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Abstract.

To understand the impact of temporal aggregation on the properties of a seasonal long-memory process,

the e¤ects of skip and cumulation sampling on both stationary and nonstationary processes with poles at

several potential frequencies are analyzed. By allowing for several poles in the disaggregated process, their

interaction in the aggregated series is investigated. Further, by de�ning the process according to the trun-

cated Type II de�nition, the proposed approach encompasses both stationary and nonstationary processes

without requiring prior knowledge of the case. The frequencies in the aggregated series to which the poles in

the disaggregated series are mapped can be directly deduced. Speci�cally, unlike cumulation sampling, skip

sampling can impact on non-seasonal memory properties. Moreover, with cumulation sampling, seasonal

long-memory can vanish in some cases. Using simulations, the mapping of the frequencies implied by tem-

poral aggregation is illustrated and the estimation of the memory at the di¤erent frequencies is analyzed.

JEL Classi�cation: C12, C22.

Keywords: Aggregation, cumulation sampling, skip sampling, seasonal long memory.

1 Introduction

Macroeconomic and �nancial time series often exhibit high correlations. Both stationary and

nonstationary long-memory models have proven to be successful in modeling these correlations.

Further, many empirical time series show seasonal or cyclical features. The use of temporally

aggregated data is common practice in empirical applications, including macroeconomic and �-

nancial ones. Aggregated data are obtained by means of skip sampling or cumulation sampling.

While the results apply to both seasonal and cyclical series, most of the present paper focuses
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on seasonal series. For such series, we de�ne Q � S=SA, where S denotes the number of seasons

per year and SA denotes the number of seasons per year after temporal aggregation. While skip

sampling is typically used for stock variables, such as the interest rate, cumulation sampling is

used for �ow variables, such as GDP. (As Hassler (2013) shows for �ow variables, the proper way

to aggregate data is cumulation sampling. In fact, many papers, including Pons (2006) and del

Barrio Castro, Rodrigues, and Taylor (2019), refer to cumulation sampling when they speak about

average sampling.) Skip sampling takes each Q-th observation and cumulation sampling aggregates

Q observations into a new aggregated observation. Both types of temporal aggregation can have

important implications on the properties of the resulting time series.

In the time series analysis literature, the study of the e¤ects of aggregation has largely focused

on how aggregation methods modify the data generating process of the time series being considered

(basically within the context of mixed autoregressive-moving average processes), see for example,

Wei (2006) and Silvestrini and Veredas (2008) for detailed reviews. In a recent paper, del Barrio

Castro, Rodrigues, and Taylor (2019) studied the e¤ects of aggregation in seasonal near-integrated

processes, in terms of their frequency allocation, exploiting the properties of the demodulator

operator and using a partial fraction decomposition.

This paper aims to model a (bS=2c + 1)-factor seasonal long-memory process with both sta-

tionary and nonstationary memory, and to analyze the impact of temporal aggregation on the

properties of the series. b:c denotes the integer part. Hence, when S is even, bS=2c = S=2, and

when S is odd, bS=2c = (S � 1) =2.

The contribution of this paper is threefold. First, the process allows for multiple poles, and

secondly, it covers both stationary and nonstationary long memory. In particular, using an approx-

imation by Giraitis and Leipus (1995), we extend the analysis for stationary one-factor seasonal

long-memory processes by Tsai and Chan (2005), Sun and Shi (2014), and Hassler (2011) to the

case of multiple poles of stationary and/or nonstationary memory. Thirdly, as Hassler (2011) does,

we reach similar conclusions about the e¤ect of aggregation on the poles of the aggregated series,

however, we use a di¤erent approach and unlike him, work in the time domain. In particular, we

obtain immediate knowledge of the location of the poles after aggregation without the need to

calculate the spectra. Simulations illustrate the mapping of the frequencies implied by temporal

aggregation. Finally, the recently proposed semi-parametric seasonal exact local Whittle estimator

(Arteche, 2020) works satisfactorily, and estimated memory parameters are in line with theoretical

predictions.
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2 Seasonal long-memory processes

2.1 The complex-valued long-memory process

The generalized long-memory (LM) process, proposed by Hosking (1981) and Gray et al. (1989)

is de�ned as:
�
1� 2 cos!L+ L2

�d
yt = "t; (1)

where "t is the innovation and ! is the frequency where the generalized long-memory process or

Gegenbauer process has long-memory. Hence, if ! 2 (0; �), the process (1) has seasonal/cyclical

long-memory behavior at frequency ! with a period 2�=!. The special frequencies ! = !k =

2�k=S; with k2f1; 2; :::; b(S � 1) =2cg and S being the number of seasons per year, lead to seasonal

behavior. Yet, the results hold for more general frequencies, and that leads to other types of cyclical

behavior. For simplicity, throughout the paper we are going to assume that the innovation "t is

identically and independently distributed with an expected value of zero and constant variance,

that is "t � iid
�
0; �2"

�
. But the main conclusions of the paper should also be valid for more

general assumptions for the innovation "t, such as in�nite moving average processes with absolute

summable weights (see Assumption 6.1 in Hassler (2019)).

Noting that
�
1� 2 cos!L+ L2

�d
=
�
1� e�i!L

�d �
1� ei!L

�d
; as in Giraitis and Leipus (1995),

we illustrate the role played by the demodulator operator in our approach by focusing on the

complex-valued long-memory process,

�
1� e�i!L

�d
yt = "t: (2)

As in the standard long-memory process (1� L)d yt = "t; it is possible to write the following

moving average representation:

yt = "t + e
�i!d"t�1 + e

�i2! d (d+ 1)

2!
"t�2 + e

�i3! d (d+ 1) (d+ 2)

3!
"t�3

=
1X

j=0

e�i!j j"t�j ;

with  j =
(j+d�1)!
j!(d�1)! =

�(j+d)
�(d)�(j+1) : These weights correspond to the weights of a process which

is fractionally integrated of order d,
P1
j=0  j"t�j . It is well known that the coe¢cient  j , as

j !1,  j � jd�1=� (d) (see, for example, Beran (1994)). If we truncate the process to the initial

observation of "t (that is "1), then

yt =
t�1X

j=0

e�i!j j"t�j ;

which can be written as

yt = e�i!t
tX

j=1

 t�je
i!j"j : (3)
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Hence, in (3) we have a situation equivalent to the one in Gregoir (1999, 2006 and 2010) and

del Barrio Castro, Rodrigues, and Taylor (2019), where a complex-valued I(1) process associated

with frequency !; yt = e�i!yt�1 + "t can be decomposed into two parts, a complex-valued I(1)

process in the zero frequency y0 +
Pt
j=1 e

i!j"j and the demodulator operator e
�i!t that shifts the

former process from the zero frequency to the frequency !. Process (3) is a complex-valued Type-

II fractionally integrated process in the zero frequency
Pt
j=1  t�je

i!j"j with innovation ei!j"j

together with the demodulator operator, e�i!t; which shifts the complex-valued zero frequency

long-memory process to frequency !.

In the rest of this section, we present the vector of seasons representation of process (3),

which we will use later, together with the result of Giraitis and Leipus (1995), to derive our main

result regarding the e¤ect of aggregation on seasonal long-memory processes. When we work with

seasonal data, it is convenient to replace the subscript "t" with "S� + s" where S is the number

of total seasons per year, � is the year (� = 1; 2; : : : ; N ; N is the total number of years) and

s = � (S � 1) ;� (S � 2) ; : : : ;�1; 0. For simplicity, we assume a total number of observation of

SN . In the case of cyclical behavior, S = 2�=!. That is, the cyclical behavior completes a full

cycle every S observations.

Hence (with 1(S�+s>0) (S� + s) being the usual indicator function used for Type II processes),

�
1� e�i!L

�d
yS�+s = 1(S�+s>0) (S� + s) "S�+s;

yS�+s = e�i!(S�+s)
S�+sX

j=1

 S�+s�je
i!j"j : (4)

The vector of seasons representation of (4) with Y� =
�
yS��(S�1); yS��(S�2); � � � ; yS��1; yS�

�0
;

E� =
�
"S��(S�1); "S��(S�2); � � � ; "S��1; "S�

�0
; and de�ning (v�)

0
=
h
e�i! e�i!2 � � � e�i!S

i
,

its complex conjugate (v+)
0
=
h
e+i! e+i!2 � � � e+i!S

i
, and the diagonal matrix 	j = diag

�
 S(��j)+(S�1);  S(��j)+(S�2); : : : ;  S(��j)

�
, will be as follows:

Y� =
�
v�
� �
v+
�0

�X

j=1

	jEj (5)

+terms fractionally integrated of order (d� 1):

The proof of (5) can be found in the appendix. In the appendix we also show that the additional

terms of fractional order d� 1 are a¤ected by the demodulator operator e�i!(S�+s) (see expression

(25) in the appendix), which equals 1 for ! = 0 and (�1)S�+s for ! = �.

A standard long-memory process (1� L)d yS�+s = 1(S�+s>0) (S� + s) "S�+s associated with the

zero frequency and a long-memory process (1 + L)d yS�+s = 1(S�+s>0) (S� + s) "S�+s associated

with the Nyquist frequency are particular cases of (4)-(5) where ! = 0 and ! = �, respectively. In

the following, for the ease of exposition, we use "t" instead of "S� + s", unless needed.
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2.2 (bS=2c+ 1)-factor seasonal long-memory process

In this section, we extend the one-factor seasonal long-memory process from the previous section

to a (bS=2c+ 1)-factor seasonal LM process with potentially bS=2c+1 poles and di¤erent memory

parameters governing the behavior at these poles,

�
bS=2c
k=0 !k (L)

dk yt = "t: (6)

!0 (L)
d0 := (1� L)d0 denotes the factor associated with the zero frequency, !0 = 0, with d0

being the corresponding fractional integration order. !k(L)
dk :=

�
1� 2cos (!k)L+ L

2
�dk corre-

sponds to the conjugate (harmonic) seasonal frequencies (!k; 2� � !k) with !k = 2�k=S, k =

1; :::; b(S � 1) =2c, and dk being the corresponding fractional integration order. For even-numbered

S, !S=2(L)
dS=2 := (1+L)dS=2 associated with the Nyquist frequency !S=2 := �, with dS=2 being the

corresponding fractionally integrated order. In what follows, it is understood that terms relating

to frequency � are to be omitted when S is odd,

(1� L)d0 �
S=2�1
k=1

�
1� 2 cos!kL+ L

2
�dk

yt = "t; (7)

and that references to the Nyquist frequency only apply when S is even,

(1� L)d0 (1 + L)dS=2 �
(S�1)=2
k=1

�
1� 2 cos!kL+ L

2
�dk

yt = "t: (8)

Further, both have poles at the zero frequency and at (several) harmonic seasonal frequencies. As

mentioned before, for simplicity, we assume the innovation "t � iid
�
0; �2"

�
.

The (bS=2c+ 1)-factor seasonal long-memory process (6) is general enough to allow for processes

with long memories with di¤erent orders dk for each frequency !k = 2�k=S, k = 0; :::; bS=2c. Fur-

thermore, the process allows one or more dk to be equal to zero.

First, we consider stationary seasonal Type I LM processes by assuming �1=2 < dk < 1=2,

k = 0; :::; bS=2c. Giraitis and Leipus (1995) show that the process can then be written as

yt =
1X

j=0

 j"t�j ; (9)

where the coe¢cients  j have the asymptotic expansion

 j � 2

S=2�1X

k=1

D (k)
� (j + dk)

� (j + 1)� (dk)
cos (!kj + �k)

+D (0)
� (j + d0)

� (j + 1)� (d0)

+D (S=2)
�
�
j + dS=2

�

� (j + 1)�
�
dS=2

� cos (�j) +O
�
j�2+maxfd0;:::;dbS=2cg

�
;
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as j ! 1. Note that with odd-numbered S the term D (S=2)
�(j+dS=2)

�(j+1)�(dS=2)
cos (�j) is not present.

And

D (k) =

(
j2 sin!kj

�dk �j 6=k j2 (cos!k � cos!j)j
�dj if 0 < !k < �

�j 6=k j2 (cos!k � cos!j)j
�dj if !k = 0 or �

is a constant depending on !k and dk, k = 0; : : : ; bS=2c. Next,

�k = !k

bS=2cX

j=0

dj � �

k�1X

j=0

dj � dk
�

2

is a constant depending on !k and dk, k = 0; : : : ; bS=2c with neither D (k) nor �k depending on j.

Note that

� (j + dk)

� (j + 1)
� jdk�1 as j !1 and

O
�
j�2+maxfd

�
1 ;:::;d

�
bS=2cg

�
! 0 as j !1.

Therefore, for large values of j (i.e., as j !1), the behavior of the weights,

 j �

2

4D (0)
jd0�1

� (d0)
+D (S=2) (�1)j

jdS=2�1

�
�
dS=2

� +
(S�1)=2X

k=1

D (k)
jdk�1

� (dk)
cos (!kj + �k)

3

5 ;

is periodic, since their periodicity depends on j. As previously mentioned for odd-numbered S, the

term D (S=2) (�1)j jdS=2�1 is not present. Note that, for one pole at a harmonic frequency, this

approximation corresponds to expression (9) in Chung (1996). Then de�ning

 �j =

2

4D (0)
jd0�1

� (d0)
+D (S=2) (�1)j

jdS=2�1

�
�
dS=2

� +
S=2�1X

k=1

D (k)
jdk�1

� (dk)
cos (!kj + �k)

3

5 ;

with  �j �  j for large j, and y
�
t =

P
 �j"t�j , hence,

y�t =
1X

j=0

 �j"t�j =
1X

j=0

2

4D (0)
jd0�1

� (d0)
+D (S=2) (�1)

j j
dS=2�1

�
�
dS=2

� +
S=2�1X

k=1

D (k)
jdk�1

� (dk)
cos (!kj + �k)

3

5 "t�j :

(10)

Then, we can reorganize (10) as

D (0)

1X

j=0

jd0�1

� (d0)
"t�j

| {z }
I(d0)

+D (S=2)
1X

j=0

(�1)
j j

dS=2�1

�
�
dS=2

�"t�j

| {z }
I(dS=2) at frequency �

+

S=2�1X

k=1

D (k)
1X

j=0

cos (!kj + �k)
jdk�1

� (dk)
"t�j

| {z }
I(dk) at frequency !k

; (11)

where the �rst summand behaves as I(d0) at frequency 0, the second one (which is present only

when S is even) as I(dS=2) at frequency �; and the �nal ones as I (dk) at frequency !k, for

k = 1; :::; b(S � 1) =2c, the latter, all with complex weights.
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In order to deal with both stationary and nonstationary seasonal LM processes, we truncate

expansion (10) at 0,

y�t =
t�1X

j=0

 �j"t�j ; (12)

which corresponds to the Type II de�nition of long memory (see Marinucci and Robinson (1999)

and Hassler (2019) for a detailed treatment in the non-seasonal case). For dk < 1=2, the truncated

process is asymptotically stationary, and for dk � 1=2, the process is non-stationary. In both

cases, its (pseudo)spectral density fy (!k + �) � Ch (d) j�j
�2dk ; with Ch (d) being a function of

all memory parameters (see Section 2, expressions (2) and (3) in Arteche (2020)). See Arteche

(2020) for further details and for a recent discussion of the resulting (bS=2c + 1)-factor seasonal

LM process, and more speci�cally, the estimation of the bS=2c + 1 memory parameters by an

extension of the exact local Whittle (ELW) estimator (Shimotsu and Phillips, 2005).

3 The Impact of Temporal Aggregation

We use the framework introduced by del Barrio, Rodrigues, and Taylor (2019) to analyze the

consequences of aggregation in both skip sampling and cumulation sampling. In particular, we

express the seasonal LM process in its vector of seasons representation,

Y �� =
h
y�S��(S�1); y

�
S��(S�2); � � � ; y

�
S��1; y

�
S�

i0
:

Aggregation results from pre-multiplying Y �� by A, an SA�S full-row rank matrix, with SA denoting

the number of seasons after aggregation,

A =

2

66666
4

aQ 0Q ::: 0Q

0Q aQ ::: 0Q
...

...
. . . 0Q

0Q 0Q 0Q aQ

3

77777
5
; (13)

where aQ is a 1�Q vector, with Q = S=SA. For skip sampling, aQ = (0; 0; :::; 1) ; and for cumulation

sampling, aQ = 1Q, a 1�Q vector of ones.

3.1 Vector of seasons representation

In order to obtain the vector of seasons representation associated with (6), we only need to combine

(11) and (5). From (11), we can split the coe¢cients  �j in (12) into the contributions from the

di¤erent frequencies. Therefore, it is su¢cient to analyze them separately. Using cos (!kn+ �k) =

7



1
2

�
e�i(!kn+�k) + ei(!kn+�k)

�
and considering the role played by the demodulator, (11) can be re-

written as

y�t = D (0)

t�1X

j=0

jd0�1

� (d0)
"t�j +D (S=2)

t�1X

j=0

(�1)j
jdS=2�1

�
�
dS=2

�"t�j

+

(S�1)=2X

k=1

D (k)

t�1X

j=0

1

2

�
e�i!kje�i�k + ei!kjei�k

� jdk�1

� (dk)
"t�j

= D (0)

t�1X

j=0

jd0�1

� (d0)
"t�j +D (S=2)

S�+s�1X

j=0

(�1)j
jdS=2�1

�
�
dS=2

�"t�j (14)

+

(S�1)=2X

k=1

D (k)

2

t�1X

j=0

e�i!kt ei!k(t�j)ei�k
jdk�1

� (dk)
"t�j (15)

+

(S�1)=2X

k=1

D (k)

2

t�1X

j=0

ei!kt e�i!k(t�j)e�i�k
jdk�1

� (dk)
"t�j : (16)

For a generic term in (15),

y
�(k)
t =

D (k)

2
ei�k

t�1X

j=0

e�i!kt ei!k(t�j)
jdk�1

� (dk)
"t�j :

Hence, following the lines of (5), it is possible to write the vector of seasons representation,

Y �(k)� =
h
y
�(k)
S��(S�1) y

�(k)
S��(S�2) � � � y

�(k)
S�

i0
;

as

Y �(k)� =
D (k)

2
ei�k

�
v�k
� �
v+k
�0

�X

j=1

�jEj (17)

+terms fractionally integrated of order (dk � 1);

with
�
v�k
�0
and

�
v+k
�0
corresponding to (v�)

0
and (v+)

0
for !k rather than !, and �j being a diagonal

matrix such that �j = 1=� (dk) diag
�
[S (� � j) + (S � 1)]dk�1 ; [S (� � j) + (S � 2)]dk�1 ; : : : ; [S (� � j)]dk�1

�
.

(14) is a special case of (15) with !k = 0 for the �rst term and with !k = � for the second

term. (16) is the complex conjugate of (15) and thus behaves equivalently.

Note that (17) corresponds to (5). Similarly, it is possible to arrive from the �rst and second

terms of (14) to corresponding expressions for !k = 0 and !k = �, respectively. Finally, for (16),

an equivalent result is obtained by interchanging the order of v�k and v
+
k in (17) and replacing e

i�k

by e�i�k .

3.2 Aggregation

Aggregation results from pre-multiplying the vector of seasons representation associated with (14)-

(16) (i.e., (17)) by matrix A; (13). The process, in its vector of seasons representation, and more

8



speci�cally the demodulation operator, behaves as in del Barrio, Rodrigues, and Taylor (2019)

when being pre-multiplied by matrix A, (13). As in del Barrio, Rodrigues, and Taylor (2019), the

demodulator operator collected in vectors v�k and v
+
k plays a key role. Recalling that Q � S=SA,

Proposition 1 summarizes the impact of temporal aggregation under the following assumption,

repeated here for clarity:

A1 The innovation "t is identically and independently distributed with zero expected value and

constant variance, that is, "t � iid
�
0; �2"

�
.

Proposition 1 A temporally aggregated (bS=2c+1)-factor seasonal LM process, as de�ned in (6),

with poles at (bS=2c+1) frequencies with any degree of long-memory has the following properties:

a) a pole at !k is mapped from !k to !kQ, ; k = 1; :::; bS=2c,

b) if !kQ = !lQ, for k 6= l, the memory at this pole is max fdk; dlg, and

c) for cumulation sampling, if !kQ is a multiple of 2�, the long-memory vanishes.

Proposition 1 (whose proof can be found in the appendix) generalizes Theorem 2 of Sun and

Shi (2014) and Proposition 4 of Hassler (2011) by allowing for multiple factors and by covering both

stationary and nonstationary memory at the di¤erent poles. Part a) corresponds to the results in

Hassler (2011), who derived this property in the frequency domain. Part b) extends Theorem 2

of Sun and Shi (2014) to the case of multiple factors. Part c) is, in spirit, similar to Remark F of

Hassler (2011), which discusses the closedness under aggregation for this case.

Remark 1. For simplicity, in Proposition 1 we assume that the innovation "t follows Assump-

tion A1, but as can be seen in the Appendix and in (17), the behavior of the innovation "t is not

relevant in terms of the allocation of the long-memory behavior at the speci�c frequencies. That

is,
�
v+k
�0P�

j=1 �jEj in (17) collects the long-memory behavior, v
+
k determines at which frequency

the long-memory behavior is allocated, and Av+k determines at which frequency the long-memory

behavior is re-allocated after aggregation. Hence, the results of Proposition 1 should also hold

for more general assumptions, such as in�nite moving average processes with absolute summable

weights (see Assumption 6.1 in Hassler (2019)).

Table 1 a) illustrates the e¤ects for skip sampling from monthly (S=12) observations, to quar-

terly (SA=12), Q=3, or annual (SA=1) data, Q=12; Table 1 b) illustrates the e¤ects for cumulation

sampling. In both cases, the frequency is mapped from !k to !kQ. In the latter case, the long-

memory vanishes if !kQ is a multiple of 2�, or equivalently (k=SA) is an integer value.

Finally, our analysis can also be used to explore the e¤ect of aggregation in

(1� L)d0
�
1� 2 cos�L+ L2

�d�
yt = "t; (18)

9



Table 1: Summary of frequency allocations under aggregation of monthly data

a) Skip sampling

k 0 1 2 3 4 5 6

Original monthly frequency !k 0 �
6

�
3

�
2

2�
3

5�
6

�

Allocation in quarterly data !k 0 �
2
� �

2
0 �

2
�

Allocation in annual data !k 0 0 0 0 0 0 0

b) Cumulation sampling

k 0 1 2 3 4 5 6

Original monthly frequency !k 0 �
6

�
3

�
2

2�
3

5�
6

�

Allocation in quarterly data !k 0 �
2
� �

2
- �

2
�

Allocation in annual data !k 0 - - - - - -

a time series with long-memory associated with the zero frequency (1� L)d0 and with cyclical

behavior
�
1� 2 cos�L+ L2

�d� , where a full cycle is completed every 2�=�, or in the simpler case

in which the time series only has cyclical long-memory behavior,
�
1� 2 cos�L+ L2

�d� yt = "t. As

pointed out by Hassler (2019), there is no need for � in the Gegenbauer polynomial to be restricted

to seasonal frequencies. Thus, by appropriately de�ning the vector of seasons representation, our

results apply.

4 Simulations

In this section, we report Monte Carlo results con�rming the theoretical �ndings of the previous

section. As previously mentioned, our results not only apply to seasonal but also to cyclical long-

memory processes. In the �rst subsection, we consider seasonal long-memory processes with two

poles at di¤erent frequencies. Our results allow us to explain how the long-memory shifts from one

frequency to another and how, in some cases, the long-memory behavior vanishes after cumulation

sampling, without the need to calculate the spectra of the aggregated process. In the second

subsection, we focus on process (18), a process with long-memory behavior at the zero frequency

and at a cyclical harmonic frequency, which corresponds to the one in Sun and Shi (2014). The

Monte Carlo results are based on 10,000 replications. For seasonal processes, the sample size

T = 2040, which for monthly data (S = 12) corresponds to a total number of years of N = 170;

for cyclical processes, T = 2048, as in Sun and Shi (2014).
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4.1 Two-factor seasonal long-memory processes

In this subsection, we explore the e¤ects of aggregation on processes with non-zero memory at two

poles. These results con�rm the predictions of Proposition 1, speci�cally the case where two poles

move to the same frequency and show that the memory at this frequency is the maximum of the

two memories in the disaggregated series. In particular, we deal with the following two processes:

(1� L)0:3
�
1� 2 cos

�
2�

3

�
L+ L2

�0:8
yt = "t, (19)

�
1� 2 cos

��
6

�
L+ L2

�0:8�
1� 2 cos

�
5�

6

�
L+ L2

�0:3
yt = "t: (20)

In both cases, we work with Q = 2; 3, and 12. All frequencies in (19) and (20) are compatible with

monthly data, S = 12. In particular, the factor (1� L) is associated with the zero frequency and is

the only non-seasonal factor. Finally, the factors
�
1� 2 cos

�
2�
3

�
L+ L2

�
,
�
1� 2 cos

�
�
6

�
L+ L2

�
;

and
�
1� 2 cos

�
5�
6

�
L+ L2

�
are associated with frequencies 2�

3 ,
�
6 , and

5�
6 , respectively, and to

oscillations that complete a full cycle every 3, 12, and 12/5 periods, respectively. For Q = 2, we

move from monthly to bimonthly data, with Q = 3, we move from monthly to quarterly data, and

�nally Q = 12 corresponds to the common case of moving from monthly data to annual data.

From Proposition 1, with skip sampling, the long-memory behavior associated to frequency

!k = 2�k=S shifts to frequency Q!k = 2�k=SA.

Figure 1 shows the average periodograms for the simulated process (19), with long-memory

behavior at the zero frequency and at 2�=3 for skip sampling (panel a), and cumulation sampling

(panel b). It is illustrative of the e¤ects that skip and cumulation sampling have on seasonal

long-memory processes as shown in Proposition 1. Table 2 shows the results of applying Arteche�s

(2020) ELW estimator with a bandwidth choice of m = (SN)1=2 to estimate the memory for the

simulated processes before and after aggregation. Note the results might be somehow sensitive

to the bandwidth choice (see, for example, Arteche and Orbe (2017) for the optimal bandwidth

choice in a non-seasonal LW estimator). Based on the results of the previous section, the long-

memory behavior associated with 2�=3 will remain at frequency 2�=3 for Q = 2 (since both 4�=3

and 8�=3 are multiples of 2�=3) and move to frequency zero for Q = 3 and 12. With cumulation

sampling, the long memory originally associated with 2�=3 remains at frequency 2�=3 for Q = 2

and vanishes for Q = 3 and 12. The long-memory behavior associated with the zero frequency

remains at this frequency for skip and cumulation sampling, but with skip sampling and Q = 3

and 12; the long-memory behavior d1 = 0:3 is dominated by d2 = 0:8 as seen in Table 2.

Figure 1 and Table 2 illustrate these results. In particular, in Table 2 with Q=12 and skip

sampling, the long-memory behavior originally associated with frequency 2�=3 moves to the zero

frequency, and, as predicted in part b of Proposition 1, the higher memory, d1 = 0:8, dominates.
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Figure 1: Average over simulated periodograms for process (19)

a) Skip sampling b) Cumulation sampling
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Sample size T=2040. Based on 10,000 replications.

Table 2: Estimation by seasonal ELW for process (19)

pole 1 pole 2

Q skip sampling cumulation sampling skip sampling cumulation sampling

Q!1 d1 d̂1 std(d̂1) d1 d̂1 std(d̂1) Q!2 d2 d̂2 std(d̂2) d2 d̂2 std(d̂2)

1 0.3 0.296 0.044 0.3 2�
3

0.8 0.798 0.062

2 0 0.3 0.284 0.056 0.3 0.295 0.056 2�
3

0.8 0.795 0.079 0.8 0.786 0.079

3 0 0.3 dominated 0.3 0.291 0.064 0 0.8 0.770 0.063 vanishes

12 0 0.3 dominated 0.3 0.290 0.106 0 0.8 0.754 0.105 vanishes

Sample size T=2040. Based on 10,000 replications.
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Figure 2: Average over simulated periodograms for process (20)

a) Skip sampling b) Cumulation sampling
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Sample size T=2040. Based on 10,000 replications.

Table 3: Estimation by seasonal ELW for process (20)

pole 1 pole 2

Q skip sampling cumulation sampling skip sampling cumulation sampling

Q!1 d1 d̂1 std(d̂1) d1 d̂1 std(d̂1) Q!2 d2 d̂2 std(d̂2) d2 d̂2 std(d̂2)

1 �
6

0.8 0.798 0.062 5�
6

0.3 0.300 0.061

2 �
3

0.8 0.791 0.078 0.8 0.795 0.078 �
3

0.3 dominated 0.3 dominated

3 �
2

0.8 0.789 0.087 0.8 0.794 0.087 �
2

0.3 dominated 0.3 dominated

12 0 0.8 0.762 0.105 0 -0.03 0.103 0 0.3 dominated 0 vanishes

Sample size T=2040. Based on 10,000 replications.

The results for process (20), a process with poles at �6 with d1 = 0:8 and at
5�
6 with d2 = 0:3,

are shown in Figure 2 and Table 3. Figure 2 shows that with skip and cumulation sampling, the

poles at �
6 and

5�
6 move to frequencies Q�

6 and Q
5�
6 for skip sampling and to Q�

6 and Q
5�
6 or

vanish if Q�
6 and Q

5�
6 are multiples of 2�. Table 3 shows the estimation of the memory at the

poles for this case, and they both move to the same frequency, as Q�
6 and Q

5�
6 correspond to the

same frequency. In all the cases, d1 = 0:8 dominates d2 = 0:3, except for Q = 12 with cumulation

sampling, where both poles vanish.

Overall, the periodograms of the aggregated series behave as predicted, and the estimation of

the memory parameter in both aggregated and disaggregated series behaves satisfactorily and in
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Figure 3: Average over simulated periodograms for process (21)

a) Skip sampling b) Cumulation sampling
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Sample size T=2048. Based on 10,000 replications.

line with the predictions.

4.2 A process with long memory at a cyclical frequency and at

the zero frequency

Finally, we consider cyclical behavior with two poles, at �4 with d = 0:8 and at 0 with d = 0:3,

(1� L)0:3
�
1� 2 cos

��
4

�
L+ L2

�0:8
yt = "t: (21)

The pole at �
4 corresponds to the one in Sun and Shi (2014), and as in their paper, T = 2048

observations and Q = 2, 4, and 8. The results are shown in Figure 3 and Table 4, and are

consistent with the predictions of Proposition 1. With skip sampling, the pole at �
4 moves to

�
2 ,

�; and 0 for Q = 2, 4; and 8; respectively; and, for Q = 8, d2 = 0:8 dominates d1 = 0:3. With

cumulation sampling, the pole at �4 moves to
�
2 , �, and vanishes for Q = 2, 4, and 8, respectively.

Finally, Table 4 shows that the estimation of the memory at the poles in the aggregated series to

which the poles in the disaggregated series are mapped works well.

5 Conclusion

In this paper, we have analyzed the impact of the temporal aggregation of a (bS=2c+ 1)-factor

seasonal/cyclical long-memory process regardless of the memory at each pole, considering both

14



Table 4: Estimation by seasonal ELW for process (21)

pole 1 pole 2

Q skip sampling cumulation sampling skip sampling cumulation sampling

Q!1 d1 d̂1 std(d̂1) d1 d̂1 std(d̂1) Q!2 d2 d̂2 std(d̂2) d2 d̂2 std(d̂2)

1 0 0.3 0.297 0.044 �
4

0.8 0.805 0.060

2 0 0.3 0.297 0.055 0.3 0.298 0.055 �
2

0.8 0.802 0.075 0.8 0.802 0.075

4 0 0.3 0.292 0.072 0.3 0.294 0.072 � 0.8 0.798 0.070 0.3 0.782 0.069

8 0 0.3 dominated 0.3 0.289 0.089 0 0.8 0.734 0.088 0.3 vanishes

Sample size T=2048. Based on 10,000 replications

stationary and nonstationary long-memory processes. By using the approach suggested by Gi-

raitis and Leipus (1995), we extended the analysis for stationary one-factor seasonal long-memory

processes by Tsai and Chan (2005), Hassler (2011), and Sun and Shi (2014) to the case of multiple

poles of stationary and/or nonstationary memory. We have expanded a corresponding analysis in

the frequency domain (Hassler, 2011) to the time domain, and thus facilitated immediate knowledge

of the location of the poles after aggregation without the need to calculate all spectra. Further, we

have shown that the estimation of memory of the aggregated processes by Arteche�s (2020) seasonal

exact local Whittle estimator works satisfactorily and that the estimated memory parameters are

in line with the theoretical predictions.

We assumed that we know the frequencies of the poles of the disaggregated series and analyzed

the memory of the aggregated series at the mapped frequencies. An extension with the disaggre-

gated series with memory associated to unknown frequencies could be conducted along the lines of

Hidalgo and Soulier (2004) but is beyond the scope of this paper.
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Appendix

Proof of (5)

Note that in (4) for season s = 0,

yS� = e�i!S�
S�X

j=1

 S�+s�je
i!j"j

= e�i!S�
�
ei!S�"

S�
+  1e

i!(S��1)"
S��1

+  2e
i!(S��2)"

S��2
+ : : :

�

= e�i!S
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�
;

where we use the fact that e�i!(S�+s) = e�i!s as S = 2�=! and hence we have periodic behavior in

the general case of a cyclical long-memory process. Clearly, this is also the case for !k = 2�k=S.

Next, it is possible to write:

yS� = e�i!S
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�

= e�i!S
�
v+k
�0

�X

j=1

�X

j=1

	jEj ; (22)

with
�
v+k
�0
=
h
e+i! e+i!2 � � � e+i!S

i
, E� =

�
"S��(S�1); "S��(S�2); � � � ; "S��1; "S�

�0
, and 	j =

diag
�
 S(��j)+(S�1);  S(��j)+(S�2); : : : ;  S(��j)

�
. Note that (22) corresponds to (5). For season

s = �1,

yS��1 = e�i!(S��1)
S��1X

j=1

 S�+s�je
i!j"j

= e�i!(S��1)
�
ei!(S��1)"

S��1
+  1e

i!(S��2)"
S��2

+  2e
i!(S��3)"

S��3
+ : : :

�

= e�i!(S�1)
�
ei!(S�1)"

S��1
+  1e

i!(S�2)"
S��2

+  2e
i!(S�3)"

S��3
+ : : :

�

= e�i!(S�1)
�
ei!(S�1)"

S��1
+  1e

i!(S�2)"
S��2

+  2e
i!(S�3)"

S��3
+ : : :

�

�e�i!(S�1)
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�

= e�i!(S�1)
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�

�
�
ei!yS� � yS��1

�
:

Hence,

yS��1 = e�i!(S�1)
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�
(23)

�
�
ei!yS� � yS��1

�
;

which corresponds to (5).
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For season s = �m, m = 2; :::; (S � 1)

yS��m = e�i!(S��m)
S��mX

j=1

 S�+s�je
i!j"j

= e�i!(S��m)
�
ei!(S��m)"

S��m
+  1e

i!(S��m�1)"
S��(m+1)

+  2e
i!(S��m�2)"

S��(m+2)
+ : : :

�

= e�i!(S�m)
�
ei!(S�m)"

S��m
+  1e

i!(S�m�1)"
S��(m+1)

+  2e
i!(S�m�2)"

S��(m+2)
+ : : :

�

= e�i!(S�m)
�
ei!S"

S�
+  1e

i!(S�1)"
S��1

+  2e
i!(S�2)"

S��2
+ : : :

�

�
�
ei!myS� � yS��m

�
:

We can write for the vector Y� =
�
yS��(S�1); yS��(S�2); � � � ; yS��1; yS�

�0
:

Y� =
�
v�
� �
v+
�0

�X

j=1

	jEj + (24)

+

2

66666
4

�
�
ei!(S�1)yS� � yS��(S�1)

�

�
�
ei!(S�2)yS� � yS��(S�2)

�

...

0

3

77777
5

with (v�)
0
being the complex conjugate of (v+)

0
, i.e. (v�)

0
=
h
e�i! e�i!2 � � � e�i!S

i
. The

last term on the right-hand side of (24) can be written as

2

66666666666
4

�
�
ei!(S�1)yS� � yS��(S�1)

�

�
�
ei!(S�2)yS� � yS��(S�2)

�

...

�
�
ei!2yS� � yS��2

�

�
�
ei!yS� � yS��1

�

0

3

77777777777
5

=

2

66666666666
4

�ei!(S�1)
h�
1� e�i!L

�P(S�1)�1
j=0 e�ij!Lj

i
yS�

�ei!(S�2)
h�
1� e�i!L

�P(S�2)�1
j=0 e�ij!Lj

i
yS�

...

�ei!2
��
1� e�i!L

�
+ e�i!L

�
1� e�i!L

��
yS�

�ei!
�
1� e�i!L

�
yS�

0

3

77777777777
5

=

2

66666666666
4

�e�i!
h�
1� e�i!L

�P(S�1)�1
j=0 e�ij!Lj

i
yS�

�e�i!2
h�
1� e�i!L

�P(S�2)�1
j=0 e�ij!Lj

i
yS�

...

�e�i!(S�2)
��
1� e�i!L

�
+ e�i!L

�
1� e�i!L

��
yS�

�e�i!(S�1)
�
1� e�i!L

�
yS�

0

3

77777777777
5

:(25)

Note that yS� is fractionally integrated of order d, that is, I(d). Hence
�
1� e�i!L

�
yS� will be an

I(d � 1) process. The element at position S � 1 in (25), e�i!(S�1)
�
1� e�i!L

�
yS� ; is an I(d � 1)

process multiplied by the demodulator operator associated with season S�1. It is possible to show
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that the remaining elements in the S � 1 vector in (25) are weighted sums of I(d� 1) a¤ected by

the demodulator operator associated with the corresponding season.

Proof of Proposition 1

Note �rst that (6) admits representation (9). Since we are interested in the long-memory

behavior in (9), we can focus on (10)-(11) and �nally on its truncated version (12), which could be

expressed as the sum of three terms (14), (15), and (16). It is clear that (15) and (16) are complex

conjugates. Then, (12) admits a vector of seasons representation which is a sum of terms, such as

(17). The e¤ects of aggregation can then be evaluated by pre-multiplying (17) by A, as de�ned in

(13):

AY �(k)� =
D (k)

2
ei�kA

�
v�k
� �
v+k
�0

�X

j=1

�jEj

+terms fractionally integrated of order (dk � 1):

Clearly,
�
v+k
�0P�

j=1 �jEj is the vector of seasons representation of a complex-valued fractionally

integrated process of order dk at the zero frequency. The e¤ect of aggregation on Y
�(k)
� ; (17), in

terms of the frequency allocation of the fractionally integrated process, can be seen by evaluating

the e¤ect of A in the demodulation operator collected in
�
v�k
�
. Hence part a) is a consequence of

the fact that, for skip sampling,

A
�
v�k
�
= (e�i!kQ; e�i!k2Q; e�i!k3Q; : : : ; e�i!kSAQ)0: (26)

Then, the demodulator moves from e�i!kt to e�i!kQt, and part a) is proved for skip sampling. In

the case of cumulation sampling, it is possible to check that

A
�
v�k
�
=
sin (Q!k=2)

sin (!k=2)
ei(Q�1)

!k
2 ((e�i!kQ; e�i!k2Q; e�i!k3Q; : : : ; e�i!kSAQ))0; (27)

where we use the following result about the sum of a complex exponential expression:

QX

j=1

e�i!kj = e�i!k[Q+1]=2
sin (Q!k=2)

sin (Q!k)
:

Hence, for (26) and (27), we clearly obtain the same e¤ect on the demodulator; so, part a) is proved.

Part c) is obtained when sin (Q!k=2) = 0; which happens when Q!k=2 = Q�k=S is a multiple

of 2�. Finally, part b) is a straightforward consequence of part a), noting that the sum of two

long-memory processes with potentially di¤erent memory parameters at frequency 0 corresponds

to a long-memory series with memory corresponding to the higher memory parameter.
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