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Abstract

An equilibrium is communication-proof if it is unaffected by new opportunities to com-

municate and renegotiate. We characterize the set of equilibria of coordination games with

pre-play communication in which players have private preferences over the feasible coordinated

outcomes. Communication-proof equilibria provide a narrow selection from the large set of

qualitatively diverse Bayesian Nash equilibria in such games. Under a communication-proof

equilibrium, players never miscoordinate, play their jointly preferred outcome whenever there is

one, and communicate only the ordinal part of their preferences. Moreover, such equilibria are

robust to changes in players’ beliefs, interim Pareto efficient, and evolutionarily stable.

Keywords: cheap talk, communication-proofness, renegotiation-proofness, secret handshake, in-

complete information, evolutionary robustness. JEL codes: C72, C73, D82

1 Introduction

We characterize communication-proof equilibria for a class of coordination games with pre-play

cheap-talk communication in which all agents have private information about what action they would

prefer to coordinate on. A Bayesian Nash equilibrium is communication-proof if, after the pre-play
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cheap talk and given the information that this reveals, a new opportunity for additional communica-

tion does not allow the players to jointly deviate to a Pareto-improving equilibrium.1

We are interested in two typical kinds of situations for which communication-proofness is an

appropriate solution concept, albeit for different reasons in the two situations. The first kind of sit-

uation is one in which agents are sophisticated and keep (strategically) communicating until they

reach a mutually beneficial solution. Communication-proofness is defined to capture this idea, sim-

ilarly to the notions of renegotiation-proofness in contract theory (Hart and Tirole, 1988) or in the

repeated games literature (Farrell and Maskin, 1989). As an example, consider a situation of two

firms trying to collude by implementing a market-sharing agreement by which one firm sells in cer-

tain regions whereas the rival sells in other regions, and each firm has private information about

which regions they prefer to serve.

The second kind of situation is one in which communication is feasible and in which behavior

is governed by a long-run learning (or evolutionary) process. Communication-proofness here cor-

responds to a requirement of evolutionary stability at an interim level, when agents can experiment

with new behavior that is contingent on the use of additional communication (Robson, 1990). As

an example consider the problem of two pedestrians suddenly finding themselves face-to-face and

trying to get past each other, when they have private information about the direction they want to

take after the encounter.

The standard solution concept of Bayesian Nash equilibrium is not helpful in predicting whether

players can achieve coordination in such incomplete-information settings, how efficient it is if they

do, and how communication is used to achieve it. Coordination games with pre-play communication

have a wide range of qualitatively very different equilibria. Among these are babbling equilibria with

a high likelihood of miscoordination that are evolutionarily stable in the absence of communication,

and equilibria in which agents reveal some information about the intensity of their preferences and

yet often miscoordinate.

Casual observation suggests that players manage to coordinate in at least some such situations.

Considering an instance of our first example, we note that firms “competing” in the 1997 series of

regional FCC auctions allocating licenses for slices of the electromagnetic spectrum were able to

use the very limited public communication possibilities of the trailing digits of their bids to reveal

information on their preferred regions in order to successfully coordinate to collude (Cramton and

Schwartz, 2000).2

Players also typically coordinate effectively in our second example: Pedestrians typically are

1The notion of communication-proofness was introduced by Blume and Sobel (1995) in their study of sender-receiver

games with one-sided private information.
2In fact, the result of this paper that communication that relies on each player simultaneously sending either 0 or 1

is all that is needed for successful coordination provides another argument against allowing even a brief form of explicit

communication between oligopolistic competitors.
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able to avoid bumping into each other, even though there is no uniform social norm such as “always

stay on the right” as there is for cars (Young, 1998). Moreover, pedestrians often use brief nonverbal

communication to signal their preferred direction (e.g., a slight movement to the left or right, a tilt

of the head, a glance in a certain direction), and the (coordinated) direction in which they pass each

other depends on this communication.3

We show that communication-proof equilibria have a specific structure that is consistent with

these casual observations. We show that a strategy is a communication-proof equilibrium if and

only if it satisfies the following three independent and easy to verify properties: players never mis-

coordinate, they play their jointly preferred outcome whenever there is one, and they communicate

only the ordinal part of their preferences (i.e., communicate their preferred outcome without reveal-

ing any information on the intensity of their preferences).

The equilibria that satisfy these properties have a simple structure. In all these equilibria com-

munication induces the agents to endogenously face games in which their ordinal preferences are

common knowledge. In those cases in which agents agree about the optimal joint action, they co-

ordinate efficiently, i.e., on the action that both prefer. In cases in which they disagree, they still

coordinate, but, as the coordinated outcome is not determined by the players’ cardinal preferences,

this coordination is generally not ex-ante efficient.

Finally, we show that communication-proof equilibria do not depend on the distribution of pri-

vate preferences or on the exact timing of the renegotiation (relative to the communication), and

are thus robust to changes in players’ (first- or higher-order) beliefs, interim Pareto efficient, and

evolutionarily stable in the traditional sense. In particular, communication-proof equilibrium strate-

gies remain communication-proof even in setups in which the players’ distributions of types are

interdependent.

Relationship to the literature Game theorists have long recognized that coordination is an im-

portant aspect of successful economic and social interaction, that it requires an explanation even in

complete-information coordination games, and that it does not occur in all circumstances.4 One pos-

sible explanation for some, fairly simple, examples of coordination is the concept of a focal point,

due to Schelling (1960), which is, loosely speaking, a strategy profile that jumps out at players as

clearly the right way to play a game. Perhaps one of the situations in which we most plausibly ex-

pect coordination is when people play the same coordination game many times with different people

and there is some evolutionary (or learning) process. This approach is already present in the “mass

3The example is motivated by Goffman (1971, Chapter 1, p. 6): “Take, for example, techniques that pedestrians

employ in order to avoid bumping into one another. [...] There are an appreciable number of such devices; they are

constantly in use and they cast a pattern on street behavior. Street traffic would be a shambles without them.”
4 Evidence for miscoordination in lab experiments is reported by, e.g., Van Huyck et al. (1990), Mehta et al. (1994),

and Blume and Gneezy (2010). According to Farrell and Klemperer (2007, Section 3.4) miscoordination also occurs

regularly in real-life economic interactions.
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action” interpretation of equilibrium given by Nash (1950), and then taken up more formally in

Maynard Smith and Price (1973) who define the notion of evolutionary stability.5 It is well known

that all pure equilibria in coordination games are evolutionarily stable (whereas mixed equilibria are

not stable). This literature thus supports the view that while play in the long run will be coordinated,

it is not necessarily efficiently coordinated.6

Another explanation for coordination is that it is achieved through communication, even if it is

simply cheap talk as in Crawford and Sobel (1982). Early seminal contributions in this direction are

Farrell (1987) and Rabin (1994). Communication alone, however, only adds equilibria: the equi-

libria of the game without communication “survive” the introduction of communication as babbling

equilibria. The problem, therefore, of how play focuses on the coordinated equilibria does not go

away, and one can again appeal to one of the above-mentioned criteria to explain why this might

happen.

There is a literature that studies the evolutionary outcome of coordination games with cheap talk,

initiated by Robson (1990). If play is stuck in an inferior equilibrium, a small group of experimenting

agents can recognize each other by means of a “secret handshake” and play Pareto-optimal strategy

with each other and the inferior equilibrium strategy with agents who are not part of this group,

thereby outperforming the agents outside the group.

All the above-mentioned literature (on coordination) focuses on complete-information games.

However, one of the main reasons why people communicate is that they have privately known pref-

erences that they feel useful to share at least partially before finally choosing actions, as seen in the

above examples. One of the main stumbling blocks of studying how communication helps achieve

coordination in the presence of incomplete information is that it “requires overcoming formidable

multiple-equilibrium problems” (Crawford and Haller, 1990, p. 592).

We identify Blume and Sobel’s (1995) notion of communication-proof equilibrium, adapted

to our two-sided private information setting, as the appropriate extension of the secret-handshake

argument to incomplete-information games. With our characterization result we then show that the

plausible refinement of communication-proof equilibria removes this multiplicity problem to a large

extent, in the sense that communication-proof equilibria, in contrast to Bayesian Nash equilibria,

make very similar predictions.

Baseline model and extensions While we take into account incomplete information in the co-

ordination problem, we try to keep the baseline model tractable by simplifying other aspects of

the problem. We restrict attention in the baseline model to (incomplete information) two-player

5See, Weibull (1995) and Sandholm (2010) for a textbook treatment of evolutionary game theory.
6Kandori et al. (1993) and Young (1993) show that in the very long run and under persistent low-probability errors an

evolutionary (learning) process leads to the risk-dominant, not necessarily Pareto-dominant, pure strategy equilibrium

in two-by-two coordination games.
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two-action (coded as left and right) coordination problems, in which every type has a coordination

concern. Different types only differ in how much they prefer coordination on one action over the

other one. Players can communicate only once before the game is played.

Sections 2.1 and 8 provide a series of extensions and robustness checks of our baseline model.

First, we show that all our results hold for any length of pre-play communication. Second, we show

that all our results hold for all two by two incomplete information coordination games, in which for

all feasible types the preferred coordinated action is also the risk-dominant action (i.e., the best reply

against an opponent who plays each action uniformly; see Harsanyi and Selten, 1988). Example 2

demonstrates that without this assumption there can be additionalcommunication-proof equilibria,

in which players fail to coordinate after some messages. Next, we extend our key results to general

(possibly asymmetric) coordination games, which might involve more than two players and more

than two actions. Finally, we study a variant of our baseline model in which a few types have

dominant actions. We show that in this setup, there is a unique communication-proof equilibrium

strategy among the strategies satisfying our three key properties (the identity of this unique strategy

depends on the distribution of types with dominant actions).

Structure Section 2 presents our baseline model. Section 3 defines Bayesian Nash equilibria and

the three key properties that communication-proof equilibria have. Section 4 defines the concept

of communication-proofness appropriately adapted to our incomplete-information strategic setting.

Section 5 presents the main result and a sketch of its proof. Section 6 discusses the efficiency prop-

erties of communication-proof equilibria. Section 7 discusses additional notions of evolutionary

stability beyond the secret-handshake stability implied by communication-proofness. Section 8 pro-

vides a series of robustness checks and extensions. Section 9 concludes. The formal proofs are

presented in the online appendices.

2 Model

We consider a setup in which two agents with private idiosyncratic preferences play a two-action

coordination game that is preceded by pre-play cheap talk.

Players and types There are two players, each of which can choose one of two actions, L and R.

Each player has a privately known “value” or “type.” The two players’ values are independently

drawn from a common atomless distribution with a continuous cumulative distribution function F

with a full support on the unit interval U = [0,1] and with density f (i.e., f (u)> 0 for each u ∈U).7

7Allowing distributions without full support induces a minor difference in our results: in this setup communication-

proofness implies binary communication (as defined in Sec. 3) only of messages that are used with positive probability,
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Payoff matrix For any realized pair of types, u and v, the players play a coordination game given

by the following payoff matrix, where the first entry is the payoff of the player of type u (choosing

row) and the second entry is the payoff of the player of type v (choosing column).

Table 1: Payoff Matrix of the Coordination Game

Type v

L R

Type u
L 1-u, 1-v 0, 0

R 0, 0 u, v

We call this game the coordination game without communication and denote it by Γ.

Interpretation of the model and the motivating examples In the example of two firms trying to

collude by market-sharing, choosing the same action corresponds to dividing the market such that

each firm is a monopolist in one of the two regions, and choosing different actions corresponds to

the firms competing in the same region, which yields a low profit normalized to zero. A firm’s type

u corresponds to how profitable it is for the firm to be a monopolist in one region relative to being

one in the other region.

In the second motivating example of pedestrians suddenly finding themselves face to face and

trying to get past each other, each action corresponds to the direction in which the pedestrians turn

to avoid bumping into each other. When both pedestrians choose the same side (say, each pedestrian

chooses her left), the pedestrians do not bump into each other, whereas when they choose different

sides they do bump into each other, in which case they get a low payoff normalized to zero. A

pedestrian’s type reflects her private preference for the direction in which she would like to turn to

avoid a collision due to the direction she plans to take after the encounter. That is, a type u > 1/2

corresponds to a pedestrian who plans to head right after the encounter, and thus choosing R is more

convenient than choosing L as it induces a shorter walking path.

Pre-play communication After learning their type, but before playing this coordination game, the

two players each simultaneously send a publicly observable message from a finite set of messages

M (satisfying 4 ≤ |M|< ∞), where ∆(M) is the set of all probability distributions over messages in

M. We assume that messages are costless. We call the game, so amended, the coordination game

with communication and denote it by 〈Γ,M〉.

Strategies A player’s (ex-ante) strategy in the coordination game with communication is then a

pair σ = (µ,ξ ), where µ : U → ∆(M) is a (Lebesgue measurable) message function that describes

whereas with full support it implies binary communication also of unused messages.
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which (possibly random) message is sent for each possible realization of the agent’s type, and ξ :

M ×M →U is an action function that describes the maximal type (cutoff type) that chooses L as a

function of the observed message profile; that is, when an agent who follows strategy (µ,ξ ) observes

a message profile (m,m′) (message m sent by the agent, and message m′ sent by the opponent),

then the agent plays L if her type u is at most ξ (m,m′) (i.e., if u ≤ ξ (m,m′)), and she plays R if

u > ξ (m,m′). (The choice that the threshold type plays L does not affect our analysis, given the

assumption of F being atomless.) Let Σ be the set of all strategies in the game 〈Γ,M〉.

Let µu (m) denote the probability, given message function µ , that a player sends message m if

she is of type u. Let µ̄ (m) =Eu [µu (m)] be the mean probability that a player of a random type sends

message m (where the expectation is taken with respect to F). Let supp(µ̄) = {m ∈ M | µ̄ (m)> 0}

denote the support of µ̄ . We say that message m is in the support of σ = (µ,ξ ), denoted by m ∈

supp(σ), if m ∈ supp(µ̄).

With a slight abuse of notation we write ξ (m,m′) = L when all types (who send message

m with positive probability) play L (i.e., when ξ (m,m′) ≥ sup(u ∈U |µu (m)> 0)), and we write

ξ (m,m′) = R when all types play R (i.e., when ξ (m,m′)≤ inf(u ∈U |µu (m)> 0)).

2.1 Simplifying Assumptions and Their Relaxation

For ease of exposition we present a simple model. Various simplifying assumptions can be relaxed

without affecting any of the paper’s results.

Number of available messages The assumption of M being finite is taken to simplify the notation;

all of our results essentially remain the same if M is countably infinite. The assumption of |M| ≥ 4

implies that a single round of communication during the renegotiation stage can achieve a sufficient

degree of communication for our main results to hold (see Section 4). Our results remain the same

for M = 2 if one allows the players during the renegotiation stage to either have two stages of

communication or to rely on a (binary) sunspot.

Multiple rounds of communication The baseline model assumes a single round of communica-

tion. In Appendix E.1 we show that all of our results hold in a setup in which cheap talk includes

multiple rounds. That is, in our setup of communication-proof equilibria in coordination games, the

length of communication does not matter (in contrast to the results in other setups of incomplete-

information games; see, e.g., Aumann and Hart, 2003).

Multidimensional sets of types In Appendix E.2 we study general symmetric two-action two-

player coordination games, where miscoordination may result in different payoffs to the L and R

players. The “1 ⇒ 2” part of Theorem 1 still holds in this general setup: any strategy that satisfies
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the three key properties is strongly communication-proof. Theorem 2 shows that the “3 ⇒ 1” part of

the theorem holds as well under the restriction of “unambiguous coordination preferences,” which

requires that for all feasible types the preferred coordinated action also be the risk-dominant action

(i.e., the best reply against an opponent who plays each action uniformly; see Harsanyi and Selten,

1988). Example 2 in Appendix E.2 demonstrates that without this restriction (i.e., with stag-hunt-

like types for which the payoff-dominant action does not coincide with the risk-dominant action),

equilibria with miscoordination can be communication-proof.

Asymmetric coordination game and asymmetric equilibria The baseline model assumes that both

players’ types have the same distribution F , and our solution concept focuses on symmetric equilib-

ria. This is done to simplify the notation, and to ease the analysis of evolutionary stability in Section

7 (where some of the relevant solution concepts are defined only for symmetric games). Appendix

E.4 shows that all our results hold in asymmetric coordination games in which the distributions

of the types of the two players’ positions may differ, or when allowing asymmetric equilibria of

symmetric coordination games.

More than two players Our baseline model has only two players. In Appendix E.3 we show that

our results hold for any number of n ≥ 2 players, under the assumption that the payoff of each player

of type u is equal to u if all players play R, it is equal to 1−u if all players play L, and it is equal to

zero if all players do not play the same action. The interesting case in which players can get positive

payoffs by coordination of a subset of the players on the same action is left for future research.

General action functions The baseline model restricts the action functions to the set of cutoff

functions of the form ξ : M×M →U . In principle, we should allow more general action functions

ξ : U ×M×M →△{L,R}, which specify the probability that an agent chooses L as a function of the

observed message profile and the agent’s type. It is simple to see, however, and proven in Lemma 1

in Appendix A.1, that any “generalized” strategy is dominated by a strategy that uses a cutoff action

function in the second stage. The intuition, is that following the observation of any pair of messages,

lower types always gain more (less) than higher types from choosing L (R). Thus, the restriction to

cutoff action functions is without loss of generality.

Other extensions affect some (but not all) of our results: allowing more than two actions, and

allowing extreme types with dominant actions. We postpone the discussion of these extensions to

Section 8
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3 Equilibrium Strategies and Three Key Properties

We here define the standard notion of (Bayesian Nash) equilibrium strategies, present the three key

properties that communication-proof equilibria turn out to have, and present examples of equilibria

in the coordination game with communication with and without these properties. These equilibria

are illustrated in Figure 1 in the end of this section.

Given a strategy profile (σ ,σ ′) and a type profile u,v ∈ U , let πu,v (σ ,σ ′) denote the payoff of

a player of type u who follows strategy σ and faces an opponent of type v who follows strategy σ ′.

Formally, for σ = (µ,ξ ) and σ ′ = (µ ′,ξ ′),

πu,v

(

σ ,σ ′
)

= ∑
m∈M

∑
m′∈M

µu (m)µv

(

m′
)(

(1−u)1{u≤ξ (m,m′)}1{v≤ξ ′(m′,m)} + u1{u>ξ (m,m′)}1{v>ξ ′(m′,m)}

)

,

where 1{x} is the indicator function equal to 1 if statement x is true and zero otherwise. Let

πu

(

σ ,σ ′
)

= Ev

[

πu,v

(

σ ,σ ′
)]

≡
∫ 1

v=0
πu,v

(

σ ,σ ′
)

f (v)dv

denote the expected interim payoff of a player of type u who follows strategy σ and faces an oppo-

nent with a random type who follows strategy σ ′. Finally, let,

π
(

σ ,σ ′
)

= Eu

[

πu

(

σ ,σ ′
)]

≡
∫ 1

u=0
πu

(

σ ,σ ′
)

f (u)du

denote the ex-ante expected payoff of an agent who uses strategy σ against strategy σ ′.

A strategy σ is a (symmetric Bayesian Nash) equilibrium strategy if πu (σ ,σ) ≥ πu (σ
′,σ) for

each u ∈U and each strategy σ ′ ∈ Σ. Let E ⊆ Σ denote the set of all equilibrium strategies of 〈Γ,M〉.

Three key properties We call a strategy σ = (µ,ξ )∈ Σ mutual-preference consistent if whenever

u,v < 1/2 then ξ (m,m′) = ξ (m′,m) = L for all m ∈ supp(µu) and all m′ ∈ supp(µv) and if whenever

u,v > 1/2 then ξ (m,m′) = ξ (m′,m) = R for all m ∈ supp(µu) and all m′ ∈ supp(µv). That is, players

with the same ordinal preference coordinate on their mutually preferred outcome.

We call a strategy coordinated if ξ (m,m′) = ξ (m′,m) ∈ {L,R} for any pair of messages m,m′ ∈

supp(µ̄). A coordinated strategy never leads to miscoordination after any (used) message pair.

For any message m ∈ M, define the expected probability of a player’s opponent playing L con-

ditional on the player sending message m and the opponent following strategy σ = (µ ,ξ ) ∈ Σ, as

β σ (m) =
∫ 1

u=0
∑

m′∈supp(µu)

µu(m
′)1{u≤ξ (m′,m)} f (u)du.
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We say that strategy σ has binary communication if there are two numbers 0 ≤ β σ ≤ β
σ
≤ 1 such

that for all messages m ∈ M we have β σ (m) ∈ [β σ ,β
σ
], for all messages m ∈ M such that there is

a type u < 1/2 with µu(m)> 0 we have β σ (m) = β
σ

, and for all messages m ∈ M such that there is

a type u > 1/2 with µu(m) > 0 we have β σ (m) = β σ . That is, binary communication implies that

players (essentially) use just two kinds of messages: any message sent by types u < 0.5 induces the

same consequence of maximizing the probability of the opponent playing L, and any message sent by

types u> 0.5 induces the opposite consequence of maximizing the opponent’s probability of playing

R. Note that, as defined here, a strategy with no communication also has binary communication (in

which the player’s message does not affect the probability of the partner playing L).

In Appendix B we show that no single one of these three properties is implied by the other two.

Clearly, a strategy that has binary communication and is coordinated must be an equilibrium. In

Appendix B we also show that no combination of any two of these three properties implies that a

strategy is an equilibrium.

Left tendency ασ Consider a strategy that satisfies the above three properties. Coordination and

mutual-preference consistency jointly determine the behavior of agents with the same ordinal prefer-

ences (i.e., when both types are below 1/2, or both above 1/2). The property of binary communication,

then, implies that the probability with which the players coordinate on L, conditional on having dif-

ferent ordinal preferences (i.e., conditional on one player having type u < 1/2 and the other player

having type v > 1/2), is independent on the message sent by the player. We denote this probability

by ασ , and refer to it as the left tendency of the strategy. We can express β and β
σ

as follows:

β σ = F(1/2)ασ and β
σ
= F(1/2)+(1−F(1/2))ασ .

The first equality (β σ = F(1/2)ασ ) is implied by the fact that when any type u > 1/2 sends a message

expressing her preference for coordination on R, the players coordinate on L only if the opponent’s

preferred outcome is L (which happens with a probability of F(1/2)), and they then coordinate on

L with a probability of ασ . The second equality (β
σ
= F(1/2)+ (1−F(1/2))ασ ) is implied by the

fact that when any type u < 1/2 sends a message expressing her preference for coordination on L,

the players coordinate on L with probability one if the opponent’s preferred outcome is L, and they

coordinate on L with a probability of ασ if the opponent’s preferred action is R.

Examples of equilibria satisfying all properties The following strategies, denoted by σL, σR, and

σC, are prime examples (that play a special role in later sections) of strategies that are all mutual-

preference consistent, coordinated, and have binary communication.

The strategies σL and σR are given by the pairs (µ∗,ξL) and (µ∗,ξR), respectively. The message
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function µ∗ has the property that there are messages mL,mR ∈ M such that message mL indicates a

preference for L and mR a preference for R, and the action functions ξL and ξR are defined as follows:

µ∗ (u) =







mL u ≤ 1
2

mR u > 1
2 .

ξL

(

m,m′
)

=







R m = m′ = mR

L otherwise,
ξR

(

m,m′
)

=







L m = m′ = mL

R otherwise.

This means that the “fallback norm” of σL (which is applied when the agents have different

preferred outcomes) is to coordinate on L, while that of σR is to coordinate on R. In other words the

left tendency of σL is one and the left tendency of σR is zero.

Strategy σC = (µC,ξC) has the “fallback norm” of using a joint lottery to choose the coordinated

outcome. Each agent simultaneously sends a random bit and the coordinated outcome depends on

whether the random bits are equal or not.

We denote four distinct messages by mL,0,mL,1,mR,0,mR,1 ∈ M, where we interpret the first

subscript (R or L) as the agent’s preferred direction, and the second subscript (0 or 1) as a random

binary number chosen with probability 1/2 each by the agent. Formally, the message function µC is

defined as follows:

µC (u) =







1
2mL,0 ⊕

1
2mL,1 u ≤ 1

2

1
2mR,0 ⊕

1
2mR,1 u > 1

2 ,

where αm⊕ (1−α)m′ is a lottery with a probability of α on message m and 1−α on message m′.

In the second stage, if both agents share the same preferred outcome they play it. Otherwise, they

coordinate on L if their random numbers differ, and coordinate on R otherwise. Formally:

ξC

(

m,m′
)

=



















R (m,m′) ∈
{

(mR,0,mR,0) ,(mR,0,mR,1) ,(mR,0,mL,0) ,(mR,1,mL,1)

(mR,1,mR,1) ,(mR,1,mR,0) ,(mL,0,mR,0) ,(mL,1,mR,1)
}

L otherwise.

The outcome of σC can also be implemented by a fair joint lottery that determines which of the

two players determines the coordinated action used by both players. This alternative implementation

yields exactly the same outcome: if both agents share the same preferred outcome they play it, and

conditional on the agents disagreeing on the preferred outcome, they coordinate on each action with

equal probability.

One-dimensional set of strategies satisfying the properties The set of strategies with the above

three properties (coordination, mutual-preference consistency, and binary communication) is es-

sentially one-dimensional because the left tendency ασ ∈ [0,1] of such a strategy σ describes all
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payoff-relevant aspects. Two strategies with the same left tendency can only differ in the way in

which the players implement the joint lottery when they have different preferred outcomes, but

these implementation differences are nonessential, as the probability of the joint lottery inducing the

players to coordinate on L remains the same.

Any left-tendency ασ ∈ [0,1], which is a rational number, can be implemented by a jointly

controlled lottery in which the players send random messages in such a way that they are indif-

ferent between all messages, and the joint distribution of random messages induces ασ (Aumann

and Maschler, 1968; see also Heller, 2010, for a recent implementation, which is robust to joint

deviations). This is demonstrated for ασ = 1/2 in the strategy σC presented above.

Note that of all the strategies that satisfy the three properties, strategies σL and σR are the simplest

in terms of the number of “bits” needed to implement the message function. Strategy σC is in a

certain sense the fairest: conditional on a coordination conflict, i.e., conditional on one agent having

a type between 0 and 1/2 and the other agent having a type between 1/2 and 1, both agents expect the

same payoff. By contrast, strategy σL favors types below 1/2, and strategy σR favors types above 1/2.

Examples of equilibria not satisfying some of the properties The coordination game with com-

munication 〈Γ,M〉 admits many more equilibria that satisfy only some or even none of the three

properties defined above.

First, the game admits babbling equilibria, which do not satisfy mutual-preference consistency.

Each babbling equilibrium can be identified with an x ∈ [0,1] that satisfies F(x) = x, where agents

choose L iff their type is below x. The case of x = 1 (resp., x = 0) corresponds to a uniform norm of

always playing L (resp., R). A case of x ∈ (0,1) corresponds to an inefficient babbling equilibria, in

which agents sometimes miscoordinate.

The game also admits equilibria in which agents reveal some information about the intensity

of their preferences (i.e., some information beyond only stating whether u ≤ 1/2 or u > 1/2). One

simple example of such an equilibrium for a specific distribution F is Example 1 in Section 6.

It is not completely straightforward to construct such examples for all possible distributions F if

we consider only a single round of communication as we do in the main body of this paper. In

Section 8, however, we show that our main results continue to hold if we allow multiple rounds of

communication. In the case of multiple rounds of communication it is relatively straightforward to

construct examples of equilibria that do not have binary communication and that, therefore, reveal

some cardinal content of the players’ preferences. For simplicity, assume that the distribution F is

symmetric around 1/2. That is f (x) = f (1−x) for all x ∈ [0,1] or, equivalently, F(x) = 1−F(1−x)

for all x ∈ [0,1]. In particular, we have that F(1/2) = 1/2.

The equilibrium σex is such that there is an x satisfying 0 < x < 1/2 such that in the first round

of communication players indicate whether their preferences are “extreme” (i.e., u ≤ x or u > 1−x)

12



or “moderately left” (x < u ≤ 1/2) or “moderately right” (1/2 < u ≤ 1− x). In the second round

individuals only reveal additional information if in the first round one sent the extreme message and

the other a moderate message, in which case the extreme type now reveals which side she prefers

(u ≤ 1/2 or u > 1/2). In this case, joint play is dictated by the extreme type’s preferences. If both

players sent the extreme message in the first round, then there is no more communication and both

types follow their inclination (play L if u ≤ 1/2 and R otherwise). This leads to miscoordination with

a conditional probability of a half.

Any two moderate types essentially play the coordinated strategy σC; that is if they have the same

preferred outcome, then they play it, and, otherwise, they use communication to induce a joint fair

lottery over both playing L and both playing R. In Appendix C we formally present this strategy and

show that for any distribution F there is an x ∈ (0, 1/2) such that this strategy is a Nash equilibrium

of the coordination game with two rounds of communication.

Illustration of equilibria and the first-best outcome Figure 1 illustrates five of the equilibria

described above: the equilibria that satisfy the three key properties: σL, σR, and σC, the babbling

equilibrium of always playing R, and the equilibrium σex, which satisfies none of the three key

properties. It also depicts (in the bottom right panel) the first-best outcome in which the players

reveal their types and then coordinate on the action that maximizes the sum of payoffs (i.e., the

players coordinate on L if u+v≤ 1 and they coordinate on R if u+v> 1). This is not an equilibrium:

each player has an incentive to present a more extreme type than her real type (e.g., all types u > 1/2

would claim to have type 1).

4 Definition of Communication-Proofness

For any given strategy in Σ employed by both players in the game 〈Γ,M〉, communication and

knowledge of this strategy lead to updated and possibly, different and asymmetric information about

the two agents’ types. Suppose that the updated distributions of types are given by some distribu-

tion functions G and H. The two agents then face a (possibly asymmetric) game of coordination

without communication, which we shall denote by Γ(G,H). Note that the original game (without

communication) Γ is then given by Γ(F,F).

Let fm be the type density conditional on the agent following a given strategy in the game 〈Γ,M〉

and sending a message 8 m ∈ supp(µ̄), i.e.,

fm(u) =
f (u)µu(m)

µ̄(m)
,

8The density fm depends on the given strategy in the game 〈Γ,M〉. For aesthetic reasons we refrain from giving this

strategy a name and from indicating this obvious dependence in our notation.
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Figure 1: Six example strategies. The axis represent the two players’ types u and v. Letters L,

R, C, and M represent coordination on L, coordination on R, coordination on a random action, and

miscoordination (both players playing their preferred action), respectively.

and let Fm be the cumulative distribution function associated with density fm.

We allow players to renegotiate after communication. Renegotiating players can use a new round

of communication. Given a strategy of the game 〈Γ,M〉 employed by both players, we denote the

induced renegotiation game after a positive probability message pair m,m′ ∈ M by 〈Γ(Fm,Fm′),M〉.

Let πH
u (σ ,σ ′) denote the expected payoff for the player using strategy σ of type u given strategy

profile (σ ,σ ′) in game 〈Γ(G,H),M〉:

πH
u

(

σ ,σ ′
)

= Ev∼H

[

πu,v

(

σ ,σ ′
)]

≡
∫ 1

v=0
πu,v

(

σ ,σ ′
)

h(v)dv,

and similarly let πG
v (σ ,σ ′) denote the expected payoff for the player using strategy σ ′ of type v in

〈Γ(G,H),M〉:

πG
v

(

σ ,σ ′
)

= Eu∼G

[

πu,v

(

σ ,σ ′
)]

≡
∫ 1

u=0
πu,v

(

σ ,σ ′
)

g(u)du.

Let E (G,H) be the set of all (possibly asymmetric) equilibria of the coordination game with commu-

nication 9 〈Γ(G,H),M〉. Let π
(m,m′),Hm′
u (σ ,σ ′) (resp., π

(m,m′),Gm
v (σ ,σ ′)) denote the post-communication

9As the support of G and H may generally be a strict subset of [0,1], there may be many equivalent strategies (and,
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payoff for the player using strategy σ (resp., σ ′) of a type u (resp., v) given (σ = (µ,ξ ),σ ′ = (µ ′,ξ ′))

in game 〈Γ(G,H),M〉 conditional on message pair m ∈ supp(σ),m′ ∈ supp(σ ′) :

π
(m,m′),H
u (σ ,σ ′) =

{

(1−u)Hm′ (ξ ′(m′,m)) if u ≤ ξ (m,m′)

u(1−Hm′ (ξ ′(m′,m))) if u > ξ (m,m′)

π
(m,m′),G
v (σ ,σ ′) =

{

(1− v)Gm (ξ (m,m′)) if v ≤ ξ ′(m′,m)

v(1−Gm (ξ (m,m′))) if v > ξ ′(m′,m).

Following Blume and Sobel (1995), we say that a strategy profile (τ,τ ′) CP trumps another

strategy profile (σ ,σ ′) if there is a possible pair of messages such that, given the information induced

by the message pair, the profile (τ,τ ′), using another round of communication, yields a Pareto-

improvement over the post-communication expected payoffs induced by (σ ,σ ′). Formally:

Definition 1. Strategy profile (τ,τ ′) ∈ Σ2 CP trumps strategy profile (σ ,σ ′) ∈ Σ2 with respect to

distribution profile (G,H) and message profile m ∈ supp(σ) ,m′ ∈ supp(σ ′) if10

1. (τ,τ ′) ∈ E (Gm,Hm′), and

2. π
Hm′
u (τ,τ ′)≥ π

(m,m′),H
u (σ ,σ ′) and πGm

v (τ,τ ′)≥ π
(m,m′),G
v (σ ,σ ′), for all u ∈ supp(Gm) and all

v ∈ supp(Hm′) with strict inequality for some u ∈ supp(Gm) or some v ∈ supp(Hm′).

We say that a strategy σ is strongly communication-proof if for any possible message profile,

there does not exist a new equilibrium, which might require another round of communication, that

Pareto-dominates the post-communication payoff of σ . The weaker notion of weak communication-

proofness allows such a Pareto-improving equilibrium to exist as long as this latter equilibrium is

not stable in the sense that it is CP trumped by another equilibrium. Formally:

Definition 2. An equilibrium strategy σ ∈ E is strongly communication-proof if it is not CP trumped

with respect to (F,F) by any strategy profile.

Definition 3. An equilibrium strategy σ ∈ E is weakly communication-proof if for any strategy

profile (τ,τ ′) that CP trumps (σ ,σ) with respect to (F,F) and message profile (m,m′), there exists

a strategy profile (ρ,ρ ′) that CP trumps (τ,τ ′) with respect to (Fm,Fm′).

Observe that in games with complete information, our two notions coincide, and they are both

equivalent to the (nonempty) Pareto frontier of the set of Nash equilibria, i.e., to the subset of Nash

thus, many equivalent equilibria).
10For conceptual consistency we could additionally require that a CP-trumping strategy profile be symmetric after a

pair of identical messages. We refrain from imposing this, as it would make the notation cumbersome and would not

change the set of (strongly or weakly) communication-proof strategies in our setting.
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equilibria that are not Pareto-dominated by other Nash equilibria. Blume and Sobel’s (1995) notion

of communication-proofness lies in between our two notions. Blume and Sobel’s notion is defined

in the spirit of von Neumann and Morgenstern’s (1944) set stability: the set of equilibria is divided

into stable and unstable equilibria; a strategy profile is communication-proof à la Blume and Sobel

if it is not CP trumped by a stable equilibrium; and the set of stable equilibria is defined consistently

(any stable equilibrium is only CP trumped by unstable equilibria, and any unstable equilibrium is

CP trumped by some stable equilibrium). Blume and Sobel show that any sender-receiver game

(in which only one player has private information and her set of actions is a singleton) admits a

communication-proof equilibrium.

4.1 Evolutionary Interpretation of Communication-Proofness

The notion of robustness to a secret handshake (Robson, 1990) has been applied to games with

complete information (see, e.g., Matsui, 1991; Wärneryd, 1991; Kim and Sobel, 1995; Santos et al.,

2011). The notion relies on the argument that if play is stuck in an inferior equilibrium σ , a small

group of experimenting agents can recognize each other by means of a “secret handshake” and play

a Pareto-improving equilibrium σ ′ with each other and play the inferior equilibrium σ with agents

who are not part of this group, thereby outperforming the agents outside the group.

To the best of our knowledge the notion has not been applied to games with private types. Ar-

guably, there are two main ways to adapt robustness to secret handshakes to a setup with private

types: ex-ante adaptation and interim adaptation. Ex-ante adaptation assumes that if there exists an

alternative equilibrium σ ′ with a higher ex-ante payoff than the current equilibrium σ , then agents

would use a secret handshake to play σ ′ among themselves. We think that ex-ante adaptation is

problematic in a setup, which is common in applications, in which agents can only use the secret

handshake after they know their type. It seems unlikely that a type would agree to use a secret

handshake that decreases her payoff due to its ex-ante advantage.

In such setups, it seems reasonable to use an interim adaptation, which allows only secret

handshakes that benefit all types. This is exactly what is captured by the definition of strong

communication-proofness. One could adapt this interim notion of secret handshake, by (1) only

allowing "stable" secret handshake that are robust to additional deviations (which is captured by

the notion of weak communication-proofness), or (2) allowing agents to use secret handshake also

before communicating (See Remark 1). The results of Sections 5-6 show that all these variants of

interim robustness to secret handshake lead to the same characterization of robust strategies (namely,

to our characterization of coalition-proof equilibria.)
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5 Main Result

Our main result shows that both of our notions of communication-proofness coincide in our setup,

and they are characterized by satisfying the three key properties of Section 3.

Theorem 1. Let σ be a strategy of the game with communication 〈Γ,M〉. The following three

statements are equivalent:

1. σ is mutual-preference consistent, coordinated, and has binary communication.

2. σ is a strongly communication-proof equilibrium strategy.

3. σ is a weakly communication-proof equilibrium strategy.

Sketch of proof. The proof that “1” implies “2” is fairly straightforward (and is proven in Appendix

A.2). The proof implies, in particular, that σL, σR, and σC are not CP trumped by any other strategy

profiles. It is immediate that “2” implies “3.” We here provide a sketch of the proof that “3” implies

“1.” The proof in Appendix A.2 is split into three lemmas, each showing that one of the three

properties must hold.

Lemma 2 proves that a weakly communication-proof equilibrium strategy must be coordinated:

if play after any message pair is not coordinated then it is CP trumped in the renegotiation game

by either σL, σR, or σC. To see this, suppose first that both players use thresholds below 1/2. Then

this strategy is Pareto-dominated by σR as types above 1/2 gain because σR induces their first-best

outcome, and types below 1/2 gain because σR yields a higher coordination probability and a higher

probability of the opponent playing this type’s preferred action L. Analogously, an equilibrium in

which both players use thresholds above 1/2 is Pareto-dominated by σL. Suppose, finally, that player

one uses threshold x < 1/2, while player two uses threshold x′ > 1/2. Observe that x < 1/2 (resp.,

x′> 1/2) can be an equilibrium threshold only if player two (resp., player one) plays L with an average

probability of less (resp., more) than 1/2. This, implies that players in these equilibria coordinate with

a probability of at most 1/2, and one can show that such a low coordination probability implies that

these equilibria are Pareto-dominated by σC.

Next, we show in Lemma 3 that a weakly communication-proof equilibrium strategy must have

binary communication. The reason for this is that if a strategy is coordinated, then different messages

can only lead to different ex-ante probabilities of coordination on L (and R). Thus, any type who

favors L, i.e., any type u < 1/2, will choose a message to maximize this probability, while any type

u > 1/2 will choose a message to minimize this probability. Thus, essentially only two kinds of

messages are used in a coordinated equilibrium strategy.

Finally, we show in Lemma 4 that a weakly communication-proof equilibrium strategy must be

mutual-preference consistent. Given that it is coordinated, we know that any message pair will lead
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to either coordination on L or on R. If it is not mutual-preference consistent then, without loss of

generality, there are two types u,u′ < 1/2 that, with positive probability, send a message pair (m,m′)

that leads them to coordinate on R. But then all types who send this message pair would be weakly

better off (and some strictly better off) if instead of coordinating on R they use strategy σR, which

would allow them to coordinate on L if and only if both types are below 1/2.

As the two notions of communication-proofness coincide in our setup, we henceforth omit the

word “weakly”/ “strongly” and write communication-proof equilibrium strategy to describe either

of our (equivalent) solution concepts. Note that the set of communication-proof equilibria is com-

pletely independent of the distribution F (i.e., for any two distributions of types F and F ′, strat-

egy σ is a communication-proof equilibrium in Γ(F) iff it is is communication-proof Γ(F ′).) It is

not difficult to show that this implies that any communication-proof equilibrium strategy remains

communication-proof even in setups in which the distributions of types are correlated, and in setups

in which different types have different beliefs about the opponent’s type.

6 On Efficiency

In this section we investigate the efficiency properties of communication-proof equilibria. We first

provide an example of an equilibrium with high ex-ante payoffs that is not, however, communication-

proof. We then show that all communication-proof equilibria, while not necessarily ex-ante payoff

optimal, are at least interim Pareto efficient. Finally, we show that at least one of the equilibria, σL

and σR, provides the highest ex-ante payoff of all the coordinated equilibria, and that any equilibrium

without communication is Pareto-dominated by either one of these extreme communication-proof

equilibria or by the action-symmetric communication-proof equilibrium σC.

High payoff of non-coordinated equilibria Equilibria with miscoordination (which cannot be

communication-proof due to Theorem 1) may induce agents to credibly reveal some cardinal in-

formation about their type. This can happen if there is a message that induces a higher probability

of coordinating on the agent’s preferred outcome but also a higher probability of miscoordination

compared with some other available message. Such a message can then be chosen by extreme types

with u far from 1/2, while moderate types with u closer to 1/2 choose the other message. Such

equilibria with miscoordination may induce a higher ex-ante payoff, if the benefit from signaling the

extremeness of the type outweighs the loss due to miscoordination. Consider the following example.

Example 1. For simplicity we let the distribution of types F be discrete with four atoms 1/10+ ε ,

1/2− ε , 1/2+ ε , 9/10− ε , with a probability of 1/4 for each atom and ε > 0 sufficiently small.11 The

11One can easily adapt the example to an atomless distribution of types, in which each atom is replaced with a
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game admits three babbling equilibria: always coordinating on L, always coordinating on R, both

with an ex-ante payoff of 1/2, and playing L if and only if the type is less than 1/2 with an ex-ante

payoff of 7/20 < 1/2 for all ε sufficiently small. Theorem 1 (together with the symmetry of the

distribution F) implies that with communication, any communication-proof equilibrium strategy (in

particular σL or σR) induces the same expected ex-ante payoff of 3/5 > 1/2 for all ε sufficiently small.

This game also has a (non-communication-proof) equilibrium strategy with miscoordination that

yields a higher ex-ante payoff than the communication-proof payoff of 3/5, provided that the message

set M has sufficiently many elements. To simplify the presentation we here allow the players to

use public correlation devices to determine their joint play after sending messages, which can be

approximately implemented by a sufficiently large message set (à la Aumann and Maschler, 1968;

see the similar construction in Case (II) of the proof of Proposition 9 in Appendix E.7.3). Let

mL,ml,mr,mR ∈ M and consider strategy σ = (µ,ξ ) as follows. Let µ(1/10+ ε) = mL, µ(1/2− ε) =

ml , µ(1/2+ ε) = mr, and µ(9/10− ε) = mR, and let ξ (ma,mb) = L if a,b ∈ {L, l}, ξ (ma,mb) = R if

a,b ∈ {r,R}, ξ (mL,mr) = ξ (mr,mL) = L, ξ (ml,mR) = ξ (mR,ml) = R, ξ (ml,mr) = ξ (mr,ml) be a

joint lottery to coordinate on L or R with probability 1/2 each, and, finally, let ξ (mL,mR) = ξ (mR,mL)

be a joint lottery to coordinate on L or R with probability 3/10 each, and to play the inefficient

mixed equilibrium (in which each type plays her preferred outcome with probability 9/10− ε) with

probability 4/10. It is straightforward to verify that for, say ε = 1/100, this strategy is indeed an

equilibrium strategy with an ex-ante payoff of around 0.627, which is higher than the ex-ante payoff

of 3/5 of all the communication-proof equilibria. This equilibrium strategy is not coordinated (nor

does it satisfy the other two properties of mutual-preference consistency and binary communication)

and hence, by Theorem 1, it is not communication-proof.

Interim (pre-communication) Pareto optimality An (ex-ante symmetric) social choice function

is a function φ : [0,1]2 → ∆

(

{L,R}2
)

assigning to each pair of types a possibly correlated profile

with the condition that φu,v(a,b) = φv,u(b,a) for any a,b ∈ {L,R}, where12 φu,v ≡ φ (u,v). We

interpret φu,v as the correlated action profile played by the two players when a player of type u

interacts with a player of type v. Let Φ be the set of all such functions.

Any strategy of any coordination game with communication induces a social choice function in

Φ, but not all social choice functions in Φ can be generated by a strategy of a given coordination

game with communication. One can interpret Φ as the set of outcomes that can be implemented

by a designer who perfectly observes the types of both players and, can force the players to play

arbitrarily.

continuum of nearby types.
12We restrict attention to symmetric social choice functions in order to maintain our focus on symmetric equilibria,

and in order to allow us to use a simpler notation without player subscripts. Proposition 1 below, however, also holds

even if we allow asymmetric social choice functions.
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For each type u ∈ [0,1], let πu (φ) denote the expected payoff of a player of type u under social

choice function φ , i.e., πu (φ) = Ev [(1−u)φu,v (L,L)+uφu,v (R,R)] .

A strategy is interim Pareto-dominated if there is a social choice function that is weakly better

for all types, and strictly better for some types.

Definition 4. A strategy σ ∈ Σ is interim Pareto-dominated by function φ ∈ Φ if πu (σ ,σ)≤ πu (φ)

for each type u ∈ [0,1], with a strict inequality for a positive measure set of types.

A strategy σ ∈ Σ is interim Pareto optimal if it is not interim Pareto-dominated by any φ ∈ Φ.

Note that our requirement of Pareto optimality is strong because we allow the designer to perfectly

observe the players’ types, and to enforce non-Nash play on the players.

Our next result shows that all communication-proof equilibria satisfy our strong requirement

of interim Pareto optimality. That is, even a designer with perfect ability to observe the play-

ers’ types and to enforce any behavior cannot achieve a Pareto improvement with respect to any

communication-proof equilibrium strategy.13

Proposition 1. Every communication-proof equilibrium strategy of a coordination game with com-

munication is interim Pareto optimal.

Sketch of proof; see Appendix A.3 for the formal proof. Recall that by Theorem 1 and the discussion

on the one-dimensional set of strategies in Section 3, any communication-proof equilibrium strategy

σ is characterized by its left tendency ασ . In order for a social choice function φ to improve the

payoff of any type u < 1/2 (resp., u > 1/2) relative to the payoff induced by σ , it must be that φ

induces any u < 1/2 (resp., u > 1/2) to coordinate on L with probability larger (resp., smaller) than

ασ . This implies that the probability of two players coordinating on L, conditional on the players

having different preferred outcomes, must be larger (resp., smaller) than ασ . However, these two

requirements contradict each other.

Earlier we have given an example of an equilibrium strategy that provides a higher ex-ante payoff

than any communication-proof equilibrium. This strategy involved a certain degree of miscoordina-

tion. In the following proposition we show that any equilibrium without miscoordination, i.e., any

coordinated equilibrium, must provide an ex-ante expected payoff that is less than or equal to the

maximal ex-ante payoff of the two “extreme” communication-proof strategies σL and σR.

Proposition 2. Let σ ∈ E be a coordinated equilibrium strategy. Then

π (σ ,σ)≤ max{π (σL,σL) ,π (σR,σR)} .

13As discussed at the end of Appendix E.4, the result that any communication-proof equilibrium is interim Pareto-

optimal holds also for asymmetric equilibria. Moreover, two of these asymmetric communication-proof equilibria are

also ex-ante Pareto efficient: the equilibrium that always chooses the action preferred by Player 1, and the analogous

equilibrium that always chooses the action preferred by Player 2.
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Sketch of proof; see Appendix A.3 for the formal proof. Let ασ be the probability of two players

who each follow σ to coordinate on L, conditional on the players having different preferred out-

comes. It is easy to see that σ is dominated by the communication-proof equilibrium strategy with

the same left tendency ασ , and that the payoff of the latter strategy is a convex combination of the

payoffs of σL and σR, which implies that π (σ ,σ)≤ max{π (σL,σL) ,π (σR,σR)}.

Remark 1. One could refine the notion of communication-proofness to allow agents to renegotiate

to a Pareto-improving equilibrium also in earlier stages (à la Benoit and Krishna, 1993): in the

interim stage before observing the realized messages induced by the original equilibrium, and in the

ex-ante stage before each agent observes her own type. Proposition 1 implies that allowing agents

to renegotiate also in the interim stage does not change the set of communication-proof equilibria.

Proposition 2 implies that if π (σL,σL) 6= π (σR,σR) then allowing agents to renegotiate also in the

ex-ante stage yields a unique “all-stage” communication-proof equilibrium, which is either σL or σR

(while the set of communication-proof equilibria is not affected by introducing ex-ante renegotiation

if π (σL,σL) = π (σR,σR)).

Next, we show that σL or σR provides a strictly higher ex-ante expected payoff than any equi-

librium of the game without communication (and therefore than any babbling equilibrium of the

game with communication). Recall from Remark 2 and the text preceding it that in the coordination

game without communication any equilibrium is characterized by a cutoff value x ∈ [0,1] such that

x = F(x) with the interpretation that types u ≤ x play L and types u > x play R.

Let πu (x,x
′) denote the payoff of an agent with type u who follows a strategy with cutoff x and

faces a partner of unknown type who follows a strategy with cutoff x′:

πu

(

x,x′
)

= 1{u≤x}F
(

x′
)

(1−u)+1{u>x}

(

1−F
(

x′
))

u,

and let π (x,x′) = Eu [πu (x,x
′)] be the ex-ante expected payoff of an agent who follows x and faces

a partner who follows x′. Next we show that any (possibly asymmetric) equilibrium in the game

without communication is Pareto-dominated by either σL, σR, or σC.

Corollary 1. Let (x,x′) be a (possibly asymmetric) equilibrium in the coordination game without

communication. Then πu (x,x
′) ≤ πu (σL,σL) for all types u ∈ U, or πu (x,x

′) ≤ πu (σR,σR) for all

types u ∈ U, or πu (x,x
′) ≤ πu (σC,σC) for all types u ∈ U. Moreover, all the inequalities are strict

for almost all types.

Corollary 1 is immediately implied by Lemma 2 in Appendix A.2, and the sketch of proof of the

lemma is presented as part of the sketch of the proof of Theorem 1.
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7 Evolutionary Stability

A common interpretation of a Nash equilibrium is a convention that is reached as a result of a pro-

cess of social learning when similar games are repeatedly played within a large population. This

interpretation seems very apt, for instance, if we think of our motivating example of how pedestri-

ans avoid bumping into each other. Specifically, consider a population in which a pair of agents from

a large population are occasionally randomly matched and play the coordination game with commu-

nication 〈Γ,M〉. The agents can observe past behavior of other agents who played similar games in

the past. It seems plausible that the aggregate behavior of the population would gradually converge

into a self-enforcing convention, which is a symmetric Nash equilibrium of 〈Γ,M〉 (see the “mass

action” by Nash (1950); and see Weibull (1995) and Sandholm (2010) for a textbook introduction).

We have argued that communication-proofness is a necessary condition of evolutionary stability

by capturing the idea of stability with respect to secret-handshake mutations as in Robson (1990).

In this section we report results from Appendix D in which we investigate the evolutionary stability

properties of both σL and σR (the results can be extended to all communication-proof strategies).

In Appendix D.1 we show that strategies σL and σR are neutrally stable strategies (NSS) in the

sense of Maynard Smith and Price (1973), and evolutionarily stable strategies (ESS) if |M|= 2. This

implies that σL and σR are robust to the presence of a small proportion of experimenting agents who

behave differently than the rest of the population.

We are not quite satisfied with this result for three reasons. First, neutral stability is not the

strongest form of evolutionary stability, although in games with cheap talk it is typically the strongest

form of stability one can expect owing to the freedom that unused messages provide mutants; see,

e.g., Banerjee and Weibull (2000).14 Second, our game, owing to the incomplete information mod-

eled here as a continuum variable, has a continuum of strategies, especially in the action phase after

messages are observed. But with a continuum of strategies the notion of even an ESS is not suf-

ficient to imply local convergence to the equilibrium from nearby states. The reason for this, see

e.g., Oechssler and Riedel (2002), is that ESS for continuum models considers only the possibly

large strategy deviation of a small proportion of individuals and not the small strategy deviation of

possibly a large proportion of individuals. Lastly, our cheap-talk game is a two-stage game and,

hence, an extensive-form game. It is well known that extensive-form games do not admit ESSs of

the entire game (unless they are strict equilibria; see Selten, 1980), and hence it seems reasonable to

explore the stability of equilibrium behavior in each stage separately.

To address these issues we investigate two additional evolutionary stability properties. We inves-

14We here do not consider set-valued concepts of evolutionarily stability such as evolutionary stable sets (Swinkels,

1992 and the related analysis in, e.g., Balkenborg and Schlag, 2001, 2007), nor the perturbation-based concept of limit-

ESS (Selten, 1983; Heller, 2014), which lies in between ESS and NSS.
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tigate the evolutionary stability in each induced game that is on the equilibrium path.15 Evolution

will not necessarily place huge restrictions on play in unreached induced games (see, e.g., Nachbar,

1990; Gale et al., 1995), but should do so for induced games reached with positive probability. To

address this, we study the evolutionary stability properties of strategies σL and σR at the message

level (taking as given the action functions in the second stage), and at the action level (after messages

that are observed with positive probability). In Appendix D.2 we show that, when the action is fixed

to be either ξL or ξR, the message function µ∗ used by σL and σR is weakly dominant. This is a

substantially stronger property than the message function being an NSS.16

In Appendix D.3 we investigate the evolutionary stability properties of the action choice induced

by σL and σR after the players observe the message pair. As choosing an action as a function of a

player’s type is equivalent to choosing a cutoff from a continuum (the unit interval), we employ a

stability concept designed for such cases. The issue is further complicated by the fact that, owing

to the asymmetry after unequal messages, we need to employ a multidimensional stability con-

cept. The literature provides one in the form of a neighborhood invader strategy developed for the

double-population case by Cressman (2010), building on earlier work by Eshel and Motro (1981)

and Apaloo (1997), among others. We show that the action choice induced by σL and σR indeed

constitutes a neighborhood invader strategy after each pair of possible messages.

Remark 2 (Stability of inefficient equilibria without communication). Our analysis shows that in our

setup with communication evolutionary stability lead to efficient outcome. This is not true without

communication. A plausible equilibrium refinement in setups without communication is robustness

to small perturbations in the behavior of the population (e.g., requiring Lyapunov stability of the

best-reply dynamics, or continuous stability à la Eshel, 1983). Adapting the analysis of Sandholm

(2007) to the current setup implies that an equilibrium is robust in this sense if and only if the density

of the distribution of types at the relevant threshold x (with x = F(x)) is less than one. In particular,

if the distribution of types satisfies f (0) , f (1) > 1, then there exists x ∈ (0,1) satisfying x = F (x)

and f (x) < 1. The corresponding equilibrium, which entails inefficient miscoordination, is then

robust to small perturbations. Thus, coordination games without communication are likely to induce

substantial miscoordination if the density of extreme types is high (i.e., if f (0) , f (1)> 1).

15Our communication-proofness concept does not impose any restrictions on unreached induced games other than

that the strategy in the whole game must be an equilibrium strategy: we do not require play in unreached induced games

to be a Nash equilibrium nor do we require communication-proofness in unreached induced games. Therefore, we here

do not demand evolutionary stability in unreached induced games.
16For dynamic evolutionary processes weakly dominated strategies are not always eliminated. See, e.g., Weibull

(1995), Hart (2002), Kuzmics (2004), Kuzmics (2011), Laraki and Mertikopoulos (2013), Bernergård and Mohlin (2019)

for a discussion of this issue. Note also that Kohlberg and Mertens (1986) made it a desideratum that a concept of

strategic stability should not include weakly dominated strategies.
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8 Extensions

Next, we present informally two extensions that affect some (but not all) of our results.

Coordination games with more than 2 actions In Appendix E.5 we analyze coordination games

with more than two actions. In this setup we are able to prove somewhat weaker variants of our main

result. First, we show that σC remains a strongly communication-proof equilibrium strategy in this

more general setup (by contrast, strategies σL and σR might not be equilibria in this setup). While

we do not have a full characterization of the set of communication-proof equilibrium strategies,

we are able to show that strongly communication-proof equilibrium strategies must satisfy mutual-

preference consistency and coordination whenever both players have sent the same message.

Extreme types with dominant actions Appendix E.6 extends our analysis to a setup in which

some types find that one of the actions is a dominant action for them. We show that in the presence

of these extreme types there exists an essentially unique strongly communication-proof equilibrium

strategy that satisfies the three key properties, where the left tendency of this strategy is equal to

the share of extreme types whose dominant action is L. In this setup moderate “leftists,” i.e., types

u ∈ (0, 1/2), gain if there are more extreme “leftists” than extreme “rightists,” in the sense that the

above essentially unique communication-proof strategy induces a higher probability of coordination

on action L when two agents with different preferred outcomes meet.

9 Discussion

Our notion of communication-proofness adapts Blume and Sobel’s (1995) notion from sender-

receiver games to games in which all players have incomplete information, all can communicate,

and all can choose actions. Our notion is also related to notions of renegotiation-proofness that have

been applied to repeated games (e.g., Farrell and Maskin, 1989; Benoit and Krishna, 1993), and to

mechanisms and contracts in the presence of asymmetric information (e.g., Forges, 1994; Neeman

and Pavlov, 2013; Maestri, 2017; Strulovici, 2017).

Starting with the secret handshake argument provided in Robson (1990) (see also the earlier

related notion of “green beard effect” in Hamilton, 1964; Dawkins, 1976), there is a sizable literature

on the evolutionary analysis of costless pre-play communication before players engage in a complete

information coordination game. This includes, e.g., Sobel (1993), Blume et al. (1993), Wärneryd

(1993), Kim and Sobel (1995), Bhaskar (1998), and Hurkens and Schlag (2003). Suppose that

a complete information coordination game has two Pareto-rankable equilibria. Then the Pareto-

inferior equilibrium is not evolutionarily stable as it can be invaded by mutants who use a previously
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unused message as a secret handshake: if their opponent does not use the same handshake they

simply play the Pareto-inferior equilibrium (as do all incumbents), but if their opponent also uses

the secret handshake both sides play the Pareto-superior equilibrium. Our notion of communication-

proofness extends the secret handshake argument to games with incomplete information by requiring

that a communication-proof equilibrium should not to be Pareto-dominated by another equilibrium

after any observed message profile.17

One argument that can be presented against the notion of communication-proofness is that non-

communication-proof equilibria can be sustained by the following off-the-equilibrium path behav-

ior: if any player proposes a joint deviation, then the equilibrium specifies that the opponent rejects

the offer and that both players shift their behavior to playing an equilibrium that is bad for the pro-

poser. This kind of off-the-equilibrium path proposer punishment would indeed deter players from

suggesting joint deviations. 18

Recall that we give the notion of communication-proofness two different interpretations: either

we think of communication-proof equilibria as the plausible final outcomes of the deliberations of

two rational and communicating agents, or we think of these equilibria as the stable outcomes of a

long-run learning or evolutionary process.

Under each of these two interpretations one can counter the above proposer-punishing argument.

Under the two rational deliberating agents interpretation, one can argue that agents may just have

to be careful and subtle in the way they phrase their proposal. Suppose both agents face a situation

(after initial messages are sent) in which they are about to play a Pareto-inferior action profile (rela-

tive to some possible available equilibrium in the induced game). They should then both realize that

their proposer-punishing scheme, which prevents them from renegotiation, is not in their joint best

interest and be able to overcome this.

Moreover, under the evolutionary interpretation, there is a more formal counterargument against

proposer-punishing schemes. Any off-the-equilibrium path behavior is subject to evolutionary drift;

see, e.g., Binmore and Samuelson (1999) for a general treatment of such drift. Eventually the con-

tingent behavior of agents off-the-equilibrium path will start to drift to alternative behavior such as

simply ignoring such proposals for joint deviation, or to a willingness to consider them (without

applying a punishment). After sufficient drift in this direction, it will be in the agents’ interest to

offer Pareto-improving joint deviations. This implies that non-communication-proof equilibria with

proposer-punishment mechanisms can only be neutrally stable (which is commonly interpreted as

17Another closely related solution concept is Swinkels’s (1992) notion of robustness to equilibrium entrants. In a

recent paper, Newton (2017) provides an evolutionary foundation for players developing the ability to renegotiate into a

Pareto-better outcome (“collaboration” in the terminology of Newton).
18These kinds of proposer-punishing mechanisms are explored in solution concepts of renegotiation-proofness that

explicitly specify a structured renegotiation protocol, such as Busch and Wen (1995), Santos (2000), and Safronov and

Strulovici (2019).
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medium-run stability), but they cannot be evolutionarily stable. By contrast, communication-proof

equilibria are evolutionarily stable and, as such drift cannot take behavior away from a communication-

proof equilibrium.

Another related literature deals with stable equilibria in coordination games with private values,

but without pre-play communication. Sandholm (2007) (extending earlier results of Fudenberg and

Kreps, 1993; Ellison and Fudenberg, 2000) shows that mixed Nash equilibria of the game with com-

plete information can be purified in the sense of Harsanyi (1973) in an evolutionarily stable way

(see also Remark 2).19 Finally, two related papers analyze stag-hunt games with private values.

Baliga and Sjöström (2004) show that introducing pre-play communication induces a new equilib-

rium in which the Pareto-dominant action profile is played with high probability. Jelnov et al. (2018)

show that in some cases a small probability of another interaction can substantially affect the set of

equilibrium outcomes in stag-hunt games with private values.
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Online Appendices

A Formal Proofs

A.1 Undominated Action Strategies

In this subsection we show that our restriction to threshold action functions is without loss of gener-

ality, in the sense that each generalized action function is dominated by a threshold strategy.

Let Γ(F,G) be a coordination game without communication (possibly played after a pair of mes-

sages is observed in the original game 〈Γ,M〉). A generalized strategy in this game is a measurable

function η : U → ∆({L,R}) that describes a mixed action as a function of the player’s type. A gen-

eralized strategy in Γ(F,G) corresponds to a generalized action function ξ : U ×M ×M →△{L,R}

(see Remark 2.1), given a specific pair of observed messages (m,m′), i.e., η (u)≡ ξ (u,m,m′).

A pair of generalized strategies η , η̃ are almost surely realization equivalent (abbr., equivalent),

which we denote by η ≈ η̃ , if they induce the same behavior with probability one, i.e., if

Eu∼F [η (u) 6= η̃ (u)]≡
∫

u∈U
f (u)1{η(u)6=η̃(u)}du = 0.

It is immediate that two equivalent generalized strategies always induce the same (ex-ante) payoff,

i.e., that π (η ,η ′) = π (η̃ ,η ′) for each generalized strategy η ′.

A generalized strategy is a cutoff strategy if there exists a type x ∈ [0,1] such that η(u) = L for

each u < x and η(u) = R for each u > x. A generalized strategy η is strictly dominated by generalized

strategy η̃ if π (η ,η ′)< π (η̃ ,η ′) for any generalized strategy η ′ of the opponent.

The following result shows that any generalized strategy is either equivalent to a cutoff strategy,

or it is strictly dominated by a cutoff strategy.

Lemma 1. Let η be a generalized strategy. Then there exists a cutoff strategy η̃ , such that either η is

equivalent to η̃ , or η is strictly dominated by η̃ .

Proof. If Eu∼F [ηu(L)] = 1 (resp., Eu∼F [ηu(L)] = 0), then η is equivalent to the cutoff strategy of

always playing L (resp., R). Thus, suppose that Eu∼F [ηu(L)] ∈ (0,1). Let x ∈ (0,1) be such that

F(x) = Eu∼F [ηu(L)] =
∫

u ηu(L) f (u)du. Let η̃ then be the cutoff strategy with cutoff x, i.e.,

η̃u(L) =







1 u ≤ x

0 u > x.

Assume that η and η̃ are not equivalent, i.e., η 6≈ η̃ . Let η ′ be an arbitrary generalized strategy of

the opponent. By construction, strategies η and η̃ induce the same average probability of choosing L.

Strategies η̃ and η differ in that η̃ induces lower types to choose L with higher probability, and higher
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types to choose L with lower probability, i.e., ηu(L) ≤ η̃u(L) for any type u ≤ x and ηu(L) ≥ η̃u(L)

for any type u > x. Since η 6≈ η̃ and Eu∼F [ηu(L)] ∈ (0,1), it follows that the inequalities are strict

for a positive measure of types, i.e.,

0 <
∫

u<x
f (u)1{η(u)<η̃(u)}du and 0 <

∫

u>x
f (u)1{η(u)>η̃(u)}du.

The fact that lower types always gain more (less) from choosing L (R) relative to higher types,

with a strict inequality unless the opponent always plays R (L), implies that π (η ,η ′)< π (η̃ ,η ′).

A.2 Proof of Theorem 1

We first prove the “1 ⇒ 2” part. Suppose that σ = (µ,ξ ) ∈ Σ is mutual-preference consistent,

coordinated, and has binary communication. As σ is mutual-preference consistent it must satisfy

supp(Fm) ⊆ [0, 1/2] or supp(Fm) ⊆ [1/2,1] for any message m ∈ supp(µ̄). Consider any pair m,m′ ∈

supp(µ̄). There are three cases to consider. Suppose first that both supp(Fm),supp(Fm′) ⊆ [0, 1/2].

Then as σ is mutual-preference consistent we have that ξ (m,m′) = ξ (m′,m) = L. Thus ξ describes

best-reply behavior after this message pair. Moreover this behavior is the best possible outcome for

any type in [0, 1/2] and thus for any type in supp(Fm) and supp(Fm′). The second case of supp(Fm),supp(Fm′)⊆

[1/2,1] is analogous.

Suppose, finally, that, w.l.o.g., supp(Fm)⊆ [0, 1/2] and supp(Fm′)⊆ [1/2,1]. As σ is coordinated we

have that ξ (m,m′) = ξ (m′,m) = L or ξ (m,m′) = ξ (m′,m) = R. Action function ξ , therefore, again

describes best-reply behavior. Moreover, one player always obtains her most preferred outcome. In

order for a new strategy profile to improve the opponent’s outcome, this new profile must require

the former player to deviate from her most preferred outcome. Thus, no equilibrium σ ′ in the game

〈Γ(Fm,Fm′),M〉 Pareto dominates σ after this message pair. This shows that action function ξ is a

best response to µ and to itself given µ and that, moreover, it cannot be CP trumped. It remains to

show that the message function µ is optimal when the opponent chooses σ = (µ,ξ ).

Consider type u ∈ [0, 1/2] and consider this type’s choice of message. As σ has binary com-

munication and is coordinated, different messages m ∈ M can only trigger different probabilities of

coordinating on L with a highest likelihood of such coordination for any message m ∈ supp(µu).

Therefore, type u is indifferent between any message m ∈ supp(µu) and weakly prefers sending any

message m ∈ supp(µu) to sending any message m′ 6∈ supp(µu). An analogous statement holds for

types u ∈ [1/2,1]. This concludes the proof of the “1 ⇒ 2” part of the theorem.

We prove the “3 ⇒ 1” part in three lemmas, one for each of the three properties.

Lemma 2. Every weakly communication-proof equilibrium strategy σ = (µ,ξ ) is coordinated.
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Proof. We need to show that for any message pair m,m′ ∈ supp(µ̄),

either ξ (m,m′)≥ sup{u | µu(m)> 0} or ξ (m,m′)≤ inf{u | µu(m)> 0} .

Let m,m′ ∈ supp(µ̄) and assume to the contrary that

inf{u | µu(m)> 0}< ξ (m,m′)< sup{u | µu(m)> 0} .

As σ is an equilibrium, we have inf{u | µu(m
′)> 0}< ξ (m′,m)< sup{u | µu(m

′)> 0} because oth-

erwise the sender of m′ would play L with probability one or R with probability one, in which case

the the best reply of the sender of message m would be to play L (or R) regardless of her type.

Let x = ξ (m,m′) and x′ = ξ (m′,m). We now show that the equilibrium (x,x′) of the game without

coordination Γ(Fm,Fm′) is CP-trumped by either σL, σR, or σC.

There are three cases to be considered. Case 1: Suppose that x,x′ ≤ 1/2. We now show that in this

case the equilibrium (x,x′) is CP-trumped by σR. Consider the player who sent message m.

Case 1a: Consider a type u ≤ x. Then we have

(1−u)Fm′(1
2)+u

(

1−Fm′(1
2)
)

≥ (1−u)Fm′(x′),

where the left-hand side is type a u agent’s payoff under strategy profile σR and the right-hand side the

payoff under strategy profile (x,x′). The inequality follows from the fact that u(1−Fm′(1/2))≥ 0, and

Fm′(1/2) ≥ Fm′(x′) follows from the fact that Fm′ is nondecreasing (as it is a cumulative distribution

function). This inequality is strict for all u except for u = 0 in the case where x′ = 1/2.

Case 1b: Now consider a type u with x < u ≤ 1/2. Then we have

(1−u)Fm′(1
2)+u

(

1−Fm′(1
2)
)

> u(1−Fm′(x′)) ,

where the left-hand side is a type u agent’s payoff under strategy profile σR and the right-hand side is

the payoff under strategy profile (x,x′). The inequality follows from the fact that by u ≤ 1/2 we have

that 1−u ≥ u, and therefore (1−u)Fm′(1/2)+u(1−Fm′(1/2))≥ u.

Case 1c: Finally, consider a type u > 1/2. Then we have u > u(1−Fm′(x′)) , where the left-hand

side is a type u agent’s payoff under strategy profile σR and the right-hand side is the payoff under

strategy profile (x,x′).

The analysis for the player who sent message m′ is analogous.

Case 2: Suppose that x,x′ ≥ 1/2. The analysis is analogous to Case 1 if we replace σR with σL.

Case 3: Suppose, w.l.o.g. for the remaining cases, that x ≤ 1/2 ≤ x′. The equilibrium (x,x′) in this

case is Pareto-dominated by σC. To see this, consider the player who sent message m.
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Case 3a: Consider a type u ≤ x. Then we have

(1−u)
[

Fm′(1
2)+

1
2

(

1−Fm′(1
2)
)]

+u1
2

(

1−Fm′(1
2)
)

> (1−u)Fm′(x′),

where the left-hand side is a type u agent’s payoff under strategy profile σC and the right-hand side the

payoff under strategy profile (x,x′). The inequality follows from the fact that we have Fm′(x′) = x≤ 1/2

due to (x,x′) being an equilibrium.

Case 3b: Now consider a type u with x < u ≤ 1/2. Then we have

(1−u)
[

Fm′(1
2)+

1
2

(

1−Fm′(1
2)
)]

+u1
2

(

1−Fm′(1
2)
)

> u(1−Fm′(x′)) ,

where the left-hand side is a type u agent’s payoff under strategy profile σC and the right-hand side

the payoff under strategy profile (x,x′). The inequality follows from the fact that by u ≤ 1/2 we have

1−u ≥ u and thus (1−u)
[

Fm′(1
2)+

1
2

(

1−Fm′(1
2)
)]

+u1
2

(

1−Fm′(1
2)
)

≥ u.

Case 3c: Finally, consider a type u > 1/2. Then we have

u
[(

1−Fm′(1
2)
)

+ 1
2Fm′(1

2)
]

+(1−u)1
2Fm′(1

2)> u(1−Fm′(x′)) ,

where the left-hand side is a type u agent’s payoff under strategy profile σC and the right-hand side is

the payoff under strategy profile (x,x′). The inequality follows from the fact that we have Fm′(1/2)> 0

and Fm′(1/2)≤ Fm′(x′).

The analysis for the player who sent message m′ is analogous.

Lemma 3. Every weakly communication-proof equilibrium strategy σ has binary communication.

Proof. Let σ be a communication-proof equilibrium strategy. Recall that

β σ (m) =
∫ 1

u=0
∑

m′∈M

µu(m
′)1{u≤ξ (m,m′)} f (u)du.

As σ is coordinated by Lemma 2, the payoff to a type u from sending message m ∈ supp(µ) is

(1−u)β σ (m)+u(1−β σ (m)) .

For a type u < 1/2 the problem of choosing a message to maximize her payoffs is thus equivalent

to choosing a message that maximizes β σ (m). We thus must have that there is a β
σ
∈ [0,1] such that

for all u < 1/2 and all m ∈ supp(µu), we have β σ (m) = β
σ

. Analogously, we must have a β σ ∈ [0,1]

such that for all u > 1/2 and all m ∈ supp(µu), we have ασ (m) = β
σ

. Clearly also β σ ≤ β
σ

. To extend

the argument to unused messages m 6∈ supp(µ) we rely on the full support assumption. Assume to

the contrary that there is a message m 6∈ supp(µ) with β σ (m) > β
σ

(resp., β σ (m) < β σ ). Then any

4



sufficiently high (resp., low) type u would strictly earn by deviating to sending message m and playing

L (resp., R), which contradicts the supposition that σ is an equilibrium strategy.

Lemma 4. Every weakly communication-proof equilibrium strategy σ is mutual-preference consis-

tent.

Proof. By Lemma 2 a communication-proof equilibrium strategy σ = (µ,ξ ) is coordinated. Suppose

that it is not mutual-preference consistent. Then there is either a message pair (m,m′) such that there

are types u,v < 1/2 with m ∈ supp(µu) and m′ ∈ supp(µv) such that play after (m,m′) is coordinated on

R, or a message pair (m,m′) such that there are types u,v > 1/2 with m ∈ supp(µu) and m′ ∈ supp(µv)

such that play after (m,m′) is coordinated on L. In the former (resp., latter) case strategy σ is CP-

trumped by strategy σR (resp., σL) in the game 〈Γ(Fm,Fm′),{mL,mR}〉 because strategy σR (resp., σL)

does not affect the payoff of all types u ≥ 1/2 (resp., u ≤ 1/2), and it strictly improves the payoff to all

types u < 1/2 (resp., u > 1/2).

A.3 Proofs of Section 6 (On Efficiency)

Proof of Proposition 1. By Theorem 1 and the discussion of the one-dimensional set of strategies

satisfying the key properties in Section 3 a communication-proof strategy σ ’s equilibrium payoff is

determined by its left tendency α ≡ ασ ∈ [0,1]. This equilibrium payoff is given by

πu(σ ,σ) = (1−u)
[

F(1
2)+α

(

1−F(1
2)
)]

+u(1−α)
[

1−F(1
2)
]

,

for each type u ∈ (0, 1/2], and it is given by

πu(σ ,σ) = (1−u)αF(1
2)+u

[(

1−F(1
2)
)

+F(1
2)(1−α)

]

.

for each type u ∈ (1/2,1]. The payoff to a type u from a given social choice function φ is given by

πu (φ) = (1−u)Evφu,v (L,L)+uEvφu,v (R,R) .

Now suppose that φ interim Pareto dominates σ . Then πu(φ) ≥ πu(σ ,σ) for all u ∈ [0,1] with a

strict inequality for a positive measure of u. As πu(σ ,σ) is a convex combination of two payoffs, this

implies that:

Evφu,v (L,L)≥ F(1
2)+α

(

1−F(1
2)
)

for any u ≤ 1/2, and (1)

Evφu,v (R,R)≥
(

1−F(1
2)
)

+F(1
2)(1−α) for any u > 1/2, (2)
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with at least one of the inequalities holding strictly for a positive measure of types. We can write

Evφu,v (L,L) = F(1
2)E{v≤1/2}φu,v (L,L)+

(

1−F(1
2)
)

E{v>1/2}φu,v (L,L) ,

where, for instance, E{v>1/2} denotes the expectation conditional on v > 1/2. Substituting this last

equality in Eq. (1) yields the following inequality

F(1
2)E{v≤1/2}φu,v (L,L)+

(

1−F(1
2)
)

E{v>1/2}φu,v (L,L)≥ F(1
2)+α

(

1−F(1
2)
)

for any u ≤ 1/2. The fact that E{v≤1/2}φu,v (L,L)≤ 1 implies that E{v>1/2}φu,v (L,L)≥ α for any u ≤ 1/2.

An analogous argument (applied to Eq. (2)) implies that E{v<1/2}φu,v (R,R) ≥ 1−α , for any u > 1/2,

with at least one of these inequalities holding strictly for a positive measure of types.

This implies that

E{u<1/2}E{v>1/2}φu,v (L,L)≥ α and E{u>1/2}E{v<1/2}φu,v (R,R)≥ 1−α,

with at least one of the two inequalities holding strictly. By the symmetry of φ we have φu,v(R,R) =

φv,u(R,R) and thus

E{u<1/2}E{v>1/2}φu,v (L,L)+E{u<1/2}E{v>1/2}φu,v (R,R)> 1,

which contradicts φu,v being a social choice function.

The proof of Proposition 2 uses the following lemma (which is of independent interest).

Lemma 5. Let σ ∈ E be a coordinated equilibrium strategy. Then there is a communication-proof

strategy σ ′ such that either σ and σ ′ are interim payoff equivalent or σ ′ interim Pareto dominates σ .

Proof. Let σ = (µ,ξ )∈ E be coordinated. For each message m ∈ M, let pm ∈ [0,1] be the probability

that the players coordinate on L, conditional on the agent sending message m:

pm = ∑
m′∈M

µ
(

m̄′
)

1{ξ (m,m′)=L}.

As σ is coordinated, it follows that 1− pm is the probability that the players coordinate on R, condi-

tional on the agent sending message m.

Let p̄ = maxm∈M pm be the maximal probability, and let p = minm∈M pm be the minimal proba-

bility. By definition, p ≤ p̄. As σ is an equilibrium strategy, p < p̄ implies that all types u < 1/2

send a message inducing probability p̄ and all types u > 1/2 send a message inducing probability p.

Therefore, the expected payoff of a type u ≤ 1/2 is given by πu (σ ,σ) = p̄(1−u)+(1− p̄)u, and the
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expected payoff of any type u > 1/2 is equal to πu (σ ,σ) = p(1−u)+
(

1− p
)

u. This is also true if

p = p̄. Note that for types u < 1/2, the expected payoff strictly increases in p̄ and for types u > 1/2 the

type’s expected payoff strictly decreases in p.

We consider three cases. Suppose first that p ≤ p̄ ≤ F(1/2). Then let σ ′ = σR. This strategy is

also coordinated and its induced payoffs can be written in the same form as those for strategy σ with

p′ = 0 and p̄′ = F(1/2). Thus, we get that πu (σ
′,σ ′)≥ πu (σ ,σ) for every u ∈ [0,1]. This implies that

σ is either interim (pre-communication) payoff equivalent to or Pareto-dominated by σ ′ = σR.

The second case where F(1/2)≤ p ≤ p̄ is analogous to the first one, with σ ′ = σL.

In the final case p < F(1/2)< p̄. Let α ∈ [0,1] be such that F(1/2)+(1−F(1/2))α = p̄ and let σ ′

be a communication-proof strategy with left tendency α . Then p ≥ αF(1/2) and by construction σ is

either interim (pre-communication) payoff equivalent to or Pareto dominated by σ ′.

Proof of Proposition 2. By Lemma 5 we have that every coordinated equilibrium strategy σ is in-

terim (pre-communication) Pareto-dominated by some communication-proof strategy with some left

tendency α ∈ [0,1] denoted by σα . We thus have that π (σ ,σ)≤ π (σα ,σα).

The ex-ante expected payoff of to a u type under strategy σα is given by

πu (σα ,σα) = (1−u)
[

F(1
2)+α

(

1−F(1
2)
)]

+u(1−α)
(

1−F(1
2)
)

for u ≤ 1/2 and

πu (σα ,σα) = (1−u)αF(1
2)+u

[

1−F(1
2)+(1−α)F(1

2)
]

for u > 1/2.

It is straightforward to verify that πu (σα ,σα) = απu (σ1,σ1)+(1−α)πu (σ0,σ0) . for every u.

As σ1 = σL and σ0 = σR and as for all u ∈ [0,1] πu (σα ,σα) is the same convex combination of

πu (σL,σL) and πu (σR,σR), we have π (σα ,σα) =απ (σ1,σ1)+(1−α)π (σ0,σ0), which implies that

π (σ ,σ)≤ π (σα ,σα)≤ max{π (σL,σL) ,π (σR,σR)}.

B More on Properties of Strategies

In this appendix we demonstrate that no single one of the three properties (mutual-preference con-

sistency, coordination, and binary communication) is implied by the other two. Clearly a strategy

that has binary communication and is coordinated must be an equilibrium. No other combination

of two of the three properties implies that a strategy is an equilibrium. Finally, we also define what

it means for a strategy to be ordinal preference-revealing and show that this is implied by it being

mutual-preference consistent.

Consider the following strategy σ = (µ,ξ ) in the game with communication with a message set

7



M that contains at least three elements. Let m1
L,m

2
L,mR ∈ M, let

µ(u) =











m1
L if u ≤ 1

4

m2
L if 1

4 < u ≤ 1
2

mR if u > 1
2

,

and let ξ be such that ξ (mi
L,m

j
L) = L for all i, j ∈ {1,2}, ξ (mR,mR) = R, ξ (m1

L,mR) = ξ (mR,m
1
L) = R,

and ξ (m2
L,mR) = ξ (mR,m

2
L) = L. This strategy is mutual-preference consistent and coordinated but

does not have binary communication. It is not an equilibrium as types u ≤ 1/4 would strictly prefer to

send message m2
L.

Consider the following strategy σ = (µ,ξ ) in the game with communication with a message set

M that contains at least two elements. Let mL,mR ∈ M, let

µ(u) =

{

mL if u ≤ 1
2

mR if u > 1
2

,

and let ξ be such that ξ (mL,mL) = L, ξ (mR,mR) = R, ξ (mL,mR) = 1/4, and ξ (mR,mL) = 3/4. This

strategy is mutual-preference consistent, has binary communication, but is not coordinated. For al-

most all type distributions F this is not an equilibrium: it is only an equilibrium if F satisfies

(F(3/4)−F(1/2))/(1−F(1/2)) = 1/4textrmandF(1/4)/F(1/2) = 3/4.

Finally, for a strategy that has binary communication and is coordinated but not mutual-preference

consistent, consider the equilibrium strategy that always leads to coordination on L for any pair of

messages.

Note also that an equilibrium does not necessarily satisfy any of the three properties. The inte-

rior cutoff babbling equilibria mentioned in Section 3 are not coordinated and not mutual-preference

consistent. The equilibrium of Example 1 does not have binary communication.

Call a strategy σ = (µ,ξ ) ∈ Σ ordinal preference-revealing if there exist two nonempty, disjoint,

and exhaustive subsets of supp(µ̄) denoted by ML and MR (i.e., supp(µ̄) = ˙ML

⋃

MR) such that if

u < 1/2, then µu(m) = 0 for each m ∈ MR, and if u > 1/2, then µu(m) = 0 for each m ∈ ML. With an

ordinal preference-revealing strategy a player indicates her ordinal preferences. A strategy σ that is

mutual-preference consistent is also ordinal preference-revealing (but not vice versa). Suppose not.

Then there is a message m and two types u < 1/2 and v > 1/2 such that µu(m),µv(m) > 0. But then

no matter how we specify ξ (m,m) we get either that if two types u meet they do not coordinate on L

with probability one or if two types v meet they do not coordinate on R with probability one.
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C Non-binary Communication Equilibrium

We here formally present the example, which is discussed informally at the end of Section 3, of an

equilibrium in which agents reveal some information about the cardinality of their preferences.

Suppose that |M| ≥ 4 and consider the game with two rounds of communication. Let e,mL,mR ∈M

and let σ = (µ1,µ2,ξ ), with µ1 : U → ∆(M), µ2 : M×M×U → ∆(M), and ξ : (M×M)2 →U be as

follows. For the first round of messages there is an x ∈ [0,1] such that

µ1(u) =











e if u ≤ x or u > 1− x

mL if x < u ≤ 1
2

mR if 1
2 < u ≤ 1− x.

The second round of messages depends on the outcome of the first round and is best described in the

following table.

e mL mR

e e µ∗ µ∗

mL mL mL µC

mR mR µC mR

Each entry in this table describes the message function that a player follows if her first-stage message

is the one indicated on the left and her opponent’s first-stage message is the one indicated at the top.

The message function µ∗ (after for instance a message pair of (e,mL)) is just as in the definition of

σL and σR (in Section 3). The message function µC is as in the definition of σC with an appropriate

relabeling of four messages in M. The action function is also best given in table form as a function of

the result of the first round of communication (or the second round when so indicated).

e mL mR

e

{

L if u ≤ 1
2

R if u > 1
2

{

L if u ≤ 1
2

R if u > 1
2

{

L if u ≤ 1
2

R if u > 1
2

mL

{

L if µ2 = (mL,mL)

R otherwise
L ξC

mR

{

R if µ2 = (mR,mR)

L otherwise
ξC R

Action function ξC is as defined for σC applied to the second round of communication only.

We can complete the description of this strategy by requiring that all other messages in M be

treated exactly the same as one of the messages e,mL,mR.

Proposition 3. Let F be a nondegenerate symmetric distribution around 1/2, i.e., F(x) = 1−F(1−x)
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for all x ∈ [0,1]. Then there is an x ∈ (0, 1/2) such that the above-defined strategy of the coordination

game, with two rounds of communication and with |M| ≥ 4, is a Nash equilibrium.

Proof. Consider the given strategy for an arbitrary x ∈ (0, 1/2). First note that whenever messages

lead the players to coordinate their action then clearly both players are best replying to each other

with their actions. This is so in all cases except when both players send message e in the first round.

In this case players choose L if their type u ≤ 1/2 and R otherwise. Each player, in this case, faces an

opponent that either has u ≤ x or u > 1−x. In the first (second) case the opponent plays L (R). Given

that F(x) = 1−F(1− x) both cases are equally likely. Given this, players’ actions are indeed best

replies.

Thus, all action choices are best responses to the given strategy. We now turn to message choices.

Consider the second round. After moderate messages in the first round messages in the second round

either do not affect play at all (after (mL,mL) and (mR,mR)) or do so as in strategy σC. In either case

players are indifferent between all messages. After message pairs (mL,e) and (mR,e) the sender of

the moderate message has a strict incentive to send the same message again, while the sender of the

extreme message has a strict incentive to send mL if her type u < 1/2 or to send mR if her type u > 1/2

as this induces coordination on her preferred outcome. After both players send message e, play will

not depend on messages in the second round either and so both players will be indifferent between all

messages. Thus, the behavior in the second round of communication is a best response to the given

strategy.

Finally, we need to consider the incentives to send messages in the first round. It is obvious that

any type u < 1/2 prefers sending message mL to sending message mR and vice versa for types u > 1/2.

The only remaining thing to show is that types u ≤ x and u > 1− x and only these weakly prefer to

send message e in the first round. Given the symmetry it is without loss of generality to consider a

type u ≤ 1/2. Given the strategy, sending message e yields to this type a payoff of

F(x)(1−u)+
(

F(1
2)−F(x)

)

(1−u)+
(

F(1− x)−F(1
2)
)

(1−u)+(1−F(1− x))0,

where F(x) is the probability that her opponent is an extreme left type, (F(1/2)−F(x)) is the proba-

bility that the opponent is a moderate left type, (F(1− x)−F(1/2)) is the probability that the opponent

is a moderate right type, in all of which cases both players eventually play L, and where (1−F(1−x))

is the probability that her opponent is an extreme right type, in which case the two players miscoordi-

nate. Sending message mL yields a payoff of

F(x)(1−u)+
(

F(1
2)−F(x)

)

(1−u)+
(

F(1− x)−F(1
2)
)

1
2 +(1−F(1− x))u.
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A type u ≤ 1/2 therefore weakly prefers sending message e to sending message mL if and only if

Dx(u)≡
(

F(1− x)−F(1
2)
)

(1−u)−
(

F(1− x)−F(1
2)
)

1
2 − (1−F(1− x))u ≥ 0.

Using the symmetry of F we can rewrite D(x) as Dx(u) = (1/2−F(x))(1/2−u)−F(x)u.

Note that Dx(u) is linear and downward sloping in u if x ∈ (0, 1/2). In an equilibrium we then

must have that Dx(x) = 0. This implies Dx(x) =
(

1
2 −F(x)

)(

1
2 − x

)

−F(x)x = 0, or, equivalently,

Dx(x) =
1
4 −

1
2F(x)− 1

2x = 0. As D0(0) = 1/4 > 0, D1/2(1/2) = −1/4 < 0, and Dx(x) is a continuous

function in x, there is an x ∈ (0, 1/2) such that Dx(x) = 0. For this x the given strategy is thus an

equilibrium.

D Evolutionary Stability Analysis

In this appendix we analyze the stability of strategies σL and σR (the results can be extended to other

communication-proof equilibria, but we omit the details here for brevity).

D.1 Evolutionary/Neutral Stability

We say that two strategies are almost surely realization equivalent (abbr., equivalent) if they induce

the same behavior in almost all types (regardless of the opponent’s behavior).

Definition 5. A condition holds for almost all types if the set of types that satisfy the condition Ũ ⊆U

has mass one (as measured by the distribution f ), i.e.,
∫

u∈Ũ f (u)du = 1.

Definition 6. Strategies σ = (µ,ξ ) and σ̃ =
(

µ̃, ξ̃
)

are almost surely realization equivalent (abbr.,

equivalent) if for almost all types u∈ [0,1]: µu (m)= µ̃u (m) for every message m∈M, and Fm (ξ (m,m′))=

Fm

(

ξ̃ (m,m′)
)

for all messages m,m′ ∈ supp(µ̄).

If σ and σ̃ are equivalent strategies we denote this by σ ≈ σ̃ . It is immediate that equivalent

strategies always obtain the same ex-ante expected payoff.

An equilibrium strategy σ is neutrally (evolutionarily) stable if it achieves a weakly (strictly)

higher ex-ante expected payoff against any (non-equivalent) best-reply strategy, relative to the payoff

that the best-reply strategy achieves against itself.

Definition 7 (adaptation of Maynard Smith and Price, 1973). Equilibrium strategy σ ∈ E is neutrally

stable if π (σ̃ ,σ) = π (σ ,σ) ⇒ π (σ , σ̃) ≥ π (σ̃ , σ̃) for any nonequivalent strategy σ̃ 6≈ σ . It is

evolutionarily stable if this last weak inequality is replaced by a strict one.
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The refinement of neutral stability is arguably a necessary requirement for an equilibrium to be

a stable convention in a population (see, e.g., Banerjee and Weibull, 2000). If σ is an equilibrium

strategy that is not neutrally stable, then a few experimenting agents who play a best-reply strategy

σ ′ can invade the population. These experimenting agents would fare the same against the incum-

bents, whereas they would outperform the incumbents when being matched with other experimenting

agents. This implies that, on average, these experimenting agents would be more successful than the

incumbents, and their frequency in the population would increase in any payoff-monotone learning

dynamics. This, in turn, implies that the population will move away from σ .

Our first result shows that both σL and σR are neutrally stable, and, moreover, they are evolution-

arily stable if there are two feasible messages.

Proposition 4. Strategies σL and σR are neutrally stable strategies of the coordination game with

communication 〈Γ,M〉. Moreover, if |M|= 2, then σL and σR are evolutionarily stable strategies.

Proof. We here prove this result for σL. The proof for σR proceeds analogously and is omitted. In

order to prove this result we first characterize all strategies σ that are best responses to σL and thus

satisfy π(σ ,σL) = π(σL,σL). Consider the message and action choice of a type u when her opponent

uses strategy σL. If our type u chooses any message other than mR, her opponent, sending message

mL or mR, plays action L in either case. Our type u could then choose action L (as prescribed by σL),

which provides a payoff of 1−u, or action R, which provides a payoff of zero. Thus all types u < 1

are strictly better off choosing action L in this case. Also note that sending any message other than

mL leads to a best possible payoff of 1−u.

If our type u chooses to send message mR then there are two cases. First, suppose that her opponent

sends message mL, in which case her opponent chooses action L. Our type u could then choose action

L (as prescribed by σL), which provides a payoff of 1− u, or action R which provides a payoff of

zero. Thus all types u < 1 are strictly better off choosing action L in this case. Second, suppose that

her opponent sends message mR, in which case her opponent chooses action R. Our type u could then

choose action R (as prescribed by σL), which provides a payoff of u, or action L which provides a

payoff of zero. Thus all types u > 0 are strictly better off choosing action R in this case. Note that

sending message mR thus provides a best possible payoff of F(1/2)(1−u)+(1−F(1/2))u.

For type u it is then a strict best response to send message mR if F(1/2)(1−u)+ (1−F(1/2))u >

1− u, which is the case if and only if u > 1/2 (as F(1/2) ∈ (0,1) by assumption). For the case of

|M| = 2 we then have that any best response to σL is equivalent to σL as only three possible types

have an alternative best reply: types u = 0, u = 1/2, and u = 1 (all zero measures under the assumption

of an atomless distribution F). Any strategy that differs from σL for a positive measure of types yields

a strictly inferior payoff against σL than σL does. This proves that σL is evolutionarily stable in the

case of |M| = 2 simply by virtue of the fact that there are no nonequivalent strategies σ that satisfy

π(σ ,σL) = π(σL,σL).
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Suppose from now on that |M| > 2. Our type u then has a choice of messages m 6= mR when

u < 1/2. All of these messages can at best lead to a payoff of u (from playing L,L) and, therefore, all

of them are equally good when playing against σL. As her opponent never chooses any message other

than mL or mR (each has probability zero under σL) our type u < 1/2 when best responding can play

anything after any message pair (m,m′) when both m,m′ 6∈ {mL,mR}. Let σ be a strategy that satisfies

all the previous restrictions, where all types u play a (in most cases unique and strict) best response

against σL. Then we have that πu(σ ,σ) = πu(σL,σ) for all u ≥ 1/2 (as the behavior under σ for types

u ≥ 1/2 (except for possibly types u = 1/2 and u = 1) is identical to that under σL), πu(σ ,σ)≤ 1−u for

all u < 1/2 (since this type can achieve at best 1−u), and πu(σL,σ) = 1−u (since σ similarly to σL

prescribes playing L in this case). We thus have for any such σ by construction π(σ ,σL) = π(σL,σL).

We also have that π(σL,σ)≥ π(σ ,σL) for any such σ . Finally any best-reply strategy to strategy σL

must be equivalent to some such strategy σ and thus σL is neutrally stable.

D.2 Message Function is Dominant

Next we show that the first-stage behavior induced by strategy σL (resp., σR), namely, the message

function µ∗, is weakly dominant (and strictly dominant when |M|= 2), when taking as given that the

behavior in the second stage is according to the action function ξL (resp., ξR). This suggests that the

behavior in the first stage that is induced by σL (resp., by σR) is robust to any perturbation that keeps

the behavior in the second stage unchanged. Specifically, it implies that even if the message function

used by the population is perturbed in an arbitrary (and possibly significant) way, then the original

function µ∗ yields a weakly higher payoff than any other message function, which suggests that

the behavior in the first stage would converge back to play µ∗ under any payoff-monotone learning

dynamics.

Proposition 5 shows that message function µ∗ yields a weakly higher payoff relative to any other

message function when the action function is given by ξL or ξR. Moreover, the inequality is strict

whenever the alternative message function is essentially different from µ∗ in the sense of inducing

low types to play mR or inducing high types to play m 6= mR.

Proposition 5. Let µ ′,µ ′′ be arbitrary message functions. Then for, ξ ∈ {ξL,ξR} and for any type

u 6= 1/2,

πu

(

(µ∗,ξ ) ,
(

µ ′,ξ
))

≥ πu

((

µ ′′,ξ
)

,
(

µ ′,ξ
))

.

This inequality is strict for ξ = ξL if µ ′
u(mR) > 0 for a positive measure of types u and, either

µ ′′
u (mR) > 0 for a positive measure of types u < 1/2, or µ ′′

u (mR) < 1 for a positive measure of types

u > 1/2. This inequality is strict for ξ = ξR if µ ′
u(mL)> 0 for a positive measure of types u and, either

µ ′′
u (mL) > 0 for a positive measure of types u > 1/2, or µ ′′

u (mL) < 1 for a positive measure of types

u < 1/2.
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Proof. Consider the case of ξ = ξL (the other case is proven analogously). Let γ denote the probability

that a player following strategy (µ ′,ξL) sends message mR. Then sending any message other than mR

when the partner sends (µ ′,ξL) yields a payoff of 1− u, and sending message mR yields a payoff of

γu+(1− γ)(1−u). Thus any type u > 1/2 weakly prefers sending message mR to sending any other

message (and strictly prefers this if γ > 0), while any type u < 1/2 weakly prefers sending any message

other than mR to sending message mR (and strictly prefers this if γ < 1). Thus, for every message

function µ ′ of the opponent, µ∗ optimizes the message choice for every type u universally.

D.3 Action Function is a Neighborhood Invader Strategy

In the induced second-stage game Γ(Fm,Fm′) (the game played after players observe a pair of mes-

sages (m,m′)), players choose a cutoff to determine whether to play action L (if their type is below or

equal to that cutoff) or action R (otherwise). Thus, players essentially choose a number (their cutoff)

from the unit interval. Note also that this induced game is asymmetric whenever the message profile is

asymmetric, i.e., when m 6= m′. As argued by Eshel and Motro (1981) and Eshel (1983), when the set

of strategies is a continuum, a stable convention should be robust to perturbations that slightly change

the strategy played by all agents in the population. Cressman (2010) formalizes this requirement using

the notion of neighborhood invader strategy (adapting the related notion of Apaloo, 1997). In what

follows we show that the action function induced by σL and σR is a neighborhood invader strategy in

any induced game Γ(Fm,Fm′) on the path of play.

Fix a message function µ and a pair of messages m1,m2 ∈ supp(µ̄). We identify a strategy in

the induced game Γ(Fm1
,Fm2

) with thresholds xi, which is interpreted as the maximal type for which

player i ∈ {1,2} plays L. We say that strategy xi of player i is equivalent to x′i (denoted by xi ≈ x′i)

in the induced game Γ(Fm1
,Fm2

), if Fmi
(xi) = Fmi

(x′i), which implies that both thresholds induce the

same behavior with probability one. Let πm1,m2 (x1,x2) denote the expected payoff of an agent with a

random type sampled from fm1
who uses threshold x1 when facing a partner with a random unknown

type sampled from fm2
who uses threshold x2.

A strategy profile (x1,x2) is a strict equilibrium if any best reply to x j is equivalent to xi, i.e.,

πm1,m2 (x′1,x2)≥ πm1,m2 (x1,x2)⇒ x′1 ≈ x1, and πm2,m1 (x′2,x1)≥ πm2,m1 (x2,x1)⇒ x′2 ≈ x2.

We say that the strict equilibrium (x1,x2) is a neighborhood invader strategy in the induced game

Γ(Fm1
,Fm2

) if the population converges to (x1,x2) from any nonequivalent nearby strategy profile

(x′1,x
′
2) in two steps: (1) strategy xi yields a strictly higher payoff against x j relative to the payoff of x′i

against x j (which implies convergence from
(

x′i,x
′
j

)

to
(

xi,x
′
j

)

), and (2) due to (x1,x2) being a strict

equilibrium, strategy x j yields a strictly higher payoff against xi relative to the payoff of x′j against xi

(which implies the convergence from
(

xi,x
′
j

)

to
(

xi,x j

)

).
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Definition 8 (Adaptation of Cressman, 2010, Def. 5). Fix a message function µ and a pair of messages

m1,m2 ∈ supp(µ̄). A strict Nash equilibrium (x1,x2) is a neighborhood invader strategy profile in

Γ(Fm1
,Fm2

) if there exists ε > 0, such that for each (x′1,x
′
2) satisfying x′1 6≈ x1, x′2 6≈ x2, |x′1 − x1| < ε

and |x′2 − x2|< ε , then either πm1,m2 (x1,x
′
2)> πm1,m2 (x′1,x

′
2) or πm2,m1 (x2,x

′
1)> πm2,m1 (x′2,x

′
1).

Proposition 6 shows that the profile of action functions induced by σL (or, similarly, by σR) is a

neighborhood invader strategy in any induced game.

Proposition 6. Let m1,m2 ∈ supp(µ̄∗). Then both strategy profiles (ξL (m1,m2) ,ξL (m2,m1)) and

(ξR (m1,m2) ,ξR (m2,m1)) are strict equilibria and neighborhood invader strategy profiles in ΓFm1
,Fm2

.

Proof. We present the proof for (ξL (m1,m2) ,ξL (m2,m1)) (the proof for ξR is analogous). Observe

that m1,m2 ∈ supp(µ̄∗) implies one of three cases: m1 = m2 = mL, m1 = m2 = mR, or m1 = mR, m2 =

mL. We analyze each case as follows.

Suppose first that m1 = m2 = mL. This implies that ξL (m1,m2) = ξL (m2,m1) = 1 and Fm1
(1/2) =

Fm2
(1/2) = 1. Let x̄ < 1/2 be sufficiently close to 1/2 such that Fm1

(x̄) ,Fm2
(x̄) > 1/2. Observe that

πm1,m2 (1,x) > πm1,m2 (y,x) for any x > x̄ and any y 6≈ 1. This proves that (ξL (m1,m2) ,ξL (m2,m1))

is a strict equilibrium and a neighborhood invader strategy profile. Now suppose that m1 = m2 = mR.

This implies that ξL (m1,m2)= ξL (m2,m1)= 0 and Fm1
(1/2)=Fm2

(1/2)= 0. Let x̄> 1/2 be sufficiently

close to 1/2 such that Fm1
(x̄) ,Fm2

(x̄)< 1/2. Observe that πm1,m2 (0,x)> πm1,m2 (y,x) for any x < x̄ and

any y 6≈ 0. This proves that (ξL (m1,m2) ,ξL (m2,m1)) is a strict equilibrium and neighborhood invader.

Suppose finally that m1 =mR, m2 =mL. This implies that ξL (m1,m2)= ξL (m2,m1)= 1, Fm1
(1/2)=

0, and Fm2
(1/2) = 1. Observe that πm1,m2 (1,1) > πm1,m2 (x,1) for any x 6≈ 1 and πm2,m1 (1,1) >

πm2,m1 (x,1) for any x 6≈ 1, which implies that (ξL (m1,m2) ,ξL (m2,m1)) is a strict equilibrium. Let

x̄ > 1/2 be sufficiently close to 1/2 such that Fm1
(x̄) < 1/2. Observe that πm2,m1 (1,x) > πm1,m2 (y,x)

for any x < x̄ and any y 6≈ 1. This proves that (ξL (m1,m2) ,ξL (m2,m1)) is a neighborhood invader

strategy profile.

D.4 Remark on Evolutionary Robustness

Oechssler and Riedel (2002) present a strong notion of stability, called evolutionary robustness, that

refines both evolutionary stability and the neighborhood invader strategy. An evolutionary robust

strategy σ∗ is required to be robust against small perturbation in the strategy played by the population,

which may comprise both (1) a few experimenting agents who follow arbitrary strategies, and (2)

many agents who follow strategies that are only slightly different than σ∗. Specifically, if σ is a

distribution of strategies that is sufficiently close to σ∗ (in the L1 norm induced by the weak topology),

evolutionary robustness à la Oechssler and Riedel requires that π (σ∗,σ)> (σ ,σ).

One can show that σL and σR do not satisfy this condition (and, we conjecture, that no strategy

can satisfy this condition in our setup). However, we conjecture that one can show that σL and
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σR satisfy a somewhat weaker notion of evolutionary robustness: for each strategy distribution σ

sufficiently close to σL (σR), there exists a finite sequence of strategy distributions σ1,σ2, . . . ,σk,

such that π (σ1,σ)≥ (σ ,σ), π (σ2,σ1)≥ (σ1,σ1), . . . , π (σk,σk−1)≥ (σk−1,σk−1), and π (σL,σ1)≥

(σ1,σ1) (resp., π (σR,σ1) ≥ (σ1,σ1)), with strict inequalities if |M| = 2 and σ is not realization

equivalent to σL (σR).

E Analysis of the Extensions

E.1 Multiple Rounds of Communication

Consider a variant of the coordination game with communication in which players have T ≥ 1 of

rounds of communication. In each such round players simultaneously send messages from the set M.

Players observe messages after each round and can, thus, condition their message choice and then

their final action choice on the history of observed message pairs up to the point in time where they

take their message or action decision. Renegotiation then possibly takes place once at the end of this

communication phase but before the final action choices are made. Let M =
⋃T−1

t=0 (M×M)t, where

(M×M)0 = /0.

A (pure) message protocol is a function m : M → M that describes the message sent by an agent

as a deterministic function of the message profiles observed in the previous rounds of communica-

tion. Let M be the set of all message protocols. A strategy σ = (µ,ξ ) is a pair where µ : U → ∆(M)

denotes the message function, prescribing a (possibly random) message protocol for each type, and

ξ : (M×M)T →U denotes the action function by means of describing the cutoff (the highest possible

value of u) for the two players to choose action L after observing the final message history. Renego-

tiation is modeled, as in the main text, as a possibility for the two players to play an equilibrium of a

new game with another round of communication after all messages are sent, possibly using a different

message set.

Next, we adapt the notion of binary communication to fit multiple rounds of communication.

For any message protocol m ∈M, let β σ (m) denote the expected probability of a player’s opponent

playing L conditional on the player following message protocol m ∈M and the opponent following

strategy σ = (µ,ξ ) ∈ Σ. We say that strategy σ has binary communication if there are two numbers

0 ≤ β σ ≤ β
σ
≤ 1 such that for all message protocols m ∈ M we have β σ (m) ∈ [β σ ,β

σ
], for all

message protocols m ∈ M such that there is a type u < 1/2 with µu(m) > 0 we have β σ (m) = β
σ

,

and for all message protocols m ∈ M such that there is a type u > 1/2 with µu(m) > 0 we have

β σ (m) = β σ . That is, binary communication implies that players use just two kinds of message

protocols: any message protocol used by types u < 1/2 induces the consequence of maximizing the

probability of the opponent to play L, and any message protocol used by types u > 1/2 induces the
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opposite consequence of maximizing the probability of the opponent to play R.

Theorem 1, together with Propositions 1 and 2, holds in this setting with minor adaptations to

the proof (omitted for brevity). Thus, regardless of the length of the pre-play communication, agents

can reveal only their preferred outcome (but not the strength of their preference), and, regardless

of having access to additional rounds of communication, they cannot improve the ex-ante expected

payoff relative to the payoff induced by a single round of communication with a binary message.

E.2 Multidimensional Sets of Types

In our model we made the simplifying assumption that miscoordination provides the same payoff

(normalized to zero) to both players. This is not completely innocuous. In this section we explore

which results are still true in this more general setting. Consider the following multidimensional set

of types. Let Û , a subset of R4, be the set of payoff matrices of binary coordination games, with uab

being the payoff if a player chooses action a ∈ {L,R} while her opponent chooses action b ∈ {L,R}:

Û = {(uLL,uLR,uRL,uRR) | uLL > uRL and uRR > uLR} .

Thus, all types strictly prefer coordination on the same action as the partner to miscoordination. Note

that any affine transformation of all payoffs neither changes the player’s incentives nor changes how

she compares any two outcome distributions ∈ ∆({L,R}). We can thus subtract min{uRL,uLR} from

all payoffs and then divide all payoffs by some number such that the sum of the diagonal entries is

equal to one. This leaves two parameters to describe a payoff vector in Û . This means that for our

purposes the set Û is two-dimensional. Let Γ̂ = Γ̂(G) denote the coordination game with the two-

dimensional type space Û , endowed with an atomless CDF G over Û with a density g. Similarly, let

〈Γ̂,M〉 be the corresponding game with communication.

Given a type u = (uLL,uLR,uRL,uRR), let ϕu ∈ [0,1] denote type u’s indifference threshold, which

is the probability of the opponent playing L that induces an agent of type u to be indifferent:

ϕu =
uRR −uLR

uLL −uRL +uRR −uLR
.

Observe that an agent with indifference threshold ϕu, where ϕu is a number always between 0 and 1,

prefers to play L (R) if her partner plays L with probability larger (smaller) than ϕu. In other words,

for a given probability of her partner playing L, a type u prefers to play L if and only if ϕu is less

than that probability. Thus, the indifference threshold ϕu replaces what we denoted by u in the main

model. In particular, in this setting we can also restrict attention to cutoff action functions. These

are now applied to ϕu instead of to u. Thus, under a strategy σ = (µ,ξ ) a player plays action L after

observing a message pair (m,m′) if and only if ϕu ≤ ξ (m,m′).
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Recall, that action L is risk-dominant (Harsanyi and Selten, 1988) if it is a best reply against the

opponent randomizing equally over the two actions, i.e., if ϕu ≤ 1/2 ⇔ uLL −uLR ≥ uRR −uRL.

The crucial assumption that we implicitly made in our (one-dimensional) main model is that for

any type of player the action that she prefers to coordinate on is also risk-dominant for her.

Definition 9. An atomless distribution over the payoff space U with density function g : U → R

satisfies unambiguous coordination preferences if for any u ∈U with g(u)> 0 we have uLL ≥ uRR ⇔

ϕu ≤ 1/2.

Under a distribution over types with unambiguous coordination preferences, every type in its sup-

port prefers coordinating on action L iff that type finds action L risk dominant. Under the assumption

that the distribution satisfies unambiguous coordination preferences, Thm. 1 goes through unchanged

if we set

F(ϕ) =
∫

{u∈U :ϕu≤ϕ}
g(u)du

to be the implied distribution over the players’ indifference threshold induced by density g. As in the

baseline model, we assume that F(ϕ) has full support on the interval [0,1].

Theorem 2 (Theorem 1 adapted to a multidimensional set of types). Let σ be a strategy of a game

〈Γ̂,M〉 that satisfies unambiguous coordination preferences. Then the following three statements are

equivalent:

1. σ is mutual-preference consistent, coordinated, and has binary communication.

2. σ is a strongly communication-proof equilibrium strategy.

3. σ is a weakly communication-proof equilibrium strategy.

The proof is presented in Appendix E.7.1. The intuition is the same as in Theorem 1. The adapta-

tion of Lemma 2, to the current setup relies on having unambiguous coordination preferences. Exam-

ple 2 demonstrates that the restriction of unambiguous coordination preferences is necessary for the

“3 ⇒ 1” part of the result.

Example 2. There are four possible preference types as follows:

uL1
L R

L 2 0

R 0 1

uL2
L R

L 2 -15

R 0 1

uR1
L R

L 1 0

R 0 2

uR2
L R

L 1 0

R -15 2

The distribution of types F is such that20 P(uL1
) = P(uR1

) = 1/18 and P(uL2
) = P(uR2

) = 8/18.

20This distribution is discrete, but could be modified to a nearby atomless distribution without changing the result.
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Let M = {mL,mR} and let σ = (µ,ξ ) be such that µ (uL1
) = µ (uL2

) =mL and µ (uR1
) = µ (uR2

) =

mR (making σ mutual-preference consistent), and ξ (mL,mL) = L, ξ (mR,mR) = R, ξ (uL1
,mL,mR) =

ξ (uR2
,mR,mL) = L, and ξ (uL2

,mL,mR) = R as well as ξ (uR1
,mR,mL) = R.

It is straightforward to verify that σ is an equilibrium with expected payoffs 1
2 ·2+

1
2 ·
(

8
9 ·2+

1
9 ·0

)

=

1+ 8
9 for types uL1

and uR1
, and 1

2 · 2+
1
2 ·

1
9 · 1 = 1+ 1

18 for types uL2
and uR2

. Observe that no type

wants to misreport her preferred outcome in round one. In particular, a misreporting type uL2
will get

a payoff of 1
2 ·1+

1
2 ·

8
9 ·1 = 17

18 < 1+ 1
9 .

Proposition 7. The equilibrium given in Example 2 is not strongly communication proof, but it is

weakly communication proof.

We prove Proposition 7 through a series of claims. Note that, given the equilibrium in question,

after message pairs (mL,mL) and (mR,mR) no Pareto improvement is possible. It remains to be shown

that, while there is a Pareto-improving equilibrium (with new communication) after message pair

(mL,mR), all Pareto-improving equilibria after message pair (mL,mR) are themselves CP-trumped.

The following claims refer to the situation after observed message pair (mL,mR).

Claim 1. Suppose a further message pair leads to updated beliefs of α,1−α of the L type being

L1 or L2, respectively, and β ,1−β of the R type being R1 or R2, respectively. The following table

provides the full list of Bayes Nash equilibria in the updated coordination game without (further)

communication:

L1,L2 R1,R2 payoffs L1,L2;R1,R2 α β

L,L L,L 2,2;1,1 ∈ [0,1] ∈ [0,1]

R,R R,R 1,1;2,2 ∈ [0,1] ∈ [0,1]

mix,R mix,L 2
3 ,

2
3 ; 2

3 ,
2
3 ≥ 2

3 ≥ 2
3

mix,R R,mix 2
3 ,

2
3 ; 16

9 ,
1
9 ≥ 1

9 ≤ 2
3

L,mix mix,L 16
9 ,

1
9 ; 2

3 ,
2
3 ≤ 2

3 ≥ 1
9

L,mix R,mix 16
9 ,

1
9 ; 16

9 ,
1
9 ≤ 1

9 ≤ 1
9

L,R R,L 2(1−β ),β ;2(1−α),α ∈ [1
9 ,

2
3 ] ∈ [1

9 ,
2
3 ]

The last two columns provide the range of α and β under which the various strategy profiles are

equilibria.

Proof. The proof follows straightforwardly from the observations that a probability of opponent play-

ing action L (R) of 1
3 makes type L1 (R1) indifferent between actions L and R, while a probability of

opponent playing action L (R) of 8
9 makes type L2 (R2) indifferent between actions L and R.

Claim 2. Of the equilibria provided in Claim 1 equilibria that are not given in the following table are

CP trumped by other equilibria.
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L1,L2 R1,R2 payoffs L1,L2;R1,R2 α β α +β

L,L L,L 2,2;1,1 ∈ [0,1] ∈ [0,1]

R,R R,R 1,1;2,2 ∈ [0,1] ∈ [0,1]

L,mix R,mix 16
9 ,

1
9 ; 16

9 ,
1
9 ≤ 1

9 ≤ 1
9

L,R R,L 2(1−β ),β ;2(1−α),α ∈ [1
9 ,

7
18 ] ∈ [1

9 ,
7
18 ] ≤ 1

2

Proof. All mixed equilibria except ((L,mix),(R,mix)) are Pareto dominated by either (L,L) or (R,R),

see Claim 1. Equilibrium ((L,R),(R,L)) (when α,β are outside the domain given in the table above) is

dominated by a convex combination of (L,L) and (R,R) (it is dominated by (L,L) if α ≥ 1
2 , dominated

by (R,R) if β ≥ 1
2 , and dominated by a joint lottery that yields (L,L) with probability 1−2β and (R,R)

with the remaining probability 2β if α,β < 1
2 < α +β ).

Claim 3. In any equilibrium of this game with or without additional communication, type L1 (R1)

receives a payoff that is at least as high as that of type L2 (R2).

Proof. The stage game payoff matrix for L1 weakly exceeds that of L2. Suppose there is an equilib-

rium in which L2 expects a strictly higher payoff that L1. Then L1 can imitate L2 and get at least the

same payoff, a contradiction.

Claim 4. Consider an equilibrium of this game with communication that CP trumps the considered

equilibrium ((L,R),(R,L)) with respect to (mR,mL) and that is not itself CP trumped by another strat-

egy. If there is a message m that only type L1 (R1) sends, then play after this message must be fully

coordinated (against all opponent messages).

Proof. A message m that only L1 sends reveals L1 (leads to an updated belief that m sender is of type

L1 with probability α = 1). Then only coordinated equilibria are possible as undominated equilibria

- see Claim 2 above for cases with α = 1. An analogous argument can be made for type R1.

Claim 5. In any equilibrium of this game with communication that CP trumps the considered equi-

librium ((L,R),(R,L)) and that is not itself CP trumped by another strategy, there can be no message

sent with positive probability by type L1 (R1) that leads to coordinated play against all opponent

messages.

Proof. Suppose there is a message m that type L1 sends with positive probability that leads to coor-

dinated play (for all opponent messages). Then to Pareto-dominate the original equilibrium L1 must

expect a payoff of at least 16
9 . Then type L2 could imitate L1 and also obtain the same payoff that L1

obtains (because when play is coordinated both types receive the same payoff). Any other message

m′ that type L2 sends must also provide the same payoff. Suppose play after message m′ is not fully

coordinated. Then type L1 can send message m′ and imitate L2’s behavior and receive a strictly higher
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payoff than L2 does. Thus, message m′ must also lead to fully coordinated play against all opponent

messages. Any message m′′ sent by L1 and not L2 must lead to fully coordinated play as well by Claim

4. Thus, all messages sent with positive probability must lead to fully coordinated play. Given this,

both types L1 and L2 receive a payoff greater or equal to 16
9 . But then R1 can only obtain a payoff of at

most 3− 16
9 = 11

9 (with 3 being the maximal total payoff in any encounter), and the new equilibrium

is no Pareto-improvement, a contradiction.

Claim 6. In any equilibrium of this game with communication that CP trumps the considered equi-

librium ((L,R),(R,L)) and that is not itself CP trumped by another strategy, any message sent with

positive probability by type L1 (R1) must also be sent by L2 (R2).

Proof. Suppose not and there is a message m that reveals L1. Then by Lemma 4 this message must

lead to coordinated play which contradicts Lemma 5.

Claim 7. In any equilibrium of this game with communication that Pareto-dominates the considered

equilibrium (L,R),(R,L) and that is not itself CP trumped by another strategy, there must be a message-

pair (m,m′) sent with positive probability (by both types, respectively) that leads to an (L,R),(R,L)

equilibrium with updated beliefs of α = P(L1|m) ∈ [1
9 ,

1
2 ] and β = P(R1|m) ∈ [1

9 ,
1
2 ] that also satisfy

α +β ≤ 1
2 .

Proof. By Claim 5 every message sent must induce miscoordination against at least some opponent

message. By Claim 6 every message L1 sends L2 also sends. Thus, there must be a message m that

leads to an updated belief that L1 sent this message of weakly more than 1
9 (analogously, m′ for R

types). The only possible miscoordinated (and undominated) equilibrium given (m,m′) is given by

(L,R),(R,L) - see Table above. We must have α = P(L1|m) ∈ [1
9 ,

1
2 ] and β = P(R1|m) ∈ [1

9 ,
1
2 ] that also

satisfy α +β ≤ 1
2 . Otherwise (L,R),(R,L) is Pareto dominated, a contradiction.

Claim 8. Consider the stage game with µ = P(L1|m) ∈ [1
9 ,

1
2 ] and ν = P(R1|m) ∈ [1

9 ,
1
2 ] that also

satisfy µ +ν ≤ 1
2 . Then there is a strategy that CP trumps the equilibrium ((L,R),(R,L)).

Proof. Consider the following strategy. Types L1 and R1 send message m1 with probability 1. Types

L2 and R2 send message m1 with probability 1
3 and m2 with probability 2

3 . Continuation play is given

by the following table:

m1 m2

m1 ((L,R),(R,L)) ((L,L),(L,L))

m2 ((R,R),(R,R)) 1
2((L,L),(L,L))+

1
2((R,R),(R,R))

with strategies given for ((L1,L2),(R1,R2)) in this sequence. Importantly ((L,R),(R,L)) is an equilib-

rium after m1,m1 because 1
9 ≤ α = P(L1|m) = ν

ν+(1−ν) 1
3

≤ 2
3 (which is true for ν ≤ 2

5 ) as ν ≤ 1
2 −

1
9 =
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7
18 < 2

5 and analogously 1
9β ≤ 2

3 . In this equilibrium L1 and R1 types have a payoff of 2(1−ν) and

2(1− µ), respectively, which is the same payoff they get in the original (L,R),(R,L) equilibrium.

Types L2 and R2 receive a payoff of more than 1, which is more than they receive in the original

(L,R),(R,L) equilibrium. Thus the new strategy CP trumps the original one.

Claims 7 and 8 combine to prove that any strategy that CP trumps ((L,R),(R,L)) in the given game

is itself CP trumped. This proves that ((L,R),(R,L)) is weakly communication proof. By Lemma 8 we

also have that ((L,R),(R,L)) is not strongly communication proof. This proves Proposition 7.

Note, however, that any strategy that is coordinated and mutual-preference consistent and has

binary communication is strongly communication-proof also in the general setting, and that only the

“3⇒ 1” part of the main result fails without the assumption of unambiguous coordination preferences.

One can show that any communication-proof equilibrium strategy must satisfy mutual-preference

consistency, but, possibly, need not satisfy the other two properties (namely, coordination and binary

communication).

E.3 More Than Two Players

Consider a variant of the coordination game in which there are n ≥ 2 players who play a symmetric

coordination game (with private values) with pre-play communication. The action set is {L,R} for

every player and the payoff to player i is equal to ui if every player chooses action R, equal to 1−ui

if every player chooses L, and equal to zero otherwise. The payoff to type ui is independent and

identically drawn from some given distribution F with support in the unit interval [0,1]. Before players

choose actions, they simultaneously send messages from a finite set of messages M and observe all

these messages. Let 〈Γn,M〉 denote this n-player coordination game with pre-play communication.

In this setting the appropriate version of Theorem 1 still holds.

Theorem 3 (Theorem 1 adapted to more than two players). Let σ be a strategy of the n-player coor-

dination game 〈Γn,M〉. Then the following three statements are equivalent:

1. σ is mutual-preference consistent, coordinated, and has binary communication.

2. σ is a strongly communication-proof equilibrium strategy.

3. σ is a weakly communication-proof equilibrium strategy.

Sketch of proof; for the formal proof see Appendix E.7.2. The proof of the “3 ⇒ 1” direction has to

be adapted (the proof of the “1 ⇒ 2” direction remains, essentially, the same). In this setting it is not

generally true that any play that involves miscoordination is CP-trumped by σL, σR,or σC. The proof
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instead first establishes that miscoordination after all players send the same message must be Pareto-

dominated by either σL or σR (Lemma 7). This is then used to show that a weakly communication-

proof equilibrium strategy must be mutual-preference consistent (Lemma 8). Then one can show that

a weakly communication-proof strategy must be coordinated and must have binary communication

(Lemma 9).

Prop. 1 and Cor. 1 also hold in the multi-player setting: communication-proof equilibrium strate-

gies are interim Pareto-undominated and Pareto-improving relative to all symmetric equilibria of the

game without communication. By contrast, Prop. 2 does not extend to this setting: with three players,

for instance, for some distributions of values F , the strategy that determines the fallback option by

majority vote (in the case of messages that indicate different preferred actions) is an ex-ante payoff

improvement over a simple fallback norm of choosing, say, action L in every case of disagreement.

E.4 Asymmetric Coordination Games

Adapted Model Consider a setup similar to our baseline model except that the distributions of the

types of the two players’ positions differ: the type of player 1 is distributed according to F1 and the

type of player 2 is distributed according to F2. As in the baseline model, both distributions are assumed

to be atomless with full support in [0,1]. Let 〈Γ(F1,F2) ,M〉 denote the asymmetric coordination game

with communication (to ease notation, we assume that both players have the same set of messages at

their disposal). Let Σi denote the set of all strategies of player i ∈ {1,2}. We let i denote the index of

one player and j denote the index of the opponent.

Remark 3. The game 〈Γ(F,F) ,M〉 in which both players have the same distribution of types corre-

sponds to a setup, in which the payoff-irrelevant position of player 1 or player 2 is identifiable, and

the players can condition their play on their positions.

Given a strategy profile (σ1,σ2), let π i
u (σ1,σ2) denote the (interim) payoff of type u of player

i ∈ {1,2}, and let π i (σ1,σ2) = Eu∼Fi

[

π i
u (σ1,σ2)

]

denote the ex-ante payoff of player i ∈ {1,2}. A

strategy profile (σ1,σ2) is an equilibrium if π1
u (σ1,σ2) ≥ π1

u (σ
′
1,σ2) for each strategy σ ′

1 ∈ Σ1 and

for each type u of player 1, and π2
u (σ1,σ2)≥ π2

u (σ1,σ
′
2) for each strategy σ ′

2 ∈ Σ2 and for each type

u of player 2.

Adapted Properties We adapt the three key properties of Section 3 as follows. Let µ i
u (mi) de-

note the probability, given message function µ i, that player i sends message mi if she is of type ui.

Let µ i (mi) = Eu∼Fi

[

µ i
u (mi)

]

be the average (ex-ante) probability of player i sending message mi. A

strategy profile (σ1,σ2) is mutual-preference consistent if whenever u1,u2 < 1/2 then ξ1 (m1,m2) =

ξ2 (m1,m2)=L for all m1 ∈ supp
(

µ1
u

)

and m2 ∈ supp
(

µ2
u

)

, and whenever u1,u2 > 1/2 then ξ1 (m1,m2)=

ξ2 (m1,m2) = R for all m1 ∈ supp
(

µ1
u

)

and m2 ∈ supp
(

µ2
u

)

.
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A strategy profile (σ1,σ2) is coordinated if ξ1 (m1,m2) = ξ2 (m1,m2) ∈ {L,R} for each pair of

messages m1 ∈ supp
(

µ1
)

and m2 ∈ supp
(

µ2
)

.

For any strategy profile σ =
(

(µ1,ξ1),(µ
2,ξ2)

)

∈ Σ1 ×Σ2 and any message m j ∈ M, define

β σ
i (m j) = Eu∼Fi

[

∑
mi∈M

µ i
u(mi)1{u≤ξi(mi,m j)}

]

as the expected probability of player i playing L conditional on player j sending message m j ∈ M. We

say that strategy profile σ = (σ1,σ2) has (essentially) binary communication if there are two pairs of

numbers 0 ≤ β σ
1
≤ β

σ
1 ≤ 1 and 0 ≤ β σ

2
≤ β

σ
2 ≤ 1 such that for all messages m ∈ M and each player

i ∈ {1,2} we have β σ
i (m) ∈ [β σ

i
,β

σ
i ]; for all messages m ∈ M such that there is a type u < 1/2 with

µ
j

u(m) > 0 we have β σ
i (m) = β

σ
i ; and for all messages m ∈ M such that there is a type u > 1/2 with

µu(m)> 0 we have β σ
i (m) = β σ

i
.

Consider a strategy profile σ = (σ1,σ2) that is coordinated and mutual-preference consistent and

has binary communication. Then there are ασ
1 ,α

σ
2 ∈ [0,1] such that, for each i ∈ {1,2},

β σ
i
=
(

1−Fj(
1
2)
)

ασ
i and β

σ
i = Fj(

1
2)+

(

1−Fj(
1
2)
)

ασ
i ,

where ασ
i is the probability of coordination on L conditional on player i having type ui < 1/2 and

player j having type ui > 1/2. We refer to ασ =
(

ασ
1 ,α

σ
2

)

as the left-tendency profile of a strategy

profile σ that is coordinated and mutual-preference consistent and has binary communication. It is

simple to see that the set of strategies satisfying the above three properties (coordination, mutual-

preference consistency, and binary communication) is essentially two-dimensional because the left-

tendency profile ασ =
(

ασ
1 ,α

σ
2

)

of such a strategy profile σ describes all payoff-relevant aspects.

Two such strategy profiles σ and σ ′ with the same left-tendency profile (i.e., with ασ = ασ ′
) can only

differ in the way in which the players implement the joint lottery when they have different preferred

outcomes, but these implementation differences are not payoff-relevant, as the probability of the joint

lottery inducing the players to play L remains the same.

Adaptation of communication-proofness Given a strategy profile of the game 〈Γ,M〉 we denote

the induced “renegotiation” game after a positive probability message pair m1,m2 ∈ M is sent by

〈Γ(Fm1
,Fm2

),M̃〉. For a strategy profile σ ′ of such a renegotiation game 〈Γ(G1,G2),M̃〉, define the

post-communication expected payoffs for a player i of type u by

π i,G2
u

(

σ ′
)

= Ev∼G2

[

π i
u,v

(

σ ′
)]

≡
∫ 1

v=0
π i

u,v

(

σ ′
)

g2 (v)dv.

Define E (G1,G2) as the set of all (possibly asymmetric) equilibrium profiles of the coordination game

with communication 〈Γ(G1,G2),M̃〉 for some finite message set M̃.
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Adapted Results Our main result remains the same in the setup of asymmetric coordination

games. The proof, which is analogous to the proof of Theorem 1, is omitted for brevity.

Theorem 4. Let σ be a strategy profile of 〈Γ(F1,F2) ,M〉. Then the following three statements are

equivalent:

1. σ is mutual-preference consistent, coordinated, and has binary communication.

2. σ is a strongly communication-proof equilibrium strategy.

3. σ is a weakly communication-proof equilibrium strategy.

Prop. 1–2 and Cor. 1 can be adapted to the present setup analogously (proofs are omitted for

brevity). In addition, it is straightforward to see that the asymmetric equilibrium with the left-tendency

profile (1,0) (resp., (0,1)) that always coordinates on the action preferred by Player 1 (resp., Player

2) is ex-ante Pareto efficient (in contrast to the symmetric case, in which sometimes none of the

symmetric communication-proof equilibria are ex-ante Pareto efficient).

E.5 Coordination Games with More Than 2 Actions

Next we extend our main model to games with more than two actions. We consider a coordination

game with two players in which the two players first send one message from a finite message set M

and then, after observing the message pair, choose one action from the ordered set A = (a1, . . . ,ak)

with 2 < k < ∞.

A player’s type is now a vector u = (u1, . . . ,uk) ∈ [0,1]k, where we interpret the i-th component

ui as the payoff of the agent if both players choose action ai. If the players choose different actions

(miscoordinate), then they both get a payoff of zero. We assume that the distribution of types F is a

continuous (atomless) distribution with full support in [0,1]k. For each action ai, let pi be the proba-

bility that the preferred action of a random type is ai (i.e., the probability that ui =max({u1, . . . ,uk})).

Let 〈ΓA,M〉= 〈ΓA (F) ,M〉 be the coordination game with set of actions A and pre-play communica-

tion.

A player’s (ex-ante) strategy is a pair σ = (µ,ξ ), where µ : U → ∆(M) is a message function

that describes which message is sent for each possible realization of the player’s type, and ξ : M ×

M×U → ∆(A) is an action function that describes the distribution of actions chosen as a measurable

function of the player’s type and the observed message profile. That is, when a player of type u

who follows strategy (µ,ξ ) observes a message profile (m,m′), then this player plays action ai with

probability ξu (m,m′)(ai).

As in the main model, this game has many equilibria. For every action there is a babbling equi-

librium in which players of all types after observing any message pair play this action. For every
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pair of actions ai,a j there are also equilibria in which players send only one of two messages, one

message indicating a preference for ai and another for not ai with play coordinated on ai if both play-

ers send the appropriate message and play coordinated on a j otherwise. None of these equilibria are

communication-proof as they are not mutual-preference consistent and mutual-preference consistency

is a necessary condition for a strategy to be communication-proof also in the present context, as we

shall see below.

It is more difficult to find equilibria that are mutual-preference consistent, that is equilibria in

which each player indicates her most preferred action out of all k actions and play is coordinated

on that action if both players indicate a preference for it. Simple adaptations of σL and σR are not

equilibria in the present context. To see this, consider a strategy in which there is a “fallback” action,

say action a1, in which players indicate their most preferred action (the action with the highest ui),

and in which play is coordinated on either action ai if both players indicate a preference for it, or

coordinated on action a1 otherwise. Suppose that the distribution of types is such that there are two

actions ai and a j (unequal to each other and unequal to a1) with p j > pi. But then there is a player

type u = (u1,u2, . . . ,uk) with ui = max{u1, . . . ,uk}, u j very close to ui, and u1 < u j, who would prefer

to indicate a preference for action a j. Indicating a preference for action ai, under the given strategy,

provides her with a payoff of piui + (1− pi)u1. Indicating a preference for a j yields a payoff of

p ju j +(1− p j)u1. But then for a suitably chosen vector u = (u1,u2, . . . ,uk) the latter expression is

greater than the former, which contradicts the supposition that the given strategy is an equilibrium.

Next we show that a simple adaptation of σC remains a strongly communication-proof equilib-

rium strategy also in this setup. Let m0
1,m

0
2, . . . ,m

0
k ,m

1
1,m

1
2, . . . ,m

1
k ∈ M be 2k distinct messages,

where the index i of message mb
i is interpreted as denoting that the agent’s preferred outcome is

the i-th outcome, and the index b ∈ {0,1} is interpreted as a random binary number. Let σC =

(µC,ξC) be extended to the current setup as follows. Define µC (u) = 1/2m0
i ⊕

1/2m1
i , where i =

argmin j

{

u j | u j = max{u1, ..,uk}
}

. Thus, the message function µC induces each agent to reveal her

preferred outcome, and to uniformly choose a binary number (either, zero or one). In the second

stage, if both agents share the same preferred outcome they play it. Otherwise, they coordinate on

the preferred action with the smaller index if both agents have chosen the same random number, and

they coordinate on the preferred outcome with the larger index if both agents have chosen different

random numbers, i.e.,

ξC

(

mb
i ,m

c
j

)

=







ai (i ≤ j and b = c) OR (i ≥ j and b 6= c)

a j otherwise.

We then have the following proposition.

Proposition 8. Strategy σC is a strongly communication-proof equilibrium strategy in the game
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〈ΓA,M〉.

Proof. Observe that an agent who sends message mb
i obtains an expected payoff of 1/2ui+1/2 ∑

k
j=1 p ju j

when facing a partner who follows strategy σC. As the second term in this sum is the same for all mes-

sages, an agent of type u sends this message only if ui = max{u1, . . . ,uk}, as required. The remaining

arguments as to why the second-stage behavior is a best reply and why σC is strongly communication-

proof are analogous to the proof of the “if” part of Theorem 1 and are omitted for brevity.

A strategy σ = (µ,ξ ) is same-message coordinated if for all messages m ∈ supp(µ̄) there is an

action ai such that for all u with µu(m) > 0 we have ξ (u,m,m) = ai. In what follows we show that

a necessary condition for a strategy to be a communication-proof equilibrium strategy is that this

strategy is same-message coordinated and mutual-preference consistent.

Proposition 9. If strategy σ of the game 〈ΓA,M〉 with action set A is strongly communication-proof,

then it is same-message coordinated and mutual-preference consistent.

Sketch of proof; for the formal proof see Appendix E.7.3. To show that a communication-proof equi-

librium strategy is same-message coordinated we cannot, in fact, use the proof of the main theorem

because Lemma 2 crucially depends on the game having only two actions. Instead, we suppose to the

contrary that there is a communication-proof equilibrium strategy in which play is not coordinated

after both players have sent the same message m. This strategy thus induces some nondegenerate

probability distribution over actions after both players send message m. We then construct a CP-

trumping equilibrium that is fully coordinated and has a probability of coordination on every action

exactly equal to the probability of this action being played under the original strategy conditional on

observing (m,m), which contradicts the supposition. The construction is achieved by players sending

random messages in such a way that they are indifferent between all messages and this joint lottery is

implemented.21 The proof that a strongly communication-proof equilibrium strategy must be mutual-

preference consistent is then achieved straightforward (by a simple adaptation of Lemma 8).

We are able neither to show nor to provide a counterexample that a strongly communication-proof

strategy must be coordinated after observing a pair of different messages, and that it must have binary

communication.

E.6 Extreme Types with Dominant Actions

In this subsection we show how to extend our analysis to a setup in which some types have an extreme

preference for one of the actions such that it becomes a dominant action for them.

21The original construction of Aumann and Maschler (1968) relies on the probabilities of different actions being rational

numbers. In Appendix E.7.3 we present a more elaborate implementation that allows to deal also with irrational numbers

in the current setup.
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Let a < 0 and b > 1. We extend the set of types to be the interval [a,b]. Observe that action L

(R) is a dominant action for any type u < 0 (u > 1) as coordinating on R (L) yields to such a type

a negative payoff of u < 0 (1− u < 0). We call types with a dominant action (i.e., u < 0 or u > 1)

extreme, and types that do not have a strictly dominant action (i.e., u ∈ [0,1]) moderate. We assume

that the cumulative distribution of types F is continuous (atomless) and has full support in the interval

[a,b].

We further assume that the extreme types are a minority both among the agents who prefer action

R and among the agents who prefer L, i.e., F (0) < 1/2F (1/2) and 1−F (1) < 1/2(1−F (1/2)). Next,

we adapt the definitions of coordination and binary communication to the current setup. The original

definition of coordination is too strong in the current setup, as, clearly, when extreme types with

different preferred outcomes meet they must miscoordinate. Thus, we present a milder notion. A

strategy is weakly coordinated if whenever two moderate types meet they never miscoordinate. Note

that the definition does not impose any restriction on what happens when an extreme type meets a

moderate type.

The original definition of binariness is too weak in the current setup. This is because coordi-

nated strategies must allow for some miscoordination between extreme types, which implies that an

agent cares not only about the average probability of the opponent playing left (i.e., β σ (m)), but also

about the total probability of miscoordination. Thus, we strengthen binariness by requiring that there

exist two distributions of messages, which are used by all types below 1/2 and all types above 1/2,

respectively. Formally, a strategy σ = (µ,ξ ) has strongly binary communication if µ (u) = µ (u′)

if either u,u′ ≤ 1/2 or u,u′ > 1/2. It is easy to see that the strategies σL,σR,σC defined in Section 3

all satisfy strongly binary communication. Moreover, one can show, for any α ∈ [0,1], that if there

exists a strategy σ that is coordinated, mutual-preference consistent, and has binary communication

with left tendency α , then there also exists strategy σ̃ with the same properties that is strongly binary

communication.

Our next result shows that there exists, essentially, a unique communication-proof equilibrium

strategy that is coordinated, mutual-preference consistent, and has strongly binary communication.

Proposition 10. In a coordination game with communication and with dominant action types, a

strategy σ that is coordinated, mutual-preference consistent, and has strongly binary communica-

tion is a strongly communication-proof equilibrium strategy if and only if it has a left tendency of

α = F(0)
F(0)+(1−F(1)) .

The formal proof is presented in Appendix E.7.4. The key intuition is that given the frequency

of dominant action types F(0) > 0 (of L-dominant action types) and 1−F(1) > 0 (of R-dominant

action types) to make the agent of type u = 1/2 indifferent between signaling a lower than half or

higher than half type we must have a strategy that counterbalances these frequencies of dominant
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action types. To see this, consider an adaptation of σL = (µ∗,ξL) to this setting by having extreme

types follow their dominant action in the second stage (and moderate types play in the same way as

in the baseline model). Note that σL is no longer an equilibrium with extreme types. Observe that

having a moderate type send message mR leads to coordination with probability one (sometimes on

R and sometimes on L depending on the opponent’s message), while having a moderate type send

message mL leads to coordination (on L only) with probability F (1) < 1. This implies that agents

of type u < 1/2 sufficiently close to 1/2 strictly prefer sending message mR to sending message mL

(as the former induces a higher probability of coordination on the same action as the partner), which

contradicts the supposition that σL is an equilibrium strategy.

Appendix E.7.4 also shows that a left tendency α communication-proof strategy that is coordi-

nated and has strongly binary communication can be implemented whenever α is a rational number

and the set of messages M is sufficiently large (and irrational α-s can be approximately implemented

by ε-equilibria).

Observe that in the symmetric case (F (0) = 1 − F (1)), strategy σC is the essentially unique

strongly communication-proof strategy with the above two properties. Further observe that in the

asymmetric case, the moderate types gain if the extreme types with the same preferred outcome are

more frequent than the extreme types of the opposite preferred outcome. Specifically, if there are

more extreme “leftists” than extreme “rightists” (i.e., F (0) > 1−F (1)), then the essentially unique

strongly communication-proof strategy with properties of coordination and strongly binary commu-

nication induces higher probability to coordinate on action L (rather than on action R) whenever two

moderate agents with different preferred outcomes meet.

E.7 Formal Proofs of Extensions

E.7.1 Proof of Theorem 2 (Multidimensional types, Section E.2)

The proof of Thm. 2 mimics the proof of Thm. 1 except that Lemma 2 has to be adapted some-

what as follows (this is the only place where one uses the assumption of unambiguous coordination

preferences).

Lemma 6. Assume that the atomless distribution of types have unambiguous coordination prefer-

ences. Let σ = (µ,ξ ) be a weakly communication-proof equilibrium strategy. Then it is coordinated.

Proof. We need to show that for any message pair m,m′ ∈ supp(µ̄),

either ξ (m,m′)≥ sup{ϕu | µu(m)> 0} or ξ (m,m′)≤ inf{ϕu | µu(m)> 0} .
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Let m,m′ ∈ supp(µ̄) and assume to the contrary that

inf{ϕu | µu(m)> 0}< ξ (m,m′)< sup{ϕu | µu(m)> 0} .

As σ is an equilibrium, we must have inf{ϕu | µu(m
′)> 0} < ξ (m′,m) < sup{ϕu | µu(m

′)> 0} .

(Otherwise the m′ message sender would play L with probability one or R with probability one, in

which case the m message sender’s best response would be to play L (or R) regardless of her type).

Let x = ξ (m,m′) and x′ = ξ (m′,m). In what follows we will show that the equilibrium (x,x′) of the

game without communication Γ(Fm,Fm′) is Pareto-dominated by either σL, σR, or σC (all based on

ϕu instead of u).

There are three cases to be considered. Case 1: Suppose that x,x′ ≤ 1/2. We now show that in this

case the equilibrium (x,x′) is Pareto-dominated by σR. Consider the player who sent message m.

Case 1a: Consider a type u with ϕu ≤ x. Then we have

uLLFm′(x′)+
(

1−Fm′(x′)
)

uLR ≤ uLLFm′(1
2)+uLR

(

1−Fm′(1
2)
)

≤ uLLFm′(1
2)+uRR

(

1−Fm′(1
2)
)

,

where the first expression is the type u agent’s payoff under strategy profile (x,x′) and the last ex-

pression is her payoff under strategy profile σR. The first inequality follows from uLL ≥ uLR and

Fm′(1/2) ≥ Fm′(x′) by the fact that Fm′ is nondecreasing (as it is a CDF), and the second inequality

follows from uRR ≥ uLR. This inequality is strict when uLL > uLR and Fm′(1/2) > Fm′(x′) or when

uRR > uLR.

Case 1b: Now consider a type u with x < ϕu ≤ 1/2. Then we have

uRLFm′(x′)+uRR

(

1−Fm′(x′)
)

≤ uLLFm′(x′)+uRR

(

1−Fm′(x′)
)

≤ uLLFm′(1
2)+uRR

(

1−Fm′(1
2)
)

,

where the first expression is the type u agent’s payoff under strategy profile (x,x′) and the last ex-

pression is her payoff under strategy profile σR. The first inequality follows from uLL ≥ uRL and the

second one from Fm′(1/2)≥ Fm′(x′) and uLL ≥ uRR. Note also that the second inequality follows from

the assumption of unambiguous coordination preferences and ϕu ≤ 1/2. This inequality is strict when

uLL > uRL or when Fm′(1/2)> Fm′(x′) and uLL > uRR.

Case 1c: Finally, consider a type u with ϕu > 1/2. Then we have uRR > uRLFm′(x′)+uRR (1−Fm′(x′)),

where the right-hand side is the type u agent’s payoff under (x,x′) and the left-hand side is her payoff

under σR. The inequality follows from the observation that uRR > uRL because uRR > uLL by the as-

sumption of unambiguous coordination preferences, and uLL ≥ uRL by the fact that it is a coordination

game.

The analysis for the player who sent message m′ is analogous.

Case 2: Suppose that x,x′ ≥ 1/2. The analysis is analogous to Case 1 if we replace σR with σL.
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Case 3: Suppose, without loss of generality for the remaining cases, that x ≤ 1/2 ≤ x′. We show

that the equilibrium (x,x′) in this case is Pareto-dominated by σC. Consider the player who sent

message m.

Case 3a: Consider a type u such that ϕu ≤ x. Then we have

uLL

[

Fm′(1
2)+

1
2

(

1−Fm′(1
2)
)]

+uRR
1
2

(

1−Fm′(1
2)
)

> uLLFm′(x′)+uLR (1−Fm′(x′)) ,

where the right-hand side is the type u agent’s payoff under strategy profile (x,x′) and the left-hand

side is her payoff under strategy profile σC. The inequality follows from the observation that uRR ≥ uLR

and Fm′(x′)≤ 1/2 by the fact that Fm′(x′) = x when (x,x′) is an equilibrium.

Case 3b: Now consider a type u with x < ϕu ≤ 1/2. Then we have

uRLFm′(x′)+uRR

(

1−Fm′(x′)
)

≤ uLLFm′(x′)+uRR

(

1−Fm′(x′)
)

≤ uLL

[

1
2 +

1
2Fm′(x′)

]

+uRR
1
2

(

1−Fm′(1
2)
)

,

where the first expression is the type u agent’s payoff under strategy profile (x,x′) and the last expres-

sion is her payoff under strategy profile σC. The first inequality follows from uLL ≥ uRL and the sec-

ond one from uLL ≥ uRR by the assumption of unambiguous coordination preferences given ϕu ≤ 1/2

and Fm′(x′) = x by (x,x′) being an equilibrium and x < 1/2. The inequality is strict if uLL > uRL or

uLL > uRR.

Case 3c: Finally, consider a type u with ϕu > 1/2. Then we have

uRLFm′(x′)+uRR

(

1−Fm′(x′)
)

< uRL
1
2Fm′(1

2)+uRR

[(

1−Fm′(1
2)
)

+ 1
2Fm′(1

2)
]

≤ uLL
1
2Fm′(1

2)+uRR

[(

1−Fm′(1
2)
)

+ 1
2Fm′(1

2)
]

,

where the first expression is a u type’s payoff under strategy profile (x,x′) and the last expression

is her payoff under strategy profile σC. The first inequality follows from uRR > uLL ≥ uRL by the

assumption of unambiguous coordination preferences and from (1−Fm′(1/2)) ≥ (1−Fm′(x′)) as Fm′

is nondecreasing.

The analysis for the player who sent message m′ is analogous.

E.7.2 Proof of Theorem 3 (Multiple Players, Section E.3)

The “1⇒ 2” part is analogous to the proof of the “1⇒ 2” part of Theorem 1. The proof of the “3⇒ 1”

part does not extend directly and has to be adapted as follows. The following lemma states that play

is coordinated whenever all players send the same message.

Lemma 7. Let σ = (µ,ξ ) be a weakly communication-proof equilibrium strategy. Let m ∈ supp(µ̄)

and let m = (m, . . . ,m) be the vector with n identical entries of m, which represents the case of all n
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players sending message m. Then either ξ (m)≥ sup{u | µu(m)> 0} or ξ (m)≤ inf{u | µu(m)> 0}.

Proof. Let m∈ supp(µ̄) and assume to the contrary that inf{u | µu(m)> 0}< ξ (m)< sup{u | µu(m)> 0}.

Let x = ξ (m). We now show that the symmetric equilibrium in which all players use cutoff x after

sending the identical message m, denoted by x = (x, . . . ,x), is Pareto-dominated by σL or σR.

There are two cases to be considered. Case 1: Suppose that x ≤ 1/2. We now show that in this case

the equilibrium x is Pareto-dominated by σR.

Case 1a: Consider a type u ≤ x. Then we have

(1−u)
(

Fm(
1
2)
)n−1

+u
(

1−
(

Fm(
1
2)
)n−1

)

≥ (1−u)(Fm(x))
n−1 ,

where the left-hand side is the type u agent’s payoff under strategy profile σR and the right-hand

side is her payoff under strategy profile x. The inequality follows from u
(

1− (Fm(1/2))n−1
)

≥ 0 and

Fm(1/2)≥ Fm(x) by the fact that Fm is nondecreasing (as it is a cumulative distribution function). Note

also that this inequality is strict for all u except for u = 0 in the case of x = 1/2.

Case 1b: Now consider a type u with x < u ≤ 1/2. Then we have

(1−u)
(

Fm(
1
2)
)n−1

+u
(

1−
(

Fm(
1
2)
)n−1

)

≥ u
(

1− (Fm(x))
n−1

)

,

where the left-hand side is the type u agent’s payoff under strategy profile σR and the right-hand side

is her payoff under strategy profile x. The inequality follows from the fact that given u ≤ 1/2 we have

that 1−u ≥ u and therefore

(1−u)
(

Fm(
1
2)
)n−1

+u
(

1−
(

Fm(
1
2)
)n−1

)

≥ u.

Note that this inequality actually holds strictly for all u.

Case 1c: Finally, consider a type u > 1/2. Then we have u > u(1−Fm(x))
n−1, where the left-hand

side is the type u agent’s payoff under strategy profile σR and the right-hand side is her payoff under

x.

Case 2: Suppose that x ≥ 1/2. The analysis is analogous to Case 1 if we replace σR with σL.

Lemma 8. Every weakly communication-proof equilibrium strategy σ = (µ,ξ ) is mutual-preference

consistent.

Proof. The proof of this lemma involves two steps. In the first step we show that a communication-

proof equilibrium strategy σ is ordinal preference revealing, i.e., such that for any message m ∈

supp(µ̄), Fm(1/2) ∈ {0,1}. We then use this to show that σ is mutual-preference consistent.

Assume, first, that σ is a communication-proof but not ordinal preference-revealing equilibrium

strategy. That is, suppose to the contrary that Fm (1/2) ∈ (0,1). Then there are types u < 1/2 as well as
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types u> 1/2 who both send message m with positive probability. By Lemma 7 play after message pair

(m,m) must be either L or R. If it is L then the equilibrium strategy σL Pareto-dominates playing L,

with a strict payoff improvement for all types u > 1/2 (and unchanged payoffs for all types u ≤ 1/2). If

it is R then the equilibrium strategy σR Pareto-dominates playing R, with a strict payoff improvement

for all types u < 1/2 (and unchanged payoffs for all types u ≥ 1/2).

Given a communication-proof equilibrium strategy σ = (µ,ξ ), we can classify messages in the

support of µ into two distinct sets, ML = ML(σ) = {m ∈ supp(µ) | Fm (1/2) = 1} and MR = MR(σ) =

{m ∈ supp(µ) | Fm (1/2) = 0}, where ML ∩MR = /0 and ML ∪MR = supp(µ̄).

To show that a communication-proof equilibrium strategy σ = (µ,ξ ) is mutual-preference con-

sistent, then consider any profile of types (u1,u2, . . . ,un) such that ui < 1/2 for all i ∈ {1, . . . ,n}. They

must each send a message in ML, which we denote by the profile m = (m1, . . . ,mn). Any play after

message profile m that is not coordinated on L is now clearly Pareto-dominated (given that all types

≤ 1/2) by playing the equilibrium strategy L. The case for a profile of types ui > 1/2 for all players is

proven analogously.

The following lemma shows that, in a communication-proof equilibrium strategy, agents never

miscoordinate after observing any message profile.

Lemma 9. Every weakly communication-proof equilibrium strategy σ is coordinated.

Proof. Suppose that σ = (µ,ξ ) is a communication-proof equilibrium strategy. Given Lemmas 7

and 8 it only remains to prove that play under σ is coordinated even after mixed messages are sent,

i.e., when there is at least one player who sends a message in ML and another player who sends a

message in MR, where ML and MR are as defined in the proof of Lemma 8. Suppose that this is the

case. Then let I ⊂ {1, . . . ,n} be the set of all players who send a message mi ∈ ML. Let Ic denote its

complement. By Lemma 8 all i ∈ Ic satisfy mi ∈ MR. Let xi = ξ (mi,m−i) be the cutoff used by player

i after observing message profile (m1,m2, . . . ,mn). Then by Lemma 8 we have xi ≤ 1/2 for all i ∈ I and

xi ≥ 1/2 for all i ∈ Ic. For this profile x = (x1, . . . ,xn) to be an equilibrium after the players observe

message profile (m1,m2, . . . ,mn), we must have that for each i = 1,2, . . . ,n, the probability that player

i’s opponents coordinate their action on L conditional on them coordinating (on either L or R) is

xi =
∏ j 6=i Fm j

(x j)

∏ j 6=i Fm j
(x j)+∏ j 6=i

(

1−Fm j
(x j)

) .

But then, all types of all players, after observing message profile (m1,m2, . . . ,mn), weakly (and

some strictly) prefer to play σC, which is a payoff identical in this case to a public fair coin toss to

determine whether coordination should be on L or R. To see this, consider a player i who sent a

message in ML (i.e., ui ≤ 1/2, which implies that xi ≤ 1/2) and consider the following two cases.
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Case 1: Suppose that ui ≤ xi. Under the given strategy, this type’s payoff is (1−ui)∏ j 6=i Fm j
(x j)

with ∏ j 6=i Fm j
(x j)≤ 1/2. The equilibrium strategy σC yields to this type a payoff of 1/2(1−ui)+ 1/2ui,

which exceeds the former payoff, which contradicts the supposition that σ is communication-proof.

Case 2: Suppose that xi < ui ≤ 1/2. Then, under the given strategy, this type’s payoff is ui ∏ j 6=i

(

1−Fm j
(x j)

)

.

The equilibrium σC yields to this type a payoff of 1/2(1−ui)+ 1/2ui, which, by virtue of 1−ui ≥ ui,

again exceeds the former payoff, which contradicts the supposition that σ is communication-proof.

The analysis for a player who sent a message in MR is proven analogously.

To complete the proof of Theorem 1 for the case of many players, we need to prove that any

communication-proof equilibrium strategy also has binary communication. The proof of this state-

ment is analogous to the proof of Lemma 3 and therefore omitted.

E.7.3 Proof of Proposition 9 (Multiple Actions, Section E.2)

For the proof, two lemmas about approximating real numbers by rational numbers will be useful.

The first lemma shows that any discrete distribution with at least three elements in its support can be

approximated from below by a vector of rational numbers, such that the profile of differences (between

the irrational exact probability and its rational approximation from below) is roughly uniform in the

sense that no difference is larger than the half the sum of all the differences.

Lemma 10. Let p ∈ ∆(A) be a distribution satisfying |supp(p)| ≥ 3. Then there exists a function

q : A → R
+ such that, for each 1 ≤ i ≤ k, q(ai) is a rational number, q(ai)≤ p(ai), and

p(ai)−q(ai)≤
1
2 ∑1≤ j≤k

(

p
(

a j

)

−q
(

a j

))

.

Proof. Let δ < min{p(a)/2 | a ∈ supp(p)}. As the rational numbers are dense in the reals, for each

real number p̂ > δ , there exists a rational number q̂ ∈ (0, p̂) such that p̂− q̂ ∈ ((9/10)δ ,δ ). Call this

q̂ a rational approximation of p̂. For each a ∈ suppp, let q(a) be a rational approximation of p(a).

For each a 6∈ supp(p) let q(a) = q(a) = 0. Then it follows that, for each 1 ≤ i ≤ k, q(ai) is a rational

number, and q(ai)≤ p(ai). Finally we get, for each 1 ≤ i ≤ k, that

p(ai)−q(ai)≤ δ ≤ 1
2 |supp(p)| 9

10δ ≤ 1
2 ∑1≤ j≤k

(

p
(

a j

)

−q
(

a j

))

,

where the first inequality follows directly from the definition of a rational approximation, the second

one follows from the assumption that |supp(p)| ≥ 3, and the last one from the assumption that, for

each a j ∈ supp(p), p(a j)−q(a j)> (9/10)δ by the definition of a rational approximation.

Note that the closer δ is to zero, the better the rational approximation constructed in this proof.

Note, however, that this does not matter in the proof of Proposition 9 below, which simply uses any
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(possibly quite rough) rational approximation.

The second lemma is utilized in the proof of Proposition 9 for the case where the distribution in

question has exactly two elements in its support.

Lemma 11. Let p,q ∈ (0,1). Then there exists a rational number α ∈ (0,1) satisfying

p−q

1−q
< α <

p

q
.

Proof. Note that, as p< 1 the following inequality holds: ≤ (p−q)2 = p2−2pq+q2 < p−2pq+q2.

The inequality 0 < p−2pq+q2 then implies that

qp−q2 < p− pq ⇔ q(p−q)< p(1−q)⇔
p−q

1−q
<

p

q
.

The result then follows from the fact that p−q < 1−q.

We now turn to the proof of Proposition 9. Let σ = (µ,ξ ) be a communication-proof equilibrium

strategy of 〈ΓA,M〉. We begin by showing that σ is same-message coordinated. Let m ∈ supp(µ̄) let

and p ∈ ∆(A) be the distribution of play under σ conditional on message pair (m,m) being observed.

Assume to the contrary that p(a)< 1 for each a ∈ A (i.e., that there is miscoordination).

Case I: Assume that |supp(p)≥ 3|. Let q : A → R
+ be a rational approximation of p satisfying

the requirements of Lemma 10. The fact that all q(ai)-s are rational numbers implies that there are

l1, . . . , lk,n ∈N, such that q(ai) = li/n for each i and l1+ . . .+ lk ≤ n. Consider the following equilib-

rium strategy σ̃ =
(

µ̃, ξ̃
)

of the game induced after players observe message pair (m,m) with an addi-

tional communication round with the set of messages M̃ =
{

mB,i,b | 1 ≤ B ≤ n, 1 ≤ i ≤ k, b ∈ {0,1}
}

.

We let 1 ≤ B ≤ n denote a random integer used for a joint lottery, 1 ≤ i ≤ k denote the index of the

player’s preferred outcome (i.e., ui = max
{

u j | 1 ≤ j ≤ k
}

, and b ∈ {0,1} denotes a random bit).

The message function µ̃ induces each agent to choose the indexes B and b randomly (uniformly, and

independently of each other), and to choose i such that ui = max
{

u j | 1 ≤ j ≤ k
}

is her preferred

outcome.

The action function ξ̃
(

mB,i,b,mB′,i′,b′
)

is defined as follows. Let B̂ = (B+B′) mod n be the sum

of the random B-s sent by the players. Both players play action a j if l1+ . . .+ l j−1 ≤ B̂ < l1+ . . .+ l j.

If B̂ ≥ l1 + . . .+ lk, then both players play the action in {ai,ai′} with the smaller index if action if

b = b′ and the action with the larger index if b 6= b′. Strategy σ̃ induces both players to coordinate on

a random action with probability q̄ ≡ q(a1)+ . . .+q(ak) (and, conditional on that, the random action

is chosen to be a j with probability q
(

a j

)

/q̄), and to coordinate on the preferred action of one of the

two players (chosen uniformly at random) with probability 1− q̄, which can be written as 1− q̄ =

∑1≤ j≤k

(

p
(

a j

)

−q
(

a j

))

, by the fact that p is a probability distribution and, thus, ∑1≤ j≤k p
(

a j

)

= 1.
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The proof that σ̃ is an equilibrium is analogous to the proof of Prop. 8 and thus omitted. The

expected payoff that the original equilibrium σ yields to each type u = (u1, . . . ,uk) ∈ U in the game

induced after observing (m,m) is max j

{

p
(

a j

)

u j

}

. The expected payoff that σ̃ induces for each type

u is at least

∑
j

q
(

a j

)

u j +
1
2 (1− q̄)max j

{

u j

}

≥ max j{q
(

a j

)

u j}+
1
2 max j

{

u j

}

∑ j

(

p
(

a j

)

−q
(

a j

))

.

Thus, the difference between the payoff of σ̃ and the payoff of σ for a type u is at least

1
2 max j

{

u j

}

∑ j

(

p
(

a j

)

−q
(

a j

))

−
(

max j

{

p
(

a j

)

u j

}

−max j

{

q
(

a j

)

u j

})

≥

1
2 max j

{

u j

}

∑ j

(

p
(

a j

)

−q
(

a j

))

− 1
2 ∑1≤ j≤k

(

p
(

a j

)

−q
(

a j

))

u j ≥ 0,

where the first inequality is due to

max
j

{

p
(

a j

)

u j

}

−max
j

{

q
(

a j

)

u j

}

= p(al)ul −max
j

{

q
(

a j

)

u j

}

≤ p(al)ul −q(al)ul,

where l = argmax j

{

p
(

a j

)

u j

}

; and the second inequality is due to q being a rational approximation

of p as given by Lemma 10.

This then implies that σ is CP-trumped by σ̃ , which contradicts the supposition that σ is a

communication-proof equilibrium.

Case II: We are left with the case of |supp(p)|= 2. Let supp(p) =
{

ai,a j

}

. Let q ∈ (0,1) be the

posterior probability of a player having a type u with ui ≥ u j, conditional on sending m. Let p≡ p(ai).

By Lemma 11, there exists a rational number α ≡ k/n ∈ (0,1) satisfying p−q/1−q < α < p/q. Consider

the following symmetric equilibrium σ̃ =
(

µ̃, ξ̃
)

of the game induced after players observe message

pair (m,m) with an additional communication round with the set of messages M̃ = {i, j}×{1, . . . ,n}.

The first component of the message of each player is interpreted as her preferred coordinated

outcome of ai and a j, and the second component is a random number between 1 and n. When follow-

ing strategy σ̃ the players send message component i if and only if ui ≥ u j, send a random number

between 1 and n according to the uniform distribution, play ai after observing ((i,a) ,(i,b)) for any

numbers a and b, play a j after observing (( j,a) ,( j,b)) for any numbers a and b, play ai after ob-

serving ((i,a) ,( j,b)) if a+ b < k mod n, and play a j after observing
(

(ai,a) ,
(

a j,b
))

if a+ b ≥ k

mod n.

Observe that σ̃ is indeed an equilibrium of the induced game, because following any pair of

messages the players coordinate for sure, each agent with ui > u j (resp., u j > ui) strictly prefers to

report that her preferred outcome is ai (resp., a j) as this induces her to coordinate on ai (resp., a j) with

a high probability of q+α (1−q) (resp., 1− q+(1−α)q) instead of with a low probability of αq
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(resp., (1−q)(1−α)), and each agent is indifferent between sending any random number, as this has

no effect on the probability of coordinating on ai (which is equal to α = k/n), given that her opponent

chooses his random number uniformly as well.

Recall that the payoff of each type who follows σ in the game induced after observing (m,m) is

equal to max
{

ui p,u j(1− p)
}

. The payoff of each type u with ui ≥ u j in equilibrium σ̃ is given by

(q+α (1−q))ui +(1− (q+α (1−q)))u j > pui +(1− p)u j ≥ max
{

ui p,u j(1− p)
}

,

where the first inequality is implied by ui ≥ u j and p−q
1−q

< α ⇔ p < q+α (1−q).

The payoff of each type u with ui < u j in equilibrium σ̃ is given by

((1−q)+(1−α)q)u j +(1− ((1−q)+(1−α)q))ui > (1− p)u j + pui ≥ max
{

(1− p)u j, pui

}

,

where the first inequality is implied by q
p
> α ⇔ 1−α > q−p

q
⇔ (1−q) + (1−α)q > 1− p and

ui < u j. This implies that all types obtain a strictly larger payoff in σ̃ (relative to the expected payoff

of σ in the game induced after players observe message pair m,m), which implies that σ̃ Pareto-

dominates σ , which contradicts the supposition that σ is communication-proof.

Next, we show that σ = (µ,ξ ) is mutual-preference consistent. For each i ∈ {1, . . . ,k}, let Ui ⊂

[0,1]k be the set of types such that ui ≥ max j 6=i u j. Assume, first, that σ is not ordinal preference-

revealing. That is, suppose that there is a message m ∈ supp(µ̄) such that there are action indices

i, j with i 6= j and µu(m) > 0 for some u ∈ Ui and some u ∈ U j. We have shown above that the play

after players observe (m,m) must be coordinated on some action al ∈ A. Now consider the following

strategy with new message space M̃ = {mi,m¬i} in which players of type u ∈ Ui send message mi,

while all others send m¬i and play is al unless both players send message mi, in which case it is

ai. This is an equilibrium strategy of the induced game after players observe (m,m) and it Pareto-

dominates σ , a contradiction. This proves that a communication-proof equilibrium strategy σ must

be ordinal preference-revealing.

Given a communication-proof equilibrium strategy σ = (µ,ξ ), we can classify messages in the

support of µ into k distinct sets Mi = Mi(σ) = {m ∈ supp(µ̄) | u ∈Ui} for each i = 1, . . . ,k, where for

each i, j with i 6= j Mi ∩M j = /0 and
⋃k

i=1 Mi = supp(µ̄).

To show that a communication-proof equilibrium strategy σ is mutual-preference consistent, con-

sider a message pair (m,m′) with m,m′ ∈ Mi for some i = 1, . . . ,k. Since σ is ordinal preference-

revealing, the updated support of types who observe either m or m′ is then in Ui. But then any joint

action distribution that the two players could play after (m,m′) is Pareto-dominated by the equilibrium

of playing action ai.
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E.7.4 Proof of Proposition 10 (Extreme Types, Section E.6)

Proof of Proposition 10. Any strategy σ that is coordinated, mutual-preference consistent, and has

strongly binary communication can be characterized by its left tendency (see Section 3) as follows.

Under such a mutual-preference consistent strategy players indicate whether their type is below or

above 1/2. This means that there are two disjoint sets of messages, ML and MR, such that players of

type u ≤ 1/2 send a message in ML and players of type u > 1/2 send a message in MR. Also whenever

two players both send messages in ML they then play L and if both send messages in MR they both play

R. The left tendency α = ασ then describes how moderate players coordinate if one of them sends a

message from ML and the other sends a message from MR. The left tendency α is then the probability

that the two players coordinate on L (through random message selection within the respective sets of

messages), while 1−α is then the remaining probability that they coordinate on R.

To prove the “only if” part, consider an arbitrary left tendency of α ∈ [0,1]. Then consider a player

of type 1/2 who needs to be indifferent between sending a message in ML and sending a message in

MR for this strategy to be an equilibrium strategy. If she sends a message in ML she coordinates on L

whenever either her opponent sends a message in ML (which happens with probability F(1/2)), or her

moderate opponent sends a message in MR (which happens with probability F(1)−F(1/2)) and the

joint lottery yields the outcome L (which happens with probability α). By contrast, she coordinates

on R whenever her opponent sends a message in MR and the joint lottery yields the outcome R (which

happens with probability 1−α). Therefore, her expected payoff from sending a message in ML is

given by 1
2F

(

1
2

)

+ 1
2α

(

F(1)−F
(

1
2

))

+ 1
2(1−α)

(

1−F
(

1
2

))

. Similarly, her expected payoff from

sending a message in MR is given by 1
2αF

(

1
2

)

+ 1
2(1−α)

(

F
(

1
2

)

−F (0)
)

+ 1
2

(

1−F
(

1
2

))

. Clearly,

her expected payoff from sending a message in ML is equal to her expected payoff from sending a

message in MR iff α = F(0)/(F(0)+(1−F(1))), as required. This proves the “only if” direction.

To prove the “if” direction, we need to show that a coordinated and mutual-preference consistent

strategy with strongly binary communication and with a left tendency of α =F(0)/(F(0)+(1−F(1)))

is both an equilibrium and a communication-proof strategy. To prove the latter condition the same

arguments as in the relevant parts of the proof of the “if” direction of Theorem 1 apply directly. It re-

mains to show that such a strategy is an equilibrium strategy. We have already shown that the message

function is a best reply to itself and the action function. All that remains to prove is that the action

function is a best reply to the given strategy. It is easy to see that playing L is the optimal strategy

when both players send a message in ML and thus are of type u < 1/2. In doing so, they coordinate

on their most preferred outcome with probability one. Similarly, playing R after two messages in MR

is clearly optimal. Now suppose that one player sends a message in ML and the other player sends

a message in MR. There are two possibilities. Either they are now supposed to both play L (unless

they are an extreme R type) or they are now supposed to both play R (unless they are an extreme L

type). Consider first the person who sends a message in ML and therefore be of type u < 1/2. Suppose
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that the two players are expected to coordinate on R. Since her opponent sent a message in MR, our

ML sender expects R with a probability of one (as all MR senders are of type u > 1/2, which excludes

L-dominant action types). But then our ML sender of any type u > 0 has a strict incentive to play R as

well. Now suppose that the two players are expected to coordinate on L. Then our ML sender expects

her opponent to play L with a probability of (F(1)−F(1/2))/(1−F(1/2)), which is the conditional

probability of an R-type to be moderate, which by assumption is greater than or equal to 1/2. Playing

L in this case is therefore optimal for all ML senders. That the MR sender has the correct incentives in

her choice of action after any mixed-message pair (one in MR and one in ML) is proven analogously

and requires the assumption that F(0)/F(1/2)≤ 1/2.

We now show when one can implement a coordinated, mutual-preference consistent strategy with

binary communication with the required left tendency of α = F(0)/(F(0)+(1−F(1))). This im-

plementation requires two things. First, α needs to be a rational number, and second, the message

space needs to be sufficiently large.22 Note that in the case of a symmetric distribution F (i.e.,

F (0) = 1−F (1)) the required left tendency is exactly α = 1/2 and the required strategy is σC, as

described in Section 3. More generally, let α = k/n, and assume that |M| ≥ 2n. Denote 2n dis-

tinct messages as
{

mL,1, . . . ,mL,n,mR,1, . . . ,mR,n

}

∈ M, where we interpret sending messages mL,i

as expressing a preference for L and sending messages mR,i as expressing a preference for R and

choosing at random the number i from the set of numbers {1, . . . ,n} in the joint lottery described

below. We arbitrarily interpret any message m ∈ M \
{

mL,1, . . . ,mL,n,mR,1, . . . ,mR,n

}

as equivalent to

mL,1. Given message m ∈ M, let i(m) denote its associated random number, e.g., i
(

mL, j

)

= j. Let

MR =
{

mR,1, . . . ,mR,n

}

and ML = M \MR. Then σα = (µα ,ξα) can be defined as follows:

µα (u) =







1
n
mL,1 + . . .+ 1

n
mL,n u ≤ 1

2

1
n
mR,1 + . . .+ 1

n
mR,n u > 1

2 ,
ξα

(

m,m′
)

=































0 (m,m′) ∈ MR ×MR

0 (m,m′) 6∈ ML ×ML

and (i(m)+ i(m′) mod n) > k

1 otherwise.

Thus, µα induces each agent to reveal whether her preferred outcome is L or R, and to uniformly

choose a number between 1 and n. In the second stage, if both agents share the same preferred

outcome they play it. Otherwise, moderate types coordinate on L if the sum of their random numbers

modulo n is at most k, and coordinate on R otherwise. Extreme types play their strictly dominant

action.

22The method for implementing a binary joint lottery of α and 1−α is based on Aumann and Maschler (1968) and

relies on α being a rational number. In order to deal with irrational α-s one needs either to slightly weaken the result to

show that there exists a communication-proof ε-equilibrium strategy (in which each type of each player gains at most ε
from deviating) for any ε > 0, or to allow an infinite set of messages or a continuous “sunspot.”
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