: Vln(f‘ — FOR) ”R/ FO/EZ’
23| < N - T T
N = _
1 V!(F — F'R) FUHO || || / HOHO H";
+N1/272 % HRIH %
N pt T

0, (w033).

N
[Fo.qf < NYVETY2.N7DY T VIE — FOR)|[| 77 (F — F'R) e

i=1

N
+NV2NTUY | TTVIE - FOR)||IT VPR | | T (F — FOR)H |7 T HYH®) |
i=1
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= 0,(NVAT 25 ),

/ 0
|F25H < N F HRR/ ( lFUIFO
N1 FO
v |RR = (77 'FF%)

IN __
_Op< T6N§“> )

by Lemmas B.1 (b), Lemma B.2 (i). Then we have Fy

N
= N7 FTYV
i=1

FR! - F°

- FO/f\ -1 B
F( T ) (X%

0/
-

HO/EZ

H H FO/HO

=)

= O0,(NY253%) + O, (NY/2T1/257.). Using

N
1y Nt Zvir?’('ro)*1

=1

N . FO/iﬁ -1
+NTITTY CVIVIF 0 (r9~1

a FOF
Foy=—N"'27732% " VF° ( 7
=1

N FO/FO 1
o N71/2T73/2 ZVQFO < > N~

; T ;
=1 =
N -1
FO/FO
N—l/QT—B/Q V/FO
2V

=Fy11+Fa12+TFo;s.

FO/FO

IFaq1] < T

1/2T_3/2 ZV’FO

T

+ N~ 1/2T—3/QZvl 0

+ N~ 1/2T—3/QZvl 0

+ N~ 1/2T—3/QZvl 0 (FO/FO

)
)
FOFO )
)

N FO FOIEl FO/FO - e
eyl |7 e
N FO HO/ FO/FO -
v o | 1| ()
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0) 1 N 12
1261(-1-0
Ty (55

L H FO/iﬁ

B FYF
(5

=1

—1
FOF
( > F’VjI‘g’FO'MHosi

)TV Mypoe;

OIF

1
) F/Vj V;MHO €;

R'FYV,TYF%;

(F—FR)'V, oo
Jj=1 T ’ Z
F¥F\ (F-F°R)V,

LTYF"Ppoe;

R N™

IR




N- FO/V FO/HO HO/HO -
x 77 || 1Tl 7
N1 B[ || F, ||| (F0FO\ Y| [ FOF e (@ - FOR) Y,
f N ) | () o | E= e
=1
N1 FO ||| B, ||| (FoEoN | | (FOF ) (F - FR v,
rr =) () ‘HHO) vy | TR ey
FOHO HYHO\ !
|7 < )

(@)% ().

N

FO

FO/FO -1 71 VIEl
| ) e e
N 1 O (FO/F0>‘ et 0 V’H0 H HO\ | || HY e,
SRS AL RER ] =) |54
Fr sl > ¢

-0, (le/z) +0, (@) .

By a similar derivation for Lemma A.5, we can show that

N FORoN ! N FOE° -1
F2.1.3=—N1/2T3/QZV;FO<T> NTTTY (X TH =5 FUE (V,;V}) Mpoe;

and
N 0 00N —1 o0\ T N 10/ /
B NiZVQF (F/F) (x0)1 FYF _1ZFEVV)
N4 T T T
N -1 o\ ! N -1
/N1 ZV;FO (FO’F°> (x0)1 FUF ZFO’]E (V,V,)H° (HO’H0> HY¢;
SIN&= T \ T T T VT

hence, Fa.1.3 = O, (5&1T) +0, (1 / %) Therefore, Fo = O, (6&%)

Now we consider the term F3. We have
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+—ZV’

YF —F'R)R'FO'T'H'R(H — H'R)'u

N
1 . .
+ INT > VT I(F - F'R)R'FOT~'(H - H'R)(H — H'R)'u;
i=1

N
1 p—
T S VITTHF - FRRFOTIHC (RR - (T HYEY) ) HYu,
=1

ZV’ T-'F'R
+7ZV’ T-'F'R

'R(F - F'R)'T"'(H - H*R)R'H"y,

'R(F — F'R)'T'H*R(H — H'R)'u

+— Z V/T'F'R(F — F°R)’'T~'(H - H*R)(H — H'R)'u;
I Z V/T-'FR F _F'R)'T'HC (’R’R' _ (T—IHO/HO)_l) H"y,
+— ZV T(F — F°R)(F - F°'R)'T"!(H - H'R)R'H"u;

ZV’ L(F —
ZVT (F —

+—ZVT (F —

F'R)(F — F'R)'T'H'R(H — H'R)'u,
F'R)(F — F'R)'T"'(H - H'R)(H — H'R)'u;

F'R)(F — F°R)'T~'H° (RR’ - (T—1H°’H0)*1) Hy,

-1

— (T7'FUF) )FO’T (H - H'R)R'H"y,
T-FVF) 1)FO’T IHOR(H - H'R)'u;
T-'FOF) 1) FUT~1(H - H'R)(H - H'R)'u;
T'FUF) ) FOTOH (RR - (TTTHVEY) ) B,

=F311+F312+F313+F314
+F321 +F322+F323+Fz24+
+F33.1+F332+F333+F334+
+F341+F342+F3.43+F34.4.
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N
1 17/ (@ 0 /
[Faral < VNT 5 D[ 77 VIE - FR)|| R
i=1
= 0, (VNT6R}).

by Lemma A.2 (b), Lemma B.1 (b) and Lemma B.2 (d).

- 0744 .
‘TleO/(H _ HOR)H ||R/|| H HTu1

|F3 L 2H _ H Z Vl F FOR)R/FOIT—lHOR(ﬁ _ HOR)/Ui

H FZV’ (F —F'R)R'FOT'H'R(H — H'R)'Hy,

ZV T-YF - F'R)R'FYT '"H'R(H - H'R)'e

V/(F — FO FUHO (H - H'R)'HO
H e L R
T VI(F — FOR FO’HO IR (H-H'R)'s;
T
\/NT
:Op 637
NT

by Lemma A.2 (b), Lemma B.1 (b) and Lemma B.2 (c).

IFs.1.3] = H \/7 Z V/T-YF - F'R)R'FVT ' (H - H'R)(H — H'R)'u

|| VAT 2 Z V/T-F - F'R)R'FT~'(H — H'R)(H - H'R)'H

H UNT 2 ZV T-YF - F'R)R'FYT ' (H - H'R)(H - H'R)'e

N ~ .
1 FOR) FYH-H'R)||||(H-H'R)H° 0

<VRTEYY iy | SRV )

N -~ ~

FOR I Fe@E - mOR) | || (- HOR) e
+ VAT g H L1 &
by Lemma A.2 (b), Lemma B.1 (b) and Lemma B.2 (c).
N

|Fs.1.4] = H Z F FOR)R’FO’T_lHO (R’R/ _ (T—lHOIHO)fl) Hu,
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H \/7 Z V/ F FOR)R/FOIT—IHO (RR/ o (T—IHOIHO) —1> HOIHOLP?

ZV T7{F - F'R)RF"T'H (RR' — (T'HYH") ) H”,

V/(F - F'R) FO’H0 H0 H'
— HR’H |RR — (T~ H7H°) | I
N A~
1 V/(F - F°R)|| _, |[F”H° ) erorer0 H%,
+mﬁ; T IR =7 HRR (17 HYH?) H
VNT
NT
by Lemma A.2 (b), Lemma B.1 (d) and Lemma B.2 (d).
HF:), 2. 1” = H \/7 ZV T 1F0R(F FOR) T 1(ﬁ — HOR)R/HOIUi
V T'F'R(F — F'R)'T~'(H — H*R)R'H”H" "
\/7 i
— N VIT'F'R(F - F'R)T1(H - H'R)R'H"¢;
\/W Z i ( )T )
1 L || VIR? ~ 0 N 0 [ HOHO o
<V Y|V im | - worva] [ - mem v IR | e
i=1

IR|||(F - F'R)/VT ||| (B - BOR) VT R H H\j;

i v
N i=1 \/T

VN
NT
by Lemma A.1 (b), Lemma A.2 (d) and Lemma B.1 (b).

IFs.2.2]l = H UNT 2 Z V/T7'F'R(F - F'R)'T'"HR(H - H°R)'u

H FZV’ “IFOR(F — FOR)' T 'H'R(H — H*R)'H?

VIT-'F'R(F — F'R)'T'H*R(H — H'R)'e
Ay

N A~ A~
F(] (F _ F()R)/HO (H _ HOR)/HO
g IRI| ||| IRl || === ||
fi V/F (F — F'R)'H° IRl (H-H'R)e;
p T T
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VN
— Op (5T
NT
by Lemma B.1 (b) and Lemma B.2 (e).

ZV T'F°R(F — F°R)'T~'(H — H*R)(H — H*R)'H¢?

[F3.23] =
F

Z V/T'F'R(F — F°R)'T"'(H - H*R)(H - H'R)';

(ﬁ—HOR)’HOH =]

1 V'F
< _ 1
JWN;Hﬁ

V/F? (H—H'R)e;

“WéiHﬁ

_ VN
=0y (52

by Lemma A.1 (a), Lemma B.1 (a) (b) and Lemma B.2 (e).

IR||||(F - F°R

| F3.2.]| < H ~ ZV’ T'F'R(F - F'R)T'H’ (RR — (T7'HVH’) ') HVHp]

! ZVQT*FOR(J?“ — F'R)'T~'H° (RR’ - (T*HO’H)*) HY,

" 'NTz 1
\/7 F FO /HO , A r0rer0oy —1 HO/HO o
< NZ |RR! — (w7 e
N 1 V’FO (F — F'R)'H° e er0res0 H%Z
+ Z IR —T |RR — (17 'HOH") H
-0 (“f |
6NT
by Lemma A.2 (b), Lemma B.1 (b) (d) and Lemma B.2 (d).
&MLMIZVT (F ~F°R)(F - F'R)'T"'(H - H'R)R'H"H’!
f Z V/T~Y(F — F°R)(F — F°R)'T~'(H - H*R)R'H's;
VI(F — FOR) (F — FOR (H-H'R) H’H
= I e
N v E - FR) (F FOR H-HR) |, [[H”;
Z [ =
VNT
:Op 537
NT
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by Lemma A.1 (a), Lemma A.2 (b), Lemma B.1 (a) (b) and Lemma B.2 (d).

[F3.3.2] < H UNT 2 ZV T-1(F — F'R)(F — F'R)'T~'HOR(H — H'R)'H"
\/7 Z ViT F FOR)(f‘ — FOR)’T—lHOR(ﬁ _ HOR)/E
1 V/(F - F°R F - F'R)'H° H- H'R)
NES )H ( T ) ”R”‘(H 2l
=1
ViE - FR) ||| F - FryE | (- HORY e
- T T
VNT
NT

by Lemma A.2 (b), Lemma B.1 (b) and Lemma B.2 (c).

[Fs.5.3] < H INT 2 ZV/ YF — F'R)(F — F'R)'T~1(H — H'R)(H — H'R)'H’,"

Z V/T~Y(F — F°R)(F — F°'R)'T"!(H - H'R)(H - H°R)'¢;

VI(F - FOR)H (ﬁ—FOR)H H(ﬁ—HOR)H ”(ﬁ—HO’R)’HOH 169
T
V/(F FOR) (F - FR)|| || (H - H'R) _HR)e;
AT o [ B
_ Op(m)
SRor

by Lemma A.1 (a), Lemma A.2 (b), Lemma B.1 (a) (b) and Lemma B.2 (c).

[F3.3.4] < ZV T~ (F — F°R)(F — F°R)'T'H? (’RR’ _ (TﬁlHU’HO)A) HOHO !
Z V/T-Y(F — F°R)(F — F'R)'T~'H° (’RR’ - (T—1H0’H°)‘1) H,
A _ O oR V70 or
V/(F-F R)H (F — FTR )YH HRR, (T~ HOHO) H HH "HO H |
N
1 V/(F — F°R) || || (F — F°R)'H® o HO,
+x/NN; - H - HRR (T~'H"H") HH
VNT
=0y | Y5

by Lemma A.2 (b), Lemma B.1 (b) (d) and Lemma B.2 (d).

IF3.4.1] < H UNT 2 ZV/ T-1F0 (RR’ (T—lFO/FO)—l) FOT-'(H - H'R)R'H”H%?
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N
L Z V/T-1F0 (RR’ - (T*lFO'FU)‘l) FUT~Y(H - H'R)R'H":;

HRR/ 1F0/F0>*1H

FU(H — H'R) H H

, HO/HO o
- | R Y

RRI lFO/FO -1 H
| ) :

\/>NZHV’F°
~o, (5%)

by Lemma A.1 (d) and Lemma B.1 (b).

FU(H — H'R) H H

’ HO/E:i

N
1 _ .
[F3.42] < Nives > ViT'E° (RR’ — (T7'F”F?) 1) FUYT'H'R(H - H'R) H¢!
i=1

N
\/%ZVQT*FO (RR’— (T~ 'FOF°)~ )FO'T "HOR(H - H'R)'s;

N
1 FO _ FOHO HO HO
Oy i | B T L o [
4FO FO/HO ﬁ _ HOR ! i
i HRR’— T-IFYFY) " HH R||H()€
T
o
NT

by Lemma A.1 (d), Lemma B.1 (b) and Lemma B.2 (e).

IF3.43] <

N
]1VT Z VTR0 (RR’ _ (TﬁlFO’FO)_l) F(J/Tfl(ﬁ _ H()R)(ﬁ _H'R)'Hy,
v i=1

N
— Y VITE (RR’ - (T‘lFO’FO)_l) FO7-1(H - H'R)(H - H'R)'e;

N
1 V/FO
<VN— E L

FU(H - H'R) HHH HOR)' ‘

— 10/ 0
[Re - -eEe) T T I
N
1 V/F? , oo 1 || FY(H — HOR) —H'R)'e;
+\/NN;H\/T |RR— (171 F7F) 7 - =
o, (T
ONT
by Lemma A.1 (d), Lemma B.1 (b) and Lemma B.3 (e).
N
1 —1
[F3.4.4] < H ZVQT_lFO RR' — (T7'FYF°) ) FOT'H? (RR' - (T"'H"H’) ' ) H"H’,!
VNT ~ ( ) ( )
1 .
+ W ZV;T”FO (RR’ _ (TleOIF())_ ) FOT—150 (’RR’ 1H0’H0 ) HY -

FO

H FO/HO

|RR = (77'FF°) 7| |[RR — (7 HR)
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'O HY¢;

IVAERS
TNZ1

VN
= O -
ONT
by Lemma A.1 (d), Lemma B.1 (d) and Lemma B.2 (f).

Combining the above terms from F3 11 to 344, we derive that F3 = O, (\/NT(SX,%). This
completes the proof. [J

Proof of Lemma B.4. The proof can be completed following the argument in the proof of Lemma
A3. O
Proof of Lemma B.5. Follow the way of the proof of Lemma A.5, we can show that

H FO/HO

e e [ ey [

N N
73/2T73/2 Z Z I\?I(TO)fl(Tflf\lFO)flj/E\\lvévlei;Mﬁui
i=1£=1

N N
=N"32r3RY N T (X0) T FYFO) T RYE (Vo V) MpoMypoe; + Oy (T1/2637) + O (NY/2T 7125 )
i=1 (=1

The first term is equal to

N N
vec(N 7321323 "N "1 (x%) " (T'FVF°) " 'FVE (V,V}) MpoMyoe;)
=1 (=1

N N
=vec(N"32T=32 3 "N "1 (X))~ HT'FUFO) T FUE (V, V) &)
=1 4=1

N N
_ VeC(N73/2T73/2 Z Z 1-\?/ . (TO)fl(TleOIFO)leO/]E (V[V;) FO(FO/FO)71 . FOIEi)
i=1 4=1

N N
_ VeC(N—g/QT—3/2 Z Z I\?/ . (TO)—l(T—lFO/FO)—lFO/E (VEVQ) H(HOIHO)—l . HO/Ei)
i=1 =1

N
4 VeC(N73/2T73/2 Z Z 1-\?/ . (TO)fl(TleOIFO)leO/]E (VFVZ) HU(HO/HO)leO/FO(FO/FO)fl . FOIEi)
i=1 £=1

N N
=N"32T32 N "N (B(VV)E?) @ (TY') - vee((X0) (T 'FVF%)~1)

=1 ¢=1
N N
N71/2T 3/2 Z €7;:FO ® (F?/) . Vec((TO)fl(TleO/FO)fl . N71T71 ZFO/]E(VZVQ)FO . (TleOIFO)fl)

=1 /=1
N N

— N72TT32N (e H) @ (DY) - vee((X0)"H(T'FYF%)~ . N7 Y "FYE(V,V))H’ - (I7'H"H") ™)
=1 =1
N N

+ N~1/2p=3/2 Z(E;HO) ® (TY) - vec((XO)"HT~'FYFO)~t . N7 Z FYE(V,V))F°
i=1 =1

% (TleO/FO)flelFO/HO(TleO/HO)fl)
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N N N
=NTRTTIEN N (E(VAVYFY) @ (TF) - Op(1) + NTH2T32 Y (elF°) @ (TY) - Op(1)
i=1 ¢=1 i=1
N
+ NP2 3 () @ (DY) - 0,(1)
i=1
N N T N T
N2 32 3 S OSSR (vvi) eaf? @ T - 0,(1) + N7V2T32 33 cf 0 TV 0,(1)
i=1 ¢=1 s=1 t=1 i=1 t=1
N T
+ N—1/2T—3/2 Zz‘glthm ® FO/ (1)
:Op(Til/z)
because
N N T T
E"N—3/2T—3/QZZZZE V%ngt) Eitf;)l@F?IHQ
i=1 ¢=1 s=1 t=1
N N N N T T T T
3T ’ Z Z Z Z Z Z Z ZE V[l&lvéltl E(V2282V22t2)E(€i1t16i2t2) (f;)llf;L) ( (FO,FO ))
i1=1io=141=142=1s1=1s2=1¢t1=1ta=1
N N N N T T T T
SEREED DD IDIDID WP IPI: oty Faata T ENES, P9, [2E T, |2E]|TY, |2
i1=1io=141=143=1s1=1s2=1t1=1ta=1

=2

N N
<kCT™'. N2 Z it Z Z Forty - T~ Z Z Faota NTY N G35, <CTT!

l1=145=1 s1=1t;=1 so=11ts=1 i1=1142=1

by Assumption A2 and B2, C and D, and

N T N T
T-1. N—1/2p—1/2 Z Zgitfto/®r(i]/ _ OP(TA) Tl N-12p-1/2 Z Zsith?@l‘?’ _ O,,(Tfl) :
i=1 t=1 i=1 t=1

Thus, we derive that

N
N33 N (Y0) T T TEEY) T IF VL VMaMgu; = O, (TY/26:2)+0, (NY2T =125}
=1 (=1

This completes the proof. [
Proof of Lemma B.6. We can follow the way of the proof of Lemma A.4 to show that

N N
— N3P N (X0) T TV MM,

i=1 £=1
N N
TS R TV R Mg
i=1 (=1
+N71/2T1/2 1 ZI‘OI .-rO lT 1 ZZFévlvhl—\ TO)*l(FO/FO)leO/MﬁUi
(=1 h=1
+0,(T?557)

(B.2)
Consider the second term on the right hand side in (B.2). Denoting

N N
Q= (YO (N SN TV VY ) (X0) T (EYEC/T)
¢=1 h=1
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by a similar derivation of Lemma B.5, we can show that

N
— _ _ 0 _
Nl N2 UQZI‘/QFO’Mﬁui =0,(N71)
i=1
Then, we consider the first term on the right hand side in (B.2). Noting that Mgou; = Mpoeg;
and Mgo — Mg = T 'HH' — Py, We can derive that

N N N N
— N73/2p-1/2 Z Z rY(Y%) ' TV ;MpoMgu; — (— N~3/2771/2 Z Z Y (Y°) 'YV, MpoMgpoe; )
=1 /=1 =1 /4=1
N N N N
=N NN Y (Y0 DYV Mpo HE w; — N2 Y23 N Y (Y0) T D)V Mpo Prou,
i=1 £=1 i=1 (=1
N N
=N7327=32 3N Y (r0) TV Mpo (HR ™ — HO)(T'HYH®) ' H"y;
1=1 4=1

N N
+ NP2 N N (Y0) T YV Mpo (HR ™! — HY)(RR — (T7'HYH?) ') H 'y

i=1 (=1
N N N
+ NTRTTEN N T (X0) T TV Mpo HOR(H — H'R)
=1 (=1
N N R R
+ NI N Y (X0) T TV Mpo (H — HOR)(H — HOR)'u
=1 4=1

N N
+ NTRTTRN N TV (Y0) T TV Mpo H(RR — (7 'HYH®) ) H "y,
=1 4=1
=G1+ G2+ G35+ G4 +Gs

With the facts that
N N N

N71/2T71/2 Z ng%MFOHO — N71/2T71/2 Z ngzH()—N71/2T71/2 Z r?v%F(FO/FO)leO/HO — Op(l)
=1 (=1 (=1

and

N
|N—1/2r-1/2 Z TV Mgo(H — H'R)||
=1

N N

<||NTVRT2N DOV H - HOR)|| + [N V2T 2 T rpviE?|||[(r T ROR) ||| 7 R (H - HOR)||
=1 =1

=O0p(N~V2T2) + 0, (T?557)

by Lemma B.1(b). We can closely follow the arguments in the proofs of By o, Bo, B3 and By, to

show that Gy = O,(N"Y2TV252) + O,(TY2051), Gz = O,(5n7), Ga = Op(N~V2TV252) +
O,(T%53) and G5 = O, (557
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With (B.1), G; is decomposed as follows
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ﬁ
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Il
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1= 11 ¢
1= 1= 1= 11

+ NP3/ Ty (Y0) ' TV Mpoesef) (Y2) (T "HYH") ' H u;

N N
+ N—5/2p=5/2 Z Z I‘?’(‘I‘O)‘1I‘2V2Mposhe§lﬁ(T‘1H0’ﬂ)‘l(Tg)‘l(T‘lHO’HO)‘lHO’ui
=1 /=1
N N N N R
+ NS5/ Z Z Y (X)) Vi MpoX4(8 — Brsrv)(B — Bisrv) X, H
=1 4=1 h=1
HOIHO -1 0r_1 HOIHO -1 o

] =
] =

+ N-5/2p-5/2

M= I
M= I
M= 1=

+N—5/2T—5/2
i=1 f=1 h=1
=G11+Gi12+G13+Gi1a+Gi15+Gr6+Giy

~
>
Il

Following the argument in the proof of By, we can show that Gy + G2 = Op(Tl/Qég,:,z«) +
O,(N~1/2). In a similar manner, it can be shown that

N N N
G1'4 — N—3/2T—3/2 Z Z Z F?I(TO)_1I‘2V225H0(T_1H0/H0)_1(Tg)_lipg
i=1 ¢=1 h=1
+Op(TY2557) + Op(T~1/?) + O, (N2,

the first term of which is O,(T71/2). As |[MpoXy|| < || X4|l, G1.6 is bounded in norm by
R N N
TY2)B = Basrvll- N7UY_ITINT ™ 2ug) - N71Y I T 2X 1T 2|
i h=1

N
3 P Al N w1 i < (] < 3116 e 1 - 3 = 9 116 o 1 < 8 < SO B
=1

=0,(T*?|8 — Bysiv ) = Op(N~V/2).

A similar derivation yields that G 7 = OP(T1/2H5—BL§IVH) = 0,(N~1/2). Also Gy5 = O,(NY/2T1/2||3—
Bisrv|?) = O,(N~Y/2T~1/2). Finally

N N N
GI,S 5/2T—1/QZZZI\O/ TO 1F2V25h¢21(rg)_1¢? +Op(T_1/2)7

i=1 ¢=1 h=1
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which is bounded in norm by
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by Assumption A2, B2 and D. Collecting the above terms, we can derive that
N N N N
— N73/2p=1/2 Z Z rY(Y%) ' T)V;MpoMgu; = —N~3/2771/2 Z Z YY"V, MpoMpoe;
i=1 £=1 i=1 £=1
N N N
N-5/2- 1/22 1-|0/ TO 1I‘2 ZEthg'(Tg)71¢?
i=1 £=1 h=1
N N N
N—3/2T—3/QZZZI\ 1I10Vez H(T_IHOIHO)_l(T?p)_lcp?
i=1 ¢=1 h=1

+0,(T"%657)
Consequently, with (B.3), we complete the proof. O

C Proofs of Lemmas in Appendix C
Proof of Lemma C.1. Consider (a). With the equation (A.1), we have
|7 el (FO ~ FRT)|
N R N N
SNTIT| Y EFTIVIF(|[ETR T + NTIT ) e VDY FYR||ETIR Y|
=1 =1

N
+ NN ViR IET TR
=1
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Since 271 = 0,(1) and R~! = 0,(1), we omit |[E~'R~"|| in the following analysis. The first term
is bounded in norm by

V2. |72 FO| - HN L= 1ZI‘?V€FH

With Assumptions A and C, we have E[|T~1/2¢/F°||2 = T-' .| Elle;||>E|[f2]|2 < C, which then
implies that
[T 2B = 0,(1) (C.4)

N N N
NI N FV LY =N Y R/FOVEY + NI C(F - FOR) VLY
/=1 (=1 (=1
=0, (N~V2T712) 1 Op(N71) + Op(N71267) .

(C.5)

With (C.4) and (C.5), the first term is O,(N~Y2T71) + O,(N~IT~1/2) + O,(N~YV2T=1/252).
The second term is bounded in norm by

N
N—1/2T—1/2||N—1/2T—1/2 Zegvergl“||T—1/2F0||HT—1/2]’:$H — OP(N—l/QT—1/2>
=1

where |N~1/27-1/2 Z@ LEVTY|| = O,(1) can be proved by following the way in the proof of
(C.4). Consider the third term. Easily, we can prove E||T~'/2¢;||? < C. By Cauchy-Schwartz
inequality, we have

N T T N 2
E[N'T S EE(VV)E| = 1EHT*1 Yy E(vgsvet))siSfEH
=1 =1

s=1t=1

T T T T N N
ST2Y N N D INTIY E(Vi, Ve INTY D E(Ve, Ver)[E(lleis, £ |l £ 1) (C.6)

s1=1t1=1s0=1to=1 =1 =1

T T
sty 0sats \/E e, Bel E |}fg|| E ||ft02|| <o(r ZZ@)? <C?
1 s=1t=1

by Assumptions A, B2, and C. With Assumption B5, we can follow the way of the proof of Lemma
A.2(i) in Bai (2009a) to show that E|N~1/2T-1 S €[V, V), — E(V,V}) ]F°|> < C. With the
above three moment conditions, we obtain

1T~ %]l = 0y(1)

N
INTITTEY B (VeV) FO = 0,(1)
{=1

|IN=Y27- 12 VoV, —E(V,V)) [FY = 0,(1)

Thus, the third term is bounded in norm by

N N
TP [|NTT Y VAV VAE —FOR) |+ T INTITT Y e (VV) FOY R
(=1 (=1

+ N7Vl N2 12 [VeVy —E(VeVy) [FlIR] = Op(d57)
(=1
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where

N
INTTES VAV = 0,055 (1)
=1

which suggest from

T T N 2
NI WZE (VoV)) |2 = ZZ\ PSTE (Vv

(=1 =1
T T N T T
SCNT'TY NN EWvi) | <CTTHY Y 60 < C2,
s=1t=1 =1 s=1t=1
and
N 2 T T N
B[Nt S (Vv —E (Vv ][ =E(T2 Y3 (N2 (vieve — E(viva) %)
/=1 s=1t=1 (=1

T T N
=72 Z Z E[N~1/2 ;(stwt 7 E(Véswt))]z) <c.
=1

s=1t=1

given N7 350 B(vivie)| < N7P T [E(VEvie)| < N7V VEVi[PE[ve[? < C and As-
sumption B. Collecting the above three terms, the claim holds. Similarly, we can prove (b), details
are omitted. This completes the proof. [J

Proof of Lemma C.2. We first consider 7~/2I)'F”Mzu;, which is
T7PT)FO"Mgu; = Op(1) x T~'/?F"Mgu,

Note that MpoFY = 0, we have MﬁF0 = (Mg - Mpo)F?. We expand M — Mpo as

L (F-F'R)R'F"— -F'R(F-F'R) — - (F—F’R)(F-F'R)'~ - F’ (RR’ - (FO/FO)f1 P
then

v o 0 4 UROR (T 01> \/
T1/2F Mou; = — T3/2F (F - F'R)R'F"u TS/QF F'R(F — F'R)'u

F”(F — F'R)(F — F°R)'u; —

FO/FO -1
T3/2 T:’>/2FO/FO (RRI_< T ) >F0/ui

=A1 + Ay + Az + Ay
Consider A;. Given u; = H¢? + ¢;, we have
1T 2| < | T72F°)| + (| Q2|7 2HO|| + | T~ 2e4]]

Since E[|?|| < C and the condition E||7~Y/2H°||> < C by Assumptions C and D, the first term
is O,(1). Similarly, we can prove that the second and the third term both are O,(1). The above
facts suggest ||7~'/2u;|| = O,(1). Thus, A; is bounded in norm by

luill x 771 FY(F — F'R)|[RI|T~/2F°|| = O,(T*/25y7)

Similarly, we can show that Az = O,(T"/255%) and Ay = O,(T"/265%). Consider Ay. The term
is bounded in norm by T1/2||T L(F — FOR)'u,|| x ||T~Y/2F°||2||R||, which is O,(T/2) x |T~(F —
FOR)'u;|. Furthermore, |[7-!(F — F'R)'u;| is bounded in norm by

P17~ (F = FOR)H'|| + |7 (FR " — F) &, [|IR] = O,(537)
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by Lemmas A.1(b) and A.2(a). Thus, Ay = O,(T*/2533). Collecting the above four terms, we
have T~1/2T)F"Mgu; = O,(T"/?6,7%).

Next, we tend to prove that 77 /2Vj(Mz — Mpo)u; = O,(T/267). Since Mg — Mpo =
~T-Y(F-F'R)R'F” T~ 'FOR(F-F'R) — T~ (F—F'R)(F—F'R) — T~ 'F° (RR’ - (T‘lFO’FO)_l) F,
we have

T2V} (Mg — Mpo)u;
= —T32V/(F - F'R)R'F"u; — T73?V/F'R(F — F'R)'u,
~ T732V|(F — F'R)(F - F'R)'w, - T"*/*V/F'(RR' — (I 'F"F°) " )F"u,
=As5 + Ag + A7 + Ag.
Aj in norm by
V20| - |IT7 Vi(F — F'R)|[| T 'F"HY|||R|
+ | T VI(E — FR)| - |77V || R] = Op(T"/2537).
With Lemma A.2(a), Ag is bounded in norm by
1T~ 2VIE| TN (F ~ FOR) e | IR
+ T 2VIEQ? |7 (F — FOR)HC || |R| = Op(3x7)
by Lemmas A.1(b). Given Lemmas A.1(b), A.2(a) and A.2(b), A7 is bounded in norm by
T2 QI Vi(F — F'R)|||T~H(F — F'R)'H’|
+TVATIVIE — FOR) |77 (F — FOR)'ei]| = 0,(T"/*07)
Ag is bounded in norm by
1T~ 2ViE[l? 7~ FUHC | |RR' — (T~ 'FVFO) |
+ T2 | TAVIEC|| [T 2F e [ |RR — (T FYFO) 1| = Op(dy7)
by Lemma A.1(e). With the stochastic orders of the above eight terms, we derive that
T~2XMgu; = T /2X]Mpow; + O, (T"/?557)

we complete the proof. [
Proof of Lemma C.3. The results are immediately obtained from Assumptions D and H. [J
Proof of Lemma C.4. Consider (a). With the equation (A.1), we have

sup || T~'e[(F* — FR™)]|

1<i<N
N N

< sup N2 eFT)VIF||ET' R + sup N7'T7%| > &V, IYFIF||27 'R
1<i<N 1 1<i<N )

N
+ sup N'T72Y e VVIF|[|IETIRTY
1<i<N —

Since 27! = 0,(1) and R™! = O,(1), we omit [|[E~'R~!|| in the following analysis. The first term
is bounded in norm by
N
T-Y2. sup T2/ - HN—lT—1 ZI‘?V}FH
1<i<N =
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Since E||T~1/2e/FO||* < C, we have

sup [|T7'/2&]F|| = O,(N'/*) (C.8)
1<i<N

C.5), and

Note that N71T=2 SN F'V,TY = O,(N~Y/2T71/2) 4 0, (N~Y) + O, (N~ /2632 ) by (
~7)- The second

with (C.8), the first term is O, (N V4T ~1) + O, (N=3/4T~1/2) 4 O, (N~Y/4T~ 1/2(5
term is bounded in norm by

N— 1/2T 1/2 IEUEN”N 1/2T 1/2Z€V€F ||||T71/2F0H||T71/2i;\\” :Op(N71/4T71/2)
' (=1

by Lemma C.3(b). Consider the third term. We have

T T
sup |77V 2¢;|? = sup T~ 'Y ek <Eep, + T2 sup TV (e — Eel) = 0p(1) + O (NV/AT71?)

1<i<N <i<N P 1<i<N Pt

since E|T-1/2 307 (€2, —Ee2)|]> < C. With (A.8), we can show that E[|[N~Y/27-1 "X | [V, V) -
E (V,V})]F||> < C. Thus, the third term is bounded in norm by

Sup T2 |el| - [N~'T~ 1Z:WV’HHT_W(F F°R )||+T_1' S [IN~'T- lzeE (VeV) FOll - R
1< =1 =1
N

+ NTRTTE S T2 e - [NV [ VeV — E(V,V)) [EOY| IR
i< =1

=0, (533 + Op(NVAT7),

Collecting the above three terms, the claim holds.
Consider (b). Replacing F — F'R by its expression (A.1), we have

sup [|T~'Vi(F - F'R)|

1<i<N
N N
< s NS VIPTOVIR|[E T+ sup NUT VIV EUR)E
S5 =1 =1

+ sup N7'T 2HE:V'WWFHH”_IH
1<i<N —1

Ignoring |27 || and following the arguments of the first term and the third term in the proof of
(a), the first term is O, (N~Y4T~1) 4+ O,(N=3/4T~1/2) 4 O,(N~Y4T~1/252) and the third term
is O, (6y7) + Op(NVAT~1). The second term is bounded in norm by

liquN i 1||ZV V LY ||| T 2E0 ||| T~ 2F | = s N-'T- 1||ZV VLY | x 0,(1)
v =1 =1

< sup N7~ 1ZHIE ViV |17 ||jL sup N7~ 1||Z ViV, —E(ViV)) TY|
=1 =1
N

<N sup ZW sup ||1“£||+ sup NTTHY (Vv —E(ViV,)) T
1<i<N 1<e< =
=Op(N 3/4)+0p( STy

Combining the above three terms, (b) holds. This completes the proof. [
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Proof of Lemma C.5. Consider (a). The left hand is bounded in norm by
N N
N7 DY F Mgy | + N7 [ ViMgu; — Vi Mpou||
i=1 i=1

We first consider N~17-1 3V | |77 FOMgu||, which is bounded by N~17~1 ponii vl [FYMgug||.
Note that MpoF° = 0, we have MfFO = (Mg — Mpo)F?. We expand Mg — Mpo as following

L F_FR)R'FY— LFOR(F—F'R) - & (F—F'R)(F—F'R) — ~F" RR'-(FO/FO)f1 FY
T T T T T ’
then
N
N T R Mg, |
=1

N N
SNV TYITE (F - FOR)RF | + N7' Y EY |7 FYFOR(F - FOR)'uy

i=1 i=1

N N —1

N N FO/F

+ N DT F (F — FOR)(F — FOR)'wl| + N=' > T[T *F”F° (RR’ - < > ) Fou|
1=1 =1 T

=B; + By + B3 + By

Consider By. Given u; = HY + ¢;, we have

N
NTEY TP IIT R

i=1

N N
SN TS NT T EOR | + N7y ITIT T Y|
i=1 i=1

=0,(1)
Thus, B; is bounded in norm by
N A~
NTUY ITYIT Fw| > | T FY (F - FOR)|[|R]| = Op(657)
i=1

Similarly, we can show that By = O,(dx5).

Consider By. The term is bounded in norm by N1 va:l D97~ (F—F°R)w; |- |7~ /2F°| 2| R ||,
which is 0,(1)-N=2 SN | |T9|[|T~ (F—F°R) u,||. Furthermore, N~ SN ||T9[[[|7~ (F—F'R) u, |
is bounded in norm by

N
N7 IRl (F - FOR)H|
i=1

N
+ N YT ER T - FO) el||R

=1

:Op((szif%“)

by Lemmas A.1(b) and A.2(b). Thus, By = O,(6y3). Analogously, we have By = O,(dy7)-
Collecting the above four terms, we have N=17-1 SN ||I‘?’F0'Mi5ui|| = 0, (657
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Next, we tend to prove that N 171 Zfil Vi (Mg —Mpo)u[| = O,(67). Since Mg —Mpo =
T~ (F—F'R)R'F” T~ 'FOR(F-F'R) - T~ (F—F'R)(F—F'R) — T 'F° (RR’ - (T*IFO'FO)*) F,
we have

N
N=S TV (Mg — Mpo)u;|

i=1

N N
=N T AVIF - F'R)R'F w | + N1 T 2VIF'R(F — F'R) uy

=1 i=1

N N
+ N ST 2VYE - FOR)(F — FOR)'wy| + N2 S IT2VIFO(RR — (T'FVF%) )F%u|
=1 =1
=Bs + Be + B7 + Bg

We bound By in norm by

N

N T WVE - FOR)||| 7 FOw || R
=1
N o~

SN TTIVIE - FOR)|| 0| R |7 EOHC |
=1
N
+N- 12||T LWV(F — F°R) |7 'F ]| |R|

Op(Ox7)
by Lemma A.2. With Lemma A.2(a), Bs is bounded in norm by

N
N7 T TVIEITHE - FOR) wil| R = O,(T/%657)

i=1

by Lemmas A.1(b). Similarly, we can show that By = O,(6x7) and Bg = O,(T~/25y2.). With the
stochastic orders of the above eight terms, we obtain (a).
Consider (b). The term is bounded in norm by

sup [|T7'X{MgX; — T~ ' X MpoX,||

1<i<N

< sup ||T7'TYFYMGFTY|| +2 sup ||T7'VIMgFOTY| + sup |7~ V(Mg — Mpo) V|
1<i<N 1<i<N <i<N

=C1 +Cy 4+ C3

C, is bounded in norm by

sup |77 TYFYMSFOTY|| = sup |77'TY(F° — FR™!)Mg(F° — FR™)IY)|
1<i<N 1<i<N

<(sup TP (IT7/2(F° = FR™Y)|? = O, (N'/257)
1<i<N

Ignoring the scale 2, C, is bounded in norm by

sup || 77" Vi(Mg — Mpo)FOTY|

1<i<N
= sup [T 2Vi(F — F'R)R'FVFTY|| + sup [T 2V/F°R(F — F'R)'F°T?||
1<i<N 1<i<N
+ sup |T~2V/(F — F°R)(F — F'R)'FT?|| + sup [T 2V/FO(RR’ — (T~'F"F°) ) FUFTY||
1<i<N 1<i<N
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We bound the first term in norm by

sup [|[T'VH(F —F'R)||- sup [TO[||R|TFYF°| = O,(N'/253)
1<i<N 1<i<N

With Lemma A.2(a), the second term is bounded in norm by

sup [[T~'ViF%| - sup ITY | R[|T~(F — F'R)'F°|| = O, (N'/2T~ 12533,
1<i<N 1<i<N

by Lemmas A.1(b). Given Lemmas A.1(b), A.2(a) and A.2(b), the third is bounded in norm by

sup |[T7'Vi(F — F'R)||- sup |77 (F — F'R)FIY| = O,(N'/265+)

1<i<N 1<i<N
the forth term is bounded in norm by

sup ||T7'ViF°||- sup |TY[[|RR' — (T'FYFO)~"||T'FVF°|| = O,(N'/*T~1/257)
1<i<N 1<i<N

by Lemma A.1(e). Thus Cy is O,(N'/2532). C3 is bounded in norm by

sup [[T7'Vi(Mg — Mpo) Vi

1<i<N
= sup [|T2Vi(F - F'R)R'FVV,| + sup [|[T-2V/F°R(F — F'R)'V,||
1<i<N 1<i<N
+ sup [|T72V)(F —F'R)(F — F'R)'V,| + sup [T 2V/FO(RR’ — (T"'F"F°) F"V,|
1<i<N 1<i<N

The first term is bounded in norm by

sup [T7'Vi(E —F'R)||- sup [T7'FOVy| - [R] = O,(N/2T~1/252)
1<i<N 1<i<N

Similarly, the second term is Op(Nl/zT_l/%X,%). The third term is bounded in norm by

(sup [|T'VL(EF - FR)|)? = O,(N/2551)
1<i<N

The fourth term is bounded in norm by

T sup |[TVRVIEYE [RR! - (T1FVF) 7 | = Op(NY2T o)

With the above terms, we have C3 = O, (NY/2T=1/25.2)+0,(N/257). Then, we have (b). Thus,
we complete the proof. [

D Proofs of Lemmas in Appendix D

Proof of Lemmas D.1, D.2 and D.3. The results are straightforwardly derived following the
proofs in Bai (2009) and Lemmas B.1-B.6, thus, details are omitted.
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E Additional Experimental Results

Table E.1: Bias, root mean squared error (RMSE) of the estimators of 31, and size and power of the
associated t-tests when 7, = {1/2,3/4} and N =T = 200.

Homogeneous Slopes Heterogeneous Slopes

Estimator Bias S.D. RMSE Size Power Bias S.D. RMSE Size Power
(x100) (x100) (x100) (x100) (x100) (x100)
Tu = 3/4
2SIV 0.003 0.589 0.589 4.6 100.0 0.584 0.957 1.121 7.7 100.0
BC-IPC 0.176 1.112 1.126 30.9 100.0 0.799 1.366 1.582 20.9 100.0
IPC —0.021 0.575 0.576 5.3 100.0 0.556 0.950 1.100 8.4 100.0
BC-PC —1.624 1.096 1.959 58.9 100.0 —1.040 1.333 1.691 19.4 100.0
PC —2.438 0.907 2.601 87.6 100.0 —1.874 1.180 2.214 38.4 100.0
CA —0.588 0.606 0.844 18.0 100.0 —0.005 0.963 0.963 3.5 100.0
MGIV 0.009 0.683 0.683 4.7 100.0 0.014 0.996 0.996 3.3 100.0
MGPC —2.426 0.898 2.587 86.6 100.0 —2.416 1.170 2.684 58.5 100.0
MGCA —0.572 0.608 0.834 17.2 100.0 —0.558 0.954 1.105 7.3 100.0
Ty =1/4
2SIV 0.003 0.767 0.767 5.1 100.0 0.573 1.059 1.204 6.9 100.0
BC-IPC —0.062 0.585 0.588 5.3 100.0 0.530 0.949 1.087 7.5 100.0
IPC —0.062 0.586 0.589 5.3 100.0 0.530 0.950 1.088 7.5 100.0
BC-PC —12.528 7.205 14.451 95.4 50.1 —12.048 7.262 14.066 92.8 46.2
PC —15.139 6.422 16.444 99.7 66.8 —14.651 6.459 16.011 94.3 57.6
CA —0.694 0.626 0.935 22.7 100.0 —0.106 0.983 0.989 4.4 100.0
MGIV 0.018 1.279 1.278 4.8 100.0 0.004 1.426 1.426 3.5 100.0
MGPC —13.780 5.503 14.837 99.8 57.7 —13.821 5.530 14.885 96.2  52.8
MGCA —0.673 0.628 0.920 20.9 100.0 —0.646 0.970 1.166 8.6 100.0

Notes: The DGP is the same as the one for Table 1, except mys = 2, my = 3, 72; ~ 1..d.N(0,1) for s = 1,...,my,
Wi = py1s79 + (1= p2 1 ) 2605 &rsi ~ 1.d.N(0,1), 497, = py,257% + (1= p2 )M 2bosi; €260 ~ 10.d.N(0, 1),
and 7 =1/4, 78 =~§ =1/2, 79, =43, = 1/4 and 49, =19, = —1.

Table E.2: Bias, root mean squared error (RMSE) of the estimators of 31, and size and power of the
associated t-tests when 7, = 3/4, N =200, T'= 25 and N = 25, T = 200.

Homogeneous Slopes Heterogenous Slopes

Estimator Bias S.D. RMSE Size Power Bias S.D. RMSE Size Power
(x100) (x100) (x100) (x100) (x100) (x100)
N =200,T =25
2SIV —0.600 2.470 2.541 11.1 96.9 0.743 2.620 2.723 11.9 98.0
BC-IPC 0.321 2.679 2.697 18.2 98.9 1.794 2.823 3.344 239 99.3
IPC —0.741 2.172 2.294 11.4 99.0 0.672 2.378 2.470 10.2 99.2
BC-PC —1.591 2.905 3.311 19.8 91.7 —0.280 3.067 3.079 13.3 95.0
PC —2.330 2.844 3.676 25.2 88.7 —1.022 3.024 3.191 13.6 924
CA —0.603 1.951 2.042 6.7 99.8 0.823 2.089 2.245 6.1 100.0
MGIV —0.539 2.724 2.776 9.7 95.1 —0.516 2.832 2.878 9.3 93.3
MGPC —2.235 2.832 3.608 21.0 86.7 —2.235 2.959 3.707 19.7 83.0
MGCA —0.581 2.152 2.229 5.6 99.3 —0.523 2.266 2.325 54 98.6
N =25T =200
2SIV 0.060 1.823 1.823 9.5 99.9 0.431 2.774 2806 8.1 97.0
BC-IPC 1.076 10.587 10.639 63.3 82.8 1.177 11.497 11.554 55.6 76.3
IPC —1.147 3.373 3.562 17.3 86.7 —0.801 4.069 4.146 14.9 79.1
BC-PC —1.200 5.547 5.674 31.6 73.5 —0.798 5.836 5.889 19.1 62.4
PC —7.264 3.015 7.865 82.6 294 —7.017 3.625 7.898 54.0 18.2
CA —1.936 2.655 3.285 17.3 88.2 —1.623 3.429 3.793 9.6 73.2
MGIV 0.017 2.068 2.068 7.0 99.3 —0.101 2.888 2.889 4.5 89.8
MGPC —7.410 3.047 8.012 81.8 26.7 —7.467 3.631 8.303 58.2 14.5
MGCA —1.648 2.449 2952 15.0 92.1 —1.802 3.195 3.668 10.3 74.7
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Notes: The DGP is the same as the one for Table 2, except the differences explained bellow the Table E.1.



Table E.3: Scaled bias of the estimators of (1.

Homogeneous Slopes Heterogeneous Slopes
(V'NT x Bias) (v/N xBias)
Estimator\N =T 25 50 100 200 25 50 100 200
Ty = 3/4
2SIV —0.215 —0.074 —0.039 0.005 0.021 0.067 0.079 0.083
BC-IPC —0.254  0.587 0.923 0.352 0.010 0.147 0.159 0.113
IPC —0.611 —0.599 —0.222 —0.041 —0.052 —0.011 0.062 0.079
BC-PC —0.511 —-0.732 —-1.632 —3.249 —-0.049 —0.037 —0.075 —0.147
PC —1.841 —2.249 —-3.235 —4.877 —0.314 —0.255 —0.242 —0.265
CA —0.470 —0.760 —1.056 —1.177 —0.035 —0.040 —0.029 —0.001
MGIV —0.183 —0.059 —0.054 0.018 —0.040 —0.010 —0.004 0.002
MGPC —1.836 —2.245 —3.235 —4.852 —0.360 —0.323 —0.317 —0.342
MGCA —0.398 —0.692 —1.000 —1.144 —0.083 —0.102 —0.099 —0.079
Ty =1/4
2SIV —0.029 —0.045 —0.016 0.006 0.077 0.072 0.079 0.081
BC-IPC —0.207 —0.104 —-0.065 —0.123 0.032 0.062 0.073 0.075
IPC —0.209 —0.105 —0.065 —0.124 0.031 0.062 0.073 0.075
BC-PC —0.666 —4.955 —12.699 —25.056 —0.028 —0.593 —1.164 —1.704
PC —5.921 —9.876 —17.430 —30.277 —1.126 —1.333 —1.669 —2.072
CA —1.258 —1.405 —1.365 —1.388 —0.193 —0.133 —0.062 —0.015
MGIV —0.101 —0.055 —0.005 0.035 0.007 —0.012 —0.009 0.001
MGPC —5.537 —8.995 —15.826 —27.559 —1.093 —1.279 —1.584 —1.955
MGCA —1.020 —1.250 —1.284 —1.346 —0.195 —0.177 —0.128 —0.091

Notes: The DGP is the same as the one for Table 3, except the differences explained bellow the Table E.1.
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