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Abstract

We take the axiomatic approach to uncover the structure of the revenue-sharing prob-

lem from broadcasting sports leagues. Our starting point is to explore the implications of

three basic axioms: additivity, order preservation and weak upper bound. We show that

the combination of these axioms characterizes a large family of rules, which is made of

compromises between the uniform rule and concede-and-divide, such as the one repre-

sented by the equal-split rule. The members of the family are fully ranked according to

the Lorenz dominance criterion, and the structure of the family guarantees the existence

of a majority voting equilibrium. Strengthening some of the previous axioms, or adding

new ones, we provide additional characterizations within the family. Weakening some of

those axioms, we also characterize several families encompassing the original one.
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1 Introduction

In a recent paper (Bergantiños and Moreno-Ternero, 2020a), we have introduced a formal

model to analyze the problem of sharing the revenues from broadcasting sports leagues among

participating teams, based on the audiences they generate. In this paper, we uncover the

structure of this stylized model further, thanks to the axiomatic approach.

We start considering three basic axioms: additivity, order preservation and weak upper

bound. The �rst one says that awards are additive on audiences. The second one says that

awards preserve the order of teams� audiences. The third one says that individual awards

are bounded above by the overall revenues obtained from the whole tournament. The three

axioms are satis�ed by three rules that stand out as focal to solve this problem (Bergantiños

and Moreno-Ternero, 2020c). They are the uniform rule, which shares equally among all

participating teams the overall revenues obtained in the whole tournament, the equal-split rule,

which splits the revenue generated from each game equally among the participating teams, and

concede-and-divide, which concedes each team the revenues generated from its fan base and

divides equally the residual.

Our �rst result shows that the combination of the three axioms mentioned above actually

characterizes the family of rules compromising between the uniform rule and concede-and-

divide, which actually has the equal-split rule as a focal member. Each rule within the family

is simply de�ned by a certain convex combination of the uniform rule and concede-and-divide.

We shall refer to this family as the UC-family of rules.

We also show that all rules within the family satisfy the so-called single-crossing property,

which allows one to separate those teams who bene�t from one rule or the other, depending

on the rank of their aggregate audiences. This has important implications. On the one hand,

the existence of a majority voting equilibrium (e.g., Gans and Smart, 1996). That is, if we

allow teams to vote for any rule within the family, then there exists a rule that cannot be

overturned by any other rule within the family through majority rule. On the other hand, the

rules within the family yield outcomes that are fully ranked according to the Lorenz dominance

criterion (e.g., Hemming and Keen, 1983). More precisely, for each problem, and each pair of

rules within the family, the outcome suggested by the rule associated with a higher parameter

dominates (in the sense of Lorenz) the outcome suggested by the other rule, which is equivalent

to saying that the former will be more egalitarian than the latter (e.g., Dasgupta et al., 1973).

2



We then proceed to consider additional axioms to the structure supporting the UC-family

of rules. We start showing that if we add non-negativity (no team receives negative awards),

then only a speci�c part of the family survives; namely the rules that are actually convex

combinations of the uniform rule and the equal-split rule, which we shall dub the UE-family

of rules. More interestingly, we can dismiss the weak upper bound axiom to characterize such

a family. To wit, we show that a rule satis�es additivity, order preservation and non-negativity

if and only if it is a member of the UE-family of rules. This was actually an open question in

Bergantiños and Moreno-Ternero (2020c).

It turns out that the other half of the UC-family of rules; namely, the rules that are

actually convex combinations of the equal-split rule and concede-and-divide, dubbed here the

EC-family of rules, can also be singled out. To do so, one simply needs to strengthen the weak

upper bound axiom to maximum aspirations, which says that no team can receive an amount

higher than its claim (i.e., the overall revenues obtained from all the games in which the team

was involved). As a matter of fact, order preservation is not required in its full force for this

characterization, and the cleanest result states that additivity, equal treatment of equals and

maximum aspirations characterize the EC-family of rules. This is almost equivalent to the

characterization in Bergantiños and Moreno-Ternero (2020b).1

We also provide additional characterization results for families encompassing the UC-family

of rules, by weakening some of the original axioms considered for its characterization. More

precisely, we characterize the rules satisfying additivity, equal treatment of equals, and either

weak upper bound or non-negativity. We also characterize the rules satisfying additivity and

order preservation and, �nally, the rules satisfying additivity and equal treatment of equals. In

all cases, we obtain linear (albeit not convex) combinations of the focal rules mentioned above.

The rest of the paper is organized as follows. We introduce the model, axioms and rules in

Section 2. In Section 3, we provide the characterization result leading towards the UC-family of

rules and then explore other properties of it. In Section 4, we obtain further characterizations for

speci�c members of the family. In Section 5 we characterize more general families encompassing

the UC-family of rules. Finally, we conclude in Section 6.

1Therein, we use a stronger notion than equal treatment of equals indicating that two teams with the same

claims receive the same awards.
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2 The model

We consider the model introduced by Bergantiños and Moreno-Ternero (2020a). Let N describe

a �nite set of teams. Its cardinality is denoted by n. We assume n � 3. For each pair of teams

i; j 2 N , we denote by aij the broadcasting audience (number of viewers) for the game played

by i and j at i�s stadium. We use the notational convention that aii = 0, for each i 2 N .

Let A 2 An�n denote the resulting matrix of broadcasting audiences generated in the whole

tournament involving the teams within N .2 Each matrix A 2 An�n with zero entries in the

diagonal will thus represent a problem and we shall refer to the set of problems as P.3

Let �i (A) denote the total audience achieved by team i, i.e.,

�i (A) =
X

j2N

(aij + aji):

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to be

interpreted as the �pay per view� fee). Thus, we sometimes refer to �i (A) by the claim of

team i. When no confusion arises, we write �i instead of �i (A). We de�ne � as the average

audience of all teams. Namely,

� =

P

i2N

�i

n
:

For each A 2 An�n, let jjAjj denote the total audience of the tournament. Namely,

jjAjj =
X

i;j2N

aij =
1

2

X

i2N

�i =
n�

2
:

2.1 Rules

A (sharing) rule is a mapping that associates with each problem the list of the amounts the

teams get from the total revenue. Without loss of generality, we normalize the revenue generated

from each viewer to 1 (to be interpreted as the �pay per view� fee). Thus, formally, R : P ! R
n

2We are therefore assuming a round-robin tournament in which each team plays in turn against each other

team twice: once home, another away. This is the usual format of the main European football leagues. Our

model could also be extended to leagues in which some teams play other teams a di¤erent number of times and

play-o¤s at the end of the regular season, which is the usual format of North American professional sports. In

such a case, aij is the broadcasting audience in all games played by i and j at i�s stadium.
3As the set N will be �xed throughout our analysis, we shall not explicitly consider it in the description of

each problem.
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is such that, for each A 2 P,
X

i2N

Ri(A) = jjAjj:

The following three rules have been highlighted as focal for this problem (e.g., Bergantiños

and Moreno-Ternero, 2020a; 2020b; 2020c).

The uniform rule divides equally among all teams the overall audience of the whole tour-

nament. Formally,

Uniform, U : for each A 2 P, and each i 2 N ,

Ui(A) =
jjAjj

n
=
�

2
:

The equal-split rule divides the audience of each game equally, among the two participating

teams. Formally,

Equal-split rule, ES: for each A 2 P, and each i 2 N ,

ESi(A) =
�i
2
:

Concede-and-divide compares the performance of a team with the average performance of

the other teams. Formally,

Concede-and-divide, CD: for each A 2 P, and each i 2 N ,

CDi(A) = �i �

P

j;k2Nnfig

(ajk + akj)

n� 2
=
(n� 1)�i � jjAjj

n� 2
=
2 (n� 1)�i � n�

2(n� 2)
:

The following family of rules encompasses the above three rules.

UC-family of rules
�
UC�

	
�2[0;1]

: for each � 2 [0; 1] ; each A 2 P, and each i 2 N ,

UC�i (A) = (1� �)Ui(A) + �CDi(A):

Equivalently,

UC�i (A) = (1� �)
jjAjj

n
+ �

(n� 1)�i � jjAjj

n� 2
=
�

2
+ �

n� 1

n� 2
(�i � �) : (1)

At the risk of stressing the obvious, note that, when � = 0, UC� coincides with the uniform

rule, whereas, when � = 1, UC� coincides with concede-and-divide. That is, UC0 � U and

UC1 � CD. Bergantiños and Moreno-Ternero (2020a) prove that for each A 2 P,

ES(A) =
n

2 (n� 1)
U(A) +

n� 2

2 (n� 1)
CD(A):
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That is, UC� � ES, where � = n�2
2(n�1)

.4

Consequently, the UC-family of rules can be split in two.

On the one hand, the family of rules compromising between the uniform rule and the equal-

split rule. Formally,

UE-family of rules
�
UE�

	
�2[0;1]

: for each � 2 [0; 1] ; each A 2 P, and each i 2 N ,

UE�i (A) = (1� �)Ui(A) + �ESi(A) =
�

2
+
�

2
(�i � �):

On the other hand, the family of rules compromising between the equal-split rule and

concede-and-divide.5 Formally,

EC-family of rules fEC
g
2[0;1]: for each 
 2 [0; 1] ; each A 2 P, and each i 2 N ,

EC
i (A) = (1� 
)ESi(A) + 
CDi(A) =
�i
2
+ 


n

2 (n� 2)
(�i � �) :

As Figure 1 illustrates, the family of UC rules is indeed the union of the family of UE rules

and EC rules. Note that UE0 � UC0 � U , EC1 � UC1 � CD, whereas ES � UE1 � EC0 �

UC
n�2

2(n�1) is the unique rule belonging to both families.

U ES CD

z }| {UC�

EC


| {z }
UE�

| {z }

Figure 1. Illustration of the three families of rules. UC� = UE� [ EC


2.2 Axioms

We now introduce the axioms we consider in this paper.

The �rst axiom we consider says that if two teams have the same audiences, then they

should receive the same amount.

Equal treatment of equals: For each A 2 P, and each pair i; j 2 N such that aik = ajk,

and aki = akj, for each k 2 N n fi; jg,

Ri(A) = Rj(A):

4Note that � approaches 0:5 (from below) for n arbitrarily large.
5We studied this family independently in Bergantiños and Moreno-Ternero (2020b).
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The following axiom strengthens the previous one by saying that if the audience of team i

is, game by game, not smaller than the audience of team j, then that team i should not receive

less than team j.

Order preservation: For each A 2 P and each pair i; j 2 N , such that, for each k 2

Nn fi; jg, aik � ajk and aki � akj we have that

Ri(A) � Rj(A):

The next axiom says that each team should receive, at most, the total audience of the games

played by the team.

Maximum aspirations: For each A 2 P and each i 2 N ,

Ri(A) � �i:

Alternatively, one could consider a weaker upper bound with the total audience of all games

in the tournament.

Weak upper bound: For each A 2 P and each i 2 N ,

Ri(A) � jjAjj :

The next axiom provides instead a lower bound as it says that no team should receive

negative awards. Formally,

Non-negativity. For each A 2 P and i 2 N;

Ri(A) � 0:

It is not di¢cult to show that both maximum aspirations and non-negativity imply weak

upper bound.

The next axiom says that revenues should be additive on A. Formally,

Additivity: For each pair A and A0 2 P

R (A+ A0) = R(A) +R (A0) :

The �nal two axioms refer to the performance of the rule with respect to somewhat patho-

logical teams. Null team says that if a team has a null audience, then such a team gets no
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revenue. Essential team says that if only the games played by some team have positive audience,

then such a team should receive all its audience. Formally,

Null team: For each A 2 P, and each i 2 N , such that aij = 0 = aji, for each j 2 N ,

Ri(A) = 0:

Essential team: For each A 2 P and each i 2 N such that ajk = 0 for each pair

fj; kg 2 Nn fig,

Ri(A) = �i:

3 The benchmark family

We start this section with a characterization result of the UC-family of rules, our benchmark

family.

Theorem 1 A rule satis�es additivity, order preservation and weak upper bound if and only if

it is a member of the UC-family of rules.

Proof. It is not di¢cult to show that both the uniform rule and concede-and-divide satisfy all

the axioms in the statement. It follows from there that all the members of the UC-family of

rules satisfy them too.

Conversely, let R be a rule satisfying the three axioms. Note that, then, R satis�es equal

treatment of equals too. Let A 2 P. For each pair i; j 2 N , with i 6= j, let 1ij denote the

matrix with the following entries:

1ijkl =

8
<

:
1 if (k; l) = (i; j)

0 otherwise.

Notice that 1ijji = 0:

Let k 2 N: By additivity,

Rk(A) =
X

i;j2N :i6=j

aijRk
�
1ij
�
: (2)

By equal treatment of equals, for each pair k; l 2 N nfi; jg we have that Ri (1
ij) = Rj (1

ij) =

xij, and Rk (1
ij) = Rl (1

ij) = zij. As
P

k2N Rj (1
ij) = jj1ijjj = 1, we deduce that

zij =
1� 2xij

n� 2
:
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Let k 2 N n fi; jg. By additivity, Rj
�
1ij + 1ik

�
= xij + zik, and Rk

�
1ij + 1ik

�
= zij + xik.

By equal treatment of equals, Rj
�
1ij + 1ik

�
= Rk

�
1ij + 1ik

�
. Thus,

xij +
1� 2xik

n� 2
= xik +

1� 2xij

n� 2
,

(n� 2) xij + 1� 2xik = (n� 2) xik + 1� 2xij ,

xij = xik

Therefore, there exists x 2 R such that for each fi; jg � N;

Ri
�
1ij
�
= Rj

�
1ij
�
= x, and

Rl
�
1ij
�
=

1� 2x

n� 2
for each l 2 N n fi; jg:

By weak upper bound,

x = Ri
�
1ij
�
� 1:

Let k 2 N n fi; jg. By order preservation,

x = Ri
�
1ij
�
� Rk

�
1ij
�
=
1� 2x

n� 2
;

which implies that x � 1
n
.

Let

� =
nx� 1

n� 1
:

As 1
n
� x � 1, it follows that 0 � � � 1:

Then,

UC�k
�
1ij
�
= (1� �)Uk

�
1ij
�
+ �CDk

�
1ij
�
=

8
<

:
(1� �) 1

n
+ � = x if k = i; j

(1� �) 1
n
� � 1

n�2
= 1�2x

n�2
otherwise.

Thus, UC� (1ij) = R (1ij). As UC� and R satisfy additivity, we deduce from here that

UC�(A) = R(A), for each A 2 P.

Theorem 1 shows that the UC-family comprises all rules satisfying three basic and intuitive

properties. We show next that the family exhibits additional interesting features. To begin

with, all rules within the family satisfy the so-called single-crossing property. That is, for each

pair of rules within the family, and each problem A 2 P, there exists a team i� 2 N separating

those teams bene�tting with one rule and those bene�tting with the other. It turns out that

i� is precisely the team whose overall audience is closest (from below) to the average overall

audience. Formally,
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Proposition 1 Let 0 � �1 � �2 � 1, and A 2 P such that, without loss of generality,

N = f1; : : : ; ng and �1 � �2 � � � � � �n. Then, there exists i
� 2 N such that:

(i) UC�1i (A) � UC
�2
i (A) for each i = 1; :::; i

� and

(ii) UC�1i (A) � UC
�2
i (A) for each i = i

� + 1; :::; n.

Proof. Let 0 � �1 � �2 � 1, and A 2 P be such that N = f1; : : : ; ng and �1 � �2 � � � � � �n.

Let i 2 N . We distinguish two cases:

If �i � �, then

UC�1i (A) =
�

2
+ �1

n� 1

n� 2
(�i � �) �

�

2
+ �2

n� 1

n� 2
(�i � �) = UC

�2
i (A):

If �i > �, then

UC�1i (A) =
�

2
+ �1

n� 1

n� 2
(�i � �) �

�

2
+ �2

n� 1

n� 2
(�i � �) = UC

�2
i (A):

Thus, i� is the agent whose claim is closest to � from below.

It is well known that the single-crossing property of preferences is a su¢cient condition for

the existence of a majority voting equilibrium (e.g., Gans and Smart, 1996). Thus, we have the

following corollary from Proposition 1.

Corollary 1 There is a majority voting equilibrium for the UC-family of rules.

Corollary 1 states that if we let teams vote for a rule within the UC-family, then there

will be a majority winner. The identity of this winner will be problem speci�c and, thus, it

will depend on the characteristics of the problem at stake. For problems with a distribution

of claims skewed to the left, only the uniform rule is a majority winner. For problems with a

distribution of claims skewed to the right, only concede-and-divide is a majority winner. For

the remainder of the problems, each UC rule is a majority winner. This is a consequence of

the fact that, as it can be inferred from (1), UC�i is increasing (decreasing) in � for agents with

claims above (below) the average claim.

Another well-known consequence of the single-crossing property is that it guarantees pro-

gressivity comparisons of schedules (e.g., Jakobsson, 1976; Hemming and Keen, 1983). Thus,

we can also obtain an interesting corollary from Proposition 1 in our setting, referring to the

distributive power of the rules within the UC-family.
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Formally, given x; y 2 Rn satisfying x1 � x2 � ::: � xn, y1 � y2 � ::: � yn, and
Pn

i=1 xi =
Pn

i=1 yi, we say that x is greater than y in the Lorenz ordering if
Pk

i=1 xi �
Pk

i=1 yi, for each

k = 1; :::; n � 1, with at least one strict inequality. When x is greater than y in the Lorenz

ordering, one can state (see, for instance, Dasgupta et al., 1973) that x is unambiguously �more

egalitarian� than y. In our setting, we say that a rule R Lorenz dominates another rule R0 if

for each A 2 P, R(A) is greater than R0(A) in the Lorenz ordering. As the Lorenz criterion is

a partial ordering, one might not expect to perform many comparisons of vectors. It turns out

that, here, all rules within the family are fully ranked according to this criterion.

Corollary 2 If 0 � �1 � �2 � 1 then UC
�1 Lorenz dominates UC�2.

Corollary 2 implies that the parameter de�ning the family can actually be interpreted as

an index of the distributive power of the rules within the family.

4 Decomposing the benchmark family

In this section, we scrutinize the UC-family of rules further. We summarize �rst the perfor-

mance of the rules within the family with respect to the other axioms introduced above6.

Proposition 2 A member of the UC-family of rules satis�es

1. non-negativity if and only if it is a member of the UE-family of rules

2. maximum aspirations if and only if it is a member of the EC-family of rules.

3. null team if and only if it is the equal-split rule.

4. essential team if and only if it is concede-and-divide.

Combining Proposition 2 with Theorem 1, and noting that both non-negativity and maxi-

mum aspirations imply weak upper bound, additional characterizations are obtained as imme-

diate corollaries.

Corollary 3 The following statements hold:

6The proof of Proposition 2, and some other results of the paper, can be found in the Appendix.
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1. A rule satis�es additivity, order preservation and non-negativity if and only if it is a

member of the UE-family of rules.

2. A rule satis�es additivity, order preservation and maximum aspirations if and only if it

is a member of the EC-family of rules.

Corollary 3.2 is similar to Theorem 1 in Bergantiños and Moreno-Ternero (2020b), obtained

by replacing order preservation with an axiom dubbed symmetry. The next result is a re�ne-

ment of both as it shows that equal treatment of equals, which is weaker than symmetry and

order preservation, closes the gap too.

Proposition 3 A rule satis�es additivity, equal treatment of equals and maximum aspirations

if and only if it is a member of the EC-family of rules.

Finally, one infers from Proposition 2 that only the equal-split rule satis�es non-negativity

andmaximum aspirations. But one could also be interested in knowing the allocations satisfying

both bounds for a given problem. This is what the next proposition states.

Proposition 4 For each A 2 P, and each i 2 N , 0 � UC�i (A) � �i if and only if

�i � � and 0 � � �
n� 2

2 (n� 1)
+

n�i
2 (n� 1) (�i � �)

:

�i � � and
n� 2

2 (n� 1)
�

n�i
2 (n� 1) (�� �i)

� � �
n� 2

2 (n� 1) (�� �i)
�:

In Table 1, we summarize the main results obtained for the benchmark family and its

subfamilies.
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AxiomsnRules
UC

Th.1

UE

Cor. 3

EC

Cor. 3

EC

Pr. 3

ES

Pr. 2

CD

Pr. 2

ETE X

OP X X X X X

MA X X

WUB X X X

NN X

ADD X X X X X X

NT X

ET X

Table 1: Characterizations of rules within the benchmark family

5 Beyond the benchmark family

In this section, we consider some combinations of axioms leading towards rules that extend

the benchmark family studied in the previous sections. In Theorem 2, we characterize the

rules satisfying additivity, equal treatment of equals and weak upper bound. In Theorem 3,

we characterize the rules satisfying additivity, equal treatment of equals and non-negativity.

In Theorem 4, we characterize the rules satisfying additivity and order preservation. In all

cases, we obtain rules that are linear (but not necessarily convex) combinations of the uniform

rule and concede-and-divide. For that reason, we conclude the section studying explicitly the

performance of all the rules within the extended family f(1� �)U + �CD : � 2 (�1;+1)g

with respect to all the axioms, depending on �:

The next result extends Theorem 1, weakening order preservation to equal treatment of

equals.

Theorem 2 A rule R satis�es additivity, equal treatment of equals and weak upper bound if

and only if there exists � 2
�
1� n

2
; 1
�
such that, for each A 2 P,

R(A) = (1� �)U(A) + �CD(A):
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Proof. As mentioned above, the uniform rule and concede-and-divide satisfy additivity and

equal treatment of equals. It follows from there any linear combination of the two rules sat-

is�es the two axioms too. As for weak upper bound, one can also show (after some algebraic

computations) that, for each � 2
�
1� n

2
; 1
�
, (1� �)U + �CD satis�es it too.7

Conversely, let R be a rule satisfying the three axioms. Let A 2 P. For each pair i; j 2 N ,

with i 6= j, let 1ij; x and � be de�ned as in the proof of Theorem 1. Using arguments similar

to those used in the proof of Theorem 1 we can deduce that R(A) = (1� �)U (A) + �CD (A).

By weak upper bound, x � 1 and 1�2x
n�2

� 1. Equivalently, 3�n
2
� x � 1: As � = nx�1

n�1
, it

follows that � 2
�
1� n

2
; 1
�
.

If instead of weak upper bound we consider non-negativity, we also have the following char-

acterization result.

Theorem 3 A rule R satis�es additivity, equal treatment of equals and non-negativity if and

only if there exists � 2
h
�1
n�1
; n�2
2(n�1)

i
such that, for each A 2 P,

R(A) = (1� �)U(A) + �CD(A):

Proof. As mentioned above, any linear combination of the uniform rule and concede-and-divide

satis�es additivity and equal treatment of equals. As for non-negativity, one can also show (after

some algebraic computations) that, for each � 2
h
�1
n�1
; n�2
2(n�1)

i
, (1��)U +�CD satis�es it too.8

Conversely, let R be a rule satisfying the three axioms. Let A 2 P. For each pair i; j 2 N ,

with i 6= j, let 1ij; x and � be de�ned as in the proof of Theorem 1. Using arguments similar

to those used in the proof of Theorem 1 we can deduce that R(A) = (1� �)U (A) + �CD (A).

By non-negativity, x � 0 and 1�2x
n�2

� 0. Equivalently, 0 � x � 1
2
: As � = nx�1

n�1
, it follows

that � 2
h
�1
n�1
; n�2
2(n�1)

i
.

We now explore the implications of the combination of additivity and order preservation.

Theorem 4 A rule satis�es additivity and order preservation if and only there exists � 2 [0;1)

such that for each A 2 P,

R(A) = (1� �)U(A) + �CD(A):

7See Remark 2 in the Appendix.
8See Remark 3 in the Appendix.
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Proof. As mentioned above, any linear combination of the uniform rule and concede-and-

divide satis�es additivity. As concede-and-divide satis�es order preservation, and the uniform

rule assigns the same amount to all teams, it follows that (1� �)U + �CD also satis�es order

preservation for each � 2 [0;1).

Conversely, let R be a rule satisfying the two axioms. Let A 2 P. For each pair i; j 2 N ,

with i 6= j, let 1ij; x and � be de�ned as in the proof of Theorem 1. Using arguments similar

to those used in the proof of Theorem 1 we can deduce that R(A) = (1� �)U (A) + �CD (A).

By order preservation, x � 1�2x
n�2

which implies that x � 1
n
. As � = nx�1

n�1
, it follows that

� 2 [0;+1) :

We conclude this section with our more general result, which explores the implications of

the combination of additivity and equal treatment of equals.

Theorem 5 A rule satis�es additivity and equal treatment of equals if and only there exists

� 2 (�1;+1) such that, for each A 2 P,

R(A) = (1� �)U(A) + �CD(A):

Proof. As mentioned above, any linear combination of the uniform rule and concede-and-

divide satis�es additivity and equal treatment of equals. Conversely, let R be a rule satisfying

the two axioms. Let A 2 P. For each pair i; j 2 N , with i 6= j, let 1ij; x and � be de�ned as

in the proof of Theorem 1. Using arguments similar to those used in the proof of Theorem 1

we can deduce that R(A) = (1� �)U (A) + �CD (A). As no further axioms are considered, no

bounds on the domain of � can be imposed, from where it follows that � 2 (�1;+1) :

In Table 2, we summarize the main results obtained for the benchmark family and the

extended families considered in this section. When we write [a; b] at the top of a column, we

refer to the family of rules f(1� �)U + �CD : � 2 [a; b]g.
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AxiomsnRules
[0; 1]

Th.1

�
1� n

2
; 1
�

Th. 2

h
�1
n�1
; n�2
2(n�1)

i

Th. 3

[0;+1)

Th. 4

(�1;+1)

Th. 5

ETE X X X

OP X X

WUB X X

NN X

ADD X X X X X

Table 2: Beyond the benchmark family

We conclude this section studying the performance of all rules within the general family

f(1� �)U + �CD : � 2 (�1;+1)g

with respect to the axioms considered in this paper.

Proposition 5 The following statements hold:

(a) (1� �)U + �CD satis�es additivity for each � 2 (�1;+1) :

(b) (1� �)U + �CD satis�es equal treatment of equals for each � 2 (�1;+1) :

(c) (1� �)U + �CD satis�es order preservation if and only if � 2 [0;+1).

(d) (1� �)U + �CD satis�es weak upper bound if and only if � 2
�
1� n

2
; 1
�
:

(e) (1� �)U + �CD satis�es maximum aspirations if and only if � 2
h

n�2
2(n�1)

; 1
i
:

(f) (1� �)U + �CD satis�es non-negativity if and only if � 2
h
�1
n�1
; n�2
2(n�1)

i
:

(g) (1� �)U + �CD satis�es null team if and only if � = n�2
2(n�1)

:

(h) (1� �)U + �CD satis�es essential team if and only if � = 1:

Proposition 5 can be summarized in the following table.
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Axioms � 2

Additivity (�1;+1)

Equal treatment of equals (�1;+1)

Order preservation [0;+1)

Weak upper bound
�
1� n

2
; 1
�

Maximum aspirations
h

n�2
2(n�1)

; 1
i

Non-negativity
h
� 1
n�1
; n�2
2(n�1)

i

Null team n�2
2(n�1)

Essential team 1

Table 3: Performance of the rules with respect to the axioms

�
1� n

2 � 1
n�1

0 n�2
2(n�1)

1 +1�1

WUBz }| {

Figure 2. Performance of the rules with respect to the axioms.

z }| {OP

z }| {ETE

| {z }
MA

| {z }

NN

6 Discussion

We have explored in this paper the axiomatic approach to the problem of sharing the revenues

raised from the collective sale of broadcasting rights in sports leagues. We have uncovered

the structure of this problem, setting the ground with three basic axioms: additivity, order

preservation and weak upper bound. The combination of these axioms characterizes a large

family of rules, which is made of compromises between the uniform rule and concede-and-

divide, having the equal-split rule as a focal member. Thus, the family encompasses the three

basic rules highlighted so far in this model. The family can be perfectly split in two, with

the equal-split rule setting the limits for both parts, strengthening the weak upper bound in

two opposite directions (maximum aspirations or non-negativity). If instead of strengthening

the original axioms once weakens them in natural ways, extensions of the original family are

characterized too.
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Common to all of our characterization results is the axiom of additivity. This is an invariance

requirement with a long tradition in axiomatic work (e.g., Shapley, 1953) but also considered

strong under some circumstances. For results without additivity in this model, the reader is

referred to Bergantiños and Moreno-Ternero (2020c).

All the families of rules we obtained are extremely well structured. They are all parametrized

by a single element, which serves as an index of the distributive power of the rules. More

precisely, once can fully rank in terms of the Lorenz dominance criterion the outcomes obtained

by all the rules within each family, according to the parameter de�ning the family. Also, one can

guarantee the existence of majority voting equilibria, when all teams are allowed to vote for the

rule to share the broadcasting revenues, within each of these families. These two features are

shared by some other one-parameter families of rules existing in the literature for related models

(e.g., Moreno-Ternero and Villar, 2006a,b; Thomson, 2008; Moreno-Ternero, 2011; Thomson,

2019).

One could also be interested into approaching our problems with a (cooperative) game-

theoretical approach, a standard approach in many related models of resource allocation (e.g.,

Littlechild and Owen, 1973; van den Nouweland et al., 1996; Ginsburgh and Zang, 2003). In

Bergantiños and Moreno-Ternero (2020a), we associate to our problems a natural optimistic

cooperative TU game in which, for each subset of teams, we de�ne its worth as the total

audience of the games played by the teams in that subset. The Shapley value (e.g., Shapley,

1953) of such a game yields the same solutions as the equal-split rule for the original problem.

The egalitarian value (e.g., van den Brink, 2007) of that game yields the same solutions as

the uniform rule. Casajus and Huettner (2013), van den Brink et al., (2013) and Casajus and

Yokote (2019) characterize the family of values arising from the convex combination of the

Shapley value and the egalitarian value. In our setting, this would correspond to the family

of rules
�
UE�

	
�2[0;1]

considered here. Thus, Corollary 3.1 in our paper could be considered

as a parallel result to some of the results in that literature. No known value for TU-games is

associated to concede-and-divide and, thus, no parallel characterization of the family of rules
�
UC�

	
�2[0;1]

considered here can be obtained in the literature on TU-games.
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To save space, we have included in this appendix, which is not necessarily intended for

publication, some technical aspects of our analysis, as well as secondary proofs.

7 Appendix

7.1 Missing proofs

Remark 1 The axioms of Theorem 1 are independent.

For each A 2 P, and each i 2 N; we de�ne the rule R1 as

R1i (A) =

8
<

:
U (A) if jjAjj � 100

CD (A) if jjAjj > 100:

R1 satis�es all axioms in the theorem but additivity.

Let R2 be de�ned as follows. For each fi; jg 2 N and k 2 N we de�ne

R2k
�
1ij
�
=

8
<

:
0 if k 2 fi; jg

1
n�2

otherwise

We extend R2 to each problem A using additivity. Namely, R2 (A) =
P

fi;jg�N

aijR
2 (1ij) : R2

satis�es all axioms in the theorem but order preservation.

Let R3 be de�ned as follows. For each fi; jg 2 N and k 2 N we de�ne

R3k
�
1ij
�
=

8
<

:
2 if k 2 fi; jg

�3
n�2

otherwise

We extend R3 to each problem A using additivity. Namely, R3 (A) =
P

fi;jg�N

aijR
3 (1ij) : R3

satis�es all axioms in the theorem but weak upper bound.

Proof of Proposition 2. For statement 1, it is obvious that all rules within the UE-family

satisfy non-negativity because both U and ES do so. We have seen above that the UC-family is

the union of the UE-family and the EC-family. Besides, ES is the only rule in the UC-family

belonging to the UE-family and the EC-family. Thus, we only need to show that any rule

within the EC-family, except for ES, violates that axiom. To do so, consider, for instance, the

problem in which

A =

0

BBB
@

0 0 0

0 0 150

0 150 0

1

CCC
A
:
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As CD1(A) = �300 and ES1(A) = 0, it follows that (1� 
)ES1(A) + 
CD1(A) < 0, for each


 2 (0; 1].

For statement 2, Bergantiños and Moreno-Ternero (2020b) prove that any rule in the EC-

family satis�es maximum aspirations. Thus, it is enough to show that any rule within the UE-

family, except for ES, violates that axiom. The previous example would be valid for that too.

Note that U1(A) = 100 and �1 = 0. As ES1(A) = 0, it follows that (1��)U1(A)+�ES1(A) >

�1, for each � 2 [0; 1).

As for statements 3 and 4, they are a straightforward consequence of Theorem 1 in Bergan-

tiños and Moreno-Ternero (2020a), and the fact that order preservation implies equal treatment

of equals. �

Proof of Proposition 3. It is similar to the proof of Theorem 1 in Bergantiños and Moreno-

Ternero (2020b). �

Proof of Proposition 4.

Let A 2 P, i 2 N , and � 2 [0; 1]. Then, UC�i (A) � 0 if and only if

jjAjj

n
+ �

n� 1

n� 2
(�i � �) � 0:

Equivalently, as jjAjj = n�
2
,

(n� 2)� + 2� (n� 1) (�i � �) � 0;

i:e:,

� (�i � �) � �
n� 2

2 (n� 1)
�:

Now, if �i � �, the above holds trivially. If, instead, �i < �, then the above is equivalent

to

� �
n� 2

2 (n� 1) (�� �i)
�;

as desired.

Now, UC�i (A) � �i if and only if

jjAjj

n
+ �

n� 1

n� 2
(�i � �) � �i:

Equivalently,

� (�i � �) �
(n� 2) (�i � �) + n�i

2 (n� 1)
:
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If �i � �, the above is equivalent to

� �
n� 2

2 (n� 1)
+

n�i
2 (n� 1) (�i � �)

:

If �i < �; the above is equivalent to

� �
n� 2

2 (n� 1)
�

n�i
2 (n� 1) (�� �i)

:

�

Remark 2 (1� �)U + �CD satis�es weak upper bound, for each � 2
�
1� n

2
; 1
�
.

Let A 2 P, i 2 N , and � 2
�
1� n

2
; 1
�
. Then, (1��)Ui(A)+�CDi(A) � jjAjj if and only if

�

2
+ �

n� 1

n� 2
(�i � �) �

n�

2
:

Equivalently,

� (�i � �) �
n� 2

2
�: (3)

We consider three cases.

1. �i = �: Then (3) obviously holds.

2. �i > �: Then (3) is equivalent to

� �
(n� 2)�

2(�i � �)
:

As � � 1 it is enough to prove that

1 �
(n� 2)�

2(�i � �)
:

Equivalently,

2(�i � �) � (n� 2)�

which holds because �i � jjAjj = n�
2
.

3. �i < �: Then (3) is equivalent to

� �
(n� 2)�

2(�i � �)
:

As � � 1� n
2
; it is enough to prove that

1�
n

2
�
(n� 2)�

2(�i � �)
:
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Equivalently,

�� �i � �;

which obviously holds.

Remark 3 (1� �)U + �CD satis�es non-negativity, for each � 2
h
�1
n�1
; n�2
2(n�1)

i
.

Let A 2 P, i 2 N , and � 2
h
�1
n�1
; n�2
2(n�1)

i
. Then, (1� �)Ui(A) + �CDi(A) � 0 if and only if

�

2
+ �

n� 1

n� 2
(�i � �) � 0:

Equivalently,

� (�i � �) �
� (n� 2)�

2(n� 1)
(4)

We consider three cases.

1. �i = �: Then (4) obviously holds.

2. �i > �: Then (4) is equivalent to

� �
� (n� 2)�

2(n� 1)(�i � �)
:

As � � �1
n�1
, it is enough to prove that

1

n� 1
�

(n� 2)�

2(n� 1)(�i � �)
:

Equivalently,

2�i � n�;

which holds because �i � jjAjj = n�
2
.

3. �i < �: Then (4) is equivalent to

� �
� (n� 2)�

2(n� 1)(�i � �)
:

As � � n�2
2(n�1)

, it is enough to prove that

n� 2

2(n� 1)
�

(n� 2)�

2(n� 1)(�� �i)
:

Equivalently,

�� �i � �;

which obviously holds.
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Proof of Proposition 5.

Statements (a) and (b) are trivial.

As for statement (c), and as mentioned in the proof of Theorem 4, as concede-and-divide

satis�es order preservation, and the uniform rule assigns the same amount to all teams, it

follows that (1� �)U + �CD also satis�es order preservation for each � 2 [0;+1). It remains

to show that the property is violated for any � 2 (�1; 0). Consider the same problem as above

in which

A =

0

BBB
@

0 0 0

0 0 150

0 150 0

1

CCC
A
:

As U(A) = (100; 100; 100) and CD(A) = (�300; 300; 300), it follows that (1 � �)U1(A) +

�CD1(A) = 100� 400� > 100 + 200� = (1� �)U2(A) + �CD2(A), for each � 2 (�1; 0).

As for statement (d), and as shown in Remark 2, (1��)U+�CD satis�es weak upper bound

for each � 2
�
1� n

2
; 1
�
. It remains to show that the property is violated for any � =2

�
1� n

2
; 1
�
.

To do so, aonsider, again, the same problem as above. Then, as U(A) = (100; 100; 100) and

CD(A) = (�300; 300; 300), it follows that (1��)U2(A)+�CD2(A) = 100+200� > 300 = jjAjj,

for each � > 1. Similarly, (1 � �)U1(A) + �CD1(A) = 100 � 400� > 300 = jjAjj, for each

� < �1
2
= 1� n

2
.

As for statement (e), and as shown in Proposition 2, (1 � �)U + �CD satis�es maximum

aspirations for each � 2
h

n�2
2(n�1)

; 1
i
.9 It is also shown therein that for each � 2

h
0; n�2

2(n�1)

�
, the

property is violated. Thus, it remains to show that the property is also violated for any � =2 [0; 1].

To do so, consider, again, the same problem as above. Then, as U(A) = (100; 100; 100) and

CD(A) = (�300; 300; 300), it follows that (1 � �)U1(A) + �CD1(A) = 100 � 400� > 0 = �1,

for each � < 0. Similarly, (1� �)U2(A) + �CD2(A) = 100 + 200� > 300 = �2, for each � > 1.

As for statement (f), and as shown in Remark 3, (1 � �)U + �CD satis�es non-negativity

for each � 2
h
�1
n�1
; n�2
2(n�1)

i
. As shown in Proposition 2, for each � 2

�
n�2
2(n�1)

; 1
i
, the property

is violated.10 Thus, it remains to show that the property is also violated for any � =2
�
�1
n�1
; 1
�
.

To do so, consider, again, the same problem as above. Then, as U(A) = (100; 100; 100) and

CD(A) = (�300; 300; 300), it follows that (1��)U1(A)+�CD1(A) = 100� 400� < 0, for each

� > 1. Similarly, (1� �)U2(A) + �CD2(A) = 100 + 200� < 0, for each � < �
1
2
= � 1

n�1
.

9Note that those rules correspond precisely with the UE-family of rules.
10Note that those rules correspond precisely with the EC-family of rules.

25



Statements (g) and (h) are straightforward consequences of Proposition 2. �

7.2 Extra material

We now study which speci�c rule within the UC-family could be a majority winner for each

problem. We obtain three di¤erent scenarios, depending on the characteristics of the problem

at stake. For some problems, only the uniform rule is a majority winner. For some other

problems, only concede-and-divide is a majority winner. For the remainder of the problems,

each rule within the family is a majority winner.

For each A 2 P, we consider the following partition of N , with respect to the average

claim (��): Nl (A) = fi 2 N : �i < ��g, Nu (A) = fi 2 N : �i > ��g, and Ne (A) = fi 2

N : �i = ��g. That is, taking the average claim (within the tournament) as the benchmark

threshold, we consider three groups referring to individuals with claims below, above, or exactly

at, the threshold. When no confusion arises, we simply write Nl, Nu; and Ne. Note that

n = jNlj+ jNuj+ jNej.

Proposition 6 Let A 2 P. The following statements hold:

(i) If 2jNlj > n, then U (A) is the unique majority winner.

(ii) If 2jNuj > n, then CD (A) is the unique majority winner.

(iii) Otherwise, each UC� (A) is a majority winner.

Proof. Let 0 � � � 1, and A 2 P. For each i 2 N ,

UC�i (A) =
jjAjj

n
+ �

n� 1

n� 2
(�i � �) :

If �i > ��, then UC�i (A) is an increasing function of �, thus maximized at � = 1. This

implies that, for each i 2 Nu, CDi(A) is the most preferred outcome (among those provided by

the family).

If �i < ��, then UC�i (A) is a decreasing function of �, thus maximized at � = 0. This

implies that, for each i 2 Nl, Ui(A) is the most preferred outcome (among those provided by

the family).

If �i = ��; then UC�i (A) =
jjAjj
n
for each � 2 [0; 1] : This implies that, for each i 2 Ne, all

rules in the family yield the same outcome.

26



From the above, statements (i) and (ii) follow trivially. Assume, by contradiction, that

statement (iii) does not hold. Then, there exists A 2 P and � 2 [0; 1] such that UC� is not a

majority winner for A. Thus, we can �nd �0 2 [0; 1] such that UC�
0

i (A) > UC
�
i (A) holds for

the majority of the teams. We then consider two cases:

Case �0 > �.

In this case, UC�
0

i (A) > UC
�
i (A) if and only if i 2 Nl: Now,

jNlj =
���
n
i 2 N : UC�

0

i (A) > UC
�
i (A)

o���

>
���
n
i 2 N : UC�

0

i (A) � UC
�
i (A)

o���

= jNuj+ jNej

which is a contradiction.

Case �0 < �.

In this case, UC�
0

i (A) > UC
�
i (A) if and only if i 2 Nu: Now,

jNuj =
���
n
i 2 N : UC�

0

i (A) > UC
�
i (A)

o���

>
���
n
i 2 N : UC�

0

i (A) � UC
�
i (A)

o���

= jNlj+ jNej

which is a contradiction.

Proposition 6 implies that if the distribution of claims is skewed to the left (i.e., the median

claim is below the mean claim), then the uniform allocation (the most equal allocation within

the family) is the majority winner, whereas if it is skewed to the right (i.e., the median claim

is above the mean claim), then the concede-and-divide allocation (the most unequal allocation

within the family, as proved below) is the majority winner. If it is not skewed, then any

compromise allocation can be a majority winner.

The single-crossing property also guarantees that the social preference relationship obtained

under majority voting is transitive, and corresponds to the median voter�s. In our setting,

the median voter corresponds to the team with the median overall audience (claim). Thus,

depending on whether this median overall audience is below or above the average audience, the

median voter�s preferred rule (and, thus, the majority winner) will either be the uniform rule

or concede-and-divide. In other words, a tournament with a small number of very strong teams
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(i.e., with very high claims in relative terms) will proclaim the uniform allocation (the one

favoring weaker teams more within the family) as the majority winner, whereas a tournament

with a small number of very weak teams (i.e., with very small claims in relative terms) will

proclaim the concede-and-divide allocation (the one favoring stronger teams more within the

family).

Corollary 4 Let A 2 P be such that n is odd. The following statements hold:

(i) If �m < ��, then U(A) is the unique majority winner.

(ii) If �m > ��, then CD(A) is the unique majority winner.

(iii) If �m = ��, then any UC
�(A) is a majority winner.

Proof. If �m < ��, then jNlj � m. Hence 2jNlj > n. By Proposition 6, statement (i) holds.

If �m > ��, then jNuj � m. Hence 2jNuj > n By Proposition 6, statement (ii) holds.

If �m = ��, then jNlj < m; jNuj < m; and jNej > 0. Hence, we are in case (iii) of the

statement of Proposition 6, which concludes the proof.

Corollary 5 Let A 2 P be such that n is even. The following statements hold:

(i) If �n+2
2
< ��, then U(A) is the unique majority winner.

(ii) If �n

2
> ��, then CD(A) is the unique majority winner.

(iii) If �n

2
� �� � �n+2

2
, then any UC�(A) is a majority winner.

Proof. If �n+2
2
< ��, then jNlj �

n+2
2
. Hence 2jNlj > n. By Proposition 6, statement (i) holds.

If �n

2
> ��, then jNuj �

n+2
2
. Hence 2jNuj > n. By Proposition 6, statement (ii) holds.

Suppose now that �n

2
� �� � �n+2

2
: Then, it is enough to prove that we are in case (iii) of

the statement of Proposition 6. That is, we have to prove that neither jNlj > jNuj + jNej nor

jNuj > jNlj+ jNej hold. We consider several subcases:

1. If �� = �n

2
, then jNlj <

n
2
, jNuj �

n
2
and jNej > 0.

2. If �n

2
< �� < �n+2

2
, then jNlj =

n
2
, jNuj =

n
2
and jNej = 0.

3. If �� = �n+2
2
, then jNlj �

n
2
, jNuj <

n
2
and jNej > 0.

In either case, the desired conclusion holds.
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