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Abstract

We consider games in which players search for a hidden prize, and they have asymmetric

information about the prize’s location. We study the social payoff in equilibria of

these games. We present sufficient conditions for the existence of an equilibrium that

yields the first-best payoff (i.e., the highest social payoff under any strategy profile),

and we characterize the first-best payoff. The results have interesting implications for

innovation contests and R&D races.

Keywords: incomplete information, search duplication, decentralized research, social

welfare. JEL Codes: C72, D82, D83.

1 Introduction

Various real-life situations involve agents exploring different routes to making a discovery.

These situations often have the following three key properties: (1) heterogeneity: agents

may differ in terms of their information, search methods, search costs, etc., (2) competitive

environment: the agents work separately, and compete to be the successful discoverer, and

(3) externality: both the discoverer and society gain from the discovery, but these gains may

differ. For concreteness, consider the following motivating example.
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Example 1. Society faces a problem of quickly developing a vaccine for a new infectious

disease, such as COVID-19. There are various possible research directions that may lead

to success. Different research labs (or pharmaceutical R&D divisions) have heterogeneous

private information about the most promising route to quickly develop a vaccine. Society

gains if the vaccine is found by at least one lab. A lab that discovers the vaccine gains from

the discovery (credit or reward for the scientists, or profits for the pharmaceutical firm), and

this gain is reduced if multiple labs jointly make the discovery.

These situations (henceforth, search games) are common in various important areas such

as R&D races in oligopolistic markets (e.g., Loury, 1979; Chatterjee & Evans, 2004; Akcigit

& Liu, 2015; Letina, 2016), design of innovation contests (e.g., Erat & Krishnan, 2012;

Bryan & Lemus, 2017; Letina & Schmutzler, 2019), and scientific research (e.g., Kleinberg &

Oren, 2011). While the effects of most of the above-mentioned properties have been studied

extensively in the literature, the idea that agents might have private information has not

gotten much attention. Thus, the main methodological innovation of the present model is

the introduction of asymmetric information into search games (as discussed in Section 6).1

The expected social gain (from a successful discovery) is clearly constrained by the infor-

mation structure, as we assume that players are competitive and do not share their private

information. The social gain may also be constrained by the fact that players’ individual

preferences can differ from society’s, and players have strategic considerations as well. Thus,

the main question we study is: what is the highest social payoff in equilibrium?

Highlights of the Model There are n players who search for a prize hidden in one of

a finite set of locations.2 Player i is able to search in at most Ki locations (all at once).

Searching incurs a private cost, which is a convex function of the number of locations in which

the player searches. Each player receives some private coarse signal about the actual location

of the prize, and chooses which locations to search. Specifically, for each player there is a

collection of disjoint subsets of locations (namely, a partition), such that her private signal

informs the player in which of these subsets the prize resides (a more general information

structure is analyzed in Section 5).

We study a one-shot game (i.e., if the prize is not found, players do not get to search

again) with simultaneous actions. This assumption, which differs from the dynamic models

1We are aware of one related existing model of a search game with asymmetric information, that of Chen
et al. (2015). The key difference between our model and theirs is that Chen et al. rely on enforceable
mechanisms, which allow players to safely share their asymmetric information, as all players must follow a
contract once it has been signed. By contrast, we consider a setup in which players cannot rely on enforceable
mechanisms, and, thus, they are limited to playing Nash equilibria.

2The assumption of having a single prize is common in the literature; see, e.g., Fershtman & Rubinstein
(1997); Konrad (2014); Liu & Wong (2019).
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studied in many of the papers cited above, may be reasonable in situations in which there is

severe urgency to make the discovery, such as in the motivating example (see Section 6 for

further discussion, and Section 3.3 for examples of what happens when this assumption is

relaxed).

We allow the prize’s value to depend on the location. Also, the value for society and

the individual values for players may all be different. When multiple players search in the

same location (“search duplication”), it reduces the reward that each player will receive in

case the prize is indeed there. By contrast, the social value of the prize is unaffected by the

number of finders (and it is not affected by the players’ search costs).

First Main Result Our answer to the question of what society can achieve in equilibrium

consists of two main results. The first states that there exists a (pure) equilibrium that

yields the first-best social payoff (namely, the highest social payoff that any strategy profile

can yield) if the following two conditions hold for any two locations ω and ω′ that a player

considers possible (after observing her own private signal): (1) ordinal consistency: the

player and society have the same ordinal ranking between searching (by herself) in ω and

in ω′, and (2) solitary-search dominance: the player always prefers searching ω by herself to

searching ω′ with other players, or to not searching at all.

It is relatively easy to see that neither condition can be dropped (see the examples

presented in Section 3.3), and that the conditions are sufficient in a simple setup without

asymmetric information. Our result shows that, perhaps surprisingly, these two conditions

are sufficient in the richer setup with asymmetric information as well. The intuition is that

no player has an incentive to “spoil” society’s payoff by moving from a socially better location

to a worse one, nor by moving from a location that she searches alone to a location that

others search. We discuss the implications of this result on the design of innovation contests

in Section 3.4.

Second Main Result Our second main result characterizes the first-best social payoff.

We show that the first-best payoff is constrained only by compatibility with the information

structure, where the compatibility condition is in the spirit of Hall’s marriage theorem (Hall,

1935). Our proof relies on representing a search game as a bipartite graph and adapting

and extending classic results from graph theory, the max-flow min-cut theorem (Ford &

Fulkerson, 1956) and the Birkhoff–von Neumann theorem (Birkhoff, 1946; Von Neumann,

1953), to our setup.3

3Recent economic applications (and extensions) of these graph-theory results have appeared in matching
mechanisms (e.g., Budish et al., 2013; Bronfman et al., 2018), large anonymous games (e.g., Blonski, 2005),
public good games with multiple resources (e.g., Tierney, 2019), and auctions of multiple discrete items (e.g.,
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One interesting implication of this result (presented in Section 4.1) is that the first-best

payoff would not increase if we modified our setup and allowed players to coordinate partial

search efforts within locations, so that their efforts do not overlap (i.e., when two players

each assign an effort of 50% to location ω, the prize is always found, if it is in ω).

Structure Section 2 presents our model. We study the existence of an equilibrium with a

first-best social payoff in Section 3. Section 4 characterizes the first-best payoff. In Section

5 we consider more general information structures. We conclude and discuss the relations

with the literature in Section 6. Appendix A applies our results to a special class of search

games. Appendix B presents the formal proofs.

2 Model

Setup Let N = {1,2, ...,n} be a finite set of players. A typical player is denoted by i. We

use −i to denote the set of all players except player i. We describe the private information of

the players in terms of knowledge partitions (Aumann, 1976). Let Ω be the set of the states

of the world (henceforth, states). Nature chooses one state ω ∈ Ω that is the true state of the

world. Each player i is endowed with Πi, which is a partition of Ω, namely, a list of disjoint

subsets of Ω whose union is the whole Ω. We refer to the elements of player i’s partition

(i.e., the subsets) as player i’s cells. For each state ω, let πi (ω) denote the cell of player i

that contains the state ω. If the true state is ω, then player i knows that the true state is

one of the states in πi (ω).

Note that the knowledge partitions framework is equivalent to a model in which each

player observes a private random signal. Each cell of player i’s partition corresponds to a

different realization of her private signal. W.l.o.g., one may view the partition Πi as the

set of possible realizations of player i’s private signal itself; i.e., each cell in Πi is a possible

signal, and if the state of the world is ω then player i observes the signal πi (ω).

The players search for a prize hidden in one of a finite set of possible locations. Impor-

tantly, in the baseline model we assume that the location of the prize determines the private

signal of each player (in other words, the signals that players observe are a deterministic

function of the prize’s location). This implies that w.l.o.g. each state of the world in our

model corresponds to a different location of the prize.4 Hence, we identify the finite set of

locations with the set of states Ω. When a player searches in location (i.e., state) ω ∈ Ω, she

finds the prize if the location of the prize is ω (i.e., if the true state of the world is ω).

Ben-Zwi, 2017).
4In Section 5 we discuss a more general model that dispenses with the above assumption.
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Figure 1 demonstrates an information structure in a two-player search game.

Figure 1: Illustration of information structure of a two-player search game

We say that player i receives no information at all if her information partition Πi is

trivial, i.e., Πi = {Ω} contains a single element, which is the whole Ω. A setting that does

not allow for asymmetric information corresponds to the degenerate case in our model where

all players have trivial partitions.

Let µ ∈ ∆(Ω) denote the (common) prior belief about the prize’s location, where ∆(Ω) de-

notes the set of distributions over Ω. For a subset of locations E ⊆ Ω, let µ(E) =
∑

ω∈E µ(ω)

denote the prior probability of E. For non-triviality, we assume that every cell has a positive

prior probability, i.e., µ(πi) > 0 for every πi ∈ Πi and i ∈ N . When the (unknown) location

of the prize is ω, each player i assigns a posterior belief of µ(ω′|πi (ω)) to the location being

ω′, where

µ
(

ω′|πi (ω)
)

=











µ(ω′)/µ(πi(ω)) ω′ ∈ πi (ω)

0 ω′ 6∈ πi (ω) .

We allow heterogeneity in the maximal number of locations that each player can search.

Specifically, each player i chooses up to Ki ∈ N locations in which she searches, where Ki is

the player’s search capacity. A (pure) strategy of player i is a function si that assigns to each

cell πi ∈ Πi a subset of πi with at most Ki elements. We interpret si (πi) as the set of up to

Ki locations in which player i searches when she observes the signal πi. If no ambiguity can

arise, we may also say that player i (ex-ante) searches in location ω, if ω ∈ si (πi (ω)), i.e., if

player i searches in ω when the prize is located in5 ω.

We focus in the present paper on pure strategies. Let Si ≡ Si (G) denote the set of all

(pure) strategies of player i, and let S ≡ S (G) =
∏

i∈N Si be the set of strategy profiles

in the game G. For example, in Figure 1 Player 1, with a capacity of one, has four pure

strategies. One such strategy, denoted by s1, is given by (s1 (π1) = ω2; s1 (π′
1) = ω3); i.e., a

player following s1 searches in location ω2 upon observing signal π1 and searches in ω3 upon

5Equivalently, the locations in which player i (ex-ante) searches are ∪πi∈Πi
si (πi), namely, the union

(across all her cells) of the locations she searches within each cell when that cell happens to be her signal.
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observing π′
1. Suppose that Player 1 follows s1 and the location of the prize is ω4. Then she

will observe the signal π′
1 and search in ω3 (and hence she will not find the prize).

Remark 1. All of our results hold in a more general setup with either of the following

extensions (with minor modifications to the proofs):

1. Heterogeneous priors: each player i has a different prior µi.

2. Heterogeneous restricted locations: each player i is allowed to search only in a subset

Ωi ⊆ Ω of the locations.

Costs, Rewards, and Duplication Searching incurs a private cost, which is a convex

function of the number of locations in which a player searches.6 Specifically, each player i

bears a cost ci (k) ≥ 0 when searching within k locations, where ci (0) = 0 and ci (k +1) −

ci (k) ≥ ci (k)− ci (k −1) for any k ∈ {1, ..,Ki −1}. We say that a game has a costless search

(up to the capacity constraints) if ci ≡ 0 (i.e., if ci (k) = 0 for every k ∈ {1, ..,Ki} and every

player i).

For any location ω, let vm
i (ω) ∈ R

+ denote the reward for player i when m players, in-

cluding player i, find the prize in ω. The reward for finding the prize alone, v1
i (ω), is also

called the private value of player i (at location ω). We assume that the finder’s reward is

weakly decreasing in the number of joint finders (i.e., vm+1
i (ω) ≤ vm

i (ω) for any m and ω),

which reflects the negative impact of search duplication. Two examples of such decreasing

rewards that are commonly used in the literature are (1) vm
i (ω) = 1

m ·v1
i (ω), which may cor-

respond to a setup in which one of the players who search in the prize’s location is randomly

chosen to be its undisputed owner, and she gains the prize’s full value (see, e.g., Fershtman

& Rubinstein, 1997), and (2) vm
i (ω) = 0 for any m ≥ 2 and any ω, which corresponds to a

setup in which a (Bertrand) price competition between the pharmaceutical firms or a “credit

war” between the research labs destroys the finder’s reward in case of a joint discovery (e.g.,

Chatterjee & Evans, 2004).

In addition to the players, we introduce an external entity, society, who is not one of the

players and is indifferent to the identity of the prize finder, as long as the prize is found.

In our normative analysis we set the objective of maximizing society’s payoff. One can

think of society as representing a government who cares for the welfare of those in society

(e.g., consumers or patients) who will be affected by the discovery. For any location ω, let

vs (ω) ∈ R
+ denote the prize’s social value for society when the prize is found in ω. Note

that the social value does not depend on the identity or the number of the prize’s finders. In

6Extending the costs to depend also on which locations, not just how many, are being searched may be
an interesting direction for future research.
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particular, the social value of the prize is not reduced when there are multiple finders, which

seems plausible in various setups. For example, it seems plausible that price competition

between competing pharmaceutical firms will not harm society (it might even benefit the

consumers), and that the social gain from a new discovery is not likely to be reduced when

two scientists fight over the credit.

Further note that in our model society disregards the players’ search costs. This modeling

choice seems reasonable in setups where the potential social impact of a discovery overshad-

ows (in society’s eyes) the player’s individual gains and costs, as in the motivating example

of finding a vaccine. In other setups this assumption might be less appropriate, and we leave

for future research the interesting question of how to extend our model and our results to a

social value that accounts for players’ costs (bearing in mind that players may differ both

in their costs and in their reward function). Chatterjee & Evans (2004) study the efficiency

of the equilibrium outcomes with a social value that accounts for players’ costs, but their

scope is limited to two players and two locations.

We say that the game has common values if v1
i (ω) = v1

j (ω) = vs (ω) for every two players

i, j ∈ N and every location ω ∈ Ω.

Summarizing all the above components allows us to define a search game as a tuple

G = (N,Ω,Π,µ,K,c,v), with the various components as defined above.

Private Payoffs and Equilibrium Fix a strategy profile s ∈ S. Let ms (ω) denote the

number of players who search in ω when the prize’s location is ω, i.e.,

ms (ω) =
∑

i∈N

1ω∈si(πi(ω)).

The reward (resp., cost) of player i conditional on the prize’s location being ω is equal to

1ω∈si(πi(ω)) v
ms(ω)
i (ω) (resp., ci (|si (πi (ω))|)). Thus, the (net) payoff of player i conditional

on the prize’s location being ω, denoted by ui (s|ω), is

ui (s|ω) = 1ω∈si(πi(ω)) v
ms(ω)
i (ω)− ci (|si (πi (ω))|) .

The players and society are both risk neutral with respect to their payoffs. The (ex-ante)

expected (net) payoff of player i is given by ui (s) =
∑

ω∈Ω µ(ω) ·ui (s|ω) .

A strategy profile s = (s1, ..., sn) is a (Bayesian) Nash equilibrium of search game G if no

player can gain by unilaterally deviating from the equilibrium; i.e., if for every player i and

every strategy s′
i the following inequality holds: ui (s) ≥ ui (s′

i, s−i) , where s−i describes the

strategy profile played by all players except player i.
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Social Payoff Fix a strategy profile s ∈ S. Let U (s|ω) = vs (ω) ·1ms(ω)≥1 denote the social

payoff, conditional on the prize’s location being ω. The expected social payoff is equal to

U (s) =
∑

ω∈Ω µ(ω) · U (s|ω). Let Uopt denote the socially optimal payoff (or the first-best

payoff): Uopt = maxs∈S U (s) . A strategy profile s is socially optimal if it achieves the socially

optimal payoff, i.e., if U (s) = Uopt.

A strategy profile is location-maximizing if it maximizes the number of locations in which

the prize is found; i.e., if for any strategy profile s′ ∈ S,

∑

ω∈Ω

1{ms(ω)≥1} ≥
∑

ω∈Ω

1{m
s′(ω)≥1}.

The set of socially optimal strategy profiles is typically different from the set of location-

maximizing strategy profiles. The two notions coincide if society assigns the same value to

every location, i.e., if vs (ω) = vs (ω′) for any two locations ω,ω′ ∈ Ω. A strategy profile is

exhaustive if the prize is always found, i.e., if ms (ω) ≥ 1 for every ω ∈ Ω. It is immediate

that an exhaustive strategy profile is both socially optimal and location-maximizing.

3 Socially Optimal Equilibrium

In this section we present conditions under which the strategic constraints (namely, each

player maximizing her private payoff) do not limit the social payoff; that is, we give sufficient

conditions for the existence of socially optimal equilibria.

3.1 Search Games are Weakly Acyclic

A sequence of strategy profiles is an improvement path (Monderer & Shapley, 1996) if each

strategy profile differs from its preceding profile by the strategy of a single player, who

obtained a lower payoff in the preceding profile.

Definition 1. A sequence of strategy profiles (s1, ..., sT ) is an improvement path if for every

t ∈ {1, ...,T −1} there exists a player it ∈ N such that: (1) st
j = st+1

j for every player j 6= it,

and (2) uit

(

st+1
)

> uit

(

st
)

.

We begin by presenting an auxiliary result, which states that any search game is weakly

acyclic: starting from any strategy profile, there exists an improvement path that ends in a

Nash equilibrium.7

7The proof introduces an agent-normal form representation of our game (in the spirit of Selten, 1975),
which is similar to matroid congestion games with player-specific payoffs. Ackermann et al. (2009, Theorem
8) show that these games are weakly acyclic. Their result cannot be directly applied to our setup, as there
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Definition 2 (Milchtaich, 1996). A game is weakly acyclic if for any s1 ∈ S, there exists an

improvement path (s1, ..., sT ), such that sT is a (pure) Nash equilibrium.

Proposition 1. Any search game is weakly acyclic.

Sketch of proof; formal proof is in Appendix B.1. Define the payoff of a cell πi ∈ Πi as the

expected payoff of player i given that her signal is πi. Note that player i is best-responding

iff every cell of i is best-responding. Player i has Ki units of capacity, which we index by

j = 1, . . . ,Ki. A cell-unit of player i is a pair (πi, j), where πi ∈ Πi is a cell, and j a unit

index. W.l.o.g. we assume that a strategy chooses a specific location for every cell-unit α, or

chooses that α be inactive. We define the payoff of a cell-unit (πi, j) as the payoff of the cell

πi. Note that this payoff equals the sum of the (interim) expected rewards in the locations

of πi’s active cell-units, minus the cost of activating that many cell-units.

Given a strategy profile, suppose that there is no single inactive cell-unit whose activation

improves its own (i.e., the cell’s) payoff. Then activating multiple cell-units does not improve

the cell’s payoff either, because of the convexity of the cost function. The case of deactivation

is similar. Therefore, we can show that a cell πi is best-responding iff every cell-unit of πi is

best-responding.

The key part is Lemma 1 that says that if the members of a set B of cell-units (of various

players) are best-responding, and α /∈ B is another cell-unit, then there is a sequence of cell-

unit improvements that ends with all the members of B ∪ {α} best-responding. To prove

weak acyclicity, start from any profile s1, and using this lemma inductively add one cell-unit

at a time, until eventually everyone is best-responding.

To prove the lemma, we construct a sequence of improvements by the members of B∪{α}.

First, let α switch from its current choice to its best-response. If α was active before the

switch, we add a dummy player in the location ω1 that α left. Now begins a sequence we

call Phase I. Suppose that α switched to some location ω2. While cell-units (of B ∪ {α})

not located in ω2 are still best-responding, those in ω2 may now prefer to switch because

of the extra cell-unit in ω2 (call ω2 the current “plus location”). Let one of them switch to

its best-response ω3, and then another cell-unit may switch from ω3, etc. Phase I goes on

until everyone is best-responding, unless someone switches to ω1, in which case Phase I is

immediately terminated.

If a cell-unit is deactivated on stage t, it will not incentivize another cell-unit to deactivate

on stage t + 1, because of the convexity of costs. Moreover, Phase I will end after stage t,

since there would not be any plus location.

are some technical differences; most notably, our cost function being non-linear (while in Ackermann et al.’s
setup the cost of searching in two locations must be the sum of the costs in each location). Nevertheless,
the proofs turn out to be similar.
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To see that Phase I cannot go on forever, consider a cell-unit β that switches from

location ω to location ω′, making ω′ the new plus location. The switch must strictly increase

β’s expected reward, and later the expected reward in ω′ cannot drop below its current

level; it may only be higher (if the plus is somewhere else). Thus, β’s expected reward will

never drop back to the level it was at before the switch, even if β does not improve again.

Therefore, Phase I cannot enter a cycle; hence, it must end.

Let σ∗ denote the strategy profile when Phase I ends. At this point we remove the

dummy from ω1, and denote the resulting profile by s∗. If Phase I ended because someone

switched to ω1, then everyone is best-responding under s∗, and we are done. Otherwise,

Phase I ended because everyone was best-responding under σ∗, and now follows Phase II.

While Phase I can be described as restabilizing after one cell-unit is added, the analogous

Phase II restabilizes after one cell-unit is removed. First, one cell-unit switches from some

location ω′ to the current “minus location” ω1, then another switches to ω′, etc. On each

stage we choose a cell-unit switch that is best for its cell, i.e., there exists no cell-unit switch

that yields a higher increase in that cell’s payoff.

Phase II must eventually end, by the argument analogous to that of Phase I. Then

everyone is best-responding, and the lemma is proven.

In particular, Proposition 1 implies that:

Corollary 1. Any search game admits a pure Nash equilibrium.

3.2 Existence of a Socially Optimal Equilibrium

We begin by defining two properties required for our first main result (Theorem 1).

Ordinal Consistency Our first property requires that the ordinal ranking of any player

over her expected private values within a cell is (weakly) compatible with society’s ranking.

That is, we say that a search game has ordinally consistent payoffs if for any two locations

ω and ω′ in the same cell of player i, if the expected private value of player i is strictly lower

in ω than in ω′, then the expected social value is weakly lower in ω.

Definition 3. Search game G has ordinally consistent payoffs if for any player i, any cell

πi ∈ Πi, and any two locations ω,ω′ ∈ πi, the following implication holds:

µ(ω) ·v1
i (ω) < µ

(

ω′
)

·v1
i

(

ω′
)

⇒ µ(ω) ·vs (ω) ≤ µ
(

ω′
)

·vs
(

ω′
)

.

Observe that having common values implies that the search game has ordinally consistent

payoffs. Further observe that if society has uniform expected values (i.e., if µ(ω) · vs (ω) =

10



µ(ω′) ·vs (ω′) for any two locations ω,ω′ ∈ Ω), then the search game has ordinally consistent

payoffs regardless of what the players’ private payoffs are.

Solitary-Search Dominance Solitary-search dominance requires that any player always

prefer searching alone in any location to (1) searching jointly with other players in another

location within the same cell, or (2) leaving some of her search capacity unused. Formally:

Definition 4. Search game G has solitary-search dominant payoffs if

µ(ω|πi) ·v1
i (ω) ≥ µ

(

ω′|πi

)

·v2
i

(

ω′
)

(1)

and

µ(ω|πi) ·v1
i (ω) ≥ ci (Ki)− ci (Ki −1) , (2)

for any player i, any cell πi ∈ Πi, and any pair8 ω,ω′ ∈ πi.

Suppose first that there is no asymmetric information (which corresponds to the case

where all players have trivial information in our model). If either ordinal consistency or

solitary-search dominance are not assumed, it is relatively easy to construct a game that

does not admit a socially optimal equilibrium (we construct such examples on Section 3.3).

It is also not hard to show, on the other hand, that ordinal consistency and solitary-search

dominance imply the existence of a socially optimal equilibrium. By virtue of Proposition 1,

we can now show that this remains true with asymmetric information, as these two conditions

are sufficient for any search game.

Theorem 1. Let G be a search game with ordinally consistent and solitary-search dominant

payoffs. Then there exists a socially optimal (pure) equilibrium.

Proof. Consider a pure strategy profile that maximizes the social payoff. Proposition 1 im-

plies that there is a finite sequence of unilateral improvements that ends in a Nash equilib-

rium. In what follows we show that the properties of ordinal consistency and solitary-search

dominance jointly imply that the social payoff cannot decrease along that sequence. With-

out loss of generality we can assume that each unilateral improvement consists of changing

merely a single choice within a single cell, since this is in fact what the proof of Proposition

1 shows.

8Due to the assumption of the cost function being convex, (2) implies that µ(ω|πi) · v1
i

(ω) ≥ ci (k) −
ci (k −1) for any 1 ≤ k ≤ Ki. A similar assumption of the search cost being sufficiently small so that players
always prefer searching alone to not using their search capacity appears in Chatterjee & Evans (2004).
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First we note that in each improvement, if the improving player leaves a location in which

there were multiple searchers, then the social payoff cannot decrease. Next, solitary-search

dominance implies that if she leaves a location in which she is the sole searcher, then she

moves to an unoccupied location, as moving to an occupied location would contradict (1),

and “quitting” (namely, deactivating that unit of capacity) would contradict (2). Finally,

ordinal consistency implies that if she moves to being the sole searcher in another location,

then the social payoff must weakly increase.

In the socially optimal equilibrium, search costs may sometimes deter a player from

searching in some location ω if other players might search there as well. Inequality (2)

merely states that she will never be deterred by costs if she can search in ω alone.

Our next result states that even without the ordinal consistency assumption, some effi-

ciency is still guaranteed, in the sense that there exists an equilibrium that maximizes the

number of locations in which the players search. Formally:

Corollary 2. Every search game G with solitary-search dominant payoffs admits a location-

maximizing equilibrium.

Proof. Let Ĝ = (N,Ω,Π,µ,K,c, v̂) be a search game similar to G = (N,Ω,Π,µ,K,c,v), except

that v̂s (ω) = 1/µ(ω) for any locations ω ∈ Ω. Observe that Ĝ is a search game with ordinally

consistent and solitary-search dominant payoffs. This implies that Ĝ admits a socially opti-

mal equilibrium ŝ. Observe that the definition of v̂s implies that ŝ is a location-maximizing

strategy profile. Further observe that ŝ is also an equilibrium of G (as G and Ĝ differ only

in the social payoff).

In particular, any game with solitary-search dominant payoffs that admits an exhaustive

strategy profile, also admits an exhaustive equilibrium.

Price of Stability/Anarchy Theorem 1 states that there is an equilibrium that maxi-

mizes the social payoff (i.e., that the price of stability is 1)9 in any search game with ordinally

consistent and solitary-search dominant payoffs. By contrast, Figure 2 demonstrates that

the social payoff might be substantially lower in other Nash equilibria (i.e., that the price of

anarchy can be more than 1).

9The price of stability (resp., anarchy) is defined as the ratio between the socially optimal payoff Uopt

and the maximal (resp., minimal) social payoff induced by a Nash equilibrium; i.e., PoS =
Uopt

maxs∈NE(G) U(s)

and PoA =
Uopt

mins∈NE(G) U(s) , where NE (G) is the set of Nash equilibria.
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Figure 2: Example for the price of anarchy. The figure presents two equilibria in a
two-player search game with ordinally consistent and solitary-search dominant payoffs (the
ellipses represent the partition elements), uniform prior, costless search (c ≡ 0), reward of
vm

i ≡ 1
m , social value vs ≡ 1, and a capacity of one for every player. The figure shows the

location searched by each player for each possible signal. For example, in the socially optimal
equilibrium Player 1 searches in location ω1 when observing the signal {ω1} and searches in
ω3 when observing the signal {ω2,ω3,ω4}. The first (resp., second) equilibrium is (resp., is
not) socially optimal with a social payoff of 1 (resp., 0.75).

3.3 Necessity of All Assumptions in Theorem 1

The following three examples demonstrate that all the assumptions of Theorem 1 are neces-

sary to guarantee the existence of a socially optimal equilibrium. We postpone the discussion

of the necessity of deterministic signals to Section 5.

Necessity of Solitary-Search Dominance Example 2 demonstrates that solitary-search

dominance is necessary for Theorem 1.

Example 2. For any r ∈ (0,1) let

G =
(

N = {1,2} ,Ω =
{

ω,ω′
}

,Π ≡ {Ω} ,µ,K ≡ 1, c ≡ 0,
(

v1
i ≡ 1,v2

i ≡ r,vs ≡ 1
))

be a two-player search game with trivial information partitions (namely, each partition Πi

contains a single element, which is the whole Ω), and a common prior µ defined as follows:

µ(ω) = 2
3 and µ(ω′) = 1

3 . Both locations induce a private value of 1 to a sole searcher and

a private value of r ∈ (0,1) in case of simultaneous searches. Note that G has ordinally

consistent payoffs, and that it satisfies solitary-search dominance iff r ≤ 0.5. In what follows

we show that for any r > 0.5 the unique best-reply against an opponent who searches in

location ω is to search in ω as well (which implies that searching in ω is a dominant strategy).

This is so because searching in ω yields an expected payoff of 2
3 ·r, while searching in ω′ yields
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1
3 ·1. This, in turn, implies that the unique equilibrium is both players searching in ω, which

is suboptimal.

Necessity of Ordinal Consistency Example 3 demonstrates that the consistency re-

quirement is necessary to guarantee the existence of a socially optimal equilibrium. Specifi-

cally, it shows that even for one-player search games, and even when society and the player

have the same ordinal ranking over the values of the prize in each location and search is cost-

less, the unique Nash equilibrium is not necessarily socially optimal if the ordinal consistency

requirement is not satisfied.

Example 3. Let G = (N = {1} ,Ω = {ω,ω′} ,Π1 = {Ω} ,µ,K1 = 1, c1 = 0,v) be a one-player

search game with a prior µ(ω) = 1/4, µ(ω′) = 3/4, and with values of vs (ω) = 2, vs (ω′) = 1,

v1
1
(ω) = 4, and v1

1
(ω′) = 1. Observe that the game’s payoffs are trivially solitary-search

dominant due to having a single player and a costless search. It is simple to see that the

player searches in location ω in the unique equilibrium, although this yields a lower social

payoff than searching in ω′.

Necessity of One-Shot, Simultaneous Searches An (implicit) key assumption in our

model is that all searches are done simultaneously at a single point in time. The following

two examples demonstrate that Theorem 1 is no longer true if players search sequentially

(Example 4) or if there are multiple rounds of search (Example 5).

Example 4 (Sequential play, see Figure 3). Let

Figure 3: Illustration of Example 4: Sequential Play
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G =
(

N = {1,2} ,Ω = {ω1,ω2,ω3} ,Π,µ,K ≡ 1, c ≡ 0,
(

v1
i ≡ 1,v2

i ≡ 0.5,vs ≡ 1
))

be a two-player search game with three locations, capacity 1 for each player and costless

search. All locations yield a private value of 1, which is equally shared between simultaneous

finders. Player 1 has the trivial partition Π1 = {Ω}, while Player 2 knows if the prize is

in location ω1 or not (i.e., Π2 = {{ω1} ,{ω2,ω3}}. The prior assigns slightly higher (resp.,

lower) probability to location ω1 (resp., ω3), i.e., µ(ω1) = 35%, µ(ω2) = 33%, µ(ω3) = 32%.

Observe that the game satisfies ordinal consistency and solitary-search dominance. In our

model, in which players search simultaneously, the game admits two (pure) Nash equilibria,

both of which are socially optimal: Player 1 searches in either location 2 or 3, and Player 2

searches in the remaining two locations.

By contrast, if the game is sequential and Player 1 plays first, then the game admits a

unique equilibrium, which is not efficient: Player 1 searches in ω1, and if the prize has not

been found, Player 2 searches in location ω2 (and no player searches in location ω3). Note

that this profile is the unique equilibrium regardless of whether or not the model lets Player

2 observe the location in which Player 1 searched in the previous round.

Example 5 (Multiple Rounds, see Figure 4.). Let

Figure 4: Illustration of Example 5: Multiple Rounds

G =
(

N = {1,2} ,Ω = {ω1,ω2,ω3,ω4,ω5,ω6} ,Π,µ,K ≡ 2, c ≡ 0,
(

v1
i ≡ 1,v2

i ≡ 0.5,vs ≡ 1
))
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be a two-player search game with six locations, a capacity of two for each player, and

costless search. All locations yield a private value of 1, which is equally shared between

simultaneous finders. The prior assigns a higher probability to the first two locations:

µ(ω1) = µ(ω2) = 22%, µ(ω3) = µ(ω4) = µ(ω5) = µ(ω6) = 14%. Player 1 has the trivial

partition Π1 = {Ω}, while Player 2 knows if the prize is in the first two locations or not,

i.e., Π2 = {{ω1,ω2} ,{ω3,ω4,ω5,ω6}}. Observe that the game satisfies ordinal consistency

and solitary-search dominance. In our model, in which there is a single round of play, all

Nash equilibria are socially optimal: Player 1 searches in two locations out of {ω3,ω4,ω5,ω6},

while Player 2 searches in the remaining four locations.

By contrast, if there are two rounds of play, where in each round the players search

simultaneously and each player uses one unit of her capacity, then in any equilibrium Player

1 searches in either location ω1 or ω2 in the first round, because in at least one of these two

locations the probability of Player 2 searching there in the first round is at most 50%, and

thus searching there yields an expected payoff of at least 22%+11%
2 = 16.5% > 14%. This, in

turn, implies that at least one of the locations {ω3,ω4,ω5,ω6} is not searched by any player

in any of the two rounds, which implies that none of the equilibria is efficient. Here, too,

this holds regardless of whether or not each player observes where the opponent searched in

the previous round.

3.4 Implications for Innovation Contests

Consider the setup of an innovation contest, in which a contest designer, who wishes to max-

imize the social payoff, might influence the private payoffs of players by offering a monetary

bonus to the prize’s finder, which is added to the inherent reward. Kleinberg & Oren (2011)

characterize the optimal bonuses in a model of such a contest without private information

(additional differences are that in their model each player searches once, search is costless,

and each player has a positive probability of failing to find the prize when searching in the

prize’s location). The following fact plays an important part in their analysis (Kleinberg &

Oren, 2011, Claim 2.2): the socially optimal strategy profile is obtained by a simple greedy

algorithm, according to which players are assigned to locations one at a time in an arbitrary

order, and in each iteration the player is assigned to the location with the greatest expected

social value. By contrast, the example illustrated in Figure 2 demonstrates that a greedy

algorithm may not yield the socially optimal profile in our setup with asymmetric informa-

tion, because the above-mentioned greedy algorithm that starts with Player 1 may assign

Player 1 to search in location ω2, and thus it may lead to the suboptimal profile in which no

player searches in location ω3. The failure of the greedy algorithm suggests that the analysis
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of the current setup may substantially differ from Kleinberg & Oren (2011).

In what follows we sketch a few implications of Theorem 1 in a contest with asymmetric

information, while leaving the interesting question of characterizing the optimal bonuses in

this setup to future research.

Observe first that if the private payoffs satisfy ordinal consistency and solitary-search

dominance, then Theorem 1 implies that the designer can maximize the social payoff with-

out offering any bonus: the designer is only required to be able to give nonenforced rec-

ommendations to the players (which allows him to induce the play of the socially optimal

Nash equilibrium, rather than other equilibria). In what follows we consider the case in

which solitary-search dominance is violated in the search game (without additional mone-

tary bonuses).

Consider first a setup in which the contest designer can only offer a constant bonus, which

is independent of the prize’s location. A constant bonus can help to increase the relative

expected private value of locations with a high prior probability. As a result, it can help

obtain the optimal social payoff, when the reason for not having the required properties

without the designer’s intervention is a low-prior location having a too-high private value.

For example, consider a search game with costless search (i.e., c ≡ 0), where there are two

locations ω,ω′ in the same cell of player i with priors µ(ω) = 0.1 and µ(ω′) = 0.2 and with

private values of v1
i (ω) = 5 and v1

i (ω′) = 1, and vm
i ≡ 1

mv1
i . The too-high private value

of location ω violates solitary-search dominance because the expected private value in ω

(0.5 = 0.1 ·5) is more than twice the expected private value in ω′ (0.2 ·1). A constant bonus

of 1 would restore solitary-search dominance (making the expected private value of ω and

ω′ to be equal to 0.6 = 0.1 · (5+1) and 0.4 = 0.2 · (1+1), respectively).

When the designer can offer a location-dependent and player-dependent bonus, it allows

him to obtain solitary-search dominance and ordinal consistency when faced with any profile

of rewards. An interesting open question is how the designer can maximize the social payoff,

while minimizing the expected bonus. For example, assume that the payoffs are ordinally

consistent, but they are not solitary-search dominant. Theorem 1 suggests that the designer

should boost locations that have lower expected private values (which violate solitary-search

dominance). Note that these locations might not coincide with the locations that are not

searched by any player in the inefficient equilibrium. This is demonstrated in Example 6.

Example 6. Consider the following search game with common values (as illustrated in Fig-

ure 5):
(

N = {1,2} ,Ω = {ω1,ω2,ω3,ω4} ,Π,µ,K ≡ 1, c ≡ 0,vm
i ≡ 1

m ,vs ≡ 1
)

, where the prior

is µ(ω1) = 44%, µ(ω2) = 21%, µ(ω3) = 20% and µ(ω4) = 15%, player 1 observes whether

the prize’s location is 1 or not, i.e., Π1 = {{ω1} ,{ω2,ω3,ω4}}, and player 2 observes whether

the prize’s location is at most 2 or not, i.e., Π2 = {{ω1,ω2} ,{ω3,ω4}}. The game admits
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Figure 5: Illustration of Example 6: Impact of Monetary Bonuses on the Social Payoff

a unique equilibrium, in which player 1 searches in ω1 and ω2, while player 2 searches in

locations ω1 and ω3. This equilibrium yields an expected social payoff of 0.85 because no

player searches in ω4. Note that solitary-search dominance is violated because of the low

probability of location ω2 (rather than a low probability of ω4).

If the designer can offer a bonus of 0.05 that increases the private value in location

ω2 by 5% to 1.05 (which requires a modest expected bonus of 21% · 0.05 ≈ 0.01), then the

modified rewards satisfy solitary-search dominance, and, as a result, the game admits a

socially optimal equilibrium with a social payoff of 1 (in which player 1 searches in locations

ω1 and ω4, while player 2 searches in locations ω2 and ω3).

4 Feasible Outcomes and Socially Optimal Payoff

In this section we characterize the socially optimal payoff, namely, the highest social pay-

off under any strategy profile, not necessarily an equilibrium. Nevertheless, note that by

Theorem 1, the socially optimal payoff achieved in every result or example of this section

is also yielded by some equilibrium of the game, if the payoffs are ordinally consistent and

solitary-search dominant.

To study the socially optimal payoff, we study a slightly broader question: which social

outcomes are feasible (where a social outcome is a specification of the locations in which the

prize will be found by anyone)? We show that a social outcome is feasible iff it satisfies a

condition that is formed in the spirit of Hall’s marriage theorem and is an expression of the

outcome’s compatibility with the information structure. In particular, the socially optimal

payoff of the game equals the maximal social payoff of such outcomes.
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Pure outcomes A pure outcome is a function f : Ω → {0,1} that specifies, for every

location, whether that location is being searched (by anyone) or not. A pure outcome f is

feasible if there exists a strategy profile s ∈ S that induces f , i.e., if f (ω) = 1{ms(ω)>0}. Let

fs denote the outcome induced by strategy profile s ∈ S. We may think of an outcome as a

possible goal set by society. In a more abstract model than ours, in which society does not

maintain exact values but still has (perhaps incomplete) preferences over various outcomes,

a social planner would like to know which outcomes are feasible.

We say that a pure outcome is compatible with the information structure if the number

of locations being searched within any subset of locations does not exceed the sum of players’

capacities over all cells that intersect that subset. Formally:

Definition 5. Fix a search game G. A pure outcome f is compatible with the information

structure (abbr., compatible) if for each subset W ⊆ Ω, the following inequality holds:

∑

ω∈W

f (ω) ≤
∑

i∈N

Ki ·
∑

πi∈Πi

1πi∩W 6=∅ . (3)

Compatibility is clearly necessary for an outcome to be feasible in a setup in which players

cannot share their information, and each player decides where to search as a function of her

own signal. In such a setup, each player i has
∑

πi∈Πi
1πi∩W 6=∅ cells that intersect the set

W , and thus she cannot search in more than Ki ·
∑

πi∈Πi
1πi∩W 6=∅ locations within W . This

implies that all players combined cannot search in more than
∑

i∈N Ki ·
∑

πi∈Πi
1πi∩W 6=∅

locations within W . By representing the setup as a bipartite graph and applying Hall’s

marriage theorem (Hall, 1935), it follows that compatibility is also a sufficient condition for

feasibility.

Proposition 2. A pure outcome f in a search game is feasible iff it is compatible.

Sketch of proof; formal proof is omitted because it is implied by Theorem 2. For simplicity, as-

sume that each player has a capacity of one. Consider a bipartite undirected graph in which

the left side of the graph includes the players’ cells in the search game, and the right side

includes the locations for which f is equal to one (as illustrated in Figure 6). The graph’s

edges connect each cell to the locations that are contained in that cell. A matching of all

locations in this graph, i.e., a set of disjoint edges (namely, no node appears twice) such that

every location belongs to some edge, corresponds to a strategy profile that induces f . Hall’s

theorem states that such a matching exists iff for any subset of locations W , the number of

its neighbors |N (W )| is at least |W |. The neighbors of W in this graph are the cells that

intersect W ; therefore, this condition is equivalent to f being compatible.
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Figure 6: Illustration of Proposition 2. The LHS of the figure demonstrates the informa-
tion partitions in a two-player search game (with capacities equal to 1). The RHS translates
this into a bipartite graph, where its left part (“men”) includes the cells of all players, and its
right part (“women”) includes all locations ω satisfying f (ω) = 1. The figure further shows
an example of a subset of locations W and the corresponding set of its neighbors - N (W ) .

The following example and corollary apply Proposition 2 to obtain a simple sufficient

condition for the existence of exhaustive strategy profiles, in terms of the size of the largest

cell of each player.

Example 7. Suppose that there are three players, each has capacity Ki = 1, and every cell

of every player contains exactly three locations. Consider the pure outcome f (ω) = 1 for

every ω. To see that f is compatible, let W ⊂ Ω be a subset of locations. The number of cells

πi of player i that intersect W is at least |W |
3 , because the size of every cell is 3. Therefore,

∑

i∈N

∑

πi∈Πi

1πi∩W 6=∅ ≥ 3 ·
|W |

3
= |W | =

∑

ω∈W

f (ω) ,

i.e., f is compatible. By Proposition 2, f is feasible, i.e., this game admits an exhaustive

strategy profile, and the socially optimal payoff equals
∑

ω∈Ω µs (ω) ·vs (ω).

More generally, the argument in Example 7 implies the following corollary.

Corollary 3. Let G be a search game, and let Mi = max(|πi| : πi ∈ Πi) be the size of the

largest cell of player i. If
∑

i∈N
Ki/Mi ≥ 1 then G admits an exhaustive strategy profile.

Mixed outcomes A mixed outcome is a function f : Ω → [0,1] that assigns a probability

to each location. We interpret f (ω) as the probability that the prize is found, conditional

on the prize’s location being ω. A mixed outcome may be a goal set by society, perhaps

involving such considerations as fairness, equal opportunity, etc.
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A correlated strategy profile σ ∈ ∆(S) is a lottery over the set of pure strategy profiles.

A mixed outcome is feasible if it can be induced by a correlated strategy profile. That is,

f : Ω → [0,1] is feasible if there exists a correlated strategy profile σ ∈ ∆(S) such that

f (ω) =
∑

s∈S

σ (s) ·fs (ω) =
∑

s∈S

σ (s) ·1{ms(ω)>0}.

Let fσ denote the mixed outcome induced by correlated strategy profile σ ∈ ∆(S).

A mixed outcome is compatible with the information structure if the sum of the proba-

bilities of finding the prize (henceforth, finding probabilities) of any subset of locations does

not exceed the sum of players’ capacities over all cells that intersect that subset. Formally:

Definition 6. Fix a search game G. A mixed outcome f is compatible with the information

structure (abbr., compatible) if for each subset of locations W ⊆ Ω, the following inequality

holds:
∑

ω∈W

f (ω) ≤
∑

i∈N

Ki ·
∑

πi∈Πi

1πi∩W 6=∅ . (4)

Let FC be the set of compatible mixed outcomes. Clearly, compatibility is necessary for

a mixed outcome to be feasible, because any feasible mixed outcome lies in the convex hull of

feasible pure outcomes, all of which satisfy compatibility. In what follows we show that the

converse is also true, i.e., that compatibility is sufficient for a mixed outcome to be feasible.

Theorem 2. A mixed outcome f in a search game is feasible iff it is compatible.

Note that we cannot directly use Hall’s theorem for this result, due to the outcome being

mixed, rather than pure (as Hall’s theorem applies only to a “binary” matching of zeros and

ones). Instead, the proof (presented in Section 4.1) includes two parts: (1) we introduce the

notion of coordinated-search profiles, and apply (Prop. 3) the max-flow min-cut theorem to

show that any compatible mixed outcome can be induced by a coordinated-search profile, and

(2) we apply (Prop. 4) the Birkhoff–von Neumann theorem to show that coordinated-search

profiles induce feasible mixed outcomes.

Before presenting the next example, we define a strategy profile s as redundancy-free if (1)

every player always uses her entire capacity (i.e., |si (πi)| = Ki for every cell πi of every player

i), and (2) there is no search duplication (i.e., ms (ω) ≤ 1 for every ω ∈ Ω). Since a player

can search in no more than Ki · |Πi| locations, a strategy profile is redundancy-free iff the

number of locations being searched equals
∑

i∈N Ki |Πi|. If a game admits redundancy-free

strategy profiles, then they are exactly the location-maximizing profiles.

The following example and corollary apply Theorem 2 to obtain a simple sufficient condi-

tion for the existence of redundancy-free strategy profiles, in terms of the size of the smallest

cell of each player.
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Example 8. Suppose that there are three players, each has capacity Ki = 1, and every cell

of every player contains exactly five locations. Consider the mixed outcome f (ω) = 0.6 for

every ω, and let W ⊂ Ω be a subset of locations. The number of cells πi of player i that

intersect W is at least |W |
5 ; therefore,

∑

i∈N

∑

πi∈Πi

1πi∩W 6=∅ ≥ 3 ·
|W |

5
= 0.6 · |W | =

∑

ω∈W

f (ω) ,

i.e., f is compatible. By Theorem 2, f can be induced by a correlated strategy profile. Since
∑

ω∈Ω f (ω) = 0.6 · |Ω| =
∑

i∈N Ki |Πi|, this implies that the game admits a redundancy-free

strategy profile.

More generally, the argument in Example 8 implies the following corollary.

Corollary 4. Let G be a search game, and let mi = min(|πi| : πi ∈ Πi) be the size the smallest

cell of player i. If
∑

i∈N
Ki/mi ≤ 1 then G admits a redundancy-free profile.

If a correlated strategy σ achieves some level of social payoff, then at least one of the

pure strategies in the support of σ yields at least that much. Therefore, Theorem 2 implies

a characterization of the socially optimal payoff of search games: the socially optimal payoff

is the highest payoff induced by a compatible mixed outcome. Formally:

Corollary 5. Let G be a search game. Then Uopt = maxf∈FC

∑

ω∈Ω f (ω)µ(ω)vs (ω) .

4.1 Coordinated Search

In this subsection we consider a variant of our model, and show that it does not increase the

socially optimal payoff. The analysis turns out to be closely related to Theorem 2, and is

helpful in deriving its proof.

The setup Coordinated search allows players to coordinate partial search efforts within

a location. Specifically, we now allow each player to divide fractions of her search capacity

among the different locations. This is formalized as follows. Fix a search game G. For any

k ∈ N and any cell π, let D (π,k) denote the set of all functions η : π → [0,1] that satisfy
∑

ω∈π η (ω) ≤ k. That is, an element of D (π,k) is a function that assigns a search effort to

each location in π such that the total effort is at most k. A coordinated-search profile is a tuple

τ = (τ1, ..., τn), where each function τi assigns to each cell πi ∈ Πi an element of D (πi,Ki).

We interpret τi (πi,ω) ≡ τi (πi)(ω) as the (fractional) search effort player i exerts in location

ω ∈ πi (when the player observes the signal πi). Let T be the set of all coordinated-search
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profiles. Observe that any (pure) strategy profile in G is a coordinated-search profile (i.e.,

S ⊆ T , where an element of D (π,k) that assigns only search efforts of zeros and ones is

identified with the corresponding subset of π with at most k elements).

Importantly, we assume that fractional search efforts of different players are summed

optimally from society’s point of view. For example, if player i exerts an effort of 50% in

location ω in cell πi (ω) and player j exerts an effort of 40% in location ω in cell πj (ω), then

the prize is found with a total probability of 90%, conditional on the location being10 ω.

Thus, any coordinated-search profile induces a mixed outcome, where the finding prob-

ability assigned to each location ω is the sum of the fractional search efforts exerted by

each player i in location ω in cell πi (ω) (bounded by the maximal finding probability of

one). Formally, the mixed outcome fτ induced by the coordinated-search profile τ is de-

fined by fτ (ω) = min(
∑

i∈N τi (πi (ω) ,ω) ,1) . Hence, the social payoff U c (τ) induced by a

coordinated-search profile τ is

U c (τ) =
∑

ω∈Ω



min





∑

i∈N

τi (πi (ω) ,ω) ,1







 ·µ(ω) ·vs (ω) .

First, we observe that any coordinated-search profile induces a compatible mixed out-

come.

Claim 1. Fix search game G and τ ∈ T . Then fτ is a compatible mixed outcome.

Proof. Fix a subset of locations W ⊆ Ω. Then the following inequality holds (where the last

inequality is implied by
∑

ω∈πi
τi (πi,ω) ≤ Ki):

∑

ω∈W

fτ (ω) =
∑

ω∈W

min

(

∑

i

τi (πi (ω) ,ω) ,1

)

≤
∑

i∈N

∑

ω∈W

τi (πi (ω) ,ω) ≤
∑

i∈N

Ki

∑

πi∈Πi

1πi∩W 6=∅.

Next we employ the max-flow min-cut theorem to show that the converse is true as well:

any compatible mixed outcome can be induced by a coordinated-search profile.

Proposition 3. Fix a search game G and a compatible mixed outcome f . Then there exists

a coordinated-search profile τ that induces f (i.e., f = fτ ).

Sketch of proof; formal proof in Appendix B.2. We construct a flow network: a directed graph

whose edges have flow capacities. The graph connects every cell to the locations contained

in it, with infinite flow capacity (as illustrated in Figure 7). We add a source vertex that

connects to every cell, with flow capacity Ki, and a sink vertex to which every location ω is

10This probability is strictly higher than if it were a mixed strategy profile, where with positive proba-
bility (20% = 40% · 50%) there would be search duplication (where both players search in ω), and the total
probability of finding the prize, conditional on the location being ω, would be strictly less than 90%.
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connected, with flow capacity f(ω). A cut is a subset of edges without which there exists

no path from the source to the sink. The compatibility of f implies that the minimal cut

has a total capacity of
∑

ω∈Ω f (ω) . Therefore, by the max-flow min-cut theorem (Ford &

Fulkerson, 1956; see a textbook presentation in Cormen et al., 2009, p. 723, Thm. 26.6), the

network admits a flow of
∑

ω∈Ω f (ω) . We define τ by letting τi (πi,ω) equal the flow from πi

to ω.

Figure 7: Illustration of Proposition 3. The left side of the figure demonstrates partitions
in a two-player search game. The right side demonstrates the constructed directed graph
in which (1) a source node is linked to every player’s cells by an edge with the player’s
capacity, and (2) each cell is linked by unlimited edges to all the locations within that cell,
and (3) each location ω is linked to a sink node by an edge with capacity f (ω). The gray
X-s demonstrate an example of a cut, i.e., a subset of edges whose removal from the graph
disconnects the source from the sink.

Coordination does not add new outcomes The social payoff is constrained by the fact

that the players are not allowed to share their private signals. This constraint is captured by

the compatibility condition presented above. The inability, in our main model (as opposed

to the coordinated-search variant), to efficiently coordinate players’ fractional search efforts

within a location is another potential constraint on the social payoff. Nevertheless, in what

follows we show that this constraint does not limit the social payoff. Specifically, we apply

the Birkhoff–von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953; see Berman &

Plemmons, 1994, p. 50, for a textbook presentation) to show that any mixed outcome

that can be induced by a coordinated-search profile is feasible (i.e., it can be induced by a

correlated strategy profile with no coordination of fractional efforts).

Proposition 4. Fix search game G and a coordinated-search profile τ ∈ T . Then there exists

a correlated strategy profile σ ∈ ∆(S) such that fτ = fσ.
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Sketch of proof (see Appendix B.3 for the formal proof). To simplify the sketch of the proof

assume that all capacities are equal to one. Let τ be a coordinated-search profile. We can

represent the profile τ as a matrix (Aτ
πω)ω∈Ω,π is a cell , where

Aτ
πω =











τi (π,ω) ω ∈ π, π ∈ Πi

0 elsewhere .

Observe that Aτ
πω is a nonnegative matrix, and that the sum of each row π is at most one.

Let Bτ
πω be a matrix derived from Aτ

πω by decreasing elements of the matrix such that the

sum of each column ω that exceeded one in Aτ
πω is equal to one in Bτ

πω. Observe that Bτ
πω

is a doubly substochastic matrix; i.e., it is a nonnegative matrix for which the sum of each

column and each row is at most one. A simple adaptation of the Birkhoff–von Neumann

theorem shows that Bτ
πω can be represented as a convex combination of matrices C1

πω, ...,CK
πω

(i.e., Bτ
πω =

∑

wk · Ck
πω where

∑

wk = 1 and wk ≥ 0), where each matrix Ck
πω: (1) contains

only zeros and ones, and (2) contains in each row and in each column at most a single value

of one. Observe that each such matrix Ck
πω corresponds to a pure profile sk in the search

game, and that the outcome fτ is a weighted sum of the outcomes induced by the profiles

sk. This implies that fτ is feasible because it is induced by the correlated strategy profile

σ =
∑

wk · sk.

In the following example, Proposition 4 is used to prove that the game admits an ex-

haustive strategy profile.

Example 9. Let the set of locations Ω = A ·∪ B1 ·∪ B2 ·∪ B3 be a union of four disjoint sets

of equal size. There are three players, each with capacity Ki = 1. The partition Πi of player

i consists of cells of size two {a,b}, where a ∈ A and b ∈ Bi, and of cells of size six, whose

members come from Bj ∪ Bk (j,k 6= i). The partitions are illustrated in Figure 8. Define a

coordinated-search profile τ as follows. For πi = {a,b}, τi(πi,a) = 1/3 and τi(πi, b) = 2/3, and

for πi of size six, τi assigns 1/6 to every location in πi. Thus, for any a ∈ A,
∑

i∈N τi (πi (a) ,a) =

1/3 + 1/3 + 1/3 = 1, for any b1 ∈ B1,
∑

i∈N τi (πi (b1) , b1) = 2/3 + 1/6 + 1/6 = 1, and similarly for

B2 and B3; therefore, fτ (ω) = 1 for every ω ∈ Ω. Proposition 4 implies that the game admits

an exhaustive strategy profile.

Note that |Πi| = |Ω|/3, implying that |Ω| =
∑

i∈N Ki |Πi|; therefore, a strategy profile in

this game is exhaustive iff it is redundancy-free. Redundancy-freeness can, alternatively, be

deduced from the fact that under τ players always use their entire capacity and the sum of

fractional search efforts
∑

i∈N τi (πi (ω) ,ω) does not exceed one in any location ω.

Proposition 3 and Proposition 4 jointly imply Theorem 2. Moreover, Proposition 4
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Figure 8: Illustration of Example 9 with |Ω| = 12 locations. The figure shows the players’
partitions (where the cell containing the remaining six locations of each player is not drawn
to make the figure less crowded).

implies that if some level of social payoff is yielded by a coordinated-search profile, then the

same or higher social payoff can be yielded by a pure strategy profile. That is, the ability to

coordinate search efforts does not improve the social payoff. Formally:

Corollary 6. Fix a search game G and a coordinated-search profile τ ∈ T . Then, there exists

a pure strategy profile s ∈ S such that U (s) ≥ U c (τ).

Proof. Proposition 4 implies that fτ =
∑

wk · fsk
, where

∑

wk = 1, wk ≥ 0, and sk ∈ S for

each k. This implies that U c (τ) =
∑

wk ·U (sk), which, in turn, implies that U c (τ) ≤ U (sk)

for some k.

In Appendix A we apply our results to search games in which the intersection of every

profile of cells includes at least κ locations, and derive tight conditions for the existence of

equilibria with appealing properties.

5 General Signals

In this section we present a general model of signals, dropping the assumption that every

location corresponds to a single state of the world. We also discuss a weaker assumption,

under which all our results still hold.

5.1 Adaptations to the Model

To extend our model to the general case, we let the set of locations and the set of states

be different objects. Let Ω denote the set of states of the world (abbr., states). A state

determines the location of the prize, and we let ℓ(ω) denote the prize’s location when the

state of the world is ω. Thus, the different locations induce a partition of Ω, and without
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loss of generality we let L, the set of locations, be that partition. That is, a location ℓ ∈ L is

an element of the partition, namely, a subset of states such that ℓ(ω) is the same for every

ω in the subset.

A generalized search game is a tuple G̃ = (N,Ω,Π,µ,L,K,c,v), where L is the partition of

locations. All other components are as defined in the baseline model. To prevent confusion

we use the term simple search game to refer to the search games of the baseline model. For

a cell πi ∈ Πi, let ℓ(πi) be the set of locations that are ordinally consistent with the state

being in πi, i.e., ℓ(πi) = {ℓ(ω) |ω ∈ πi}.

A strategy of player i is a function si that assigns to each cell πi a subset of locations

with at most Ki elements that satisfies si (πi) ⊆ ℓ(πi). We interpret si (πi) as the set of up

to Ki locations in which the player searches when she observes the signal πi. When the

state of the world is ω, player i finds the prize if she searches in the location ℓ(ω), i.e., if

ℓ(ω) ∈ si (πi (ω)). We redefine the number of players who search in the prize’s location when

the state is ω as follows: ms (ω) =
∑

i∈N 1ℓ(ω)∈si(πi(ω)).

A player’s payoff, conditional on the state being ω, is then redefined by

ui (s|ω) = 1ℓ(ω)∈si(πi(ω)) v
ms(ω)
i (ω)− ci (|si (πi (ω))|) .

Ordinal consistency is redefined as follows. A search game has ordinally consistent payoffs

if for any two locations ℓ and ℓ′, if the expected (interim) private value of player i is strictly

lower in ℓ than in ℓ′, then the expected (interim) social value is weakly lower in ℓ.

Definition 7. Generalized Search game G̃ has ordinally consistent payoffs if for any player

i, any cell πi ∈ Πi, and any two locations ℓ,ℓ′ ∈ L, the following implication holds:

∑

ω∈ℓ∩πi

µ(ω) ·v1
i (ω) <

∑

ω′∈ℓ′∩πi

µ
(

ω′
)

·v1
i

(

ω′
)

⇒

∑

ω∈ℓ∩πi

µ(ω) ·vs (ω) ≤
∑

ω′∈ℓ′∩πi

µ
(

ω′
)

·vs
(

ω′
)

.

Similarly, solitary-search dominance is redefined as follows.

Definition 8. Generalized search game G̃ has solitary-search dominant payoffs if for any

player i, cell πi ∈ Πi, and pair of locations ℓ,ℓ′ ∈ L such that ℓ∩πi 6= ∅, the following inequal-

ities hold:
∑

ω∈ℓ∩πi

µ(ω|πi) ·v1
i (ω) ≥

∑

ω′∈ℓ′∩πi

µ
(

ω′|πi

)

·v2
i

(

ω′
)

, and

∑

ω∈ℓ∩πi

µ(ω|πi) ·v1
i (ω) ≥ ci (Ki)− ci (Ki −1) .
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All other parts of the baseline model remain the same.

5.2 Equivalence Result with Weakly Deterministic Signals

Our results about simple search games hold in the current setup if we assume that the signal

of any player is determined by the prize’s location and the signal of another player. Formally:

Definition 9. Generalized search game G̃ has weakly deterministic signals if ℓ(ω) = ℓ(ω′)

and πi (ω) = πi (ω′) ⇒ πj (ω) = πj (ω′), for any ω,ω′ ∈ Ω and players i, j.

In words, if two states ω,ω′ share the same location and are indistinguishable to one of

the players, then these states must be indistinguishable to all players.

The set of generalized search games with weakly deterministic signals is broader than

the set of simple search games. In particular: (1) generalized search games allow a player

to hold different positive posterior beliefs on the prize being in location ℓ depending on the

different signals that she may observe (which is impossible in simple search games), and

(2) any generalized search game in which players have the same information partitions (i.e.,

Πi = Πj for any pair of players) has weakly deterministic signals. Nevertheless, we show that

any generalized search game with weakly deterministic signals is strategically equivalent to

a simple game (and, thus, our results hold for the broader set of games).

A generalized search game is equivalent to a simple search game if there exists a bijection

between the sets of strategies of each game that preserves the expected payoff of all players.

Definition 10. Simple search game G and generalized search game G̃ with the same set of

players and the same capacities are equivalent if there exist bijections fi : Si

(

G̃
)

→ Si (G),

such that ũi (s̃) = ui (f (s̃)) and Ũ (s̃) = U (f (s̃)) for every strategy profile s̃ ∈ S
(

G̃
)

and

every player i (where f = (f1,, . . . ,fn)).

It is immediate that equivalent games have equivalent sets of Nash equilibria; i.e., s̃ is

a Nash equilibrium of G̃ iff f (s̃) is a Nash equilibrium of G, and both equilibria yield the

same payoffs to all players and to society. Next we show that any generalized search game

with weakly deterministic signals is equivalent to a simple game. Formally:

Claim 2. Let G̃ be a generalized search game with weakly deterministic signals. Then there

exists an equivalent simple search game G. Moreover, if G̃ is ordinally consistent or solitary-

search dominant, then so is G.

Sketch of proof; formal proof is omitted for brevity. We say that two states in G̃ are equiva-

lent if they have the same location and no player can distinguish between the two states (i.e.,

the states are elements of the same cell, for any player). We construct the equivalent simple
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game G by the following two steps: (1) merge equivalent states into a single state, and (2)

extend the set of locations, such that each location corresponds to a single (possibly merged)

state. The reward in each merged state is defined as the weighted average of the rewards in

the corresponding equivalent states. The prior of each merged state is defined as the sum of

the priors of the corresponding states. The equivalence of the two games, and the invariance

of the ordinal consistency and solitary-search dominance of the payoffs, are straightforward.

The simple process of constructing the equivalent simple game is demonstrated in Figure

9.

Figure 9: Illustration of Claim 2. The upper panel presents a generalized two-player
search game G̃ with weakly deterministic signals. The lower panel describes the equivalent
simple game G in which (1) states ω2b and ω2c are merged to ω2bc, and (2) each location has
been divided into singletons.

5.3 Non-monotone Value of Information

Refining the players’ partitions always weakly increases the socially optimal payoff. There-

fore, if a refinement maintains the properties of weakly deterministic signals, ordinal consis-

tency, and solitary-search dominance, then the maximal social payoff yielded by an equilib-

rium also increases, by Theorem 1 and Claim 2. However, even if we restrict ourselves to

games with weakly deterministic signals, a refinement may still break ordinal consistency or
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solitary-search dominance (by contrast, this cannot happen in simple search games). Conse-

quently, the value of information may be negative, in the sense that the refinement decreases

the equilibrium social payoff.

The following example exhibits a refinement with a negative value, and a further refine-

ment with a positive one. More specifically, it presents a game that admits an exhaustive

equilibrium if the players’ signal is either uninformative or fully informative, but not if it is

partially informative.

Example 10. Let (N = {1,2} ,Ω = {ω1,ω2,ω3,ω4} ,Π,µ,L = {{ω1,ω2} ,{ω3,ω4}} ,K ≡ 1, c ≡

0,vm
i ≡ 1

m ,vs ≡ 1) be a generalized search game, where states ℓ12 ≡ {ω1,ω2} comprise one

location, and states ℓ34 = {ω3,ω4} comprise another location. The prior belief µ is: µ(ω1) =

µ(ω3) = 0.5−ǫ and µ(ω2) = µ(ω4) = ǫ, and assume that ǫ is small, say ǫ = 10%, as illustrated

in Figure 10.

Figure 10: Illustration of Example 10. Non-monotone value of information in a symmetric
two-player generalized search game.

With the trivial partitions (Π ≡ {Ω}), all (pure) Nash equilibria are exhaustive (the

prize is always found), and are characterized by one player searching in location ℓ12 and

the other player searching in location ℓ34. Similarly, with the full-information partitions

(Π ≡ {{ω1} ,{ω2} ,{ω3} ,{ω4}}), each player knows the prize’s location, and the unique equi-

librium is exhaustive (each player searches in the true prize’s location). Finally, consider

the case of symmetric partially-informative signals induced by the symmetric partitions

Π ≡ {{ω1,ω4} ,{ω2,ω3}} . Observe that in this case (in which solitary-search dominance is

violated) the unique equilibrium is both players searching in ℓ34 (resp., ℓ12) after observing
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the signal {ω2,ω3} (resp., {ω1,ω4}), and, therefore, the prize is not found when the state of

the world is either ω2 or ω4.

5.4 Counterexamples without Weakly Deterministic Signals

Figure 11 demonstrates a failure of each of our main results without the assumption of

weakly deterministic signals: the left panel demonstrates the failure of Theorem 1, and the

right panel demonstrates the failure of Prop. 4 (and thus of Theorem 2).

Figure 11: The left panel presents a counterexample to Theorem 1 (without weakly
deterministic signals). It shows the essentially unique suboptimal equilibrium and the non-
Nash socially optimal profile in a generalized two-player search game with ordinally consistent
and solitary-search dominant payoffs, K ≡ 1, c ≡ 0, vm

i ≡ 1
m , vs ≡ 1.

The right panel presents a counterexample to Proposition 4. It shows a three-
player generalized search game with K ≡ 1 in which coordinated search allows the players
to always find the prize, whereas this is not possible without coordination. Each player’s
partition has two cells: one with 4 states (which is drawn in the figure), and another with the
remaining 5 states (which is not drawn, to make the figure less crowded). The figure shows a
coordinated-search profile that always finds the prize: each player i divides her search effort
equally between locations ℓ123 and ℓ456 in her four-state cell, and exerts all of her effort to
location {ωi+6} in the other cell. By contrast, in any pure strategy profile in which ω7, ω8,
and ω9 are all searched by some player, either ℓ123 or ℓ456 is not searched by any player in
at least one state.

6 Conclusion

Our paper studies search games in which agents explore different routes to making a dis-

covery that would benefit both society and the discoverer (although the private gain may
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differ from the social gain). Our main departure from the related literature is that we in-

troduce asymmetric information to this setup. That is, we allow each agent to have private

information about the plausibility of different routes, while almost all of the existing liter-

ature assumes that all agents have the same information. We believe that this is a natural

development, as asymmetric information is a key component in many real-life decentralized

research situations. In addition, we allow substantial heterogeneity between the different

routes (i.e., different expected values of finding the prize in different locations). We also

allow heterogeneity in the rewards and costs of different players.

Our model is simplified in one aspect, as we assume that the search is a one-shot game,

while the dynamic aspects of the search interaction are a key component in many of the

existing models (see, e.g., Chatterjee & Evans, 2004; Akcigit & Liu, 2015; Bryan & Lemus,

2017). While a one-shot game might model reasonably well situations with severe time

constraints, such as the motivating example of developing a COVID-19 vaccine as soon as

possible, we think that incorporating asymmetric information in a dynamic search game is

an important avenue for future research.

Our first main result (Theorem 1) states that a search game admits a (pure) equilib-

rium that yields the first-best social payoff if for any two locations within a player’s cell:

(1) the player and society have the same ordinal ranking over these two locations (ordinal

consistency), and (2) the player always prefers searching in one of these locations alone to

searching in the other location with other players, or to not searching at all (solitary-search

dominance). Taylor (1995); Fullerton & McAfee (1999); Che & Gale (2003); Koh (2017)

present setups of innovation contests in which it is socially optimal to restrict the number

of participating players, because adding a player decreases the incentive of others to exert

costly effort. By contrast, Theorem 1 implies that adding players to a search game with or-

dinally consistent and solitary-search dominant payoffs always improves the maximal social

payoff that can be yielded by an equilibrium. This is so because the first-best social payoff is

(weakly) increasing when players are added. Thus, when the payoffs are ordinally consistent

and solitary-search dominant, it is socially optimal to allow all players to participate. It is

an open question whether this property holds in our setup when we relax the assumptions

of ordinal consistency and solitary-search dominance.

Our second main result shows that the first-best payoff is constrained only by compati-

bility with the information structure. Any outcome in which the number of locations being

searched within any subset of locations does not exceed the sum of players’ capacities over

all cells that intersect that subset, can be induced by a mixture of pure strategy profiles.

A surprising implication of this result is that an alternative setup, in which players can

coordinate fractional search efforts within a location, does not increase the social payoff.
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Appendix

A Application: Games with Intersecting Signals

We say that a search game has κ-intersecting signals if the intersection of any profile of cells

(one for each player) includes at least κ locations. Formally:

Definition 11. Search game G has κ-intersecting signals if for any profile of cells (π1, ..,πn) ∈

Π1 × ...×Πn there are at least κ different locations in π1 ∩ ...∩πn.

Therefore, κ-intersecting signals have the property that each signal of player i has a pos-

itive probability conditional on any profile of signals observed by the other players. Observe

that having 1-intersecting signals is substantially weaker than having independent signals

(i.e., than requiring that the probability that player i observes a signal is independent of

the signals observed by others). The assumption of κ-intersecting signals seems plausible

(especially for κ = 1) in situations like Example 1, if each research lab has a unique expertise

that is, in some sense, separate from all the information that can be obtained by the other

labs.

Our final result states that search games with κ-intersecting signals and capacities of

at most κ have appealing efficiency properties. Namely, such games admit a redundancy-

free strategy profile iff
∑

i∈N Ki · |Πi| ≤ |Ω|, and they admit an exhaustive strategy profile

iff
∑

i∈N Ki · |Πi| ≥ |Ω|. Moreover, this strategy profile is an equilibrium if the payoffs are

solitary-search dominant. Formally:

Proposition 5. Let G be a search game with capacity Ki ≤ κ for every player i ∈ N and with

κ-intersecting signals (resp., and with solitary-search dominant payoffs). Then G admits

1. a redundancy-free strategy profile (resp., equilibrium) iff
∑

i∈N Ki · |Πi| ≤ |Ω|;

2. an exhaustive strategy profile (resp., equilibrium) iff
∑

i∈N Ki · |Πi| ≥ |Ω|.

Sketch of proof; see Appendix B.4 for the formal proof. Let M be the set of players whose

partitions are not trivial. Consider a smaller auxiliary search game created by omitting all

players in N \ M . Since the signals are κ-intersecting, each cell of each player must contain

at least κ · 2|M |−1 locations. Since this number is at least κ · |M |, Corollary 4 implies that

the smaller game admits a redundancy-free strategy profile. If
∑

i∈N Ki · |Πi| ≤ |Ω|, then we

can let the remaining players (with trivial partitions) choose one by one a location that has

not been chosen by other players yet. The resulting strategy profile is redundancy-free in

G. If
∑

i∈N Ki · |Πi| ≥ |Ω|, then there are sufficiently many remaining players (with trivial

partitions) to cover all locations, and hence the resulting strategy profile is exhaustive.
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B Formal Proofs

B.1 Proof of Proposition 1 (Search Games are Weakly Acyclic)

Given a strategy profile s, we define, for any cell πi ∈ Πi of player i, the payoff of πi

as the (interim) expected payoff of player i given that her signal is πi, i.e., ui (s|πi) =
∑

ω∈πi
µ(ω|πi)ui (s|ω). Note that player i is best-responding iff every cell of hers is best-

responding.

Player i has Ki units of capacity, which we index by numbers between 1 and Ki. A

cell-unit of player i is a pair (πi, j) where πi ∈ Πi is a cell, and 1 ≤ j ≤ Ki is a unit index.

We can assume w.l.o.g. that a strategy specifies not only in which locations within πi to

search, but also which specific cell-unit is assigned to each of these locations. Thus, for every

cell-unit α of i, a strategy of i chooses a location or chooses that α be inactive. We can think

of a player as being composed of many “smaller” decision makers, one for each cell of hers,

and of each cell as being composed of even smaller decision makers, one for every cell-unit of

that cell (with the restriction that two cell-units of the same cell cannot search in the same

location). We define the payoff of cell-unit α = (πi, j) of player i as the payoff of its cell

ui (s|πi). Thus, every cell-unit of πi gets the same payoff. Note that the expected reward of

a cell-unit located at ω is µ(ω|πi) · v
ms(ω)
i (ω), and ui (s|πi) equals the sum of the expected

rewards of the active cell-units of πi minus the cost ci of the number of active cell-units of

πi.

Observe that if an inactive cell-unit (πi, j) switches to searching in location ω, it makes

the activation of another cell-unit (πi, j
′) at ω′ (weakly) less attractive than it previously was,

because of increasing marginal costs (namely, the convexity of costs). Similarly, deactivating

a cell-unit makes a second deactivation weakly less attractive.

Given a strategy profile s, if there exists a deviation of a single cell-unit that improves

its own payoff then, by definition, it is also an improvement for its cell. Conversely, let us

show that the existence of an improvement for a cell implies the existence of an improvement

for some cell-unit. Suppose first that the cell improvement consists merely of changing the

location of a few cell-units, without changing the number of active units. Then the cost

remains unchanged, but the overall expected reward has increased. Hence, there must be at

least one cell-unit α whose expected reward has increased by switching from its location ω to

another location ω′ that was not chosen by player i under s. Therefore, switching the location

of α from ω to ω′ is an improvement for α. Next, suppose that activating multiple cell-units

is an improvement. Then there must also exist an improvement consisting of activating only

one of these cell-units, due to the above observation about convex costs. Similarly, if the cell

can improve by deactivating multiple cell-units then one of them can improve by deactivating
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itself.

Overall, we got that a player is best-responding iff all her cells are best-responding iff all

her cell-units are best-responding.

Lemma 1. Suppose that B is a set of cell-units (of various players), α /∈ B is another cell-

unit, and s1 is a strategy profile under which every member of B is best-responding. Then

there exists a finite sequence of cell-unit improvements s1, . . . , sT such that every member of

B ∪{α} is best-responding under sT .

Proof. For convenience of description, let us imagine that all the inactive cell-unit of all

players stay in some place that we denote by λ. The set Ω ∪ {λ} of the locations plus λ

will be called the set of sites. With this terminology, we can say that a strategy of player i

chooses a site for every cell-unit of i (and λ is the only site where more than one cell-unit of

the same player can be placed).

In what follows, whenever we mention cell-units, it only refers to members of B ∪ {α}.

Note that the site of all other cell-units will remain fixed along the sequence.

Suppose that α is not best-responding in s1; otherwise we are done. Let α switch from

its current site θ1 to another site θ2 that is a best-response. The new strategy profile is s2.

Now α is best-responding, and we claim that any other cell-unit β of the same cell is still

best-responding. We note first that β is not placed in θ1 (since β was best-responding under

s1), and w.l.o.g. it is also not in θ2 (otherwise, it is currently best-responding, since α is).

Next we note that β cannot improve by switching to θ1; otherwise, simply switching β to θ2

would have been an improvement earlier, in s1.

Suppose first that θ1 and θ2 are both locations. Then, since θ2 is now occupied, and

the preference relation between sites other than θ1 and θ2 has not changed (as the cost has

not changed), β is indeed still best-responding. Next suppose that θ2 = λ. Then, by the

convex costs observation, the attractiveness of λ has decreased by the switch from θ1 to

θ2 = λ, hence β still cannot improve by switching to λ. And although the cost has changed,

the relation between locations other than θ1 has not changed; hence, β is best-responding.

Finally, suppose that θ1 = λ. Then the relation between locations other than θ2 has not

changed; hence, β is best-responding.

Phase I In s2, we add a dummy player at the site θ1, denoting the resulting strategy

profile by σ2 (for a profile σt that includes the dummy player, st will denote the same profile

without the dummy). Then Phase I begins: at every stage of Phase I, one cell-unit who

is currently not best-responding switches to a best-response site. This continues as long as

there are non-best-responding cell-units, unless someone switches to θ1, in which case Phase

I immediately terminates.
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As we will see, Phase I begins by some cell-unit switching from θ2 to another site θ3,

then another cell-unit switching from θ3 to another site, etc. More specifically, we claim that

under any strategy profile σ = σt encountered during Phase I,

(a) there exists exactly one site θ that is chosen by one more cell-unit than under s1, i.e.,

mσ(θ) = ms1(θ)+1, while for every other site θ′, mσ(θ′) = ms1(θ′) (we call θ “the plus site”);

and

(b) for any cell-unit β whose current site is some θ with mσ(θ) > 0, and who can also choose

another site θ′, if there were ms1(θ) cell-units at θ (including β itself) and ms1(θ′) cell-units

at θ′, then β would weakly prefer θ to θ′.

Property (b) roughly says that if β is not best-responding, it is only because β is in the plus

site.

When Phase I starts, in σ2, property (a) holds and α has just switched to the plus site

θ2. Since all cell-units of the cell of α were best-responding in s2 (i.e., without the dummy)

they obey property (b) in σ2 (in particular, α is currently best-responding when α’s current

site is the plus site, let alone when it is not the plus site). As for cell-units of other cells,

they obeyed (b) in s1 and, therefore, they still do, as the switch of α or the addition of the

dummy do not affect that.

The claim is proved by induction from one stage to the next: suppose that cell-unit β

improves on stage t by switching from θ to θ′. Since β could improve, (b) implies that θ

must have been the plus site in stage t. Therefore, the plus will move with β from θ to θ′,

and (a) will still hold in stage t + 1. Note that, importantly, if the plus site is λ in some

stage then every cell-unit is best-responding, since the number of partners does not affect

the reward in λ, which simply equals 0; hence, Phase I will end on that stage.

As for property (b), β best-responds in θ′, and other cell-units of β’s cell obeyed (b)

on stage t, implying that they were best-responding on that stage. It follows, by the same

argument we used above for t = 1 (i.e., the transition from s1 to s2), that they also best-

respond on stage t + 1. Therefore, they obey (b); and cell-units of other cells still obey (b),

as they were not affected by β’s switch.

To see that Phase I cannot go on forever, recall first that it ends if the plus site is λ.

Otherwise, on each stage of Phase I some cell-unit β switches from location ω to location ω′,

and the costs always remain fixed. Since this switch is an improvement, it strictly increases

the expected reward of β. Now ω′ becomes the plus site, and afterwards the expected reward

of β when placed in ω′ can never be lower than it is now, while it can be higher if the plus

is somewhere else (or if β improves again).11 Thus, the expected reward of β will never go

11One can verify that, in fact, β will not switch again during Phase I. We employ a different argument
here, in order to strengthen the analogy with Phase II.

36



down to the level it was at before the switch. Hence, Phase I cannot turn into a cycle, and

since there are only finitely many strategy profiles, Phase I must eventually end.

Recall that Phase I terminates once someone switches to θ1. Therefore, the plus site

cannot be θ1 during this phase except maybe at the end, and hence nobody switches from

θ1 during Phase I. Therefore, all the switches are improvements not only in the game with

the dummy added at θ1, but also in the original game.

Denote the strategy profile at the end of Phase I by σ∗. Now we remove the dummy

from θ1. Suppose first that Phase I ended because somebody has just switched to θ1. Then,

the removal of the dummy means that now there is no plus site at all, and (b) implies that

every cell-unit best-responds under s∗ (recall that s∗ is σ∗ without the dummy player), and

we are done.

Phase II Otherwise, Phase I ended at σ∗ because everyone was best-responding (when the

dummy was still at θ1). Starting from s∗, we define Phase II analogously to Phase I (while

Phase I more or less described a process of restabilizing the system after one cell-unit is

added, Phase II describes restabilizing it after one cell-unit is removed), as follows. At every

stage, as long as there are cell-units who are not best-responding, choose a cell, and choose

a switch of a single cell-unit that would yield the highest increase in that cell’s payoff.

As we will see, Phase II begins by some cell-unit switching to θ1 from some site θ′, then

another cell-unit switching to θ′ from another site, etc. More specifically, we claim that

under any strategy profile s = st encountered during Phase II,

(a’) there exists exactly one site θ with ms(θ) = mσ∗(θ) − 1, while for every other site θ′,

ms(θ
′) = m̂σ∗(θ′) (we call θ “the minus site”); and

(b’) for any cell-unit β whose current site is some θ and who can also choose site θ′, if there

were mσ∗(θ) cell-units at θ (including β) and mσ∗(θ′) cell-units at θ′, then β would weakly

prefer θ to θ′.

The analysis is almost analogous to that of Phase I. When Phase II starts, in the profile

s∗, (a’) holds and θ1 is the minus site. (b’) also holds because everyone was best-responding

under σ∗. The claim is proved by induction from one stage to the next: suppose that cell-

unit β improves on stage t by switching from θ to θ′. Improvement implies, by (b’), that θ′

must have been the minus site in stage t. Therefore, the minus will move from θ′ to θ, and

(a’) will still hold in stage t + 1. Note that if the minus site is λ in some stage, then every

cell-unit is best-responding and Phase II will end on that stage.

Let πi be the cell of β. Any cell-unit of another cell still obeys (b’), as it was not affected

by β’s switch. Since the switch of β from θ to θ′ was, by definition of Phase II, a best

cell-unit switch for πi, β cannot improve again. Therefore, β obeys (b’), since β is not in the
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minus site. Let γ be another cell-unit of πi. Note first that γ cannot improve by switching

to the current minus site θ; otherwise, switching γ to θ′ earlier, on stage t, would have been

a better switch than the one chosen.

We have seen that θ′ 6= λ. If also θ 6= λ, then the preference relation between sites other

than θ and θ′ has not changed, and, therefore, γ still obeys (b’). Otherwise, θ = λ. Then

if γ is placed in λ it still obeys (b’), because the attractiveness of λ has increased, by the

convex costs observation; and if γ is placed in some location then γ still obeys (b’), because

the relation between locations other than θ′ has not changed.

When Phase II ends, every cell-unit will be best-responding. To see that Phase II must

eventually end, we employ the same argument as in Phase I, noting that right after some

cell-unit β switches to location ω′, ω′ is not the minus site, and, therefore, the expected

reward of β when placed in ω′ can never be lower than it is now.

To prove weak acyclicity, start from any strategy profile. By applying Lemma 1 induc-

tively we obtain a sequence of cell-unit improvements that lead to a profile under which one

cell-unit is best-responding, then two, and so on. Eventually we get a profile under which

every cell-unit is best-responding, hence an equilibrium.

B.2 Proof of Prop. 3 (Any f ∈ FC Can Be Induced by τ ∈ T )

Denote Π̂ = {(i;πi) : i ∈ N,πi ∈ Πi}. We construct a flow network, namely, a directed graph

D = (V,E) with vertices V and edges E ⊂ V ×V , and a flow capacity κ(v1,v2) ≥ 0 for every

edge (v1,v2) (illustrated beside the sketch of this proof, in Figure 7). There are two special

vertices, a source s and a sink t. The other vertices in our network are the locations Ω and

the cells Π̂ of the game. There is an edge from s to every (i;πi) ∈ Π̂, where κ(s,(i;πi)) = Ki,

and an edge from every location ω ∈ Ω to t, where κ(ω,t) = f(ω). Also, there is an edge

from a cell (i;πi) ∈ Π̂ to a location ω iff πi contains ω, and the flow capacity κ of such edges

is infinite (for a textbook presentation of flow networks; see, e.g., Cormen et al., 2009, Ch.

26).

A cut of D is a subset of edges C ⊂ E, such that if all the edges of C are removed then

there exists no path between s and t. Suppose that C is a minimal cut, i.e., a cut whose sum

of capacities is minimal. Then C certainly does not include any edge between a cell and a

location, as those edges have an infinite flow capacity. Let Q = {ω ∈ Ω : (ω,t) ∈ C} denote

the locations that the cut separates from t. Denote W = Ω \ Q. Then C must include all

the edges {(s,(i;πi)) : i ∈ N,πi ∩ W 6= ∅}; otherwise there would still exist a path from s to
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t. Hence, the total capacity of C equals

∑

ω∈Q

κ(ω,t)+
∑

i∈N

∑

πi∩W 6=∅

κ(s,(i;πi)) =
∑

ω∈Q

f(ω)+
∑

i∈N

∑

πi∩W 6=∅

Ki =

∑

ω∈Q

f(ω)+
∑

i∈N

Ki · |{πi ∈ Πi : πi ∩W 6= ∅}| ≥
∑

ω∈Q

f(ω)+
∑

ω∈W

f(ω) =
∑

ω∈Ω

f(ω).

Therefore, the cut that consists of all edges of type (ω,t), whose total capacity equals
∑

ω∈Ω f(ω), is minimal.

A flow in D is a function ϕ : E → R
+ such that: (i) the flow never exceeds the capacity,

i.e., ϕ(e) ≤ κ(e), and (ii) the overall flow outgoing from s, namely, the sum of flows on edges

outgoing from s, equals the overall flow incoming to t, namely, the sum of flows on edges

incoming to t (call this quantity the value of the flow), and for any other vertex the incoming

flow equals the outgoing flow. The max-flow min-cut theorem (Cormen et al., 2009, p. 723,

Theorem 26.6) states that the value of the maximal flow equals the total capacity of the

minimal cut; therefore, D admits a flow ϕ of value
∑

ω∈Ω f(ω), and so it must be the case

that ϕ(ω,t) = f(ω) for every ω ∈ Ω.

Now define a coordinated-search profile τ by letting τi(πi,ω) = ϕ((i;πi),ω) for every

i ∈ N ,πi ∈ Πi, and ω ∈ πi. To see that this is a coordinated-search profile we verify that for any

πi,
∑

ω∈πi
τi (πi,ω) =

∑

ω∈πi
ϕ((i;πi),ω) = ϕ(s,(i;πi)) ≤ κ(s,(i;πi)) = Ki (where the second

equality is due to the equality of the outgoing and the incoming flow). To see that τ induces

f , we verify that for any ω, it is the case that
∑

i∈N τi (πi(ω),ω) =
∑

i∈N ϕ((i;πi(ω)),ω) =

ϕ(ω,t) = f(ω).

B.3 Proof of Proposition 4 (Any fτ is Feasible)

A nonnegative matrix A is doubly stochastic (resp., doubly substochastic) if the sum of the

elements in each row and in each column is equal to (resp., at most) one, i.e., if
∑

j Aij = 1

(resp.,
∑

j Aij ≤ 1) for each row i and
∑

i Aij = 1 (resp.,
∑

i Aij ≤ 1) for each column j. Note

that any doubly stochastic matrix must be a square matrix (but this is not the case for

a doubly substochastic matrix). A doubly stochastic (resp., doubly substochastic) matrix

is a permutation (resp., subpermutation) matrix if it includes only zeros and ones, i.e., if

Aij ∈ {0,1} for any i, j. Note that a permutation (resp., subpermutation) matrix includes

exactly (resp., at most) one non-zero value in each row and in each column, and this value is

equal to one. The Birkhoff–von Neumann theorem states that any doubly stochastic matrix

can be written as a convex combination of permutation matrices. Formally:

Theorem 3 (Birkhoff–von Neumann Theorem). Let A be a doubly stochastic matrix. Then
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there exists a finite set of permutation matrices P 1, ...,P K such that A =
∑

k wk ·P k, where

wk ≥ 0 for each k and
∑

k wk = 1.

We present a simple extension of Thm. 3 that states that any doubly substochastic

matrix can be written as a convex combination of subpermutation matrices.12

Lemma 2. Let A be a doubly substochastic matrix. Then there exists a finite set of subper-

mutation matrices Q1, ...,QK s.t. A =
∑

k wk ·Qk, where wk ≥ 0 for each k and
∑

k wk = 1.

Proof. Let I (resp., J) be the number of rows (resp., columns) in the matrix A. We construct

a square doubly stochastic matrix B with I +J rows and columns by merging 4 submatrices

(as illustrated in Figure 12): (1) the matrix A (with I rows and J columns) in the top-left

part of B, (2) a J × J diagonal matrix in the bottom-left part of B, where each diagonal

cell completes the values in each column of A to one, (3) an I × I diagonal matrix in the

top-right part of B, where each diagonal cell completes the values in each row of A to one,

and (4) the J × I matrix AT (the transpose of A) in the bottom-right part of B. It is

immediate that B is a doubly stochastic matrix. By Theorem 3 there exists a finite set of

permutation matrices P 1, ...,P K (with I +J rows and columns) such that B =
∑

k wk ·P k,

where wk ≥ 0 for each k and
∑

k wk = 1. Let Qk be a submatrix of P k with the first I rows

and J columns. Then it is immediate that each Qk is a subpermutation matrix and that

A =
∑

k wk ·Qk.

Figure 12: Illustration of How to Construct the Square Matrix B

12One can show that Lemma 2 is implied by the extension of the Birkhoff–von Neumann Theorem presented
in Budish et al. (2013). For completeness, we provide a self-contained proof of the lemma.
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Next we rely on Lemma 2 to prove Proposition 4. Let τ be a coordinated-search profile.

Similarly to the proof of Proposition 1, we define a cell-unit as a tuple (i, j,πi), where i ∈ N

is a player, j ∈ {1, ...,Ki} is an index corresponding to one unit of capacity of player i, and

πi ∈ Πi is a cell of player i. Let Π̂ denote the set of all cell-units with a typical element π̂,

let Π̂i denote the subset of cell-units that correspond to player i, and let Π̂i,j denote the

subset of cell-units that correspond to capacity unit j ∈ {1, ...,Ki} of player i. We write

ω ∈ π̂ = (i, j,π) if ω ∈ π.

A coordinated-search action profile (of the cell-units) is a function τ ′ that assigns to

each cell-unit (i, j,π) an element of D (π,1) (recall that an element of D (π,1) is a function

η : π → [0,1] such that
∑

ω∈π η (ω) ≤ 1). The coordinated-search profile τ can be repre-

sented as an equivalent coordinated-search action profile (of the cell-units) τ ′ that satisfies
∑Ki

j=1 τ ′ ((i, j,πi) ,ω) = τi (πi,ω) for each πi ∈ Πi and ω ∈ Ω. The equivalent coordinated-search

action profile τ ′ can be represented as a
∣

∣

∣Π̂
∣

∣

∣×|Ω| nonnegative matrix C as follows:

C(i,j,πi),ω =











τ ′ ((i, j,πi) ,ω) ω ∈ πi ∈ Πi

0 otherwise.

Observe that the sum of each row in C is at most one, i.e.,
∑

ω∈Ω Cπ̂,ω ≤ 1, but the sum of a

column might be greater than one. Let A be the matrix derived from C by decreasing the

values of the lower cells within columns whose sum is greater than one, such that the sum

of each column is at most one. Formally (where we write π̂′ < π̂ if the row of π̂′ is higher

than the row of π̂ in the matrix C):

Aπ̂,ω =























Cπ̂,ω
∑

π̂′≤π̂ Cπ̂′,ω ≤ 1

1−
∑

π̂′<π̂ Cπ̂′,ω
∑

π̂′<π̂ Cπ̂′,ω ≤ 1 <
∑

π̂′≤π̂ Cπ̂′,ω

0
∑

π̂′<π̂ Cπ̂′,ω > 1.

Observe that A is a doubly substochastic matrix (i.e., the sum of each row and of each column

is at most one), and that the coordinated-search action profile corresponding to A induces the

same mixed outcome as τ . By Lemma 2, there exists a finite set of subpermutation matrices

Q1, . . . ,QK such that A =
∑

k wk · Qk, where wk ≥ 0 for each k and
∑

k wk = 1. Further

observe that each subpermutation matrix Qk corresponds to the cell-unit representation of

a pure strategy profile sk, which implies that τ induces the same mixed outcome as the

correlated strategy profile σ =
∑

k wk · sk.
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B.4 Proof of Proposition 5 (Intersecting Signals)

Let M = {i ∈ N : |Πi| ≥ 2} be the set of players whose partitions are not trivial (i.e., players

that have at least two cells in their partition), and denote m = |M |. For any player i ∈ N ,

location ω ∈ Ω, and any tuple of cells (πj)j 6=i, the profile of n cells (πi (ω) ,(πj)j 6=i) has at least

κ locations in its intersection. Thus, πi (ω) contains at least κ ·
∏

j∈N\i |Πj | such intersection

points, and

κ ·
∏

j∈N\i

|Πj | = κ ·
∏

j∈M\i

|Πj | ≥ κ ·2m−1.

Hence, |πi (ω)| ≥ κ ·2m−1. Suppose first that M 6= ∅. Now consider a smaller, auxiliary search

game created by omitting all players in N \ M , leaving only members of M to play. Since

κ ·2m−1 ≥ κ ·m and Ki ≤ κ, Corollary 4 implies that the smaller game admits a redundancy-

free strategy s
M

. If M = ∅ then s
M

is empty and the proof proceeds the same.

Under s
M

,
∑

i∈M Ki · |Πi| distinct locations are searched. Going back to the original

game, we define a strategy profile s by complementing s
M

with strategies of the members

of N \ M as follows. We let them choose, one by one (within their single cell, namely, the

whole Ω), any Ki locations that have not been chosen by other players yet, as long as there

are such.

Case 1: Assume that
∑

i∈N Ki · |Πi| ≤ |Ω|. This implies that this procedure continues until

all members of N \M have chosen. We end up with a strategy profile s that is redundancy-

free. Observe that s is also exhaustive iff
∑

i∈N Ki · |Πi| = |Ω|, and that if
∑

i∈N Ki · |Πi| < |Ω|

then the game does not admit an exhaustive strategy profile (as the players can search in at

most
∑

i∈N Ki · |Πi| locations).

Case 2: We are left with the case of
∑

i∈N Ki · |Πi| > |Ω| in which the procedure cannot

be completed, as at some stage all the locations will already have been chosen before all the

players have been able to choose. Let the remaining players choose arbitrarily. We end up

with an exhaustive strategy profile s.

If the payoffs are solitary-search dominant then, either when s is redundancy-free or when

s is exhaustive, Corollary 2 implies that G also admits such an equilibrium.

References

Ackermann, Heiner, Röglin, Heiko, & Vöcking, Berthold. 2009. Pure nash equilibria in

player-specific and weighted congestion games. Theoretical Computer Science, 410(17),

1552–1563.

42



Akcigit, Ufuk, & Liu, Qingmin. 2015. The role of information in innovation and competition.

Journal of the European Economic Association, 14(4), 828–870.

Aumann, Robert J. 1976. Agreeing to disagree. The Annals of Statistics, 4(6), 1236–1239.

Ben-Zwi, Oren. 2017. Walrasian’s characterization and a universal ascending auction. Games

and Economic Behavior, 104, 456–467.

Berman, Abraham, & Plemmons, Robert J. 1994. Nonnegative Matrices in the Mathematical

Sciences. Vol. 9. SIAM.

Birkhoff, Garrett. 1946. Tres observaciones sobre el algebra lineal. Universidad Nacional de

Tucumán, 5, 147–154.

Blonski, Matthias. 2005. The women of cairo: Equilibria in large anonymous games. Journal

of Mathematical Economics, 41(3), 253–264.

Bronfman, Slava, Alon, Noga, Hassidim, Avinatan, & Romm, Assaf. 2018. Redesigning the

israeli medical internship match. ACM Transactions on Economics and Computation,

6(3–4), 1–18.

Bryan, Kevin A., & Lemus, Jorge. 2017. The direction of innovation. Journal of Economic

Theory, 172, 247–272.

Budish, Eric, Che, Yeon-Koo, Kojima, Fuhito, & Milgrom, Paul. 2013. Designing random

allocation mechanisms: Theory and applications. American Economic Review, 103(2),

585–623.

Chatterjee, Kalyan, & Evans, Robert. 2004. Rivals’ search for buried treasure: Competition

and duplication in r&d. RAND Journal of Economics, 35(1), 160–183.

Che, Yeon-Koo, & Gale, Ian. 2003. Optimal design of research contests. American Economic

Review, 93(3), 646–671.

Chen, Yiling, Nissim, Kobbi, & Waggoner, Bo. 2015. Fair information sharing for treasure

hunting. Pages 851–857 of: Twenty-Ninth AAAI Conference on Artificial Intelligence.

Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, & Stein, Clifford. 2009. Intro-

duction to Algorithms. MIT Press: Cambridge, MA.

Erat, Sanjiv, & Krishnan, Vish. 2012. Managing delegated search over design spaces. Man-

agement Science, 58(3), 606–623.

43



Fershtman, Chaim, & Rubinstein, Ariel. 1997. A simple model of equilibrium in search

procedures. Journal of Economic Theory, 72(2), 432–441.

Ford, LR, & Fulkerson, DR. 1956. Maximal flow through a network. Canadian Journal of

Mathematics, 8, 399–404.

Fullerton, Richard L, & McAfee, R Preston. 1999. Auctioning entry into tournaments.

Journal of Political Economy, 107(3), 573–605.

Hall, P. 1935. On representatives of subsets. Journal of the London Mathematical Society,

1(1), 26–30.

Kleinberg, Jon, & Oren, Sigal. 2011. Mechanisms for (mis)allocating scientific credit. Pages

529–538 of: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Com-

puting.

Koh, Youngwoo. 2017. Incentive and sampling effects in procurement auctions with endoge-

nous number of bidders. International Journal of Industrial Organization, 52, 393–426.

Konrad, Kai A. 2014. Search duplication in research and design spaces: Exploring the role

of local competition. International Journal of Industrial Organization, 37, 222–228.

Letina, Igor. 2016. The road not taken: competition and the R&D portfolio. The RAND

Journal of Economics, 47(2), 433–460.

Letina, Igor, & Schmutzler, Armin. 2019. Inducing variety: A theory of innovation contests.

International Economic Review, 60(4), 1757–1780.

Liu, Qingmin, & Wong, Yu Fu. 2019. Strategic exploration. mimeo.

Loury, Glenn C. 1979. Market structure and innovation. Quarterly Journal of Economics,

93(3), 395–410.

Milchtaich, Igal. 1996. Congestion games with player-specific payoff functions. Games and

Economic Behavior, 13(1), 111–124.

Monderer, Dov, & Shapley, Lloyd S. 1996. Potential games. Games and Economic Behavior,

14, 124–143.

Selten, R. 1975. Reexamination of the perfectness concept for equilibrium points in extensive

games. International Journal of Game Theory, 4(1), 25–55.

44



Taylor, Curtis R. 1995. Digging for golden carrots: An analysis of research tournaments.

The American Economic Review, 85(4), 872–890.

Tierney, Ryan. 2019. The problem of multiple commons: A market design approach. Games

and Economic Behavior, 114, 1–27.

Von Neumann, John. 1953. A certain zero-sum two-person game equivalent to the optimal

assignment problem. Contributions to the Theory of Games, 2(0), 5–12.

45


	Introduction 
	Model
	Socially Optimal Equilibrium
	Search Games are Weakly Acyclic
	Existence of a Socially Optimal Equilibrium 
	Necessity of All Assumptions in Theorem 1
	Implications for Innovation Contests

	Feasible Outcomes and Socially Optimal Payoff
	Coordinated Search

	General Signals
	Adaptations to the Model
	Equivalence Result with Weakly Deterministic Signals
	Non-monotone Value of Information
	Counterexamples without Weakly Deterministic Signals

	Conclusion
	Application: Games with Intersecting Signals
	Formal Proofs
	Proof of Proposition 1 (Search Games are Weakly Acyclic)
	Proof of Prop. 3 (Any fFC Can Be Induced by T) 
	Proof of Proposition 4 (Any f is Feasible)
	Proof of Proposition 5 (Intersecting Signals)


