MPRA

Munich Personal RePEc Archive

A Characterization for Marginal Income
Tax Schedules

Oztek, Abdullah Selim

University College London

2 September 2019

Online at https://mpra.ub.uni-muenchen.de/103046/
MPRA Paper No. 103046, posted 25 Sep 2020 06:32 UTC



A Characterization for

*

Marginal Income Tax Schedules

Abdullah Selim OZTEK?®

University College London

Revised December 2019

Abstract

The paper studies the optimal income taxation with a finite number of types. It
is shown that Rawlsian social welfare and maximax social welfare functions constitute
upper and lower bounds for the second best optimal marginal tax schedules. Therefore
any marginal tax schedule with a higher tax rate than Rawlsian bound or with a lower
tax rate than maximax bound would be inefficient. Moreover, it is shown that reasonable
marginal tax schedules between these two benchmarks could be supported as a second-best
tax schedule with appropriate social weights. These results are also valid when bunching is
optimal. Additionally, some characterization for the total tax rates at the top and bottom
of the income distribution are given.
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1 Introduction

Efficiency and equity are the most important criteria that economists consider while assessing
the outcomes of tax policy. Efficiency is about how resources are allocated in the society and it
is not related to any normative judgements. However, equity is highly involved with the norms
of society as it is about the distribution of the resources. The problem arises from the fact
that it is not possible to fully achieve these two goals at the same time. Due to this trade-off,

characterizing the properties of an efficient tax schedule becomes an important issue.
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Following Mirrlees (1971), a huge literature emerged in optimal income taxation literature
using models with a continuum of types. On the other hand, Guesnerie and Seade (1982),
Stiglitz (1982), and Weymark (1986, 1987) analyse the non-linear income tax problem with
a finite number of types. These two modelling techniques use different assumptions and ar-
guments which makes it difficult to understand the underlying common principles. However,
Hellwig (2007) forms a new perspective by developing a unified approach to optimal income
taxation. He shows that by using the same assumptions in continuum and finite models, the
theory of optimal income taxation could be regarded as “monolith” meaning that they are math-
ematically equivalent. Moreover, Bastani (2013) uses the discrete model to derive marginal tax
rates and shows that continuum and discrete models give similar numerical results when the
number of types is sufficiently high.

In both of the modelling techniques, the structure of the tax schedule is identified by a
complex relation of several components such as ability distribution, redistributive tastes of
government and the labour supply responses to a change in tax schedule. Since it is quite a
complicated problem, a general utility specification leads to very few analytical results, and
many studies have to rely on the numerical simulations (Tuomala 1990).

In order to deal with the complexity of the problem, and to have clear-cut results sev-
eral studies use quasi-linear utility specifications. Lollivier and Rochet (1983), Weymark
(1986,1987), Ebert (1992) papers conduct the analysis by using a quasi-linear utility which
is linear in labour as it provides a closed-form solution. However, this type of utility seems
rather restrictive as it leads to a tax schedule that is independent of income level. Moreover,
Blundell and MaCurdy (1999) shows that substitution effects have a higher impact on the
labour supply than income effects, therefore instead of using a quasi-linear in labour utility,
adapting a utility function which is linear in consumption seems more relevant to the general
case.

In this study, we analyse the optimal income tax schedule with a finite number of types by
using a quasi-linear in consumption utility. Under this setup, we give a characterization for the
efficient marginal tax schedules which is summarized in Figure 12. We show that when we have a
Rawlsian social welfare function, the resulting marginal tax schedule constitutes an upper bound
(or benchmark) for the tax rates obtained by any weighted utilitarian social welfare function.
There is a positive marginal tax rate along with the distribution except at the top as there is

no distortion at the top hence we have zero marginal tax rate. In the weighted utilitarian social

!Such as, zero marginal tax rate at the top (if the skill distribution is bounded) and bottom (if the lowest
skill is positive and no-bunching at the bottom), also a non-negative tax schedule between 0 and 1. (Mirrlees
(1971), Sadka (1976), Seade (1977)).

2For the numerical simulations in Figure 1, we employ the utility function u(c,l) = ¢ — e

Faye The second
term is a standard form commonly used in the optimal income tax literature and we assume that utility is quasi-
linear in consumption. Following Mirrlees(1971) and Tuomala(1990,2010) we use a log-normal skill distribution
with parameters (u, o) = (-1, 0.39). Frisch elasticity of labour supply ¢ is set equal to 0.5. For the Rawlsian
social welfare function, we set all other social weights to zero except the least able agent. Conversely, we
maximize the utility of the highest able agent for Maximax social welfare function. Second-Best schedule in
Figure 1 is derived from a random social weight distribution.
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Figure 1: Marginal Income Tax Schedules

welfare function, social weights assigned by the government are generally aimed to redistribute
from high-income earners to low-income earners, however other redistributive desires such as
redistribution towards mean income or high-income earners are also possible. Since we allow for
all social weight distributions, loosely speaking, one could say that the Rawlsian social welfare
criterion gives an upper bound for all second-best marginal income tax schedules. Therefore
any marginal tax schedule with a higher tax rate than Rawlsian bound would be inefficient. If
the marginal tax rate is above this bound for any ability level, the government could reduce
the tax rate and increase the tax revenue. Then redistributing this excess revenue would make
the agents better-off. On the opposite, the maximax criterion that maximizes the utility of
the highest able agent constitutes a lower bound for all second-best optimal tax schedules. In
this case, there is no distortion at the bottom while there is a subsidy for other agents in the
economy. Again it would be inefficient to set a lower marginal tax rate than this bound. So
any efficient marginal tax schedule should be between these two benchmarks.

Moreover, we show that reasonable marginal tax schedules between these boundaries could
be supported as a second-best efficient tax schedule via appropriate social weights.

Atkinson (1983) numerically shows that optimal linear tax rate is always higher under
Rawlsian criterion than any other second-best case. A similar analysis is conducted by Saez
(2001) for non-linear optimal taxation. Numerical simulations show that the Rawlsian criterion
leads to higher marginal tax rates than the utilitarian social welfare function. In an optimal
non-linear income tax model with extensive labour supply responses, Laroque (2005), and
Choné and Laroque (2005) papers show that the Rawlsian social welfare criterion constitutes a
benchmark for the tax schedules as well. Laroque (2005) shows that all utilitarian second best
allocations are below the Laffer bound or the Rawlsian benchmark, and also proves that, under

some mild conditions, any feasible allocation below Laffer bound corresponds to a second-best



optimal allocation. The present study applies the same idea for marginal income tax schedules
under intensive labour supply responses.

There is an ongoing discussion about the efficiency of marginal tax rates, especially for
the top income earners. However, the effectiveness of the whole marginal tax schedule is not
discussed very often. Bourguignon and Spadaro (2008) paper study the so-called “optimal
inverse problem” which tries to recover the social welfare function (SWF) that would make
the observed marginal tax rates optimal. They derive a necessary condition for the observed
marginal tax rates that ensure the SWF to be Paretian®. They interpret this Paretian condition
as a test on the relative position of the tax schedules with respect to the “Laffer Bound”, defined
as the revenue-maximizing tax system. They conclude that a tax system above the Laffer bound
could only be optimal with non-Paretian social weights.

Lorenz and Sachs (2012) analyse the efficiency of the marginal tax rates in the phase-out
region. They develop a similar test for marginal tax rates whether they are above the Laffer
bound and thus second-best inefficient. The Laffer bound here is an extension of the Laffer
argument to non-linear taxation, so the consideration is about whether the marginal tax rate
at some specific income level is inefficiently high or not. They apply this test to Germany and
find out that marginal tax rates are second best inefficient for the transfer phase-out region.
The present study generalizes these kinds of tests to the entire distribution. Lorenz and Sachs
(2012) use a quasi-linear in consumption utility. With this utility function maximizing the
welfare by using Rawlsian social welfare function and maximizing the total tax revenue would
generate exactly the same labour supply levels, since in the Rawlsian case government would
collect the maximum possible revenue from other agents and give it to the least able individual
as it only cares for the worst-off agent in the population. However, resulting allocations may not
be the same due to different consumption levels. Since the marginal tax rates are independent
of consumption in this utility specification, the resulting marginal tax rates will be the same.

To the best of our knowledge, Jacquet (2010) is the most relevant study for our study. By
using a quasi-linear in consumption utility with an iso-elastic disutility of labour, Jacquet (2010)
shows that a Rawlsian social welfare function always gives higher marginal tax rates than any
second best redistributive utilitarian case. However, this result depends on the specific utility
formulation and the redistribution desire of the government.

Moreover, by trusting the first order approach, Jacquet (2010) disregards the cases where
bunching is optimal. The present paper shows that this result could be generalized to all labour
supply functional forms, and to cases where bunching is optimal.

Due to the complexity of the problem, the characterization analysis is conducted under
three separate parts.

First, we will analyse the Rawlsian case and show that Rawlsian is a benchmark for other
social welfare functions where we have generally decreasing social weights (GDSW) for the

agents. We show that under a Rawlsian SWF we have the highest downward distortion on

3 A social welfare function is said to be Paretian if it assigns a positive social weight to each agent.

4



labour supply which leads to the result that we have the highest marginal tax rate.

Second, we apply the same analysis to the maximax case and any SWF with generally
increasing social weights (GISW). Similarly, we show that with GIST, the upward distortion
for labour supply could not exceed the upward distortion in maximax case. Therefore the
marginal tax schedule under maximax SWF would be a lower bound for social welfare functions
with GISW. Since there is a downward distortion in GDSW cases, this result trivially holds

for those possibilities as they imply positive marginal tax rates.

Third, although the GDSW and GISW cases form a significant part of all second-best
cases, in general, there are many other possible second-best tax schedules. For this reason, to
cover all second-best cases, we analyse all the possible second best allocations and show that in
any case, the downward distortion for labour supply could not be greater than the downward
distortion in Rawlsian case, and on the opposite, the upward distortion could not exceed the
upward distortion in maximax case. Therefore, while Rawlsian gives an upper bound for the

marginal tax rates, maximax constitutes a lower bound.

We show that these results are also valid when the monotonicity constraint is binding which
corresponds to bunching. Results under bunching slightly differ from the cases where pooling

is not optimal.

We conduct the same three-stage analysis on the converse of the result. We show that
reasonable non-negative marginal tax schedules under Rawlsian benchmark could be supported
as a second-best marginal tax schedule by choosing the appropriate social weights. Also at the
other extreme, any reasonable non-positive tax schedule could be supported as a second-best
schedule. For the general case, we need a complicated algorithm to show that any reasonable
marginal tax schedule below Rawlsian and above Maximax would overlap with a second-best

tax schedule with the appropriate social weights.

For the total tax rates, Rawlsian SWF gives a lower bound for the lowest able agent and an
upper bound for the most productive agent. Total tax under Rawlsian SWF and any second-
best tax schedule cross only once which means Rawlsian SWF' constitutes a lower bound for
the lower part of the population, and an upper bound for the remaining part of the ability
distribution. Under reasonable distributions for ability and social weights, this intersection
occurs near the median agent which is in line with Brett and Weymark (2015) and needs to
be investigated further. On the opposite extreme, maximax SWF gives a lower bound for the

highest able agent total taxes and an upper bound for least able individual’s taxes.

The study is organized as follows: Section 2 presents the model. Sections 3 and 4 derives the
results for Rawlsian and maximax social welfare functions respectively. Section 5 analyses the
general case for all social weight distributions, and section 6 deals with bunching cases. Section
7 shows that reasonable tax schedules between these two benchmarks could be supported as a
second-best efficient tax schedule. Section 8 presents the results for total tax rates, and section

9 concludes. Some of the proofs are left to the Appendix.



2 The Model

We study an optimal income taxation model with discrete ability types as in Guesnerie and
Seade (1982), Stiglitz (1982) and Weymark (1986 and 1987). The only source for agent’s
heterogeneity is the labour productivity w, and in the economy, there are N productivity levels

ranked in increasing order:

O<w <...<wn

N
The fraction of the population of ability w; is m;, with > m; = 1. It is convenient to define
=1
% ' N
the cumulative distribution function as F; = ) 7;, hence we have Fy = Y m = 1.
j=1 i=1

All agents have identical preferences over consumption ¢ and labour supply [ which are

represented by a quasi-linear utility function U : R x R, — R

Ule,l)=c—v(l)

where the function v : Ry — R is assumed to be increasing and strictly convex with v (0) = 0,

llirn v' (1) = oo and v (.) > 0*. While agents derive utility from private consumption working
—00

generates disutility i.e. U, =1>0and U, = —v' (I) < 0.

The economy is competitive, with constant returns to scale technology; therefore agent ¢’s
gross wage rate is equal to his productivity w;. Agent ¢ with productivity level w;, earns a gross
income y; = w;l; and pays an income tax from his gross income y;. The government knows the
functional form of the utility function and the skill distribution. However, it cannot observe
the productivity of the agent nor the labour supply of the agent. Therefore the government is
restricted to set a non-linear tax T (y) as a function of gross income y;.

Agents choose their optimal consumption and labour choice in the market by maximizing
their utility subject to their budget constraint;

maxc — v (1)

s.t.
c=wl—"T (wl)

or equivalently if we substitute out [ as [ = Z;

()
maxc —v | —
C7y w
s.t.
c=y—T(y)

4This assumption is used in the literature involving risk and uncertainty, and is called “prudence” by Kimball
(1990) which leads to precautionary savings. In the present setup it corresponds to convex marginal disutility
of labour which says as the labour supply gets larger, the increase in additional labour supply that becomes
unattractive becomes larger (Simula (2010)). This assumption provides a unique optimum. Several other studies
(e.g. Hellwig (2007)) prove existence and uniqueness of the solution with different but weaker set of assumptions.




The first order optimality condition of the agent’s problem would be

1-7 (y)EQ(c,y,w):q/ (£> l

w/ w
where € (¢, y,w) is the marginal rate of substitution of agent w which is independent of con-

sumption c. This formulation allows to express the marginal tax rate as T (y) = 1 —Q (¢, y,w) .

02(c,y,w)
ow

condition states that at any point in the (y,c) space with y and ¢ on the horizontal and

The single crossing property < 0 is satisfied for this specific utility form. This
vertical axes, respectively, the indifference curve of a more productive agent is flatter than the
indifference curve of a less productive agent and these curves cross only once. The intuition is,
in order to produce an additional unit of output, a high productive agent does not have to work
as hard as a less able agent and hence needs less compensation. The single crossing property
ensures that a more able agent will end up with a higher consumption-income allocation, so
that second best taxation could separate types and guarantees incentive-compatibility. It can
also be exploited to rule out the global incentive comparisons, meaning that it suffices to take
into account the incentive compatibility constraints that compare adjacent individuals.

An allocation for this economy is a pair of consumption level and output for individuals
with different skill levels, a = (c;, )Y, € R x R,

An allocation is feasible if

N N
Z%‘Ci < Zﬂz’yi (1)
i=1 i=1

so total consumption does not exceed total output or income.

And the allocation is incentive-compatible if

Ci— v (&> > —v (‘y—j) for all i and 7 (ICj;) (2)

w;
so nobody has an incentive to lie about his type. Henceforth we say that an allocation is
incentive feasible if it is feasible and incentive compatible.

An incentive compatibility constraint is called adjacent or local when ¢ = 7 £+ 1, and called
non-local (global) if ¢ # j + 1. Since the government cannot observe the private productivity
parameter, incentive compatibility should be taken into account for implementing any desired
allocation.

The aim of the government is to maximize the total social welfare, defined by a weighted
utilitarian welfare function W (a) : RN x RY — R

W (a) = ilmi lci — (Z—)} (3)

where §° is the social weight of the type i agents. While the case 6° = 1 for all i gives the

pure utilitarian social welfare function, the case 6' = 1 and §° = 0 for all i # 1 will generate
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the Rawlsian social welfare function where the government maximizes the utility of the lowest
ability agents, whereas on the opposite extreme we have a maximax social welfare function
when 6 =1 and 6° = 0 for all i # N. We allow for all social weight distributions. Therefore
redistribution does not necessarily take place from high able agents to low productive agents.
Also, it is required that the function W (.) be non-decreasing in each U (¢;,l;). Such welfare
functions are called Paretian social welfare functions which ensure Pareto optimality of the
solution. For later reference, it is practical to define the weighted cumulative social weight

B; that gives the summation of the social weight of the agents from agent 1 to agent i (i.e.
i

Bi = > m;07), and also we can normalize Sy = 1 since the objective function is homogeneous
j=1

of deg;ee one in 4.

By the taxation principle of Hammond (1979) and Guesnerie (1995), setting a non-linear
tax schedule is identical with choosing a specific consumption-income bundle for each agent
which satisfies the incentive compatibility constraints. The optimal income tax problem is to

choose an allocation a = (¢;,y;),_, to maximize

oo o (2)]

subject to feasibility condition (1.1) which must be binding at the optimum since the util-
ity function is increasing in consumption, and incentive compatibility constraints (1.2). The

Lagrangian for this problem is;

i=1 j=1
17

where X and p;; are non-negative multipliers. The maximization yields the following first-order
conditions:

) N N
Ciiﬂi(sz—)\ﬂi—FZ/Lij—Zﬂji:O
4 i=

7=1 =1
i#] i#]
. 5i’ Yi 1 A ZN " yi 1 ZN " i 1
Y; - T;0°0 w_1 w—i— 7Ti+ ,uijv w—l w—i— [Ljﬂ) w—] w—]ZO
Jj=1 Jj=1
i#] 17

and complementary slackness conditions:
N

AY milyi—ca]=0
i=1

[4ij [ci —v (i—) —cj+v (i—ﬂﬂ =0 for all ¢ and j.

However, this problem is complicated due to the number (N(N — 1)) of the incentive com-
patibility constraints. It turns out that it is possible to relax the problem by reducing the

number of incentive compatibility constraints with the following Lemmas.



Lemma 1. For any incentive feasible allocation we have: y; > y;_1 and ¢; > ¢;_1 for all 1 > 2.

Moreover we have ¢; = ¢;_1 if and only if y; = y;_1.
Proof. See Appendix. O

Lemma 1 implies that two different types either differ in both income and consumption and
they are monotonically increasing with ability, or have the same bundle, in which case they are
said to be bunched. In order to reduce the number of IC constraints, the following Lemma
shows that only local incentive compatibility constraints matter, therefore the focus could be

solely on the local incentive compatibility.

Lemma 2. A local incentive compatible allocation is incentive compatible.
Proof. See Appendix. n

First, two local downward IC for adjacent agents ¢ and ¢ — 1 (IC;;—; and IC;_1,; o) imply
the global downward IC between agents i and i — 2 (IC;,;_2). Second, two local upward IC
constraints for agents ¢ and i+ 1 imply the global upward IC between agents ¢ and ¢+2. One can
also show that IC;;_1, IC;_1,_2 and IC;_5,_5 imply IC;,;_3, and etc. By starting from i = N
and proceeding inductively, it is possible to show that local downward incentive compatibility
constraints imply all of the global downward incentive compatibility constraints. A similar
argument applies to reverse direction that local upward incentive compatibility constraints
imply all global upward incentive compatibility constraints. This feature is referred as the
“transitivity property”, which states that if the local IC' constraints are satisfied then the
allocation would be incentive compatible.

Then it is possible to set up the maximization problem by only using local IC' constraints;

C — (&) Z Cii1— U (%‘—1) for all ¢ (IO,-,i_l)

wy w;

C;— U <&> > Cit1— U (yHl) for all i (1C;;41)

Hence, we have reduced the number of the necessary and sufficient IC' constraints from
N(N —1) to 2(N — 1), and the Lagrangian becomes;

N N N
L= Zm(si |:Cz' — <%)} + )\Zm [yi — Ci] + Z,Uz',i—l lCi — v (%) —Ci—1 TV (y;;1>:|
i=1 ! i=1 =2 ’

N-1
Yi Yi+1
= oo () =t o (52)]

with 1110 = o1 = pn+1.8v = v v+1 = 0. The first order conditions are:

9



s _
Ci o0 — AT+ i1 — i1 — Mi-1,i + figr1 =0
o St () L B I 2 T U 1
Yi ﬂ.ld v (w;) w; AT + Hiyi—1V <'Wz) w; Hi+1,iV (wi+1> Wil
e 4y Yi 1 . N T T
fi—1,3V (wH v T MV () o =0

By defining ¥; = p; ;-1 — pti—1, for i = 2, ..., N and setting ¥; = 0, the first order conditions

for consumption become;

Wi(;i - )\7Ti + \117, - \I/i+1 =0 for all ¢

Summing up these conditions yield A = 1. By starting with the condition for agent one, it

is possible to solve for all ¥; and multipliers p;. For all 7, we have;

\Iji = Bi—l - E—l

and the IC' constraint multipliers p’s are given by;

pii—1 = max(0,V;) p;—1,; = —min(0, ¥;)

then; if ¥; > 0, downward IC;;_ is binding,
it ¥; <0, upward IC;_;; is binding,
and if ¥; =0, none of IC;;_; and IC;_;; are binding.
Hence, once we have the distribution of social weights 6 and the population share parameter
7, we can find which of the IC' constraints are binding in the equilibrium.
The following matrix shows all the /C constraints in the very general problem, however as
we showed in Lemma 2 the local IC' constraints highlighted in the matrix are sufficient to have

an incentive compatible solution. Hence corresponding multipliers for other /C' constraints are

7ero.
[ 1C,, IC,, ICs, ICy, ICs, ICs, ICyy ]
10173 ICQ’3 IC3’2 10472 105’2 IOG,Q _[CN,Q
10174 10274 103’4 IC4’3 105’3 106,3 [CN,3
10175 10275 10375 IC4,5 IC5,4 10674 [ONA
IOLG ICQ,G 103,6 104,6 IC5’6 106,5 cee ICN75
L ICLN [CZN 1037]\[ 1047]\7 [CE),N ICN—l,N ICN,N—l |

In the following part of the study, we analyse the optimal tax schedule under no bunch-
ing, however in a later section, we will consider the cases where bunching is optimal. In the
no-bunching case, the following Lemma has to hold which is identical with the non-binding

monotonicity constraints.

Lemma 3. If there is no bunching at most one of the 1C; ;11 and IC;11,; binds.

10



Proof. See Appendix. m

This is known as the “asymmetry property” in the literature (Homburg (2002)). If a down-
ward IC' constraint is binding then the corresponding upward /C' constraint will be slack when
the higher able agent has strictly more income i.e. no-bunching.

For agent ¢ (where ¢ # 1, N), there are four relevant /C constraints: 1C;_y;, IC;;—1, IC; 11,
IC;;1,. If there is no bunching then we know that only one of (IC;_,, IC;;_1) and (IC; 11,
IC;41,) could be binding. Also if IC;;—y and IC;;; bind at the same time, agent i will
be undistorted. As noted above which of these constraints are binding at the equilibrium is
identified by the magnitudes of §;_1, 3;, F;_1, and F;. Table 1 gives these regions and binding

IC' constraints under each region. There will be nine possible cases for each agent.

Table 1: Binding /C' Constraints by Model Parameters

i/ Wit Bi > Fi Bi < F; Bi = F;
Biz1 > Fin IC;;-1 —ICip1;  IC;;-1 —ICii4 IC; ;1
Bici < Fiow ICi—1; —ICip1;  ICi—1; —IC;4 IC; 1
Bi-1 = Fi ICi 1, IC; ;11 =

Boadway et al. (2002) analyses the optimal income taxation with three ability levels. As
they allow for all social weight distributions, there will be four different scenarios for binding
IC constraints. By calling regimes these cases they characterize the optimal tax schedule and
they also derive the conditions that make some specific IC' constraints binding. Here the nine
possible cases for each agent is just a generalization of this idea to a N-type model. There
is a similar discussion in Stantcheva (2014) where she derives the conditions that make the
downward local or upward local constraints binding. The optimality condition for agent i is as

follows:

(fyiy 1 i1, [ Y 1]
v —]—=1-— - 1—w
w; ) w; (730 4 piip1 + pai—1] | Wity ) Wit |

i1 [ / ( Yi ) 1]
— A 1—w
(0% 4+ piiv1 + pii-a] | Wi—1 ) Wi |

For ease of presentation, it would be better to briefly discuss the possible cases here, which
would also make it easier to follow up the subsequent sections. From Table 1 we have the

following nine possibilities for each agent 1.

1-) If B;—y > F;_y and B; > F; then IC;;_; and IC;;;,; bind. This is the usual case when
the government has a redistributive desire from high income earners to low income earners

(generally decreasing social weights). Only local downward incentive compatibility constraints

11



are binding in the equilibrium and Rawlsian SWF is a special form of this case. Optimality

condition:
v (3}—) wL =1- # [1 —v <wy_+1> ﬁ} where the distortion depends on agent 7 + 1.

2—) Ifﬁi_l > F,_{ and ﬁz < F; then IOi,i—l and ]Oi,i+1 bind. Optlmahty condition:
v (y—> L — 1. There is no distortion.

3-) If Bi—1 > Fi—1 andf; = F; then only IC;;_, binds. Optimality condition:
v (y—) L — 1. There is no distortion.

4-) If B;_1 < Fi—y and B; > Fj then IC;_y; and IC;;;,; binds. Optimality condition:
v (y_) L Aol [1 —v ( Yi ) 1 } — futls [1 —v (y—) ﬁ} where the distortion

w; | w; m;0° wi—1 ) wi—1 ;0 Wi 1
depends on agents ¢ — 1 and 7 + 1.
5-) If By < F;_y and B; < F; then IC;_y,; and IC; ;1 bind. Here we have binding local
upward /C' constraints which is the case when we have a maximax SWEF or generally increasing

social weights . Optimality condition:

v (y—> L -] ki [1 — (y—) 1 } where the distortion depends on agent i — 1.

w; | w; 0%+ 41 wi—1 ) wi—1

6-) If 8;_1 < Fi_1 and B; = F} then only IC;_;; binds. Optimality condition:
v (ﬂ> L— Bl [1 — ( i ) #} where the distortion depends on agent i — 1.

w; | wj m;i6° wi—1 ) wi—1

7-) If ;-1 = F;_y and §; > F; then only ICj;4,; binds. Optimality condition:
v (;,_) L -] Bl [1 — (y—> 1 } where the distortion depends on agent 7 + 1.

w; | wj m;dt Wit1 ) Wit1

8) If B;—1 = Fi_y and f3; < F; then only IC; ;1 binds. Optimality condition:
v (i—) wi = 1. There is no distortion.

9-) If B;_1 = F;_1 and f3; = F; then there is no binding IC constraints. Optimality condition:
v (y—> L — 1. There is no distortion.

wi ) Wi

Under no bunching case there are three possibilities for the lowest able agent.

1—) If Bl > F then OIlly ]Cgl binds.
v (y—1> L— - 2 [1 — <ﬂ> l} where the distortion depends on agent 2. Since 1Cy;

w1 | wi w161 wa | wo

is binding agent 2 can be either downward distorted or undistorted. So even the agent 2 is

undistorted, agent 1 will be distorted downwards.
w1 w1

2-) If 51 < F} then only IC}5 binds. v (ﬂ) L — 1 there is no distortion.

3-) If B, = F} then there is no binding IC' constraints, so no distortion.

Similarly, there are three possibilities for the highest able agent.

1—) If 51\7_1 > Fy_q then only [CN,N—l binds.
v (y—N> L — 1. There is no distortion.

wWN wN
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2—) If 5]\/'_1 < Fy_4 then only [CN—l,N binds.
v (y—N> L— ] EN-LN [1 - (y—N> #] where the distortion depends on agent N —1.

wN ) wN TN oN wN-1 ) WN_1
Since ICn_1 n is binding agent N — 1 can be either upward distorted or undistorted. So even

the agent N — 1 is undistorted, agent N will be distorted upwards.
3-) If Bn_1 = Fy_1 then there is no binding IC' constraints, hence no distortion.

Since the population share parameter 7 is given for the economy, the only parameter that
identifies the binding I'C' constraints is the social weight parameter 6. Hence depending on the
redistribution taste of the government, the optimal solution will be characterized by these 9
possible cases for each agent. In the following two sections, first, we will analyse the Rawlsian
case and show that Rawlsian is a benchmark for other social welfare functions where we have
generally decreasing social weights (GDSW) for the agents. Second, we will show that maximax
SWF is a benchmark for all other SWF with generally increasing social weights (GISW).

Finally, we aim to show that all other possible solutions are between these two benchmarks.

3 The Rawlsian Benchmark

Most of the studies in the literature deal with the cases where the government has a redis-
tributive desire from high-income earners to low-income earners (or from high able agents to
low able agents). As it is a more interesting example we first analyse the Rawlsian social welfare
function and any social welfare criterion with generally decreasing social weights, which is a
special form of case 1 in our formulation. When the government has a redistributive desire from
high able to low able (i.e. a decreasing social weight ¢° with the ability), Weymark (1986,1987),
Hellwig (2007) and many other papers show that the allocation is a simple monotonic chain
to the left, which means only the downward IC constraints are relevant and binding, therefore
it is possible to relax the problem. In this environment, Rawlsian SWF yields the maximum
downward distortion for the agent’s labour supply except for the top agent (no distortion at
the top). Since the marginal tax rate is independent of consumption, this downward distortion
leads to the result that marginal tax rates are positive and always higher in the Rawlsian case.
This result trivially holds when we compare the Rawlsian case and any other social welfare
criterion with an increasing social weight pattern, because in that case except for the lowest
able agent, there exists an upward distortion leading marginal tax rates to be negative.
Questions may arise about the existence and uniqueness of a solution for this kind of prob-
lem. Because v(.) is strictly convex and v”'(.) > 0, the objective function is concave over the set
R,. Therefore these first order conditions are both necessary and sufficient for an optimum?.
The existence and uniqueness for this problem are discussed in several papers. Simula (2010)

and Brett and Weymark (2015) mention that existence and uniqueness could be provided by

5Second order condition would be; ,u,;+1,iv” ( Yi ) L [méi + ,u,;,i_l] v (y—7> % < 0 which is satisfied

. 2 .
Wi41 wi+1 wi

as we have v > 0 and pivti = [Bi — F] < mid* + piio1 = [Bi — Fi1]
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using the same assumptions as we have here, however Hellwig (2010) paper shows that existence
could be possible even with a weaker set of assumptions.
If we have a decreasing social weight distribution we know that only the downward [C

constraints /C;;_; and /(44 ; are binding, and the optimality condition is:

N AN Hit1,i Y 1
V(L) =
w; ) w; 0" + i1 Wity ) Wiyt

where ;-1 = i1 — Fi_1.

A sufficient condition for p;; ; > 0 is a decreasing social weight distribution (i.e. §° > ¢ if
i < j) as with these social weights (;_; is always greater than F;_;. Moreover for some social
weight distributions, those are not always decreasing (increasing or constant for some weights),
it is possible to fulfil the p;; 1 > 0 condition®. This is also pointed out in Weymark (1987) as
the social weights should not increase too rapidly with ability. Therefore a generally decreasing
pattern is enough to have binding local downward /C constraints.

It is practical to rewrite the optimality conditions in the following form;

v (7)) —=1- o [ ()
w; Bz Fi Wi4+1 Wi4+1

where the superscript GD stands for “generally decreasing” social weights, and the Rawlsian

optimality condition can be found by setting all §' = 0 for i # 1;

, 1 1-F C(wilB\ 1
T () T R “’ﬁ .
w; 1—F_4 Wiy1 ) Wit

where the superscript R stands for Rawlsian SWF.

Since the optimal allocation is a simple monotonic chain to the left, the tax schedule is not

differentiable, however it is possible to use the differentiability of the utility function to define

/ ’ l/L
7w =10 (1)

then optimal tax rates for GDSW case will be as follows:

implicit marginal tax rates as;

!

Ty (yﬁD) =0 and

' (GD) — Bi=F; FwdEP\ 1
Ti (yi ) T Bi—Fia [1 - <wi+1 Wit 1
and Rawlsian marginal tax rates are;

Ty (yR) = 0 and

' ( Ry _ 1-F; (il
T; (yl ) T 1-F_4 [1 v <wi+1 Wi41

We know that both in the Rawlsian and GDSW cases only downward IC' constraints are

6Consider the following example; suppose we have 4 types, and m; = 0.25 for all agents. A social weight
distribution such as § = [2,0.8,1,0.2] is not decreasing in ability but the Lagrange multipliers for downward IC
constraints are still positive.
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binding. Therefore while there is no distortion at the top (zero marginal tax), it is optimal to
impose a distortion on agent ¢ to prevent agent ¢ + 1 from mimicking agent ¢ by reducing his
or her labour supply. For the rest of the population, there are two parts in the tax function.
When we compare the first terms we can say that % term is always greater than the %
term.

T, (ny ) and T, (yZ-R) tax rates are for the agent 7, however the income levels are different in
these tax functions due to the different labour supplies IS and [*. In a discrete model, it may
not be possible to compare the tax rates for the same income levels, but it could be possible
to make this comparison with a continuum of agents. In order to compare these two tax rates,
one also needs to know the labour supply of the agent ¢ under each social welfare function.
If the Rawlsian labour supply is more downward distorted than any decreasing social weights,
we can conclude that marginal tax schedule under Rawlsian is always greater than second best
marginal tax schedules where there is a decreasing social weight distribution. Hence, a marginal
tax schedule T} (y?) under Rawlsian SWF would be an upper bound for the possible marginal
tax rates for the agent 7. If the labour supply of the agent ¢ increases with any social weight
87, we conclude that [¥P > [F.

Using a quasi-linear utility specification which is linear in labour, Weymark (1987) conducts
a comparative statics for the welfare weights. A corresponding comparative analysis is done by
Simula (2010) by using a utility function that is linear in consumption. Simula (2010) analyses
the effects of increasing agent i’s social weight ¢° while reducing the other agents social weights
proportionately. In the absence of any normalization for the social weights, this is equivalent
to increasing ¢° while holding the other social weights constant.

According to Simula (2010) when there is an increase in the social weight of agent ¢ with all
other social weights 67 i # j scaled down proportionately, there will be no change in the gross
income yy of the highest able agent. However, agents who have a lower ability level than agent
¢ will have a higher gross income which means there will be a lower marginal tax rate for these
agents. On the other hand, agent i’s and more able agents’ income levels will decrease and
the marginal tax rates will increase. This analysis compares two different second best GDSW
income tax schedules. However our concern in this study is to compare the tax rates under
Rawlsian and any second best tax schedule. So we need to check the effect of decreasing social
weight of the least able agent while increasing the social weight of any agent.

Corresponding results for Theorem 2 in Weymark (1987) and Proposition 9 in Simula (2010)
are as follows. When there is a change from Rawlsian to any GDSW second-best we can
investigate the situation as an increase in 87 j # 1 with a decrease in §'. Otherwise comparison
would be between any two second best cases. One can conclude that if ¢/ increases, for the
agents ¢ < j labour supply and income level will increase so there will be a lower tax for these
agents. However for the agents ¢ > j there will be no change in labour supply and so in the
income. Then the result is similar to Simula (2010) however in this case, if there is an increase

in the §’ agents ¢ > j labour supply and income will not be affected by this change. Under
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GDSW , one could say that agents with a higher ability than agent j are in the same case as
they are under the Rawlsian criterion. Theorem 2 in Weymark (1987) could be interpreted as
the counterpart of this result with quasi-linear in labour utility. It is possible to adapt this
theorem by analysing the effects of an increase in agent j’s social weight 67 with a corresponding
decrease in 6'. The result is the same but instead of labour, his paper compares the consumption
levels. So while the agents ¢ < j would have a higher consumption, the consumption level for
agents ¢ > j would not change. The following proposition shows that labour supply and income
levels are weakly smaller under Rawlsian SWF than any utilitarian case with decreasing social

weights.

Proposition 1. For all i, P > IF or equivalently y&P > y~.

)

Proof. We need to show that if we switch from Rawlsian to any GDSW utilitarian case labour

supply of the agent i increases. From the optimality condition we have;

o) E =1 2 - () 5

For agent i if any ¢/ with j < ¢ increases, the term f% will be the same for both Rawlsian
and GDSW cases, because the increase in 6 means a corresponding decrease in §'. Therefore
the cumulative weight 3; will be the same in both cases since it contains the 47 term. Then
labour supply levels will be the same in this case. However if any 47 with j > 4 increases then
the corresponding term will be lower in the GDSW case. Here 3; does not contain the social

weight ¢/ hence f3; will be lower under GDSW utilitarian case. From the optimality conditions

we have;
" (1G 1 ’ 1
B; — F; [1—0(52-]3)@] G L1-F [1—U(lf)m}
= an =
Bi — Fia [1 - (M) ;} 1—Fi, [1 — (wilf) 1 ]
Wi+1 Wi+1 W41 Wit1
since 1£}Fj1 > ff’ijl we have

[1 — v (if) wA] [1 — v (I6P) w%_]
e ()] e (B 5

Note that the function f (y) = [1TU (“’) ”i] is decreasing in y (or [) since the numerator
(- (&) =)

V

e

. . . wl+1
of its derivative;

" 1 ’ 1 " 1 / 1 . . .
v (ijH) . [1 — v (%) E} —v (wi) W [1 — v (%ﬂ) w—ﬂ} is negative by convexity of
v' ().

Hence, the inequality implies that (9P > [f (or y&P > ylt). O

Consequently, if a higher ability agent’s social weight increases then the agent ¢ labour

supply increases, and there is no impact of an increase in social weight of a lower able agent.
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With a Rawlsian SWF, the government collects the maximal amount of money from all
agents, and transfers this money to the least well-off agent in the society. Intuitively, to increase
the amount collected government will increase the marginal tax rates which creates a downward
distortion for the labour supply. Since there is a positive social weight for other agents in the
GDSW case, in order to increase the total welfare government should let the people work more
and consume more than in the Rawlsian case. Hence, the labour supply level in Rawlsian SWF
would be lower than any GDSW utilitarian criterion. After analysing the labour supply of
agent ¢ under two different social welfare functions, it is possible to compare the marginal tax

rates under these two different cases.

Proposition 2. For all i, T, (yF) > T, (y&P).

- : . ( GDY _ _Bi—Fi P wilfP\ 1
Proof. GDSW case marginal tax function for agent i: T, (y;") = ==+~ |l —v | ——

T Bi—Fia Wit1 ) Wit1

’ ) ’ B
Rawlsian marginal tax function for agent i: T; (yf) = 57 [1 —v (Z—il) wil}

In Proposition 1 we showed that if there is an increase in §’ for agents j < i, there will be
no change in labour supply levels and §; = 1. Hence, the marginal tax rate of the agent i is not
affected by a change in social weight of himself or a lower able agent. However if 67 for j > i
increases [3; will be lower than 1 and again from Proposition 1 we have [/ > [®. Note that the
function f(y) = [1 - <#+1> w;l] is decreasing in y (or [) since its derivative —v" (wil) w;ﬂ
is negative. So the marginal tax rate for agent i will be higher in the Rawlsian case. [

Hence, the Rawlsian case where 6° = 0 for i # 1 constitutes an upper bound for any GDSW

optimal marginal tax rates for agent i.

1-F  ~ Bzl
—Fi1 — Bi—Fi1

Bi < 1. If we have the reverse then at least one of the social weights has to be negative (since

The inequality ; depends on the assumption that cumulative social weight

N
we have Sy = > ;07 = 1), which means we do not have a Paretian SWF. Marginal tax rates
j=1
above the Rawlsian might be achieved by a non-Paretian SWF. Hence, Rawlsian marginal tax

rates constitute an efficiency bound. Above this bound we could not have a Pareto efficient tax
schedule. This condition also says that if we have a Paretian SWF then the resulting marginal
tax schedule has to be below the Rawlsian bound. However below Rawlsian some marginal tax
schedules could still be inefficient due to the inefficient structure of the tax schedule itself. We
will further discuss these issues in section 7.

There is a positive tax for all agents in the discrete ability setup, however Seade (1977)
shows that the optimal tax rate at the bottom should be zero if there is no bunching at the
bottom. This difference is due to the continuum setup he uses. In a continuum model, the
mass of the worst-off agents is zero in the utilitarian objective. Therefore it is not possible
to increase the social welfare by taxing these agents and redistributing the excess revenue.
However, with a Rawlsian SWF, there will be a positive tax for the worst of agent even if we

have a continuous ability distribution, as these agents are the only mass in the social welfare
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function. In a discrete model there is a positive mass of worst-off agents both in the Rawlsian
and the utilitarian SWF. Therefore there would be equity gains from a positive marginal tax
in either cases.

One of the general results in optimal income taxation is the zero marginal tax for the top
agent (Sadka 1976, Seade 1977), as increasing the tax rate for the highest able agent will distort
his labour supply without providing any additional revenue. However this result is only valid
under a bounded ability distribution assumption since in an unbounded distribution there will
always be a higher income earner than any income level. Since we have a finite setup, the zero
marginal tax at the top result is valid for both Rawlsian and redistributive utilitarian social
welfare functions.

The preceding analysis applies to cases where we have a proper redistribution from high
income earners to low income earners. However for some distribution of social weights, upward
IC constraints could be binding. Since the marginal tax rate is decreasing in income for the
same agent, if there is an upward distortion it necessarily means a lower (negative) marginal
tax rate for the agent. Hence, in an economy where all the agents are distorted upwards, the
marginal tax schedule will always be below the Rawlsian tax schedule. The next section deals
with the maximax benchmark and compare marginal tax rates with the social welfare functions

where we have an increasing social weight distribution.

4 The Maximax Benchmark

On the opposite extreme, the maximax social welfare function gives a lower bound for the
marginal tax schedule as the largest upward distortion occurs under this kind of social welfare
function. When all upward IC' constraints are binding one can say that all of the agents are
distorted upwards. In this case an upward distortion is imposed on agent ¢ to prevent agent
t — 1 pretending to be a high able individual. In the following, we only consider the second
best cases with generally increasing social weights (GISW) and compare them to the results
for maximax SWF.

In the maximax and GISW cases we know that only upward /C constraints IC;_;; and

IC; ;41 are binding, and the optimality condition is:

cfyiy 1 Hi1i (Y 1
v | ) —=1———" |1—v
w; ) wj 0" + i1 Wi—1) Wi

where p;41 = F; — f3;.

So with increasing social weights where §° > §7 if 1 > j, F; increases faster than (; and
multiplier p; ;41 will be positive. These multipliers could also be positive for some social weight
distributions those are not entirely increasing (generally increasing social weights).

Brett and Weymark (2015) analyse the optimal tax rates identified by majority voting. In

this setup while the lowest able agent proposes the Rawlsian tax schedule, the top agent votes
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for the maximax case. For the maximax case, second order conditions for an optimum could
be problematic and they refer to this problem as “ill-behaved”. However it is possible to have
an optimum by imposing restrictions on the parameters’.
By plugging the multipliers the first order condition could be written as;
S Lo B () L]
i — Bica

w; Wi—1 Wi—1

where superscript G stands for “generally increasing” social weights. Maximax optimality
condition could be found by setting all 6° = 0 for i # N.

’ y 1 F;_ ’ wlM 1
M i—1 il
U(Zi )51'21_ F; {1_?] (wi—l)wi—J

where superscript M states for Maximax SWF.

And the corresponding marginal tax functions;
T (y¢') = 0 and
f(GI _ Fioi=Bi o will! 1
Ti (y’ ) - Fil_ﬁifll [1 -v (wi—1> wi71:|
and the tax rates for maximax case are;
Ti(yi") = 0 and
/ Fi_ / ilg\/j
T () = B [1 - o (35 2
For both of these SWF while there is no distortion at the bottom, there is an upward

distortion for all other agents. Again there are two parts in the tax function of the agents. When

Fi Fi1=Bi—1
F; Fi—fBi—1 ~

Also since there is an upward distortion, the second terms are both negative. Therefore, we can

we compare the first terms we can say that is always greater than or equal to

say that if the labour supply of the agent is more upward distorted in maximax, then maximax
SWF gives lower tax rates than any GISW marginal tax schedule. The analysis is very similar
to the Rawlsian and GDSW cases.

Proposition 3. For all i, (M > I¢! or equivalently yM > y&7.

Proof. We need to show that if we switch from Maximax to any GISW, the labour supply of

agent ¢ decreases. From the optimality condition we have;

" (1GI\ 1 __ Fi1—Pi—1 r(wilft 1

v (ll ) w; 1= Fi—Bi1 |:1 -V (wz’fl ) wi71i|

Since under maximax we have only §"V this condition will be as follows;
CMY 1 _ Fi_y dfwil\ 1

v (ll )w_i_l_ F; |:1_U (wi71>wi—1i|

"Second order condition would be;

ui_uv” (w"tl) wzl — [midt + ,umﬂ]v” (%) # < 0 This would hold if

T 1

UV \w; ) w2

Fi1—Bi—1 < i/ wy
Fi—Bi—1 v”( i ) 1

wi—1) w2 |
the upper end of the ability distribution since the difference in adjacent agents abilities is higher, and more
likely to hold at the bottom of the distribution. With a smooth small increment in ability, this condition could
hold. Instead of making strong assumptions, we focus on the cases where we have an optimum.

. As discussed in Brett and Weymark (2015), this condition is harder to hold for
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Suppose there is an increase in 6 where j > 4, 8;_; will be zero. The optimality conditions
would be exactly the same and there is no change in the labour supply. Now suppose §’

increases where j < ¢, then (§;_; will be positive, and we have;
1-o le L 1-o liGI L
which implies [ : <_1M)w"] > [ : (_lc;z)wZ]
IEER M EIC4RD

Fi_1
F;

Fi1—Bi—1
Fi—Bi—1

>

Wi—1

1—o () L
Note that the function f(y) = {1[ T (y“’) 1] is increasing in y (or ) since the numerator
() 1o

Wi—1/) Wi—1

- ()4 - () ]
).

Otherwise, the second order condition would be violated as

of its derivative

" ’
o (@) a1 (&)
i—1 ) Wi_q Wy

is positive by convexity of v'(
SOC implies;

7" ﬁ)L oy N
! <wi w? s Fioifio [l_v (TQ)E]
S ) T e Y (3 s
w2
i—1

Wi—1 Wi—1/) Wi—1

Hence, the inequality implies that [M > 91 (or yM > y&1). O

We know that the marginal tax rate for agent ¢ decreases with the upward distortion. Since
we have a higher income level under maximax for everybody, we have a lower marginal tax
rate. Similar with the corresponding proposition for GDSW case, under maximax criterion
marginal tax rates are always lower than in any GISW. So while Rawlsian is an upper bound
for the second-best optimal marginal tax rates, maximax constitutes a lower bound for the tax

rates.
Proposition 4. For all i, T, (y&') > T, (yM).

Proof. See Appendix. n

5 General Case

So far, we have shown that under generally decreasing social weights we have the Rawlsian
benchmark. For the opposite case when we have generally increasing social weight distribution
maximax is a lower bound and since these tax rates are negative they will always be below the
Rawlsian marginal tax rates.

We previously assumed that social weights were generally decreasing or increasing with the
ability. In this part, we will show that Rawlsian and Maximax SWEF constitute benchmarks
when there is no restriction on the distribution of social weights. It is possible that for some
social weight distributions while some agents are distorted downwards, some agents could be
distorted upwards. We may have different binding IC' constraints and as we showed above
there will be 9 different cases for each agent in the economy.

In cases 2,3,8, and 9 we have the first best so agents would be undistorted. Since we have

a zero marginal tax in first best, Rawlsian marginal tax rates would be higher than these cases
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as we have a positive marginal tax for the agents. And, maximax marginal tax rates would be
less than the first best as we have negative marginal tax rates (subsidies). The other 5 cases
should be discussed separately.

Case 1 is the case we analysed above while discussing the Rawlsian benchmark. In Propos-
ition 1 we showed that Rawlsian SWF leads to the highest downward distortion for the agents.
In Proposition 2 we proved that Rawlsian gives the highest possible marginal tax rates when
we have generally decreasing social weights. Clearly, since the maximax SWF gives a negative
tax rate for all agents, it constitutes a lower bound for case 1.

We analysed case 5 when we discussed the maximax benchmark. While maximax constitutes
a lower bound for the generally increasing social weights, the Rawlsian marginal tax schedule is
an upper bound as in Rawlsian we have positive marginal tax rates whereas in case 5 we have
negative rates for the agents.

Then cases 4,6, and 7 should be further investigated. Here, we will only discuss the pos-
sible magnitudes of the distortions. However, a formal proof will be provided in the following
proposition with considering the changing I'C' constraint multipliers.

In case 6 we only have /C;_;; binding. The optimality condition is;

v (y—> Lo—p  Aicli [1 —v <y—> ! } where the direction of the distortion depends on

w; | w; m; 0% wi—1 ) wi—1

agent ¢ — 1. Agent ¢ — 1 is undistorted if we have case 2 (/C;_1,;-2;IC;_1;) or case 8 (IC;_1;).
Otherwise if we have case 5 (IC;_2,-1; 1C;_1;) agent i — 1 is distorted upwards. So in any case
agent ¢ would be distorted upwards and this upward distortion could not be larger than the
maximax case.

In case 7 only IC;41,; binds. Optimality condition is;

v <ﬂ> L1 -] Bl [1 —v < e > 1 } where the direction of the distortion depends on

w; | wj m; 6" Wit1 ) Wiyl

agent 7 + 1. Agent ¢ + 1 is undistorted if we have case 2 (/Cj11,; ICii1,42) or case 3 (IC;41,).
Otherwise if we have case 1 (ICiy14;1Cita,41) agent i + 1 is distorted downwards. So in any
case agent ¢ would be distorted downward and this downward distortion could not be larger
than Rawlsian case.

In case 4, IC;_;; and IC; 41 ; constraints are binding and optimality condition is; v (5}—) L —

i wy

] — izl [1 — ( i > 1 ] — Bt [1 — (y—> L} where the distortion depends on agents

;00 wi—1 ) wi—1 ;00 wit1 ) wigl

t —1and 7 + 1. As we showed in case 6, from agent ¢ — 1 we know for sure that there is an
upward distortion effect for agent 7. On the other side, in case 7 we showed that there will be a
downward distortion effect from agent ¢ + 1. Direction of the final distortion is ambiguous but
the idea is if we have a downward distortion effect it cannot exceed Rawlsian case and if we
have a upward distortion it should be lower than the upward distortion under maximax SWF.

Consequently, suppose we have Rawlsian SWF with § = [1,0,0, ..., 0], and we increase some
87 which leads to a corresponding decrease in 0'. After this increase if we still have a generally
decreasing social weight distribution, as we have showed above, there will be no change for the
agents where ¢ > j. However, the labour supply of the agents below agent j will increase. If

the increase in ¢/ leads to a generally increasing social weight distribution, then this change
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will have an upward effect for all agents, and the labour supply levels will be higher than in
the Rawlsian case.

For agent ¢, lower ability has an upward effect, and higher ability has a downward effect. If
lower able agents’ labour supply is distorted upwards, this leads to a higher upward distortion
for agent i. On the other hand, any upward distortion for higher able agents means a lower
downward effect on agent i. So in either case, when we move away from Rawls, there is an
upward effect on agent i. This situation leads to the result that under Rawls we always have a
higher marginal tax rate. On the other hand, upward distortion could not be greater than the
maximax SWF which leads to the result that marginal tax rate is the lowest in maximax case.
The example above analyses only the sign of the distortions. However, when we change the
social weights, the multipliers for the IC' constraints would change. In the proof for Proposition

5, we consider this change and prove the result.

M
li

Proposition 5. For all i, > 1; > 11 or equivalently yM > y; > yE.

Proof. See Appendix. m
Proposition 6. For all i, T, (yf*) > T, (y;) > T, (yM).
Proof. Follows as Proposition 2. O

Hence, Rawlsian and maximax SWEF appear to be the two extreme cases. Any second best
Pareto efficient marginal tax schedule should be between these two benchmarks. Under this
setup one could rationalize the negative marginal tax rates that are not possible under usual
Mirrleesian setup. In order to have a negative tax rate, social weights should be increasing
totally as in GISW or partly increasing. For example, if we have a inverse-U shape for the
social weight distribution where government gives the highest value to middle income earners,
there will be negative rates for these agents.

The preceding sections assume that the monotonicity condition is satisfied, however in some
cases it may not be the case and we could have pooling equilibria. The next section deals with

the cases where bunching is optimal.

6 Optimal Allocation and Bunching

Bunching occurs when the income and consumption levels of two different agents are equal
to each other. Similar with Boadway et al.(2002), we allow for all social weight distributions,
hence both downward and upward IC constraints could be binding in the equilibrium. Lemma
3 shows that under no bunching at most one of the IC; ;1 and 1C;;4; binds. However, agents ¢
and i + 1 receive the same income-consumption bundle (i.e. bunching) if both constraints bind
at the same time. It is convenient to analyse bunching under two different cases. First, there

could be bunching due to violation of the non-negativity constraint for income level. This is
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called the y = 0 bunching, and only occurs at the bottom of the income distribution. Second,
agents with different ability levels could be bunched along the income distribution which is due
to the violation of the monotonicity.

Once we have a binding non-negativity condition, it is not possible to analyse the problem
with first order conditions. In that case we have inequalities for the first order conditions and
it is not possible to compare the magnitudes of the marginal tax rates. Therefore we will focus
on the bunching that occurs at the interior of the ability distribution.

It is important to note that we need to have the same bunching sets under different social
welfare considerations. Otherwise it is not possible to show the result without assuming specific
distributions for social weights 6 and for agent shares .

For the sake of notational convenience we will focus on the bunching case of agent ¢ and
t + 1. However it is possible to generalize the result for the cases where more than two agents
are bunched. When agents ¢ and ¢+ 1 are bunched it means that IC; ;41 and IC;;; are binding
at the same time. The first order conditions for the other agents are exactly the same as for
no-bunching. Denote 3, the income level of bunched agents, then first-order conditions for

agents ¢ and 7 + 1 are:

N () A i " _w 1 g 2 1
(i): v (w—> o (730" + pii—1 + fiip1] — fig1,0 <w1+1> oy M1 (wH) P
=T;0" — fhi—1,i F Mii—1 + Miit1 — it

Wi42 Wi+2

; .y Yo 1 i+1 "y 1 ! Yb 1
(i+1): v (wm) Wi [T 10"+ i1 + Hig1iv2) — Miip1V wr ) wr T Miv2,i410 —
_ i+1
= 10" — fiit1 + fig1s + Hit1,i42 — Hit2,i+1
by adding these conditions we have
1— U/ w) 1| — Hi—1,i 1— U/ Uy 1 . 7Ti+15if1+ui+1,i+2 1 — Ul Yp 1
w; | w; Ti0 g 41 wi—1 ) wi—1 0% phi i1 Wil ) Wit
Hit2,it1 _ ) [ 1
+7Ti(51+,u«i,i71 |:1 v (wi+2> wi+2:|

By following similar steps as above, first we will analyse the Rawlsian and generally decreas-

ing social weights cases. Second we will show that Maximax is a benchmark for all generally
increasing social weights. Finally, we will show that it is possible to generalize this result for
all other possible cases.

If we have generally decreasing social weights, we need to check whether labour supply or

income level is higher in the Rawlsian case.
Proposition 7. For all i those are bunched, ISP > I} or equivalently ySP > yit.

Proof. We need to show that if we switch from Rawlsian to any GDSW case labour supply of

the agent ¢ increases. From the optimality condition we have;

11— v\ L] piwzan [ (w2 | _mpdtt 11— P\ 1
w; w; 0 g1 Wit2 ) Wit2 0 g1 Wit1 ) Wit1

where 1,1 = i1 — Fi_1

By plugging p; ;-1 we have;
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In Rawlsian case we have ¢° = 0 except agent 1:

- () ] = - (85) 7

First, suppose any ¢/ where j < i increases. Second term on the right hand side of the first
equation is zero. For the first term, S3;;; will be equal to one, since it contains ¢/, and any
increase in ¢/ means a decrease in J'. Hence the conditions are exactly the same as for the
labour supply levels.

Second, suppose we increase ¢/ where j > i + 1. Again the second term is zero, however in

this case both ;1 and S; terms will reduce. By manipulating the terms we have;

GD
I
10 (2 ,1
Witz | Wit2

[1,1,’(”%?D>L} T Bipi—Fiyr T midt—Fig > 1-Fiq1 {171)/(@) L]
wi ) w; wy | wg

by convexity of v(.) function we have y&P > ylt.

’ y 1
1— b
Bi—Fi_1 7T1(51—Fi,1 1-F;_1 |: v (wi+2)wi+2:|

In the third case the difference between bunching and no-bunching appears. In no-bunching
when we increase 6°*! it does not have any effect on agent i + 1. However in bunching, because
it has an effect on agent ¢, it will change the income level of the agent i + 1 as well. So suppose

87 where j = i + 1 increases, by manipulating the optimality condition we have;

GD GD R
1-o (L 1 . 1-o (L L 1—o (Lo 1
Wiy Wiy o Bi_Fi—l _|_ 7'l'7j+161+1 w41 w41 > 1_F1',—1 o Wiy Wi 4.9
GD - . X . X GD X - R
/[ Yy 1 /31+1_Fz+1 /31+1—Fz+1 /[ Yy 1 1_F1+1 /[ Yy 1
|:1—v (—wl )’TL} 1-v w; ) wy 1-v w; ) w;
1—o ﬁ _1
Wi+l ) Wi+l
GD
’ yb 1
(5]

inequality which implies y&'? > y. O

term on the left hand side is greater than 1, we have the strict

Consequently; suppose the agents 3 and 4 bunched, then if §* increases there will be no
change for these agents. However when 6% increases both of the agents 3 and 4’s labour supply
levels and income levels will increase. This could be generalized to the cases where more than
two agents are bunched. If the social weight of the first agent in the bunched group increases,
there will be no change in the labour supply of the bunched group. However an increase in the
social weight of the second or above agents affects the labour supply of all bunched agents.

After analysing the labour supply of agent ¢ under two different social welfare functions, it

is possible to compare the marginal tax rates under two different cases.
Proposition 8. For all i, T, (yF) > T, (y&P).
Proof. Follows as Proposition 2. O

A similar analysis could be conducted for Maximax SWF and any generally increasing social

weights case.

Proposition 9. For all i that are bunched, M > IET or equivalently yM > yS1.
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Proof. Again suppose the agents ¢ and ¢+ 1 are bunched at the optimum. First order optimality
conditions for the other agents are exactly the same as with the no-bunching case however

condition for agent ¢ and 7 + 1 are as follows;

1 _ o (45 1| Pi-1 1—o (2 1| 8 1—o (%) L
I Wit1 ) Wit1 | it 10 T 41,542 wi—1 ) wi—1 it 10T 41,042 w; w;

by plugging p;—1; = Fi—1 — ;-1 we have;

R L] = FiasBia [ (8] L] met [y ()
L Wit1 ) Wit | Fip1-6; wi—1 ) wi—1 Fit1-8; w; ) w;

The condition for Maximax case:

r M 7 M
oy 1 Fiy 'y 1
1—v (=2 =L l—v () —
| Wit1 ) Wit | Fiq wi—1 ) wi—1

First, suppose 6/ where j > i + 1 increases, since we have 3;_; = 3; = 0 the conditions are

exactly the same as with the income levels.

Second, suppose ¢/ where j < i increases, then both 5;_; and $3; will increase and we have;

Lo (T o (2 1
Wi—1 JWi—1| _ Fii1—06; > Fiy1 Wi—1 ) Wi—1

I y&T 1 T F_1—-Bi-1 F; I yM 1
wit1 ) wit1 wit1 ) wit1

which implies that y} > y<7.

Third, again this is the difference from no-bunching. If §/ where j = i increases, in the
no-bunching case we know that agents who have a higher ability level will have a lower labour
supply level compared to maximax case. However when we have bunching, because §° affects
agent ¢ + 1, it also affects agent 7. We can manipulate the conditions as;

1o ngI L 1—o —ybGI L 1 y{’w L
wi—1 JWi—1|  Fii1—05; + ;0 wi ) wg > Fi1 _ Wi—1 ) wi—1

— F_—B._ F. 1—B;_ yGI E._ y]\/l
i—1 ﬁz 1 i—1 BL 1 |:1—1)l ( b 1 i—1 1—’[)/ 1
wit1 ) wit]

Wit1 ) Wit

{ (EGI) - } term on the left hand side is always greater than one which leads to
1—v b 1
Wit ) Wit

the strict inequality implying y > y& again in this case. [

For the other social weight distributions, we can conduct the same analysis. However
in this case the possible binding constraints for the agents are different than the separating
equilibrium case. We left this analysis to the Appendix, however, in words, when we have a
bunching between agent ¢ and 7 + 1 we have nine possible binding constraints, and under any
of these possibilities, labour supply or income level cannot be lower than Rawlsian level and

cannot exceed maximax labour supply level.

Proposition 10. For all i those are bunched, I} > 1, > I or equivalently y' > y, > yf.
Proof. See Appendix. n
Proposition 11. For all b, T,(y{*) > T, (ys) > T, (yM).

Proof. Follows as Proposition 2. O]
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The following section deals with the reverse of the relation. We try to characterize the
efficient marginal tax schedules between Rawlsian and maximax benchmarks. We show that
“reasonable” tax schedules could be supported as a second best efficient tax schedule with

appropriate social weights.

7 Converse of the Relation

The preceding analysis aims to show that any second best marginal tax schedule lies below the
Rawlsian SWF marginal rates and above the maximax SWF marginal rates. In this section,
we will show that any reasonable marginal tax schedule between these two benchmarks can be
supported as a second best optimal tax schedule by an appropriate distribution of social weights
0. Therefore we need to solve the optimal inverse problem. In the standard approach, by using
a specific social welfare function and given population parameters optimal tax problem solves
the marginal income tax schedule. However, here we seek for the social weights (or SWF) that
are consistent with the actual marginal tax schedules. Bourguignon and Spadaro (2008) solves
the inverse problem in a continuum model with a utility form that is linear in consumption and
iso-elastic with respect to labour supply. The intuition is similar for discrete and continuum
models. Once we observe the marginal tax schedule we could solve for the labour supply levels.
The rest is just finding the appropriate social weights that make the labour supply levels second
best efficient. Bourguignon and Spadaro (2008) is an empirical study as they infer the actual
marginal tax schedule from income, tax and benefit data. Here our aim is to characterize the
marginal tax schedules that could be supported as efficient tax schedules.

We will start with the usual redistributive (redistribute towards poor) marginal tax sched-
ules. Given any non-negative marginal tax schedule T} (Y;) < T} (Y;®) for all 4, one can find the
allocation (I, ¢;) for all ¢ and the corresponding social weights §° as follow. From the agent
market condition we know that [1 — T} (y;)] = % So for each agent labour supply level is
=4 = v w[1 =T} (y;)]]. Once we solve for labour supply levels, we can find the consump-
tion from the incentive compatibility constraints and feasibility constraint. For each agent the

consumption will be;

¢ = {Zﬂjyj +iﬂai[3b+ﬂ - Z Ta Z [Rb]}

a=1 =itl  b=it1
where R; = () —v(5+)

This consumption function is the corresponding function in Weymark (1986, 1987) where
he uses a quasi-linear in labour utility and derives the corresponding income function. Also
this is the same term that appears in Simula (2010) when he studied optimal income taxation

with a quasi-linear in consumption utility®. Both of these studies analyse the redistributive

8The corresponding consumption functions as in Weymark (1986, 1987) and Simula (2010) are as follows:
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case and they solve a two step maximization problem which gives the same analytical results

as we study here. The following proposition concludes the argument.

Proposition 12. Any reasonable non-negative marginal tax schedule T} (y;) is second best effi-

cient with appropriate social weights.

Proof. We solve for the social weights §° that lead to the marginal tax schedule T} (y;). From

the optimality condition of government problem we have n — 1 equations v’ <%> wl =1-

7

N
Lk [1 — (y—) w;ﬂ} for all i # N, and we also have the normalization > 70" = 1

Bi—Fi_1 Wit1 4
i=1

Since we have n equations and n unknowns we can solve for all 6° as below:

__ ES)EE . { [ (55 =] } .
O =T e T T T e e 1T foralli # N,
e G el B N e = €

wi_1 wi ) wg
N—1
1- > o'm;
and 6V = —=——
N
Plugging the marginal tax terms is left to the Appendix. O]

There should be a discussion for “reasonable marginal tax” schedules. It is important to note
that this inversion procedure is inconsistent if the actual (or chosen) marginal tax schedule is
not a solution to a problem that maximizes a social welfare function with respect to the budget
constraint and IC constraints. Hence theory itself imposes restrictions on the chosen marginal
tax rates. As an example if we have a marginal tax schedule which is positive for the first agent,
negative for the second agent and positive for the third agent and follows like this, it is hard to
find the social weights that support this tax schedule as a second best tax schedule. Even it is
hard to believe that the government has such a strange redistribution desire, mathematically
we could not disregard those possibilities, however it is not possible to characterize these cases.
Therefore we have to restrict our attention to the “reasonable” marginal tax schedules.

First, any efficient tax schedule should satisfy the incentive compatibility constraints which
also means that existing income levels should be strictly (if no bunching) monotonic. This will
put conditions on the maximum and the minimum values for all marginal tax rates. From the
market condition of the agent we know that y; = v [w;[1 — T (y;)]]w; holds for all agents in
an efficient solution. So IC constraints imply that;

VT win [T = Ty (a)win > 0 i1 = T ()] Jws
which restricts the maximum and minimum values for marginal tax rates of agents ¢ and 7 + 1.

Rewriting the inequality gives;

T() > 1 =0 {0 i ( = Ty ()%

N
o] () (250
a1 @ Wjt1 wj 1

i—1
_ witiljyr ) _ wjl;
c;=c+ le {v ( o ) v (le

N
c1 = {Zﬂ.iyj+2
j=1
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and

T/ (i) < 1= {07 (1 = T @)l | 2

Wi41 Wi41

So given the ability distribution, T}, ,(yiy1) sets the minimum value for T} (y;), while 7 (y;)
sets the maximum of T} +1(Yis1). If the actual or desired tax schedule does not satisfy these
conditions, it is not possible to reach that marginal tax schedule with usual optimal income tax
problem.

The second restriction is the Paretian condition. In order to have a Pareto efficient tax
schedule we should have a Paretian social welfare function which says that each agent in the
economy should have a non-negative social welfare weight. This will restrict the choice for
marginal tax schedules. In order to have non-negative social weights the following condition
has to be satisfied;

/
1-Q; Ti—1 [ Tifl(yifl) ]
P 7

1_TZ‘ (yi)_Qi - ™ 1_Ti,1(yi71)_ﬂz‘71

where

= (1 = T ()] 2

Wit1d Wig1 '

Therefore once we have the ability distribution, population share and marginal tax rate for

T; ,, the condition gives the minimum value for the 7}, similarly on the other side T} sets the
maximum marginal tax rate for 7] ;.

For the preceding analysis we assume that all downward /C' constraints are binding. Indeed
this is the case when all agents labour supplies are distorted downward while the top agent is
undistorted. Since we know the ability distribution, we could find the first best labour supply
of the each agent by [; = v/_l[wi], and could check whether the downward /C' constraints are
binding by comparing the labour supply in the first best and the labour supply level implied by
the actual marginal tax schedule. If all agents are distorted downward then we could apply the
preceding analysis. Marginal tax schedule should satisfy these two conditions, if not we could
not support the existing tax schedule as a second best efficient tax schedule with a generally
decreasing social weights. Therefore, the second condition also shows that whether it is possible
to achieve the actual tax schedule by only binding downward IC' constraints.

For the opposite case, if all of the agents (except the lowest) are distorted upwards, then
we know that all upward IC' constraints are binding. We could apply the same analysis for

non-redistributive second best schedules and maximax, and find the appropriate social weight

9By using optimality condition we could derive;

o () ks = o {0 (- T )

and

o ()L = o {0 e (- T )

By plugging these conditions to the equation for social weight 4%, we have a condition for the relation of social
weight ¢* with the marginal tax rates 7; and 7;_;.

5 R e e ey I Y { Ty (yioa) }
LT @)= {[v T - sis baky] ™ L e o e T )] S S 2
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distribution in a similar way with redistributive case. The corresponding consumption function

would be;

¢ = {Zﬁjyj +i%i[5b+ﬂ - Z Ta Z [Sb]}

a=1 =i+1 b=i+1

where S; = v (ﬁ) —v <3}—:11> and we can solve for all 4" from optimality conditions

o (Y —:1—1—61 1—v Y for all 7 # 1.
w; ) W; F; — 51'—1 Wi—1 ) Wi—1

and the normalization rule. These conditions yield the following equations for social weights;

S e €
O =T e N T T T e ¢ for all i £ N.
[ () o~ (5 i) ) o () 2]

Witl ) Witl w; ) w;
and
N—-1
1— Z (5171'1'
N __ i=1
o = —

The preceding two analysis are very robust and easy to implement. However, there are still
marginal tax schedules between Rawlsian and Maximax that could not be covered by these two
cases. In order to cover the other tax schedules between Rawlsian and maximax, we follow the
following procedure. Table 2 shows the possible nine cases for each agent and the sign of the

distortions for a 6 type example.

Table 2: Possible Binding /C' Constraints and Sign of Distortions
Cases Distortion Agent1l Agent2  Agent3 Agentd4d  Agent5 Agent6

1 DOWIIWELI"d ICQ_]l 10211,_[03’2 10372,.[0473 IC4’3,IC5,4 IC574,10675 —

7 Downward — 1C5 5 I1Cy 3 1C5 4 1Cs 5 —
5 Upward - 1C12,1C3 1C33,1C34 1C34,1Cy5 1C45,1Cs56 ICs56
6 Upward — I1C: 1C5 3 1C5 4 1Cy 5 —
4 Ambiguous - 1C1,2,1C32 1C53,1Cs3 1C34,1C54 1C45,1Cs5 -
2 Undistorted  ICh2  I1C31,1Cy3 1C39,IC34 1Cs3,1Cy5 IC54,1C56 ICsp
3 Undistorted — 1Cs; I1C59 1Cy 3 1C5 4 -
8 Undistorted — 1Cs 3 1C5 4 1Cy 5 1Cs 6 —
9 Undistorted None None None None None None

As we mention above, when we pick a reasonable tax schedule between Rawlsian and Max-
imax, it is always possible to find the efficient labour supply levels from these tax rates as we
have [; = v [w;[1 =T (1;)]]. Also we know the agents’ labour supply level at the first-best case.
After the comparison of these two labour supply levels, we could find the possible binding con-
straints for each agent. The rest is just finding the consistent binding IC' constraints set. Once

we found which IC' constraints are binding we could solve for the consumption levels. Then
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we could find the social weight distribution that leads to the selected marginal tax schedule.
This inversion procedure works if we do not cover cases where more than one agent have a zero
marginal tax rate. Otherwise there will be less equations than the unknowns. For those cases
the social weights could be solved with an optimization procedure subject to the first order
conditions, inequalities for cumulative weighted social weights § and cumulative population
share F. In a continuum setup since the IC' constraint is just a differential equation, optimal
inverse problem is easy to solve. However for the discrete setup, in order to solve the problem
we need to find which IC' constraints are binding in the optimum.

As long as the chosen marginal tax schedule (or actual tax schedule) satisfies the two
efficiency condition stated above (monotonicity and Paretian), this inversion algorithm is ap-
plicable.

The next section considers the total taxes under different social welfare considerations.

8 Total Taxes

Rawlsian and Maximax social welfare functions constitute benchmarks for the total tax of the
lowest and highest able individuals. Total tax paid for each agent is equal to the difference

between his income and consumption;

Ti(yi) =Y —C = wil; — ¢

For the redistributive cases we showed that consumption of agent i would be;

{Zwﬁgmz Rod— 3 S Rb}

a=i+1 b=i+1
i—1li_
where R; —U( l)—v<M)
Wy W

Total Tax at the top:
—1

N N N—1
Tn(yn) = wnly —en = wnly — < Yo my; + > o Y [Reta]
izl

a=1 b=a

and
oT k=l — [6R,
gé(’z‘/N) =w ngJZ o Z TjW; a5% agk + Z Z |: 8(}5)’-:1:| < 0 for all k.

Which means if we increase any social weight in the population this leads to a reduction in
the total tax of the highest able agent. So whatever the total tax for the other agents, we can
say that Rawlsian total tax level is an upper bound for all second best allocations. Total Tax
at the bottom:

N N a
Tl(yl) =wily — ¢ = wily — {Z Y5 — Z Ta Z [Rb]}
j=1 a=2  b=2
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and
37;1(;?:1) = w1 (g_) - {Z T;W;5 a(gk Z Tq Z [ }} > 0 for all &.

Then for the lowest able agent, Rawlsian total tax is a lower bound for the second best
optimal tax rates. On the other hand maximax gives an lower bound for the top agent and an
upper bound for the lowest able agent.

In maximax case we have the following total tax for the top agent;

T (yw) = wnly = {Z Wywjaak +Ng ; [aggil}}

and

- k-1 )
M) — {Z W o + Pk Z [dg‘g:l} } > 0 for all k.
and for the lowest agent;

Ti(y1) = wily — g = wily — {Zﬂng Zﬂa Z[Sb}}

and

oT
) — g 8 — {Z TW; otk Z Ta Z [gg;;}} < 0 for all k.
The following proposition summarizes these results:

Proposition 13. For the highest able agent we have: Tn(y¥) < T (yn) < T (yR)
For the lowest able agent we have: T\ (y®) < Ty (y1) < Th(yM)

The Rawlsian marginal tax schedule, any second best marginal tax schedule and maximax
marginal tax schedule cross only once. So there is a critical point in the population below
which the Rawlsian tax rate constitutes a lower bound and gives an upper bound above the
threshold. It is the reverse for the maximax case, so Maximax constitutes an upper bound
below the threshold ability level and gives a lower bound above the threshold. This threshold is
identified by a complicated relation of social weight distribution ¢, ability distribution w, and
the share 7 of each ability in the distribution. One last point, with reasonable social weight
distributions and population shares, numerical simulations show that Rawlsian and maximax
SWF total tax rates are intersecting near median agent. This result is somehow similar with the
optimal tax schedules those are identified by majority voting when the median voter theorem
holds (Brett and Weymark (2015)).

9 Conclusion

In a discrete type setup assuming a quasi-linear in consumption utility, the present paper

shows that Rawlsian social welfare and maximax social welfare functions constitute upper and
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lower bounds for the second best optimal marginal tax schedules. Also reasonable marginal
tax schedules between these two benchmarks can be supported as a second best tax schedule
with appropriate social weights. These results are also valid when the monotonicity constraint
binds. Finally, we give some characterization for the total tax rates at the top and bottom of
the income distribution.

The analysis for general setup is straightforward but a more unified approach would be
better to present the results. The algorithm for finding the binding IC constraints is very
robust for redistributive cases. Therefore it is possible to support any reasonable redistributive
marginal tax schedule as a second best marginal tax schedule.

Under quasi-linear in consumption utility, marginal tax rates are independent of consump-
tion. Hence social planner could change the consumption levels to satisfy constraints without
any effect on the marginal rates. However, under the presence of income effect, marginal tax
rates are affected by consumption. Our results in this study do not hold for the very general
utility function. However, a set of weaker assumptions may be imposed to a more general utility
function which would be a further contribution to the present study.

The optimal income taxation and non-linear pricing have identical setups with minor dif-
ferences. We believe that the idea in this study can be extended to non-linear pricing to give

a characterization for the efficient price levels.
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Appendix

Proof of Lemma 1:
From IC;;_, and IC;_;; we have;

() o ()] s (22) ~ ()] 2

The function f(y) = v (w_y_1> —v (%) is increasing in y since its derivative;

v (L> L <i) wi is positive by the convexity of v(.) and sorting condition w; >

wWi—1 Wi —1 w; i
w;—1. Hence, IC;;—1 and IC;_; ; imply y; > y,—1. Rewrite IC;;_; as¢;—c¢i—1 > v (%) —v (%)
so if y; > y;—1 then we have ¢; > ¢;_1. Suppose ¢; = ¢;_1 but y; # y;_1, then from IC;;_; and
1C;_1; we have: v (%) > <i’)—> and v <wy—> > v (y;1>, since these inequalities cannot
s i i i—1 Ws;—1

hold at the same time, we should have y; = y;_1, otherwise one of the IC' constraints would be

violated.

Proof of Lemma 2:
First, local downward incentive compatibility constraints /C;;_; and IC;_; ;_o implies global

downward incentive compatibility constraint IC; ;5. From IC;;_, and IC;_;;_» we have;

v <ﬁ> —v (ﬁ) > Ci—g — Ci1

Adding the conditions imply

() ) () o) 2w

Note that the function f(w) = v (%2) — v (1) is increasing in w since its derivative

w

v (%) bt — v (yw—”) %2 is positive by the convexity of v(.).

The LHS of (%) is smaller than v (yw—*l) —v <i’)—> +v (yw—*?) —v <%> =0 (Z”w—”) —v (3}—)
hence IC;,;_o is satisfied: v (yw—*z) — v <i—> > Cilg — G

Second, local upward incentive compatibility constraints /C;_; ; and 1C;_y ;1 implies global

upward incentive compatibility constraint /C;_5;. From IC;_,,; and IC;_5,_1 we have

v <L> —v (M;1> > ¢ — Ci
wi—1 Wi —1
Yi—1 Yi—2 . —
v <m> —v (m) > Ci—1 — Ci—2
Adding the conditions imply
() (32 0 () - (22) 20
Wi—1 w;—1 W;—2 wi—2 ) —
Similarly, the LHS is smaller than
() -0 () o (22) o (22) () -+ 22)
wWi—2 Wi—2 Wi—2 wi—2 Wi—2 wi_2

hence IC;_5; is satisfied:
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Vi) Yiz2 e
v (wi72> v (wi72> 2 G~ Cia

Proof of Lemma 3:
If both IC; ;41 and IC;41,; bind we have;

) o Yit1l \ _ . Yi o Yi\ . o Yit1
Ciy1 — U (wi+1> =c¢—0 (wm) and ¢; — v <w> = Ciy1 — U (—wi >
Adding the conditions imply;
(52~ () () )

Wit1 Wit1 w; w;

Note that the function f(w) = v (%) —v (£) is decreasing in w. Since we have w; 41 > w;,

this can happen only in bunching case 7.e. y;11 = y; and ¢;11 = ¢

Proof of Proposition J:

Marginal tax function for agent i with GISW:

T (") = S [1 - o () 2

Since under maximax we have only ¢V this condition will be as follows;
T = S 1= (55) 5]

In Proposition 3 we show if ¢/ where j > i increases, 3;_; term will be zero. So the

optimality conditions would be exactly the same and there is no change in the labour supply.
So marginal tax rates are same. However if 87 where j < i increases, then 3;_; will be positive,

and we have higher labour supply in maximax which leads to the result.
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Proof of Proposition 5:

The agent condition is:
e L —q— _ Mit1 1 — o (v 1
v ("Uz) w; [ 00 g, i—1+ 104 i41] v Wit1 ) wit1

_ _ Hi-1i 1— Ul Yi 1
(750 105 541+ 105,5—1] wi—1 ) wi—1

There is no need to discuss the cases 2, 3, 8 and 9 since in these cases agent ¢ would be

undistorted. So labour supply will be between the Rawlsian and Maximax cases so the marginal

tax rates. For the remaining cases we need to consider each case separately;

In Rawlsian case the condition is: v’ (Z—R> L1 A [1 —v (i) ;}

i ) wi 1-F; 1 Wit1 ) wit1

.. . . ’ M F._ ’ M
Similarly in maximax case: v <%) L =12t [1 —v (y’—> L }
1

i ) wg wi—1 ) wi—1
1—) If Bi—l > F,_{ and ﬂz > F; then ]Ci,i—l and Ici—f—l,i bind. Optlmallty condition:
v (i—) wL =1— # [1 — <wy_+1> ﬁ} where the distortion depends on agent 7 + 1.
Mivii  _ _Bi—F
w0 +tpi i1 Bi—Fi—1
v(.). Since in maximax there is an upward distortion, result trivially holds for maximax case.

4—) If Bz‘—l < F,_4 and 51 > F; then ]Ci—l,i and ICi+1,i binds. Optlmallty condition:

v (y—> L— AL [1 - ( Li ) 1 } — Bt [1 — (y—> ;} where the distortion

which is less than or equal to % Result follow by the convexity of

w; | w; ;0% wi—1 ) wi_1 ;0% wit1 ) Wit

depends on agents ¢ — 1 and 7 + 1. This is the only case that we do not know the sign of the
distortion. If /C;_, is binding then agent ¢ — 1 is either F'B or distorted upward. Then second

term is a positive number. We could show that the result would hold even we do not have this

positive term. We have ftli — Sichy

;00 w0t T

Result holds under 1= > 8k
i—1 Uy

—F; i—Fi
1-F; <ﬂ

Suppose the opposite is true so; T p—

rewrite the condition as:
[Tiv1 + oo + N0t < mipa[m+ o+ ][l = 0] + o+ wnm o+ ][ — 6]

by rearranging we have;

7Ti5i+...+7TN(5N<7Ti+...+7TN— 7Tl‘+1(si+1+...+7TN5N]

uvi [
[Tit1+.+7N]

Which is not possible since £;_; < F,_; implies m;6° + ... + 70~ > m 4+ ... + 7y
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5—) If 57;_1 < F,_{ and 51 < F; then ICi—l,i and [Ci,i+1 bind. Optlmahty condition:

! . . . I . . . .

v (L)L =1t 11y (%) 1| where distortion depends on agent i — 1, and
w; ) w; T30 g 41 wi—1 ) wi—1

i1, _ Fia-Bia

T30 i i1 Fi—Bi-1

Since there is an upward distortion for the agent ¢, labour supply is higher than Rawlsian

case. For the comparison between maximax and this possibility:

In maximax we have: [1 —v <£> ; } =5 [1 - <£> ;}

w; | w; F; wi—1 | wi—1

: Fioi 5 Fioi—fioa
Since 2 Theg o We have

(8] | )]
- - > w; ) w4
()] T

6-) If 8;_1 < Fi;—1 and B; = F; then only IC;_;; binds. Optimality condition:

] then by convexity of v(.) we have yM > y,.

v (y—) - [1 -0 <y—> ! } where the distortion depends on agent i — 1, and

w; | w; ;0" wi—1 ) wi_1
Mi—1i _ Fi—1—Bi—1
7'('2'(5Z ﬂ'i(;l

Since there is an upward distortion for the agent ¢, labour supply is higher than Rawlsian

case.

Wi Wy

For the maximax we have [1 - <£> i] — fin [1 — (yl—> L ]

So, if £t > Fiofict yegylt holds.

;00
Suppose the opposite; Fgl < Fi_;:;?i_l

by using 3; = Fj, we can write the term as [m; + ... + m;] < §'m; which is not possible.

7-) If B;i_1 = F;_1 and §; > F; then only IC;;1,; binds. Optimality condition:

v (y—> Lo—p Al [1 —v ( & ) L } where distortion depends on agent i + 1,

wi ) w; m;0° Wit1 ) wit1
and Hitli — Bi=Fi

wi0° 7000
Result holds if =5 > 61}?
—Li—-1 ™5
ite 1 . _1-F; — I
Suppose the opposite is true: =5 < Bml_

by using Bi_1 = F;_1, we can write the condition as: m; + ... + 7 < d'm;. However this is

not possible since 3;,_1 = F;_; implies m;0° + ... + axydN =7 + ... + 7N
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Proof of Proposition 10:

Table A1l presents the counterpart of Table 2 for bunching case supposing agent 3 and 4

bunched and we have 6 agents.

Table Al: Binding IC Constraints and Sign of Distortions for Bunching Case

Cases Distortion Agent1 Agent 2 Agent 3 and 4 Agent 5 Agent 6
1 Downward ICy, IC1,ICs9 (IC43,1C34) —1C59,1C54 IC54,1Cs5 —
7 Downward — IC3 (IC43,1C34) — IC54 I1Cs 5 —
5 Upward — IC1,2,1C3 (IC43,1C54) —1C33,1Cs5 IC45,1C56 IC56
6 Upward — 1C) 5 (IC4,3,1C34) —ICy3 1Cy 5 -
4 Ambiguous — IC12,IC35 (IC43,1C34) —1C3,1C54 IC45,1Cs5 —
2 Undistorted IC12  1C31,1C53 (ICy3,1C54) —I1C39,ICs5 1C54,1C56 ICes
3 Undistorted - 1C5 (IC43,1C34) —IC59 1Cs 4 —
8 Undistorted - I1Cy 3 (IC43,1C34) —ICy5 ICs 6 —
9 Undistorted None None (IC4,3,1Cs54) None None

For notational convenience suppose that agents ¢ and ¢ + 1 are bunched at the optimum.

Then we will have 9 possible cases for binding IC' constraints. Each case leads to less downward
distortion compared to Rawlsian, and less upward distortion compared to Maximax. This leads

to the result that marginal tax rates are highest in Rawlsian SWF and lowest in maximax case.

General optimality condition is as follows:

Hi—1,3

7Ti+15i+1 Fli41,i4-2

0 i i—1

v ()] -

All possible case are;

4 M2t
0 i1

1-) ICit1,; — 1Cs 01 — ICita 41

Kit2,i+1

[1 _ U/ < Yb
wi—1
[1

1
> wi71i| w0t i—1

!
() 2]
Wit2 | Wit2

7r1_+16i+1

;0

1 (2) 2] -
2-) ICi11,;, — 1C; i1 — ICi11 542

_1 — <&> ] o w8 g [1

w; | w; ;6%

3-) ICiy1; — 1C; 01 — IC;q

Hi—1,i

1— ’Ul Yb
Wi42
!
Wit1 ) Wit1

1 —_—
Wit2 ;0

= () 4] -5 - ()
L Wy wi_ Wi—1

4-) I1Cs41; — 1C; 5401 — IC; 4
-

1—o (&)1] =
w; | w;

;60

- 7Ti+15i+1
0 i1

1 mip16it!
wi—1

;00

W ) 1
wit1 ) wit1

1

1

Yo

(s
Wi++1

Yo 1
Wi+1 Wi+1

) 5]

Yo 1
Wi41

Wi+1

5-) ICiy1; — 1Ci 41 — 1Ciq140 — IC;—1; Maximax is a special case of this one.
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1— U/ | 1| — K-l 1— U/ Up 1 . 7Fi+15i+1+/_%+1,z'+2 1 — U, Yb 1
w; | w; T30t wi—1 ) wi—1 ;8% wit1 ) Wit

6-) ICip1,; — 1Ci 01 — ICi41 40 — 1C i1

1 _ UI w |\ 1| _ _Tri+15if1+ui+1,i+2 1— U, U 1
w; ) w; T i1 Wwit1 ) wit1
7-) ICit1; —1C 01 — ICi9,41 — 101
1o () 1| = Bimi |1 ) (- 1| migadt! 1— o (= 1
w; | w; et wi—1 ) wi—1 Tt Wit1 ) Wit
Hit2,it1 I /% 1
+ ;0% l—w Wit2 wi+2]

8) ICiy1; — 1C; 01 — ICi40,41 — IC; ;4

Rawlsian is a special case of this one.
1o () L] — pozien (1 ( w 1| migad™ g 1
w; | w; 0%+ phg i1 Wit2 | Wit2 0t phi i1 Wit1 | Wit1
9-) ICi1, — I1C; i1

/ L ,
- () ] = e - () 5
w; | w; ;i wit1 ) Wiyl

We showed cases 5 and 8 above in the text. So need the check other cases one by one.

1-) ICi41; — IC; 101 — ICi 40441

Rewrite Rawlsian case as

()] :
Wi ) Wi o Mi42,i+1

v

’
’

00+ i—1 1w

R
Yy 1 )
(wi+2) wi+2] mip10° L

yf) 1 ] T30 i i—1

Wi+l | Wit1

/yﬁ 1

1

1-Fiq [ v“’i+2 Wit

I=Fia |, it 1
Wit ) Wit1

1C;11; — ICy41 — IC;9;41 are binding, we have:

1 1
’ ’
w; | wy Hit2,i4+1 Wit2 ) Wit2 Ti+10

1—o yi 1 T oms Lo vl 1 o
wit1 ) wipl Witl ) wit1
1-0 y,% L ;
_ Bit1—Fit1 Wit2 ) Wit2 | w60
T w0t i vi 1 w0t
1-v | —2 | ——
[ (wi+1 Witl

There are two possible cases for agents ¢ and ¢ + 1. Both of them could be downward

distorted or while agent 7 is upward distorted agent i+ 1 could be downward distorted. If agent

1
!/ yb 1
’1_1/ vl 1] w;i ) w; Wil ) Wit1
| wit1 ) Wit |

If both agents are downward distorted then its better to rewrite the conditions as;

¢ is upward distorted and ¢ + 1 is downward distorted we have;
< [1 — (£> l] [1 - <i> #] which implies y} > yi¥.

_l—v/( y% ) L i1 |:1—'u/( y% ) L } ) i1
Wit ) wito St Y L Wil ) Wit .5t 0t le A
i 2 i _ .7TZ§ m.+1 . i ! i _ o —‘f—m_HF. *A “here A ~ 1 and
1o () L Hit2i41 izt [ (v ) 1 Biv1—Fit1
w; | w; Wy ) Wy
Rawlsian;
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lfv/ yé% L . . lfv/ Yb L
wity Jwite | w6t 160! Wit ) Wit 1-F;_q

[l—v’(ﬁ) L} T Hit2i4 Hit2,i+1 |:1—'ul<£) ;} T 1-Fin
wy wy wy wy

lf 7ri6i+7ri+15i+1

1-F;_ p R
> 1_Fi+i then we have y, > y;*.

Bit1—Fit1
w0 1601 1-Fi1
Suppose not, and we have Br—Fi TFipy
.. . Tt w16 T? Tt TN
This implies Bia—Fi Ttz to AN

(70" + 107 e + oo + ] < [Bivt — Figal[mi + ... + 7n]
0 < [Bic1 — Fipal[mi + oo + 7] + [mid0® + 71677 [ + g
since (§;_1 = F;_1 rewrite as

0 < [m + mipa|[mi0 4+ 7107 — [m + miga] [ + -+ 7]

0 < [m; + mi41][Bix1 — 1] which is impossible.

To compare with maximax case; we have;

1—11/ yé 1 l—vl yg 1
Witl ) Wil | Pig2,i41 Wit2 ) Wit2 ;6"
1 - Y 1 - . 1+1
1 Yy 1 ;0 1 [ Yp 1 7T'L+1(S
() ()
and for maximax;

l—vl yl]’w 1 l—v/ LIJ’VI 1
Witl ) Witl | ;0% + Wi—1,i wi_1 ) wi—1
[1—v’(1’£4)i} T om0 i ie T M0t g e 1_v/(y{,”)i}
w; ) w;
M
F;_1 Wi—1 ) Wi—1
Fiiq AW
o S ) wr

Again we need to check possible distortion cases for agents ¢« and ¢ + 1. If both of them

downward distorted then result trivially holds as in maximax there is an upward distortion for

both agents. If agent 7 is upward distorted and agent ¢ + 1 is downward distorted then we have

1 M
ol G e O e 9
Wi+l ) Wi+1 Wi+l ) Wit1
/ yl 1 < ’ yIM
()] ()]
Wy ) Wy Wy Wy

2-) ICi41; — 1Ci 41 — ICi11 49

which implies v > y}.

Iy 1
1—v (22 ) = )
(wl) “’Z} w16 b

1o yg 1 - ;i 0°
Wil ) Wil
Since this expression is negative we have;

R 2
/[ Yy 1 [ Yy 1
= = > 5

R
Y / Y

1—2' b 1 1—0" [ 2o #
Witl ) Wit] | Wiyl ) wit1

which implies y? > yf¥.

Similarly for the maximax case, rewrite the condition as;

. ) ;
1—o (-2 L .
i Witl JwWitl | ;0"
- w2\ 1 Tit10 i1 g2
Y\ )
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again since it is a negative value, we have

oM e
witl ) wipl Wiyl ) wigl . . . M 9
> {1—1/ (ﬁ)i which implies y," > v;.

[1_1; (ﬁ) a
wi ) wy

3-) ICi41,; — 1C; 541 — IC;_q,
3 3
o (%) L P () 1
Y (wl)“”} _ Mi—1y [1 ! (wifl)wifl} _ mipdttt
1 } 8’ [l—v'( vp ) 1 } ;60
Wity ) wigq

3
{l_v (“53-1) Wit
There are two possibilities. Both ¢ and ¢ + 1 are upward distorted, or agent 7 is upward

distorted and agent ¢ + 1 is downward distorted. If both of them are upward distorted then

there is nothing to discuss as in Rawlsian case both of them are distorted downwards. If agent

¢ is upward distorted and agent ¢ 4+ 1 is downward distorted then we have;

’ R ! b
G I (fﬁ)*ji} which implies y > yf.

w; ) w;

1—’11/ yéa 1 1—’UI Yy 1

i Wil J Wil | Wil | Wit

For Maximax case we have the following conditions;

() ey (1
Witl ) Witl| ;8¢ + i1, wi—1 ) wi—1
T w10 i g2 Ti10 T g1 542 {1_v/<y{,”)i}

w; | w;

M
[ Yy 1
()]

M
1—11/ Vb L
Mi—1,i Wi—-1 ) Wi—1

T om0 i1 g2 1—o yMN
Y\ v )

and
3 3
171}/ Yo 1 lf'ul Yb 1 )
Witl ) Witl | pi—1; Wi-1 ) Wi—1] ;0%
1 1

(v
()]
we need to check two possible cases. If agent ¢ is upward and agent ¢ + 1 is downward

distorted than we have;
HIENER IS
Tl < [ “yi—— which implies y)" > ;.
=Cun

- (2)]

If both of them are upward distorted then rewrite the conditions as;

-171)/ Ayéw 1 ]
| Wi—1 ) Wi—1|  Fi4q
I yM 1 | Fioa
L Wil ) Wit |
and
'Ly(y?> 1| [ky(ﬁ)i
wi_1 ) wi_q T Y w; | w; Y e Stk A
13 2 J ﬂzfl - + 7T15 ‘ 37' ! — Mitl - +7T7' Whel‘e A > 1
/ Yy 1 Mi—1,i Hi—1,i ’ Yp 1 Hi—1,i
= (at) v (&) =)
Wity ) Wit | Witl ) Wig1
miz1 04T Fied g the result
Fiq ’

SupposeA = 1, then we should have F A

Rewriting and manipulations give that;
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Fiy(mip10™t + m0") > Fi Fioy — FiaBia

Since we have F; ;1 = 3,41, it is equal to
Fi1(mip10"™ + m0") > Bip1 Fim1 — Fiy1 i1 which implies
0 > B;_1][F;—1 — Fi41], and this condition always holds as F;;q > F;_;.

4-) ICit1,; —1C; 01 — IC; ;4

From FOC we have;

4
1—o (%) L _
wy | wy _ 7Ti+157’+1
- = -
1o ([ Yoy 1
Wit ) Wit

so agent ¢ is upward distorted and agent ¢ + 1 is downward distorted.

For Rawlsian we have

_171)/ ﬁ i— 171)/ y’? L . 171)/ y’? L
| Wi) Wil . Pit2i41 wit2 ) wit2 | mgadtt  1-Fiy Wit2 ) Wit2
1o it 1 0 g1 1o yft 1 T30 g, i1 1-F; 1 1o yft 1
L Wil Jwiy | Wil ) Wit Wiy ) Wit

For Maximax we have;

1-v (2 1 ;
Wit1 ) Wi41 7r¢51+,u¢,i,1

|:1—U,(£) L:| - mip10ttL
Wy | Wy

and Maximax condition;

M M
Wi+l ) Wi+l | ;0% Hi—1,4 Wi—1 ) Wi—1

1—o" v\ 1 Tip 10" b i1 iy Tip 10" b i1 iy 1 (v

U\ U\ vy ) w;
lfv/(yM) 1
wi;—1

()]
Wi+l | Wit1
> 1
[ Yy 1
()

6-) ICi11,; — 1Ciiv1 — ICi41 40 — 1C 1

which implies that v}’ > y;.

N

, /6
1—v Yp ) L .
Wi ) wi _ om0
1—1)/ llg 1 ﬂ'i(sl'f‘ﬂi,i—l
Wil ) wiyl

since it is a negative term we have;

G = I s

. . . 6 R
{1—1/( oy ) .1 } [1—1/( 3 ) ; ] which implies that y, > y,".
Wip1 ) Wil Wil ) Wit

Similarly for the Maximax case we have;
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6
171)/ wyib) w.l ]
> [ ( il 1”1 which implies that y} > 9.

7-) ICit1; —IC; ;01 — ICi041 — IC; 1

|:l U/ (Ug) 1 j| — |:1 v/ ( UZ ) ! ] + . [1 UI ( UZ ) : :|
w; | w; Hit2,it1 wiyo | wigo T 162+1 i1, w1 ) w;_q

|:1 ’Ul( yZ ) : :| o |:1 U/< yg ) : ] - . |:1 UI( yZ ) : :|
wity Jwigq Wity wipq wity wigq

In this case we have three possibilities for agents ¢ and ¢ + 1. Both of them could be

downward distorted, or both of them could be upward distorted. Third possibility is that agent
¢ is upward distorted and agent 7+ 1 is downward distorted. If both of the are upward distorted

there is nothing to discuss. If agent ¢ is upward distorted and agent ¢+ 1 is downward distorted

we have;
R 7
o (%) L o (%) L
o 9 o I 3 5
- = - > 7 which implies y;* < y;.
1— /( yb 1 |:17 ’ yb 1
v v —_— |
Wit1 wi+1_ Wit1 ) Wi41

If both of the agents are downward distorted then rewrite the conditions as follows;

1y
l—v( b ) L 1-F
wito Jwito —F_ . . oy
~—mi—— = 1—p— which is positive for sure.
1—o' Yp |\ L it
()
_ 7
1—o' yZ 1 ) i1 1-o' yg L |:1—v/( Yb ) 1 :|
Wite ) Wite | g mip18¢t Wikl ) Wikl | pio1y wi_1 J wi—1
{170/(?47;)% Pit2,i+1 Bit2,it1 [171}/(1/7;) L] Bit2,it1 {171)/(317;) L}
w; | w; wy | wy wq ) Wi

we should have the following condition for the result;

! y7 1 I yZ 1
. ir1 |1V b - 1—v - -
;0% Tit16 Witl ) Wikl | i1, Wi—1 ) Wi—1 > 1-F;_1

N T A e A 1=Fiq
v wi ) Wy v Wwq ) Wy
. . {1—1/(7% ) ! ]
;6 7T¢+15Z+1A_ Hi1,i Wi-1) Wi—1 1-Fi
Hit2,i41 | Hit2,it1 pitzirr () L 1-Fi1
v wyi ) Wi

A > 1 and the last term on the left hand side is positive. So suppose A =1 and we do not
have the last term, then;

7Ti(5i+7ri+15i+l Ti+...+7TN
Bit1—Fit1 Tito+...+7TN

7Ti(5i+7ri+1(si+l 1-F; 4
Bit1—Fit1 1-Fit

suppose not and we have

[Wiéi + 7Ti+1(5i+1][7Ti+2 + ...+ 7TN] < [ﬁﬂ_l — Fi—&-l][ﬂi + ...+ 7TN]

0< 7T15[7TZ' + ...+ 7TN] + Wi_l(;iil[ﬂ'i + ...+ 7TN] + 7Ti5i[71'i -+ 7Ti+1]

+7Ti+15i+1[71'i + 7TZ'_|_1] - Fi+1[7ri + ...+ 7TN]
0< [77'1(51 + Wi_l(siil][ﬂ'i + ...+ 7TN] + [Wzél + 7Ti+15i+1][ﬂ'i + 7Ti+1] — E+1[7Ti + ...+ 7TN]
0< [77'2‘ + 71'2'4_1][51'4_1 — 1] + [71'2'4_2 + ...+ WN][Bi—l — Fz’—l]
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which is impossible since ;17 < 1 and §;_1 < F;_;.

For Maximax case we have;

M M
= (2 ) i - (35 ]
Wil ) Wi+l - 71—2»62 Hi—1,i Wi—1 ) Wi—1

[1—1/(1“”5\4) 1} T TR irars T R0 s {1—1/(”1’”) 1}

wy wy

1= () 1 1= () 1 1= () 1
Witl ) Wikl | pio1g Wi-1 ) Wi—1 4 Hitzin Wit2 ) Wit2 ;8
{1_1/ (ﬁ) L} 410 [1—1/ (ﬁ) ;] 4187 {1_1/ (ﬁ);
Wy | Wy Wy ) Wy Wy | Wy

again we have 3 possibilities. If both of them are downward distorted result holds trivially

as in Maximax case both of them are distorted upwards. If agent i is upward and agent ¢ + 1

is downward distorted then we have;

M 7
i Gy e A e Gy el
Wi+l ) Wi+l Wi+l ) Wi+l
2 yéﬂ 1 > / ZIZ 1
()] T ()

If both agents ¢+ and ¢ + 1 is upward distorted, then rewrite the equations as;

which implies yf > y;.

_1—11/ yéw 1|
Wicl)Wi-1] _ Fip
1—o' le;VI 1 Fi—a
Wit ) Wit] |
[ (- 1| 1o () 1 Lo (2 L
i w;_1 ) wi_q ;8 w; | w; 7T7,+161+1 M2t wito | wiyo
[ 7 - 7 7
o Y 1 s N ) 1 Hi—1,i Hi—1,i o Y 1
_1 v (wi+1)wi+1_ |:1 v (wi+1)wz+1 |:1 v (“’i+1 Wi+1
i ) ) B G =)
Wi—1 ) Wi—1 Wi—1 ) Wi—1
we should have; - > o
1— ’ Yy 1 1—’!}/ Yy 1
Wig] ) Wiyl wit]1 ) wigq

[ ()] o )]
i 0* [1 v (wz)wz] + 10 pigeag Y \wits ) wits > Fiq1
Mi—1,i [1_1;’( Yb ) 1 ] Hi—1,i Hi—1,i 1—11'( Yb ) 1 ] Fi1

Wil ) Wit Wil ) Wit

gt e [ ()]
;8 A Tit+10 _ Hid2,i41 wite) Wita] Fiq
Hi—1,i Hi—1,i Hi—1,i [1,1,’( Yb )#]

Wil

A > land the last term on the left hand side is positive. So suppose A = 1 and we do not

have the last term, then we have;

w16t Fit1
Fi 1—-Bi—1 Fi—1

.FZ'_1<7T1'6i + 7Ti+15i+1) > Fi—l—l(-Fi—l - Bi—l) Since 61'—0—1 > Fi—i—l rewrite as
Fi1(m0" + mis16™) > B (Fioy — Bio1)
0 > B;_1(F;—1 — Pi+1) which holds for sure.

46



9-) ICi41, — 1C; 541

9
o (e ) L

{1 v (wl)wli| o _ﬂi+16i+l

1o yg 1 - m;0°

Wi41 ) Wit1

since it is negative we have;
1—o' i L 1 ﬁ L
_ ;’1 wy _ > _ ;Uz wy _

17v/ Yy 1 17,0/ Yp 1
L Wit1 'L”z'+1_ L Wi+1 wi+l_

Similarly for the Maximax case we have;

which implies that y;) > y/.

M T r 9
'y / Y
P )1 1—p (2o ) L

el > L T which implies that y > .

()] T ()
wy wy Wy ) Wy

Proof of Proposition 12:

The condition comes from the relation of social weight §° with the marginal tax rates T}

1—v

and T;fl. From the proposition we have;
52’ — [l—v/(#L)ﬁ] _ i1 { .
e = R N €

we also have;

()3 =1 T

o= wi [0 [uwn(1 = T/ (41))]]
Yi1 = Wi—1 [U/_l [wi—l(l - Tz'/—1(yz‘—1))}]

Plugging the terms yields;

SO | e

- T o { [ [(1 ! (i))]

e e
] +1} ]

3 T, (wis) }
i [1 Ty 4 (yi-1)— ,{[UFI[wifl(l—Tilfl(yifl))Hwi,:.l}w%.]
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