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Abstract

This paper develops a new method for testing for Granger non-causality in panel data models

with large cross-sectional (N) and time series (T ) dimensions. The method is valid in models

with homogeneous or heterogeneous coefficients. The novelty of the proposed approach lies

on the fact that under the null hypothesis, the Granger-causation parameters are all equal to

zero, and thus they are homogeneous. Therefore, we put forward a pooled least-squares (fixed

effects type) estimator for these parameters only. Pooling over cross-sections guarantees that

the estimator has a
√
NT convergence rate. In order to account for the well-known “Nickell

bias”, the approach makes use of the well-known Split Panel Jackknife method. Subsequently,

a Wald test is proposed, which is based on the bias-corrected estimator. Finite-sample evidence

shows that the resulting approach performs well in a variety of settings and outperforms existing

procedures. Using a panel data set of 350 U.S. banks observed during 56 quarters, we test for

Granger non-causality between banks’ profitability and cost efficiency.
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1. Introduction

Predictive causality and feedback between variables is one of the main subjects of applied

time series analysis. Granger (1969) provided a definition that allows formal statistical testing

of the hypothesis that one variable is not temporally related to (or does not “Granger-cause”)

another one. Besides time series models, this hypothesis is also important in panel data analysis

when examining relationships between macroeconomic or microeconomic variables.

The seminal paper of Holtz-Eakin et al. (1988) provided one of the early contributions to the

panel data literature on Granger non-causality testing. Using Anderson and Hsiao (1982) type

moment conditions, the authors put forward a Generalised Method of Moments (GMM) testing

framework for short T panels with homogeneous coefficients. Unfortunately, this approach is less

appealing when T is sizeable. This is due to the well-known problem of using too many moment

conditions, which often renders the usual GMM-based inference highly inaccurate. While there

exist alternative fixed T procedures that can be applicable to cases where T is large (e.g. those

of Binder et al. (2005), Karavias and Tzavalis (2017), Juodis (2013), Arellano (2016), and Juodis

(2018)), these methods are designed to estimate panels with homogeneous slope parameters

only. Thus, when feedback based on past own values is heterogeneous (i.e. the autoregressive

parameters vary across individuals), inferences may not be valid even asymptotically.

For the reasons above, one of the most popular approaches among practitioners has been

the one proposed by Dumitrescu and Hurlin (2012), which can accommodate heterogeneous

slopes under both null and alternative hypotheses. Their approach is reminiscent of the so-

called “IPS” panel unit root test for heterogeneous panels proposed by Im et al. (2003), and

involves averaging of individual Wald statistics. The resulting standardized Wald test statistic

has asymptotic normal limit as T → ∞ followed by N → ∞. However, this approach does

not account for “Nickell” bias, and therefore it is theoretically justified only for sequences with

N/T 2 → 0, as it is the case with standard Mean-Group type approaches.1

The aim of this paper is to propose a new test for Granger non-causality that explicitly

accounts for “Nickell” bias and is valid in both homogeneous and heterogeneous panels. The

novelty of our approach comes from exploiting the fact that under the null hypothesis, while the

individual effects and the autoregressive parameters may be heterogeneous across individuals,

the Granger-causation parameters are all equal to zero and thus they are homogeneous. We

therefore propose the use of a pooled estimator for these parameters only. Pooling over cross-

sections guarantees that the estimator has the faster
√
NT convergence rate.

1For panels with a fixed-T dimension, and under normality of the innovations, Dumitrescu and Hurlin (2012)

propose centering their test statistic using moments of an appropriate F distribution rather than χ2. However,

the modified statistic is not standard normal for fixed-T (even under normality of the innovations) because the

suggested approximation assumes that regressors are strictly exogenous.
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The pooled estimator suffers from the incidental parameters problem of Neyman and Scott

(1948) due to the presence of the predetermined regressors, see e.g. Nickell (1981) and Karavias

and Tzavalis (2016). This result implies that standard tests for pooled estimators do not control

size asymptotically, unless N << T . To overcome this problem we use the idea of Split Panel

Jackknife (SPJ) of Dhaene and Jochmans (2015), and construct an estimator that is free from

the “Nickell bias”. This type of bias correction works very well under circumstances that are

empirically relevant: moderate time dimension, heterogeneous nuisance parameters, and high

persistence, as argued by Dhaene and Jochmans (2015), Fernández-Val and Lee (2013) and

Chambers (2013), respectively. Furthermore, Chudik et al. (2018) argue that SPJ procedures

are suitable so long as N/T 3 → 0. Thus, we test the null hypothesis of Granger non-causality

by using a Wald test based on our bias-corrected estimator.

A Monte Carlo study shows that the proposed method has good finite sample properties even

in panels with a moderate time dimension. In contrast, the Wald statistic of Dumitrescu and

Hurlin (2012) can suffer from substantial size distortions, especially when T << N . In terms of

power, the proposed method appears to dominate the method of Dumitrescu and Hurlin (2012),

especially so in panels with N and T both large.

Using a panel data set of 350 U.S. banks observed during the period 2006:Q1-2019:Q4, we test

for Granger non-causality between banks’ profitability and cost efficiency. The null hypothesis

is rejected in all cases, except for large banks during a period spanning the financial crisis (2007-

2009) and prior to the introduction of the Dodd-Frank Act in 2011. This outcome may be

conducive of past moral hazard-type behavior of large financial institutions.

The remainder of the present paper is organized as follows: Section 2 sets up the model and

the hypothesis of interest. Section 3 outlines the SPJ estimator and the proposed test statistic.

Section 4 studies the finite sample performance of the approach using Monte Carlo experiments.

Section 5 presents the empirical illustration and Section 6 concludes.

2. Testing framework

We consider a simple linear dynamic panel data model with a single covariate xi,t:

yi,t = φ0,i +
P∑

p=1

φp,iyi,t−p +

Q∑

q=1

βq,ixi,t−q + εi,t; t = 1, . . . , T, (2.1)

for i = 1, . . . , N , where φ0,i captures the individual-specific fixed effects, εi,t denotes the inno-

vation for individual i at time t, φp,i denotes the heterogeneous autoregressive coefficients and

βq,i denotes the heterogeneous feedback coefficients or Granger causation parameters.2 Thus, we

2Since the model above is observed over T time periods, it is implicitly assumed that yi,−P+1, yi,−P+2, . . . , yi,0

are observed, and so are xi,−Q+1, xi,−Q+2, . . . , xi,0.
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assume that yi,t follows an ARDL(P,Q) process; more generally, yi,t can be considered as one of

the equations of a joint VAR model for (yi,t, xi,t)
′. Such bivariate system is studied for simplicity

of presentation, as our results are straightforwardly extendable to multivariate systems.3

The null hypothesis that the time series xi,t does not Granger-cause (linearly) the time series

yi,t can be formulated as a set of linear restrictions on the β’s in Eq. (2.1):

H0 : βq,i = 0, for all i and q, (2.2)

against the alternative

H1 : βq,i 6= 0 for some i and q. (2.3)

The model, null and alternative hypotheses presented here are as in Dumitrescu and Hurlin

(2012). Similarly to the case of panel unit root testing, rejection of the null hypothesis should

be interpreted as evidence of the existence of a large enough number of cross-sectional units i in

which the null hypothesis is violated (see e.g. Pesaran (2012)).

3. Approach

Eq. (2.1) can be re-written as follows:

yi,t = z′
i,tφi + x′

i,tβi + εi,t, (3.1)

where zi,t = (1, yi,t−1, . . . , yi,t−P )
′ and xi,t = (xi,t−1, . . . , xi,t−Q)

′ are column vectors of order 1+P

and Q respectively, while φi = (φ0,i, . . . , φP,i)
′ and βi = (β1,i, . . . , βQ,i)

′ denote the corresponding

parameter vectors.

Define yi = (yi,1, . . . , yi,T )
′ and εi = (εi,1, . . . , εi,T )

′, both of which are column vectors of order

T , and letZi = (zi,1, . . . , zi,T )
′ be a matrix of dimension [T × (1 + P )], andXi = (xi,1, . . . ,xi,T )

′,

a matrix of dimension [T ×Q]. Eq. (3.1) can be expressed in vector form as

yi = Ziφi +Xiβi + εi. (3.2)

Observe that under the null hypothesis of Granger non-causality, the true coefficient vector of

Xi equals zero. Thus, assuming homogeneity in βi, Eq. (3.2) becomes

yi = Ziφi +Xiβ + εi. (3.3)

In what follows we shall use the above model specification to estimate the common parameters

β. In particular, we propose the following least-squares (fixed effects type) estimator of β:

β̂ =

(
N∑

i=1

X ′
iMZi

Xi

)−1( N∑

i=1

X ′
iMZi

yi

)
, (3.4)

3Also, to save space, we do not provide an exposition for how to test bi-directional causality, which can take

place in a similar manner by expressing x as a function of own lags and lagged values of y.
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where MZi
denotes a [T × T ] matrix that projects on the orthogonal complement of Zi, i.e.

MZi
= IT − Zi (Z

′
iZi)Z

′
i. The estimator in Eq. (3.4) generalizes the standard FE estimator,

as the latter imposes that all slope coefficients are homogeneous, including the autoregressive

parameters (see e.g. Hahn and Kuersteiner (2002)). Note that for this estimator to be well

defined, a sufficient number of MZi
matrices should be non-zero. As in this paper we limit our

attention to balanced panels, the necessary condition for that is T > 1 + P , which ensures that

the coefficients φi are estimable.

The model in (2.1) belongs to a class of panel data models with nonadditive unobserved

heterogeneity studied in Fernández-Val and Lee (2013). In particular, under Conditions 1-2 of

that paper, which restrict qi,t = (yi,t, xi,t)
′ to be a strong mixing sequence, conditional on all

time-invariant effects, with at least 4+ δ moments (for some δ > 0), the asymptotic distribution

of β̂ is readily available. Note that the aforementioned restriction rules out non-stationary and

local-to-unity dynamics in yi and Xi.

In order to facilitate further discussion, we shall adapt the conclusions of Theorem 1 in

Fernández-Val and Lee (2013) to the present setup:

Theorem 3.1. Under Conditions 1-2 Fernández-Val and Lee (2013) and given N/T → a2 ∈
[0;∞) as N,T → ∞ jointly:

√
NT

(
β̂ − β0

)
d−→ J−1N (−ab,V ) . (3.5)

The Hessian matrix J in our case is given by:

J = plim
N,T→∞

1

NT

N∑

i=1

X ′
iMZi

Xi, (3.6)

while the exact form of V and b depends on the underlying assumptions of εi,t. For example, if

εi,t are independent and identically distributed (i.i.d.) over i and t, i.e. εi,t ∼ i.i.d.(0, σ2), then

V = σ2J . (3.7)

The vector b captures the incidental parameter bias of the common parameter estimator, which

is induced by estimation of φ1, . . . ,φN . We will not elaborate on the exact form of this matrix,

as it is not needed for the purposes of this paper.4

Although β̂ is consistent, the asymptotic distribution of the estimator is not centered around

zero under sequences where N and T grow at a similar rate. The presence of bias invalidates

any asymptotic inference because the bias is of the same order as the variance (that is, unless

4For more details on the exact form of all matrices in Theorem 3.1 the interested reader is referred to Fernández-

Val and Lee (2013).
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a = 0). In particular, the use of β̂ for Granger non-causality testing of H0 : β0 = 0Q will not

lead to a test with correct asymptotic size. As a result, the Wald test statistic:

W = NT β̂′
(
J−1V J−1

)−1
β̂, (3.8)

converges to a non-central χ2(Q) distribution under the null hypothesis even if J and V are

assumed to be known.

The above discussion implies that β̂ should not be used in the construction of the Wald test

statistic (3.8). Instead, we suggest the use of the same test statistic, but based on an alternative

estimator that is free from the asymptotic bias term −ab. Below we shall focus on a bias-

corrected estimator constructed based on the jackknife principle, using the Half Panel Jackknife

(HPJ) procedure of Dhaene and Jochmans (2015). Given a balanced panel with an even number

of time series observations, the HPJ estimator is defined as

β̃ ≡ 2β̂ − 1

2

(
β̂1/2 + β̂2/1

)
, (3.9)

where β̂1/2 and β̂2/1 the FE estimators of β based on the first T1 = T/2 observations, and the

last T2 = T − T1 observations, respectively. The HPJ estimator can be decomposed into a sum

of two terms:

β̃ = β̂ +

(
β̂ − 1

2

(
β̂1/2 + β̂2/1

))
= β̂ + T−1b̂, (3.10)

where the second component implicitly estimates the bias term in (3.5). The use of this estimator

can be justified in our setting given that the bias of β̂ is of order O(T−1) and thus satisfies the

expansion requirement of Dhaene and Jochmans (2015). Although there do exist alternative

ways of splitting the panel to construct a bias-corrected estimator, as shown in Dhaene and

Jochmans (2015), the HPJ estimator minimizes the higher order bias in the class of Split Panel

Jackknife (SPJ), provided that the data are stationary. For this reason we limit our attention to

Eq. (3.9).

Corollary 3.1. Under Conditions 1-2 of Fernández-Val and Lee (2013) and given N/T → a2 ∈
[0;∞) as N,T → ∞ jointly:

ŴHPJ = NT β̃′
(
Ĵ−1V̂ Ĵ−1

)−1
β̃

d−→ χ2(Q), (3.11)

where, assuming εi,t ∼ i.i.d.(0, σ2),

Ĵ =
1

NT

N∑

i=1

X ′
iMZi

Xi

V̂ = σ̂2Ĵ

σ̂2 =
1

N(T − 1− P )−Q

N∑

i=1

(
yi −Xiβ̂

)′
MZi

(
yi −Xiβ̂

)
.
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The proof of this corollary follows from the corresponding results in Fernández-Val and Lee

(2013) and Dhaene and Jochmans (2015). The formula for V̂ can be easily modified to allow for

heteroskedasticity in both cross-sectional and time-series dimensions, based e.g. on the clustered-

covariance matrix estimator of Arellano (1987). For instance, cross-sectional heteroskedasticity

can be accommodated by setting

V̂ =
1

N(T − 1− P )−Q

N∑

i=1

X ′
iMZi

ε̂iε̂
′
iMZi

Xi, (3.12)

where ε̂i = yi−Xiβ̂. Given the recent results in Chudik et al. (2018) we conjecture that for the

HPJ approach to work it is only necessary to assume N/T 3 → 0.

Remark 3.1. An alternative homogeneous estimator is available by taking into account the fact

that under the null hypothesis, not only βi = β for all i but also β1 = β2 = . . . = βQ = 0.

Therefore, letting xi,−1 = (xi,0, . . . , xi,T−1)
′, one can also consider the following restricted fixed

effects type estimator:

β̂1 =

(
N∑

i=1

x′
i,−1MZi

xi,−1

)−1( N∑

i=1

x′
i,−1MZi

yi

)
. (3.13)

This estimator is attractive because, under the null hypothesis, it does not require specifying a

value for Q. However, the resulting Wald test statistic is expected to have lower power compared

to that in Eq. (3.11).

Remark 3.2. Jackknife is by no means the only approach that corrects the incidental parameters

bias of the FE estimator. Alternatively one can consider an analytical bias-correction, as in Hahn

and Kuersteiner (2002) and Fernández-Val and Lee (2013). However, the analytical approach has

several practical limitations such as the need to specify a kernel function and the corresponding

bandwidth. In this respect the HPJ approach of Dhaene and Jochmans (2015) has some clear

advantages.

4. Monte Carlo simulation

4.1. Design

To illustrate the performance of the new testing procedure we adapt the Monte Carlo setup

of Binder et al. (2005) and Juodis (2018). In particular, we assume that the bivariate vector

yi,t = (yi,t, xi,t)
′ is subject to the following VAR(1) process:

yi,t = Φiyi,t−1 + εi,t; εi,t ∼ N(02,Σ), (4.1)

for all i = 1, . . . , N, and t = 1, . . . , T . The vector yi,t is assumed to be initialized in a distant

past, in particular we set yi,−50 = 02 and discard the first 50 observations in estimation.
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In order to simplify parametrization, our baseline setup specifies that some of the design

matrices are common for all i. In particular, we adopt Design 2 of Juodis (2018) for the error

variance matrix, setting

Σ ≡
(

σ2
εy σεy,x

σεy,x σ2
εx

)
=

(
0.07 0.05

0.05 0.07

)
. (4.2)

Matrix Φi is set equal to

Φi =

(
αi βi

−0.5 ρ

)
, (4.3)

where in the homogeneous case we impose αi = α = 0.4 while in the heterogeneous case αi =

α + ξ
(y)
i = 0.4 + ξ

(y)
i , ξ

(y)
i ∼ i.i.d.U [−.15, .15]. ρ alternates such that ρ = {0.4; 0.8}. This

parameter controls the degree of persistence in xi,t, which can be either moderate (ρ = 0.4) or

high (ρ = 0.8).

The main parameter of interest is βi. For βi = 0, the Φi matrix is lower triangular so that

xi,t does not Granger-cause yi,t. In this case the empirical rejection rate corresponds to the size

of the test. On the other hand, for βi 6= 0, the empirical rejection rate reflects power. In order

to cover a broad range of possible alternative hypotheses we consider the following schemes:

1. (Homogeneous). βi = β for all i. β = {0.00; 0.02; 0.03; 0.05}.
2. (Heterogeneous). βi = β+ ξ

(x)
i , ξ

(x)
i ∼ i.i.d.U [−0.1; 0.1], where β is as in the homogeneous

case.

The homogeneous design covers the classical pooled setup of Holtz-Eakin et al. (1988). On the

other hand, heterogeneity introduced in the second design is qualitatively closer to Dumitrescu

and Hurlin (2012). Note that in the heterogeneous case E[βi] = β.

Given that the procedure of Dumitrescu and Hurlin (2012) is primarily used in medium-

size macro-panels, we focus on combinations of (N,T ) that better reflect these applications. In

particular we limit our attention to the following 9 combinations:

N = {50; 100; 200}; T = {20; 50; 100}. (4.4)

We consider the following test statistics:

• “DHT” - the Dumitrescu and Hurlin (2012) Wald test statistic given by5

W̃DH =

√
N

2P

T − 2P − 5

T − P − 3

((
T − 2P − 3

T − 2P − 1

)
1

N

N∑

i=1

Wi − P

)
. (4.5)

5The authors also propose an alternative Wald test statistic that is not centered. However, in the present

setup we prefer using DHT because it provides better size control.
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• “HPJ” - the proposed pooled Wald test statistic in Eq. (3.11), which is based on the HPJ

bias-corrected estimator.

Inference is conducted at the 5% level of significance. The total number of Monte Carlo replica-

tions is set to 5, 000. Size-adjusted power is reported.

In an alternative setup, we also consider heteroskedastic innovations, where the top-diagonal

entry of the variance-covariance matrix Σ in Eq. (4.2), σ2
εy , is scaled by ξ

(ε)
i ∼ i.i.d.U [0, 2], such

that E
[
σ2
εy ,i

]
= σ2

εy E
[
ξ
(ε)
i

]
= 0.07.

4.2. Results

This section provides a brief summary of the simulation results, which are reported in Tables

A.1-A.4 in the Appendix. In specific,

• (size) when the degree of persistence in xi,t is moderate, such that ρ = 0.4, both HPJ and

DHT tests perform similarly. In particular, empirical size is fairly close to its nominal value

in most circumstances, with some size distortions observed when T << N , especially for

DHT. On the other hand, for ρ = 0.8, the performance of both tests deteriorates. This is

particularly so for DHT, where in 8 out of 18 cases size exceeds 20%. In fact, for the case

where N = 200 & T = 20 size is over 50%. On the other hand, HPJ appears to be more

reliable and size remains below 15% under all circumstances.

• (power) for ρ = 0.4 HPJ dominates DHT almost uniformly in terms of power. Similar

conclusions can be drawn for ρ = 0.8. Note that on average, for any fixed value of N ,

power increases with T at a higher rate for HPJ than DHT, which reflects the
√
NT

convergence rate of the bias-corrected least-squares estimator employed by the HPJ test.

• (homogeneous vs heterogeneous models) The performance of the tests in the heterogeneous

model is similar to the homogeneous one in terms of both size and power.

• (homoskedasticity vs heteroskedasticity) The results are similar in terms of both size and

power under homoskedasticity and heteroskedasticity. This implies that heteroskedasticity

does not distort the performance of the tests, once appropriately accounted for.

In summary, the above results suggest that HPJ has good finite sample properties even

in panels with a moderate time dimension. In contrast, DHT can suffer from substantial size

distortions, especially when T << N . Moreover, in terms of power, HPJ dominates DHT,

especially so in panels where N and T are both large.6

6In further simulations, we have studied cases where both y and x are drawn based on a VAR(2) process with

either homogeneous or heterogeneous coefficients. The results are similar to those already reported here, and so

we refrain from discussing these further.
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5. Illustration: Granger causality evidence on bank profitability and efficiency

We perform Granger non-causality tests in order to examine the sign and the type of tem-

poral relation between banks’ profitability and cost efficiency. We employ panel data from a

random sample of 350 U.S. banking institutions, each one observed over 56 time periods, namely

2006:Q1-2019:Q4. This data set has also been used by Cui et al. (2020), albeit in a different

context related to the estimation of a spatial dynamic panel model with common factors. The

data are publicly available and they have been downloaded from the Federal Deposit Insurance

Corporation (FDIC) website.7

5.1. Data and model specification

We consider the following specification:

yi,t = φ0,i +
P∑

p=1

φp,iyi,t−p +

Q∑

q=1

βq,ixi,t−q + εi,t, (5.1)

for i = 1, . . . , N and t = 1, . . . , T , where y denotes profitability, which is proxied by the return on

assets (ROA), defined as annualized net income after taxes expressed as a percentage of average

total assets, and x denotes the time-varying operational cost efficiency of bank i at period t,

to be defined shortly. The parameters of the model above are described in Section 2. For the

purposes of the present illustration we shall focus on the unidirectional link (one-way causation)

from cost efficiency to profitability. In addition, we shall impose P = Q.

A measure of cost efficiency has been constructed based on a cost frontier model using a

translog functional form, two outputs and three inputs. In particular, following Altunbas et al.

(2007), we specify

lnTCi,t =

3∑

h=1

γhlnPh,i,t +
2∑

h=1

δhlnYh,i,t + 0.5
2∑

m=1

2∑

n=1

µmnlnYm,i,tlnYn,i,t

+

3∑

m=1

3∑

n=1

πmnlnPm,i,tlnPn,i,t +

2∑

m=1

3∑

n=1

ξmnlnYm,i,tlnPn,i,t + ηi + τt + υit,

(5.2)

where TC represents total cost, while Y1 and Y2 denote two outputs, net loans and securities,

respectively; Y1 is defined as gross loans minus reserves for loan loss provision. Y2 is the sum

of securities held to maturity and securities held for sale. P1, P2 and P3 denote three input

prices, namely the price of capital, price of labor and price of loanable funds. The model above

is estimated using two-way fixed effects regression. The bank-specific, time-varying operational

inefficiency component is captured by the sum of the two fixed effects, i.e. ηi+ τt. Subsequently,

cost efficiency, xi,t is computed as follows:

xi,t = emin{η̂i+τ̂t}i,t−(η̂i+τ̂t), (5.3)

7See https://www.fdic.gov/.
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which ensures that larger scores imply higher cost efficiency such that the most efficient bank

scores one.

We initially test for Granger non-causality using Eq. (5.1) based on the entire sample, i.e.

all 350 banks during 2006:Q1-2019:Q4. Subsequently, we split banks into two groups based on

their average size, which is proxied by the natural logarithm of banks’ total assets. The grouping

of banks is performed using a k-means algorithm, as advocated e.g. in Lin and Ng (2012) and

Sarafidis and Weber (2015). In addition, we distinguish between two subperiods, namely “Basel

II” (2006:Q1-2010:Q4) and a period under the Dodd-Frank Act “DFA” (2011:Q1-2019:Q4). Basel

II represents the second of the Basel Accords and constitutes recommendations on banking laws

and regulations issued by the Basel Committee on Banking Supervision (BCBS).8 The DFA is

a federal law enacted towards the end of 2010, aiming “to promote the financial stability of

the United States by improving accountability and transparency in the financial system, to end

“too big to fail”, to protect the American taxpayer by ending bailouts, to protect consumers

from abusive financial services practices, and for other purposes”.9 In a nutshell, the DFA has

instituted a new failure-resolution regime, which seeks to ensure that losses resulting from bad

decisions by managers are absorbed by equity and debt holders, thus potentially reducing moral

hazard.

5.2. Results

Table 5.1 below reports summary statistics for the two groups of banks in terms of their size,

proxied by the natural logarithm of the average value (over time) of total assets.

Table 5.1. Summary statistics for bank size

mean std. dev. min max

small banks 11.31 .599 9.71 12.29

large banks 13.28 1.07 12.31 18.89

Table 5.2 reports results for the Wald test statistic and its p-value for the null hypothesis

H0 : βq,i = 0 for all i and q. We also report the estimated number of lags employed, P̂ ,

which is obtained using BIC10, as well as estimates for the pooled estimator (standard errors

in parentheses) of the Granger-causation parameters, defined in Eq. (3.9) and denoted as β̂.

When P̂ = 1, β̂ = β̂1 in Eq. (5.1), whereas for P̂ > 1 we report the sum of the estimates of

βq, q = 1, . . . , P̂ , i.e. β̂ =
∑P̂

q=1 β̂q. The variance-covariance matrix of the pooled estimator,

8Basel II was eventually superseded by the Basel III framework internationally.
9See https://www.cftc.gov/sites/default/files/idc/groups/public/@swaps/documents/file/hr4173_

enrolledbill.pdf.
10To ensure BIC is consistent under both under null and alternative hypotheses, we estimate P under the

alternative, thus allowing for heterogeneity of the Granger causation parameters.
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V̂ , is computed as in Eq. (3.12), i.e. it accommodates cross-sectional heteroskedasticity. For

the purposes of comparison we also report the mean-group estimator of the Granger-causation

parameters, β̂MG, computed using the sample mean (across i) of the corresponding individual-

specific regression estimates.

The top panel corresponds to the entire sample of 350 banks. Column “Full” reports results

for the entire period of the sample, i.e. 2006:Q1-2019:Q4. Columns “Basel II” and “DFA” present

results for two different subperiods, namely 2006:Q1-2010:Q4 and 2011:Q1-2019:Q4 respectively.

The middle panel contains results for “small-sized” banks, followed by “large-sized” banks at the

bottom panel.

As we can see, in almost all cases the null hypothesis is rejected at the 1% level of significance,

which implies that cost efficiency Granger-causes profitability, i.e. past values of x contain

information that helps to predict y over and above the information contained in past values of y.

The only exception occurs when it comes to large banks during Basel II, where the null hypothesis

is not rejected, with a p-value approximately equal to 0.509. This result is important because

it signifies potential moral hazard-type behaviour prior to the introduction of the DFA; such

outcome is consistent with findings in existing literature, such as those of Cui et al. (2020) and

Zhu et al. (2020). However following the introduction of DFA, the null of Granger non-causality

is rejected for large banks as well.

In regards to the remaining quantities, in most cases P̂ = 1, i.e. the optimal lagged value

of x and y equals unity except for large banks during DFA, where P̂ = 2. As expected, the

Granger-causation parameters are statistically significant at the 5% level, except for β̂MG when

the null hypothesis of Granger non-causality is not rejected.

We have also run Granger non-causality tests based on the method of Dumitrescu and Hurlin

(2012) (the “DHT” test statistic) using the Stata algorithm developed by Lopez and Weber

(2017).11 The results are identical when it comes to lag model selection using BIC. However

as it turns out, this time the null hypothesis of Granger non-causality is rejected in all cases,

including for the sample of large banks during the subperiod under Basel II. In particular, in this

case the DHT statistic equals 2.58 with a p-value of 0.0099. Given that the result is marginal at

the 1% level of significance, and taking into account the potentially substantial size distortions

observed in the simulations for the DHT test when T = 20, one is inclined to trust the outcome

of the HPJ-based Wald test reported in Table 5.2.

11We do not report the results to save space. They are available from the authors upon request.
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Table 5.2. Results for the HPJ-based Wald test approach.(a)

All banks

Full Basel II DFA

Wald-stat. 19.67 7.69 10.22

p-value [.000] [.006] [.001]

P̂ 1 1 1

β̂
.266

(.038)

.476

(.047)

.186

(.031)

β̂MG
.349

(.082)

.284

(.161)

.371

(.097)

N 350 350 350

T 56 20 36

Small banks

Full Basel II DFA

Wald-stat. 12.2 7.32 10.74

p-value [.000] [.007] [.001]

P̂ 1 1 1

β̂
.244

(.045)

.575

(.059)

.189

(.031)

β̂MG
.338

(.099)

.525

(.208)

.302

(.116)

N 211 211 211

T 56 20 36

Large banks

Full Basel II DFA

Wald-stat. 9.13 .436 12.65

p-value [.003] [.509] [.000]

P̂ 1 1 2

β̂
.346

(.025)

.132

(.019)

.423

(.036)

β̂MG
.366

(.142)

-.082

(.252)

.477

(.168)

N 139 139 139

T 56 20 36

a For P̂ = 1, β̂ = β̂1 in Eq. (5.1). For P̂ > 1 β̂ =
∑P̂

q=1 β̂q. Standard

errors in parentheses.
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6. Conclusions

This paper considers the problem of Granger non-causality testing in panels with large cross-

sectional and time series dimensions. First, we put forward a pooled fixed effects type estimator

for the Granger-causation parameters, which makes use of the fact that, under the null hy-

pothesis, these parameters are all equal to zero and, thus, they are homogeneous. Pooling over

cross-sections guarantees that the estimator has a
√
NT convergence rate. In order to account for

the well-known “Nickell bias”, we make use of the Split Panel Jackknife procedure of Dhaene and

Jochmans (2015). Subsequently, a Wald test is proposed, which is based on the bias-corrected

fixed effects type estimator. The resulting approach is valid irrespective of whether the alterna-

tive hypothesis is homogeneous or heterogeneous, or whether the autoregressive parameters vary

across individuals or not, so long as T is (at least moderately) large.

The statistical model considered in this paper rules out any forms of the cross-sectional depen-

dence in εi,t. This restriction can be easily relaxed if one is willing to assume that cross-sectional

dependence is strong, generated by an unobserved factor component, λ′
ift. In particular, in this

case one can use either the Common Correlated Effects (CCE) approach of Pesaran (2006)/

Chudik and Pesaran (2015) combined with HPJ as in Juodis et al. (2020), or the PC estimator

of Bai (2009)/Ando and Bai (2016). In these setups the HPJ-based statistic provides a natural

starting point, as the finite T corrections proposed by Dumitrescu and Hurlin (2012) are not

feasible. In panels with homogeneous autoregressive parameters and T fixed, one can employ

the GMM framework of Robertson and Sarafidis (2015) and the linear GMM estimator of Juodis

and Sarafidis (2020).12 We leave these avenues for future research.

12It is possible to use alternative estimators for this class of models in fixed-T panels, such as those reviewed

by Juodis and Sarafidis (2018).
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Table A.1: Empirical rejection rates. Homogeneous model, with homoskedastic innovations.(a)

ρ = 0.4 ρ = 0.8

β = 0 β = .02 β = .03 β = .05 β = 0 β = .02 β = .03 β = .05

N T HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT

50 20 9.1 8.8 9.8 8.7 14.0 10.4 30.3 17.4 14.4 21.5 7.6 9.6 10.7 12.1 22.6 18.0

50 7.1 6.7 12.9 9.7 26.8 14.7 62.7 30.4 9.5 10.5 13.5 10.3 25.5 17.9 61.7 37.2

100 5.7 4.7 27.4 13.5 53.9 20.9 91.1 52.1 7.9 8.3 29.4 14.6 58.8 25.3 94.3 63.2

100 20 11.3 12.6 13.3 8.1 19.8 9.4 46.3 19.4 14.1 35.9 11.7 8.2 17.3 11.5 40.6 22.1

50 7.1 6.6 25.6 13.2 52.2 22.2 91.0 48.4 9.5 15.3 22.0 13.0 48.3 24.3 91.1 54.9

100 5.9 4.8 48.3 17.3 81.1 33.0 99.5 75.9 6.7 7.9 55.6 21.2 88.6 44.1 99.8 89.7

200 20 10.9 15.1 21.5 11.8 40.2 18.2 77.7 37.0 14.3 55.5 19.2 10.6 35.0 16.4 69.2 35.7

50 5.8 8.3 46.1 16.9 79.8 31.2 99.8 72.5 9.6 22.1 38.4 20.6 77.0 38.9 99.8 82.1

100 5.1 6.3 77.8 22.9 98.0 47.2 100 95.4 7.0 11.4 84.4 32.9 99.3 63.5 100 99.3

a In the homogeneous model, αi = α = 0.4 for all i. Moreover, βi = β for all i, where β = 0 under the null (size) and β = {0.02; 0.03; 0.05}

under alternative hypotheses (power). The innovations of the process for yi,t are homoskedastic, with mean zero and variance equal to 0.07, i.e.

σ2
εy = 0.07. Size-adjusted power is reported.
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Table A.2: Empirical rejection rates. Heterogeneous model, with homoskedastic innovations(a)

ρ = 0.4 ρ = 0.8

β = 0 E [βi] = .02 E [βi] = .03 E [βi] = .05 β = 0 E [βi] = .02 E [βi] = .03 E [βi] = .05

N T HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT

50 20 8.7 8.9 10.3 8.0 16.6 9.8 31.3 16.7 13.7 22.5 8.7 8.7 14.0 10.2 23.9 18.3

50 6.6 6.4 14.4 10.3 30.0 15.3 63.3 29.0 8.5 11.9 13.3 10.0 30.0 17.8 62.5 35.2

100 5.3 5.7 27.9 11.5 54.9 19.1 93.2 52.3 6.9 7.4 29.5 15.8 62.5 28.8 95.8 68.4

100 20 10.6 11.1 11.9 9.5 22.2 13.7 47.0 23.8 14.7 36.8 9.2 9.0 18.3 13.8 37.7 22.0

50 6.8 7.5 25.7 11.3 48.1 18.7 91.2 44.7 9.1 15.5 24.1 14.9 48.0 25.3 90.8 58.4

100 5.5 5.7 49.6 18.6 81.7 30.8 100 72.9 6.6 8.3 58.5 26.7 89.1 46.8 100 90.5

200 20 10.3 13.8 24.4 15.1 41.4 21.2 78.9 41.1 14.9 56.4 19.5 15.9 32.3 23.4 69.5 44.2

50 5.8 9.4 49.2 18.1 80.1 30.8 99.6 71.4 11.1 22.5 41.6 23.1 75.4 41.3 99.8 84.2

100 6.5 6.8 75.1 24.2 98.1 48.9 100 94.7 8.4 11.0 83.9 35.3 99.5 66.0 100 99.1

a In the heterogeneous model, αi = α+ ξ
(y)
i with α = 0.4 and ξ

(y)
i ∼ i.i.d.U [−0.15, 0.15], such that E [αi] = 0.4. Under the null, βi = β = 0. Under

the alternative hypothesis, βi = β + ξ
(x)
i with β = {0.02; 0.03; 0.05} and ξ

(x)
i ∼ i.i.d.U [−0.10, 0.10]. The innovations of the process for yi,t are

homoskedastic, with mean zero and variance equal to 0.07, i.e. σ2
εy = 0.07. Size-adjusted power is reported.

19



Table A.3: Empirical rejection rates. Homogeneous model, with heteroskedastic innovations(a)

ρ = 0.4 ρ = 0.8

β = 0 β = .02 β = .03 β = .05 β = 0 β = .02 β = .03 β = .05

N T HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT

50 20 8.7 9.4 9.6 8.4 14.3 13.4 29.2 25.0 11.2 24.4 8.6 6.8 12.8 10.3 22.8 21.3

50 8.0 7.5 12.0 12.9 25.6 23.1 54.7 52.2 9.7 12.3 11.3 11.5 23.1 22.8 55.1 55.6

100 6.2 5.8 23.7 20.2 45.7 39.2 88.3 78.1 7.9 9.1 30.2 24.4 57.5 47.1 93.3 88.4

100 20 9.3 10.9 13.6 11.7 21.1 18.8 42.0 41.0 11.6 36.9 9.7 10.0 17.1 13.5 35.8 32.8

50 6.2 6.4 23.4 20.3 46.5 40.3 87.8 80.1 8.8 15.1 21.1 17.9 42.4 36.6 86.4 82.2

100 5.5 5.6 45.2 28.3 77.0 59.7 99.3 97.0 5.8 8.2 55.6 40.6 87.0 73.6 99.9 99.6

200 20 9.8 15.2 19.6 15.2 37.5 28.4 71.9 63.9 11.6 57.6 17.8 12.2 31.4 23.9 65.3 53.9

50 6.2 9.2 42.1 28.6 73.9 54.3 99.1 95.2 7.5 24.1 39.5 29.1 73.7 59.2 99.2 96.8

100 5.2 4.6 73.6 51.4 96.8 86.0 100 100 7.4 11.3 80.4 58.1 98.7 92.8 100 100

a In the homogeneous model, αi = α = 0.4, and βi = β for all i, where β = 0 under the null (size) and β = {0.02; 0.03; 0.05} under alternative

hypotheses (power). The innovations of the process for yi,t are heteroskedastic, i.e. σ2
εy is scaled by ξ

(ε)
i ∼ i.i.d.U [0, 2], such that E

[

σ2
εy ,i

]

=

σ2
εyE

[

ξ
(ε)
i

]

= 0.07. Size-adjusted power is reported.
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Table A.4: Empirical rejection rates. Heterogeneous model, with heteroskedastic innovations(a)

ρ = 0.4 ρ = 0.8

β = 0 E [βi] = .02 E [βi] = .03 E [βi] = .05 β = 0 E [βi] = .02 E [βi] = .03 E [βi] = .05

N T HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT HPJ DHT

50 20 9.6 8.8 6.4 10.4 12.1 14.1 23.8 25.0 13.4 23.3 8.7 10.8 12.6 15.2 25.3 23.5

50 7.7 7.5 13.3 11.8 23.2 21.0 55.7 51.5 9.1 10.8 12.9 15.7 24.0 26.7 59.8 61.9

100 7.4 4.5 21.3 19.1 44.1 39.8 85.2 83.0 7.5 7.0 28.2 25.4 56.4 49.3 93.3 91.2

100 20 9.7 11.7 12.2 10.6 21.9 16.8 42.6 35.6 11.5 36.4 11.0 8.8 19.9 13.3 39.5 30.0

50 6.7 7.2 22.7 19.2 46.1 33.6 85.7 77.0 8.5 15.4 22.7 20.0 46.7 39.1 86.9 82.8

100 6.6 6.1 43.6 27.0 75.4 58.1 99.4 97.3 7.7 10.0 54.7 37.5 86.0 72.7 100.0 99.5

200 20 8.5 15.7 22.2 16.8 37.4 25.4 75.2 58.4 10.8 58.3 18.9 11.9 32.2 19.6 67.5 50.6

50 6.3 7.2 41.8 30.2 74.9 59.3 99.1 96.7 8.4 24.3 39.8 31.4 75.3 60.1 99.0 98.2

100 6.9 5.8 67.8 45.8 96.1 82.7 100.0 100.0 7.7 12.2 79.6 61.3 99.0 94.5 100.0 100.0

a In the heterogeneous model, αi = α+ ξ
(y)
i with α = 0.4, and ξ

(y)
i ∼ i.i.d.U [−0.15, 0.15], such that E [αi] = 0.4. Under the null, βi = β = 0. Under

the alternative hypothesis, βi = β + ξ
(x)
i with β = {0.02; 0.03; 0.05} and ξ

(x)
i ∼ i.i.d.U [−0.10, 0.10]. The innovations of the process for yi,t are

heteroskedastic, i.e. σ2
εy is scaled by ξ

(ε)
i ∼ i.i.d.U [0, 2], such that E

[

σ2
εy,i

]

= σ2
εyE

[

ξ
(ε)
i

]

= 0.07. Size-adjusted power is reported.
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