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Abstract

We propose a new channel for the transmission of monetary policy shocks, the
coordination channel. We develop a New Keynesian model in which bank lending
is strategically complementary. Banks do not observe the distribution of loans but
infer it using Gaussian signals. Under this paradigm, expectations of tighter credit
conditions reduce banks’ lending response to monetary shocks. As a result, lack of
coordination and information about other banks’ actions dampen monetary transmis-
sion. We test these predictions by constructing a dataset that links the evolution of
interest rates to firms’ bank credit relationships in India. Consistent with our model,
we find that the cross-sectional mean and dispersion of lending rates, which capture
the expected value and the precision of the signals of credit extended by other banks,
are significant predictors of monetary transmission. Our quantitative results suggest
that lending complementarities reduce monetary transmission to inflation and output
by about a third.
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1 Introduction

Multiple banking and loan syndications are common features of corporate lending.

In such arrangements, creditors face a coordination problem: fear of premature foreclo-

sure by other banks may lead to pre-emptive action, undermining the project (Morris

and Shin, 2004). Accounts of past financial crises emphasize coordination failure among

lenders (Radelet and Sachs, 1998; Fischer, 1999; Bernanke, 2018). Despite the salience of

this problem, it has received less attention from the literature on monetary policy.

In this paper, we argue that the lack of coordination in bank lending dampens mone-

tary transmission. Theoretically, we show that a coordinated response of credit to a mone-

tary policy shock is larger than the uncoordinated benchmark. Empirically, we document

a muted response of lending rates to policy rate changes when banks expect credit condi-

tions to be tighter, which dampens transmission to inflation and output. Quantitatively,

we find that this coordination channel can have large and persistent macroeconomic ef-

fects.

Our model embeds banks linked through firms’ credit relationships in a standard New

Keynesian (NK) framework. Capital-intensive projects in the real sector are financed via

bank debt. The probability that these projects are successful is increasing in the capital

raised. Monetary policy shocks are transmitted to the real sector via changes in the pol-

icy rate, i.e., the interest rate at which commercial banks borrow from the central bank.

Banks cannot observe interest rates offered by other members of the loan syndicate but

instead observe a signal with Gaussian noise. Lastly, lending costs are convex in loans

and multiplicatively increasing in loans and the policy rate.

Under this paradigm, we argue that bank coordination acts as a propagation mech-

anism for monetary transmission. We analytically show that the pass-through of policy

rate changes to commercial bank lending is dependent on the cross-sectional mean and

dispersion of lending rates. In our framework, the probability of successful project im-

plementation is conditional on the total credit extended to the project. Thus, the marginal

benefit of lending is additively increasing in individual loans and the expected lending

by other banks. Moreover, the marginal cost of lending is multiplicatively increasing in

individual loans and the policy rate. Together, these conditions imply that variations in

the policy rate change individual lending in proportion to the expected credit extended

by other banks. As a result, monetary transmission is higher when expected aggregate

credit is higher, or, equivalently, when the cost of credit (i.e., the lending rate) is lower.

Moreover, since signals of loans extended by other banks are Gaussian, monetary trans-

mission is increasing (decreasing) in the precision (variance) of these signals.
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We test these predictions using Indian linked bank-firm data merged with informa-

tion on interest rates. In 2016, the monetary policy regime changed to a Marginal Cost

of Funds based Lending Rate (MCLR) regime to increase transparency. The MCLR is a

tenor-linked internal benchmark determined by the bank depending on the period left

for the repayment of a loan, and serves as the minimum interest rate that a bank can lend

at. Our focus on the MCLR is conducive to our identification strategy. The MCLR does

not include the premium charged by banks on lending to risky borrowers. Thus, it cir-

cumvents concerns about credit rationing being a potential explanation for the rigidity of

credit. Moreover, since lending complementarities influence outcomes via multiple bank-

ing, the network of such arrangements plays a crucial role in our analysis. To capture this

aspect, we infer the multiple banking network using granular data on firms’ credit rela-

tionships. Employing measures of the centrality of this network, we proxy the exposure

of each bank to beliefs about lending by other connected banks.

Our empirical analysis in the cross-section of banks supports the hypothesis that bank

coordination propagates the credit channel of monetary policy. In particular, we esti-

mate the effect of the first two moments of the cross-sectional distribution of the MCLR

on monetary transmission. Our static estimates from a fixed effects model suggest that

the cross-sectional mean and dispersion of lending rates significantly reduce the pass-

through of the Repo rate to the MCLR. Moreover, our dynamic estimates from a Panel

VAR show that these effects persist for a few months.

We conduct an additional robustness test of our findings to address endogeneity con-

cerns. A potential problem in our empirical strategy is the collinearity of lending rates

and policy rates. To circumvent this issue, we exploit an institutional change that led to a

substantial reduction in average lending rates to infer the effect of lending rates on mon-

etary transmission. The surprise demonetization in India forcefully increased deposits in

the banking system, which exerted downward pressure on lending rates. We show that

this period was associated with increased monetary transmission.

The foregoing analysis is qualitative, and leaves open the question of how important is

the coordination channel relative to the traditional channel of monetary transmission. We

answer this question by structurally estimating our model. In the model, as in the data,

the impact of an increase in the policy rate has a muted effect on output and inflation

when bank lending exhibits strategic complementarities. Our baseline estimates suggest

that lending complementarities reduce monetary transmission to inflation and output by

about a third.

Related Literature: Our paper lies at the nexus of two disparate strands of research:

(i) monetary transmission, and (ii) bank coordination.
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Traditional monetary theory has ignored the role of bank coordination. Existing theo-

ries of monetary transmission via bank lending operate through three channels.1 The first

is the bank reserves channel, which focuses on the role of reserves in determining the vol-

ume of demand deposits and, thus, bank lending (Bernanke and Blinder, 1988; Kashyap

and Stein, 1995). The second is the bank capital channel in which an increase in nomi-

nal interest rates can adversely affect maturity-mismatched bank balance sheets featur-

ing long-duration nominal assets and short-duration nominal liabilities (Van den Heuvel

et al., 2002; Bolton and Freixas, 2000; Brunnermeier and Sannikov, 2016; Di Tella and

Kurlat, 2017). The third is the market power channel in which policy rate changes incen-

tivize banks to change markups on deposits, thereby affecting loanable funds (Scharfstein

and Sunderam, 2016; Drechsler et al., 2017).2 We contribute to this literature by presenting

a new mechanism for monetary transmission: banks’ motives to coordinate lending.

There is a burgeoning body of work that empirically investigates the coordination

problems associated with multiple banking. Brunner and Krahnen (2008) provide indi-

rect evidence of coordination motives among creditors. Chen et al. (2010) identify the

effect of strategic complementarities in outflows from mutual funds by showing that the

sensitivity of outflows to bad performance is stronger in funds that exhibit stronger strate-

gic complementarities. Hertzberg et al. (2011) use a natural experiment from Argentina

to show that lenders reduce credit in anticipation of other lenders’ reactions to the nega-

tive news about the firm. Our analysis adds to this literature by examining the impact of

coordination motives among creditors on monetary transmission.

Our paper is also related to the literature on the of role of financial intermediaries

in the propagation of monetary policy shocks, which started with Bernanke and Gertler

(1995).3 They argue that information asymmetries between borrowers and lenders and

the resulting agency problems translate into a wedge between the cost of external and

internal finance. In a similar vein, we argue that the lack of coordination amongst lenders

can drive a wedge between the policy rate and lending rates. In Curdia and Woodford

(2010), as in our model, banking matters for transmission, and there can be imperfect

pass-through from the policy rate to lending rates. In their model, the wedge between

borrowing and lending rates stems from the assumption that banks incur a resource cost

when making loans, and that some loans will not be repaid. In our model, in contrast,

1See Christiano et al. (1999) for a survey on the literature on monetary policy transmission.
2The implication of passthrough frictions on credit provision in these models differs starkly from that in

our framework. Imperfect competition improves credit provision by raising the net interest margin (Duffie
and Krishnamurthy, 2016). In contrast, coordination failure hampers credit provision.

3See Beck et al. (2014) for a survey. Some recent examples in this growing literature include Christiano
et al. (2014), Ireland (2014), Del Negro et al. (2017), Brunnermeier and Koby (2018), and Piazzesi et al. (2018).
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credit spreads are a result of coordination failures. On a related note, Brown et al. (2009)

show that information sharing is associated with improved availability and lower cost

of credit to firms. We contribute to this literature by showing that information sharing

across banks can increase monetary transmission when bank lending is uncoordinated.

There is strong evidence that the transmission of policy rate changes to these macroe-

conomic variables is weak in developing countries (Montiel et al., 2010; Davoodi et al.,

2013). Moreover, Montiel et al. (2010) argue that the bank lending channel is likely to be

the dominant channel for monetary transmission in developing countries and find this

channel either weak or unreliable. Sengupta (2014) and Mishra et al. (2016) examine the

strength of monetary transmission in India using a structural VAR methodology popu-

larized in this literature. They find that the transmission of monetary policy shocks to

lending rates is partial. Our explanation for weak monetary transmission rests on the

bank lending channel, which has empirical relevance in India.

The remainder of the paper is structured as follows. Section 2 presents a simple model

that provides intuition linking bank coordination and monetary transmission. Section 3

describes the institutional background. Sections 4 and 5 describe our data and empirical

work. Section 6 quantitatively illustrates the implications of lending complementarities

on the transmission of monetary policy shocks to inflation and output. Section 7 offers

concluding remarks.

2 Model

In this section, we embed banks that feature lending complementarities in a NK

model. In doing so, we adapt the conceptual framework of Hertzberg et al. (2011) to

examine the effects of bank coordination and incomplete information on monetary trans-

mission. Since our eventual goal is to determine the effect of lending complementarities

and bank coordination in a standard monetary policy framework, the behaviors of house-

holds, firms, and the monetary authority in our model purposefully mimic that in the NK

model. The novelty of our framework stems from commercial banks’ behavior, and this

building block will be the focus of much of our analysis. In our model, firms operate

labor-intensive projects while banks finance capital-intensive projects.

2.1 Households

There are a continuum of households of unit measure. We assume preferences of the

representative household are of the following form:

u(Ct, Ht) =
C

1−γ
t

1 − γ
− χ

H
1+ϕ
t

1 + ϕ
.
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Taking prices as given, households maximize the expected present discounted valued of

utilities:

max
Ct,Ht,Bt

Et ∑
τ>0

βτu(Ct+τ, Ht+τ),

where β ∈ (0, 1) denotes the rate of time-preference and Ct ≡
( ∫ 1

0 Ct(i)1−1/ǫdi
) ǫ

ǫ−1 . Here

Ct(i) represents the quantity of good i consumed by the household in period t. House-

holds face the following budget constraint:

∫ 1

0
Pt(i)Ct(i)di + Bt = Rt−1Bt−1 + WtHt.

In addition to the consumption/savings and labor supply decisions, households allocate

their consumption expenditures among the different goods. This requires that consump-

tion expenditures
∫ 1

0 Pt(i)Ct(i)di be minimized to achieve a given level of consumption

index Ct. The solution to this cost minimization problem yields the following set of de-

mand equations:

Ct(i) =

(
Pt(i)

Pt

)−ǫ

Ct ∀i ∈ [0, 1],

where Pt = [
∫ 1

0 Pt(i)1−ǫdi]
1

1−ǫ ].

2.2 Firms

There are a continuum of firms of unit measure. Each firm produces a differentiated

good, but they all use an identical technology, represented by the production function:

Yt(i) = Nt(i) ∀i ∈ [0, 1].

Following Calvo (1983), all firms cannot optimally set prices. In particular, a fraction

θ ∈ (0, 1) of firms are not allowed to reset prices. For these firms, Pt = Pt−1. For the

remaining firms, Pt = P⋆

t where P⋆

t denotes the optimal price set by the representative

firm given the nominal rigidity. That is,

Pt = (θP1−ǫ
t−1 + (1 − θ)P⋆

t
1−ǫ)

1
1−ǫ .

Firms solve for this price using:

max
P⋆

t

Et ∑
τ>0

Qt,t+τ[P
⋆

t − MCt+τ]Yt+τ|t
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subject to the sequence of demand constraints:

Yt+τ|t =

(
P⋆

t

Pt+τ

)

Ct+τ ∀τ ≥ 0,

where Qt,t+τ ≡ βτ(Ct+τ/Ct)−γ(Pt/Pt+τ) is the stochastic discount factor for households,

and MCt denotes the nominal marginal cost of producing one unit of goods.

2.3 Banks

There are N banks where 1 < N < ∞. We consider a setting in which all banks pool

resources to finance a single capital-intensive project, an assumption we relax in Section

2.6.3. Let Li,t be the amount lent by bank i in period t, where 0 < ∑i Li,t < 1 ∀t. The

gross interest rate on each loan extended by bank i in period t is assumed to be Ri,t ≥ 1.

In contrast to Hertzberg et al. (2011), we allow the interest rate to respond to changes in

the supply of loans. The loan either pays off Ri,tLi,t or, if the firm defaults on the loan, it

pays zero. The probability that an individual loan is repaid is increasing and concave in

aggregate credit. In particular, we assume that the probability that the project is successful

is given by P(∑j 6=i Lj,t + Li,t) = (∑j 6=i Lj,t + Li,t)
µ, µ ∈ (0, 1], which is increasing and

concave in aggregate credit. This captures each bank’s incentive to coordinate: if one

bank lowers the amount it is willing to lend, this can disrupt the operations of the firm

and hence lower the firm’s ability to pay its other loans.4 Banks cannot observe loans

offered by other members of the syndicate but instead observe only a noisy signal given

by:

st = ∑
j 6=i

Lj,t + ηt, where ηt ∼ N (0, σ2).

Further, suppose the bank’s prior is given by N (0, σ2
p).

5 This implies that the probability

that bank i will receive its payoff is increasing in the amount of credit extended by bank j

weighted by the precision of the estimate.

While Hertzberg et al. (2011) consider an exogenous cost function to get an interior

solution, we consider a setting in which the cost of lending depends on the policy rate set

by the central bank. We denote the cost function by c(L, p) > 0 where cL, cLL, cp > 0.

Assumption 1. c(L, p) is multiplicatively increasing in L and p.

A special case that we pay particular attention to is c(L, p) = L2 p
2α . This term can

4This formulation saturates the density of the multiple banking network. We relax this assumption in
the empirical analysis.

5Here we assume that the prior mean equals zero to analytically obtain a sharp result. However, this
assumption is not imperative for the main mechanisms of the model to be operational.
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also capture intermediation costs for lending to informal enterprises that are relatively

opaque. The existing literature treats these costs as increasing and convex function of the

volume of loans intermediated. The convexity of these costs stems from the assumption

that as banks seek to expand the volume of loans beyond well-capitalized enterprises, the

marginal borrower is progressively in a weaker position to offer collateral and is progres-

sively less transparent (Mishra et al., 2014).

The objective of bank i is

P
(
Ei[∑

j 6=i

Lj,t | st] + Li,t

)
Li,tRi,t − c(Li,t, pt).

2.4 Monetary Authority

To close the model the monetary policy authority sets its interest rate according to a

standard Taylor Rule:

pt

p̄
=

(
pt−1

p̄

)ρ{(
πt

π̄

)φπ(
Yt

Ȳ

)φy}1−ρ

eǫ
p
t

where ǫ
p
t is an AR(1) monetary policy shock, and p̄, π̄, and Ȳ are steady state values the

policy rate, the inflation rate and GDP. The central bank reacts to the deviation of the

inflation rate and the GDP from their steady state values in a proportion of φπ and φy,

and smoothes its rate of doing so in a proportion of degree ρ.

2.5 General Equilibrium

Market clearing in the goods market requires Yt(i) = Ct(i), ∀i ∈ [0, 1] ∀t ≥ 0. Thus, it

follows that

Yt = Ct ∀t ≥ 0.

Equilibrium in the money market necessitates

Lt = Bt ∀t ≥ 0. (1)

Market clearing in the labor market requires

Ht =
∫ 1

0
Nt(i)di.

We present a log-linearized version of a closed economy that can be characterized by

four equations in four variables, the output gap (ŷt), the inflation rate (π̂t), the policy
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rate (p̂t), and the nominal interest rate (r̂t). We omit standard derivations for the first

three equations; see Galı́ (2008) for details. We focus our attention on the fourth equation,

which is novel and emerges in our framework due to the presence of lending comple-

mentarities. This equation determines the wedge between lending rates and the policy

rate in a symmetric uncoordinated lending equilibrium.

The first equation is the NK Phillips’ Curve, which can be derived by the aggregation

of the supply decision of firms. This equation links current inflation to future expected

inflation and the output gap:

π̂t = βEt[π̂t+1] + κŷt

where

κ =
(1 − θ)(1 − θβ)

θ
(γ + ϕ).

The second equation is the dynamic IS Curve, which can be derived from the Euler

equation and the resource constraint. This equation describes the intertemporal allocation

of consumption:

ŷt = Et[ŷt+1]−
1

γ
(r̂t − Et[π̂t+1]),

The third equation is the monetary policy rule, which links the policy rate to the inflation

rate and to the output gap:

p̂t = ρ p̂t−1 + (1 − ρ)[φππ̂t + φyŷt] + ǫ
p
t .

Here ǫ
p
t = ρpǫ

p
t−1 + η

p
t , where η

p
t ∼ N (0, σ2

p). In the standard NK model, policy rate

changes are passed completely to the nominal interest rate, i.e., p̂t = r̂t ∀t. Strategic

complementarities in lending drive a wedge between this relationship.

Proposition 1. Suppose savings is a fixed fraction of output and information is complete. Then

in all symmetric uncoordinated lending equilibria:

r̂t = p̂t + (1 − µ)ŷt.

Proposition 1 reveals that lending complementarities introduce a wedge between

changes in policy rates and changes in nominal interest rates.6 This wedge dampens mon-

etary transmission to macroeconomic variables. This effect emerges because an increase

in the policy rate tends to be contractionary, while a decrease tends to be expansionary.

Thus, Proposition 1 implies that, relative to their steady state values, a unit deviation in

6The assumption of savings being a fixed fraction of output keeps the model tractable. It helps maintain
a system of equations in output, inflation, and interest rate deviations from steady states.
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the policy rate results in less than a unit deviation in the lending rate. The log-linearized

version of the economy, however, masks the effect of beliefs on monetary transmission.

We address this using a partial equilibrium analysis in the following sections.

2.6 Partial Equilibrium

We assume a downward-sloping demand for loans, LD
i,t/Rω

i , where LD
i,t > 0 ∀i and ω >

0. Equilibrium in the loanable funds market requires Li,tR
ω
i,t = LD

i,t. This implies a negative

relationship between the supply of loans and lending rates. Under this assumption, we

can infer the relationship between bank lending rates and monetary policy shocks from

the response of loans to these shocks, which will be useful for our empirical analysis.

2.6.1 Symmetric Equilibria with Complete Information

In this section, we study the effect of bank coordination on monetary transmission.

We restrict attention to symmetric equilibria with complete information as it allows us

to get a stark result: monetary transmission is more pronounced when banks act in a

coordinated fashion.

Proposition 2. In all symmetric equilibria with complete information:

(i) The pass-through of a monetary policy shock to aggregate credit is higher when banks coor-

dinate lending.

(ii) The difference between the credit response of a monetary policy shock in the coordinated and

uncoordinated equilibrium is increasing in N.

The intuition behind the second result in Proposition 2 is that as the number of the

banks increases in a complete financial network, the exposure of banks to uncoordinated

actions increases, which reduces the transmission of monetary policy shocks.

2.6.2 Incomplete Information

For tractability, we assume N = 2 and consider the case in which the probability of

successful project implementation is linearly increasing in aggregate credit, i.e., P
(
Ei[Lj,t |

st] + Li,t

)
= Ei[Lj,t | st] + Li,t. We focus on non-coordinated equilibria, and investigate the

effect of bank coordination on monetary transmission when banks update their beliefs

using Bayes’ Rule.

Assumption 2. α <
pt

2Ri,t
∀i ∀t.

Assumption 2 ensures that the solution to the bank’s problem is interior and well

defined.

10



Proposition 3. Suppose µ = 1 and information is incomplete. Then

(i) ∂Li,t(L, σ)/∂p < 0 ∀(L, σ) ≫ 0 ∀t, (2)

(ii) | ∂Li,t(L, .)/∂p | > | ∂Li,t(L̃, .)/∂p | ∀L > L̃ ∀t, (3)

(iii) | ∂Li,t(., σ)/∂p | < | ∂Li,t(., σ̃)/∂p | ∀σ > σ̃ ∀t. (4)

The first result in Proposition 3 shows that banks reduce lending in response to an

increase in the policy rate. The second result in Proposition 3 shows that lower costs of

financing amplify monetary transmission. The impact of a policy rate change on loans

granted by a particular bank and, thus, on its lending rate, is increasing in the expected

level of credit extended by other banks. That is, the higher (lower) the loans (interest

rates) offered by bank j 6= i, the larger the transmission of policy rates to the loans (interest

rates) offered by bank i. The third result in Proposition 3 shows that a higher dispersion in

lending rates also dampens monetary transmission. The impact of a policy rate change on

the loans granted by a particular bank is decreasing in the dispersion of credit extended

by other banks. There is no effect in the extreme case when other bank lending rates are

completely uninformative, i.e., when σ = ∞. This effect emerges as a larger variance in

lending rates reduces the precision of the signal of other banks’ lending practices, which

effectively dampens complementarity in lending.

Figure 1 illustrates these results. Suppressing the time notation, the marginal benefit

of loans by bank i is given by Ri(E[Lj] + 2Li), which is additively increasing in E[Lj]

and Li. Thus, increasing the expected credit extended by other banks only increases the

intercept of the marginal benefit curve, shifting it upwards. The marginal cost of loans is

given by cL(Li, p), which, by assumption, is multiplicatively increasing in its arguments.

Thus, an increase in p increases the slope of the marginal cost curve. This implies that

policy rate changes have a larger effect on lending when the expected credit extended by

other banks is higher, or equivalently, when the mean and precision of these signals are

higher. Notice that both our results hinge on the assumption that the cost of loans, c(.),

is convex in the level of loans. If the cost was linear instead, then monetary transmission

would not be dependent on lending moments.

Figure 2(b) depicts monetary transmission, as measured by the change in lending in

response to a change in the policy rate, in (i) an uncoordinated equilibrium under incom-

plete information, (ii) an uncoordinated equilibrium under full information, and (iii) a

coordinated equilibrium. There are three takeaways from this exercise. First, monetary

transmission is highest in the coordinated equilibrium. Second, incomplete information

in the uncoordinated equilibrium dampens monetary transmission. Third, the anemic re-
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sponse of lending to a policy rate change persists for a few periods but recovers as banks

learn more about aggregate credit; see Figure 2(a).

2.6.3 Network Effects

It is useful to consider a static environment in which N banks finance M projects to

further illustrate the role of multiple banking linkages in shaping monetary transmission.

Our setting is similar to Anand et al. (2012) and Acemoglu et al. (2020). They show how

the structure of financial networks shapes outcomes in a coordination game in which

banks exposed to liquidity shocks decide whether to rollover short-term credit when fac-

ing the risk of the borrower defaulting. In this section, we apply insights from their work

to study the network effects of monetary policy shocks on bank lending.7

For tractability, we assume the curvature of lending complementary is fixed to unity.

Let Lji denote bank i’s loan for project j. We denote the fixed return of bank i from project

j by Rji. Let R̂ji ≡ Rji/p ∀i ∀j.

Proposition 4. Suppose µ = 1. Then

dLji

dp
=

α ∑k 6=i
dLjk

dp

R̂−1
ji − 2α

︸ ︷︷ ︸

Network Effect

−

{

∑
M
l=1 Lli + R̂−1

ji ∑l 6=j
dLli
dp

}

R̂−1
ji − 2α

︸ ︷︷ ︸

Direct Effect

∀i ∀j.

This expression shows how changes in policy rates translate to changes in

credit through the network of multiple banking arrangements. In particular,

−
{

∑
M
l=1 Lli + R̂−1

ji ∑l 6=j
dLli
dp

}
/(R̂−1

ji − 2α) captures the direct response to a monetary

policy shock of lending of bank i to project j. The network effect is captured by

α ∑k 6=i
dLjk

dp /(R̂−1
ji − 2α). This term links monetary transmission in one bank to monetary

transmission in other banks.

3 Monetary Policy Framework in India

The Liquidity Adjustment Facility (LAF) is a critical element of the monetary policy

framework of the RBI. Since November 2004, The RBI has used the LAF to aid banks in

adjusting any mismatches in liquidity. Under the LAF, the Reserve Bank sets its Repo

and Reverse Repo rates. The RBI’s standing facilities supplement the LAF. In principle,

7The role of networks in the propagation of monetary policy shocks is part of a growing literature. Gai
et al. (2011) and Acemoglu et al. (2015) examine how the density of the network of interbank liabilities
contributes to financial instability and shock propagation. Elliott et al. (2014) and Cabrales et al. (2017)
study how cross-holdings of different organizations’ assets can amplify external shocks. Ozdagli and Weber
(2017) argue that production networks shape the stock market response to monetary shocks.
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the reverse repo rate is a fixed distance under the repo rate, and the marginal standing

facility (MSF) rate is a fixed distance above the repo rate. In our analysis, we restrict

attention to the Repo rate.8

Since the deregulation of interest rates in 1994, the issue of transmission from the pol-

icy rate to banks’ lending rates has been a matter of concern (RBI, 2017). Upon deregu-

lation, banks were required to declare their prime lending rates (PLR) - the interest rate

charged for the most creditworthy borrowers. The PLRs of banks were inflexible, how-

ever, and the regime was eventually abandoned in favor fo the Benchmark PLR (BPLR),

which accounted for the bank-specific cost of funds, operational costs, regulatory require-

ments, and profit margins. This regime was also deemed unsatisfactory as it was not an

appropriate reflection of median lending rates.

In 2010, the base rate system (BRS) came into effect, wherein the base rate was the

minimum rate for most loans with the actual lending rate charged to the borrowers being

the base rate plus borrower-specific charge or spread. The BRS was opaque, however, and

clouded an accurate assessment of the speed and strength of the transmission (Acharya,

2017). To foster transparency and flexibility in bank lending, the RBI instituted the MCLR

system in 2016. The BPLR, the base rate and the MCLR were internal benchmarks set by

each bank for pricing of credit. However, unlike the BPLR and the base rate, the formula

for computing the MCLR is determined by the RBI. Despite these changes, transmission

remains incomplete under the MCLR system (RBI, 2017). This concern was recently reit-

erated by the RBI Deputy Governor:

“Data suggests that the pass-through from policy rate changes to bank lending rates has been slow and muted.

This lack of adequate monetary transmission remains a key policy concern for the Reserve Bank as it blunts the impact

of its policy changes on economic activity and inflation.” – Viral Acharya, Inaugural Aveek Guha Memorial

Lecture (November 16, 2017).

The MCLR is based on the cost structure of banks. In addition to operating costs, the

MCLR is determined by the cost of raising new deposits at different tenors. We view the

effects of coordination being transmitted via these borrowing costs. That is, if aggregate

credit is higher, then more projects will succeed in the real sector, leading to higher de-

posits, and lower deposit rates. The ultimate floating rate on loans imposes a premium

over the MCLR, which depends on the interest rate reset frequency of the loan and a

spread based on the borrower’s credit profile.

8An alternate specification in which the outcome variable reflects the spread between the commercial
bank lending rates and the Reverse Repo rate or the MSF rate would deliver similar results as the constant
term in our regression would simply absorb the fixed distance.
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4 Data

We construct a novel dataset that links the evolution of interest rates to firms’ bank

credit relationships in India. The sample covers the universe of banks in India. Our data

is at a monthly frequency and ranges from 2016M6-2020M2. The MCLR system only

became effective in April 2016; this institutional change restricts our sample size.

The interest rate data is extracted from individual data releases by the Reserve Bank

of India (RBI) and the Database of the Indian Economy. Figure 3 depicts the commercial

bank lending rates and the central bank policy rate over our sample period. Commercial

bank lending rates refer to the MCLR at end of month. The central bank policy rate is

the Repo Rate, which is the rate at which the RBI lends money to commercial banks in

the event of any shortfall of funds, at end of month. Two salient patterns emerge. First,

most commercial bank lending rates are considerably higher than the central policy rate,

alluding to the weakness of monetary transmission. Second, there is substantial variation

in the response of commercial bank lending rates to changes in the policy rate, alluding

to the heterogeneity in monetary transmission.

Our baseline measure of monetary transmission focuses on the wedge between the

MCLR and the Repo rate:

MTi,t = MCLRi,t − REPOt,

where i denotes the bank and t denotes the month. In our analysis, we also employ

another measure of monetary transmission: the coefficient on the first difference in REPOt

in a regression in which the first difference of the MCLRi,t is the outcome variable.

Figure 4 plots key interest rates aggregated by bank ownership. The MCLR decreased

from 9.4 percent in June 2016 to 8.3 percent in January 2018. It reverted to 8.8 percent

in January 2019, and decreased thereafter. These trends are less vivid but appear to be

present in the MCLR-Repo Spread. We argue that the evolution of this spread is not only

influenced by the cross-sectional mean of lending rates, but also its dispersion. The cross-

sectional dispersion of the MCLR for private sector banks was larger than that for public

sector banks and foreign banks at the beginning of our sample. Since then, the dispersion

in lending rates for public sector banks and foreign banks has risen substantially and

outpaced that of private sector banks. Our empirical strategy addresses these differences

using bank-specific fixed effects. Our empirical strategy also exploits the exposure of

lending rates to policy rates. We proxy this exposure using changes in the number of bids

received under the LAF. Figure 5 plots the time-series for LAF bids.

To measure exposure to lending beliefs, we exploit the granularity of Indian linked

bank-firm data from the Centre for Monitoring Indian Economy (CMIE). We restrict at-
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tention to non-financial firms’ relationships with the list of commercial banks in the RBI

sample and use the latest available estimates for each firm. There are 17,761 non-financial

firms in the pruned sample. The three largest lenders to these firms are SBI, HDFC, and

ICICI, which lend to 5591, 4645, and 3060 firms, respectively. Figure 6 depicts the distri-

bution of the number of banking relationships of non-financial firms. A typical firm in

our sample has credit relationships with about three banks on average.

We also use the data to construct the underlying network for multiple banking rela-

tionships in India. The ideal dataset for our analysis would contain information on each

firm’s loan portfolio, which would permit an examination of multiple banking connec-

tions on the intensive margin. However, the CMIE data only allows us to identify which

banks lend to the same firms. We use this data to proxy the undirected multiple banking

network. In particular, we construct the following weighted adjacency matrix

A =







A1,1 A1,2 . . .
...

. . .

A89,1 A89,89







, where Ai,j =







∑
17,761
l=1 ✶Lli>0,Ll j>0 if i 6= j

0 if i = j
.

Figure 7 depicts the multiple baking network in India. There are 89 banks in the multiple

banking network, with a total of 4818 connections. The density of this network is 61.5

percent, which suggests that multiple banking is pervasive in India. We use degree and

eigenvector centrality (C) to measure how pivotal each bank is in the network (Bavelas,

1948; Sabidussi, 1966; Freeman, 1978). Network centrality can be interpreted in terms of

the immediate risk of a bank being affected by the lending decision of other banks in the

network. In the empirical analysis, we use these measures to proxy exposure to beliefs

about lending by other banks.

5 Empirical Estimates

5.1 Identification

5.1.1 Determinacy

Models featuring strategic complementaries can lead to multiple equilibria, which

complicates identification. Ignoring multiplicity may result in misspecification and result

in inconsistent estimates (Jovanovic, 1989; Tamer, 2003). To circumvent these concerns,

we isolate the conditions under which the model delivers a unique equilibrium.

Proposition 5. Under contemporaneous data interest rate rules, a necessary and sufficient con-

15



dition for uniqueness is

κ(φπ − 1) + (1 − β)(φy + 1 − µ) > 0.

Perhaps surprisingly, the above condition for determinacy is weaker than that in the

standard NK model; see Bullard and Mitra (2002).

5.1.2 Fixed Effects

Our specification allows us to control for cross-sectional differences in the way that

banks with varying characteristics respond to monetary policy shocks. Kashyap and Stein

(2000) show that the impact of monetary policy on lending behavior is more pronounced

for banks with less liquid balance sheets. There is also strong empirical evidence that

suggests that banks with lower capital ratios grant fewer loans and take less credit risk

in response to tighter monetary conditions (Jiménez et al., 2012; Ioannidou et al., 2015).

Moreover, Acharya et al. (2020) find that well capitalized banks respond more to expan-

sionary monetary policy. Bank fixed also help to absorb any differential transmission of

monetary policy that may be present due to the risk-taking channel. Dell’Ariccia et al.

(2017) find that risk-taking by banks is negatively associated with increases in the policy

rate, and that this relationship less pronounced for banks with relatively low capital.

Bank ownership may also interact with monetary policy transmission. Bhaumik et al.

(2011) document considerable differences in the reactions of different types of banks to

monetary policy in India. Moreover, Cetorelli and Goldberg (2012) show that global oper-

ations insulate U.S. banks from changes in monetary policy. This is because global banks

can use cross-border internal funding in response to local shocks. A similar argument

applies to foreign banks operating in India. Indeed, the correlation between the Repo rate

and the MCLR for foreign banks is 0.42, compared to 0.47 for domestic banks; see Table 1

for more details. Bank fixed effects serve to absorb these differential impacts of monetary

policy.

In addition, we control for differential changes in banks’ lending opportunities. In

particular, we include bank-month fixed effects to absorb all time-varying differences be-

tween banks. This allows us to control for changes in the demand for loans across banks.

5.1.3 The MCLR and Borrower-specific Risk

One explanation for the sluggishness of bank lending could be credit rationing.9 To

limit moral hazard on the part of the borrowers, credit providers may decline to extend

9Voluminous evidence exists on formal and informal credit rationing in India, especially for smaller
firms (Banerjee and Duflo, 2001; Banerjee et al., 2004; De and Singh, 2011).
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credit beyond a certain point regardless of the credit terms. This approach focuses on

the relationships between lenders and borrowers to explain the inflexibility of lending.

We instead focus on the relationships amongst lenders to explain the rigidity in credit.

We identify this effect empirically by focusing on the MCLR instead of the weighted av-

erage lending rate (which has received more attention in previous studies on monetary

transmission in India). In particular, the MCLR does not include the premium charged

by banks on lending to risky borrowers. Thus, the distribution of risk across borrowers is

unlikely to bias our results.

5.2 Interest Rate Pass-through

5.2.1 Time-series Estimates

We first test if our predictions at the aggregate level using the following linear model:

MTk
t = αk + βk

1R̄k
t + βk

2σ(R)k
t + βk

3X t + ǫk
t . (5)

Here k ∈ {Public, Private, Foreign} denotes bank ownership. The dependent variable,

MT, is our measure of monetary transmission. We compute this using the difference be-

tween average lending rates of scheduled commercial banks and the central bank policy

rate. The main explanatory variables are average lending rates (R̄) and the cross-section

dispersion in lending rates (σ(R)). We also include a vector of time-specific controls,

which we denote as X t.

5.2.2 (Static) Panel Estimates

Specification (5) does not consider bank-wise monetary transmission, but rather looks

at aggregate level trends. Though we show that our results hold even in the aggregate

level regression, aggregation masks bank-specific trends and can lead to spurious results.

To address this concern, we construct a disaggregated panel that tracks for each bank i in

month t, the idiosyncratic wedge between the MCLR of bank i and the policy rate, as well

as the cross-sectional mean and dispersion of all other banks j 6= i. We then estimate the

following model:

MTi,t = α + β1Ci × R̄j 6=i,t + β2Ci × σ(R)j 6=i,t + β3X t + ξi + Ξi,t + ǫi,t. (6)

Here R̄j 6=i,t and σ(R)j 6=i,t respectively denote the cross-sectional mean and dispersion

of lending rates of all banks barring bank i. Bank fixed effects and bank-month fixed

effects are denoted by ξi and Ξi,t respectively.
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We also consider the following model:

∆MCLRi,t = α + β1∆REPOt × LAFt + β2∆REPOt × LAFt × Ci × R̄j 6=i,t

+ β3∆REPOt × LAFt × Ci × σ(R)j 6=i,t + β4X t + ξi + Ξi,t + ǫi,t. (7)

This specification modifies the model used in previous studies that examine the pass-

through of policy rate cuts to lending rates (Das, 2015) to incorporate interactions of the

policy rate with the moments of lending rates. We also control for the exposure of Repo

transactions. Due to the lack of data on bank-specific Repo bids, we use the aggregate

levels to measure exposure. In particular, we weight changes in the Repo rate by the total

bids received in each month (normalized by the sample mean).

5.2.3 Panel VAR

Panel VARs are a good fit for our analysis in that they are unique in their ability

to model dynamic interdependencies across interest rates, cross-sectional heterogeneity

across banks, and the evolving pattern of monetary transmission. Panel VARs have been

previously used in the literature to study the impact of monetary and fiscal shocks across

units and time; see Canova and Ciccarelli (2013) for a survey. Following Holtz-Eakin et al.

(1988), we use a panel vector autoregression (PVAR):

Y it = Y it−1A1 + X itB + ξi + eit, where

Y it = [∆MCLRit, ∆REPOt × LAFt, ∆REPOt × LAFi × R̄i 6=j,t, ∆REPOt × LAFt × σ(R)i 6=j,t]
′.

We assume that the innovations have the following characteristics: E(eit) = 0, E(e′iteit) =

Σ, and E(e′iteis) = 0 ∀t > s.

5.2.4 Potential Covariates

Maturity of Deposits: A key factor impeding quick and adequate transmission to banks’

lending rates has been long maturity profile of bank deposits at fixed interest rates. Since

retail deposits comprise the bulk of the funds of banks, transmission to banks’ MCLR is

inextricably linked to movements in the cost of such deposits (Patel et al., 2014; Acharya,

2017). In particular, a longer maturity renders lending rates more inflexible. To account

for this constraint on monetary transmission, we control for maturity of deposits using

the ratio of time deposits to demand deposits.10

10To address this issue, an external benchmark system was introduced effective October 1, 2019 for select
categories of loans under which transmission to banks’ lending rates will no longer be contingent upon
adjustment in deposit interest rates. Under the new regime, the RBI mandates all scheduled commercial
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Consistency of Monetary Policy Stance: Another confounding variable in the analysis

could be the monetary policy stance of the RBI. In particular, banks may be more willing

to pass policy rate cuts to lending rates if they believe that the policy rate cut is unlikely

to be reversed in the near future. As such, the consistency of announcements regarding

the future path of interest rates can have contemporaneous effects. During our sample

period, the monetary policy stance was changed four times: from accommodative to neu-

tral in February 2017; then to calibrated tightening in October 2018; then back to neutral

in February 2019; and to accommodative in June 2019. To capture inconsistency of the

monetary policy stance, we construct a dummy variable that equals one if the monetary

policy stance was changed in the last quarter.

Financial Repression: The transmission of monetary policy shocks may also be reduced

by legal restrictions on the interest rates (Montiel et al., 2010). The Patel Committee Re-

port (Patel et al., 2014) suggests that credit frictions are a major impediment to monetary

transmission in India. The RBI itself determines a key credit market friction. Banks in

India are subject to a statutory liquidity ratio (SLR)—a particular share of net liabilities

that banks must invest in gold and/or government approved securities. Lahiri and Patel

(2016) argue that a binding SLR may invert the monetary transmission mechanism in the

sense that a reduction in the policy rate ends up raising lending spreads. To address this

concern, we explicitly control for first differences in the SLR in our regressions but find

no evidence that the SLR affects monetary transmission.

Reserve Requirement: Monetary transmission may also be dependent on the Cash Re-

serve Ratio (CRR). The RBI mandates that a certain fraction of bank deposits be held

as reserves. The lower the CRR, the higher the liquidity with banks, which goes toward

lending. The CRR has remained steady at 4 percent over our sample period, which allows

for cleaner identification.

Regulatory Environment: Mishra et al. (2014) argue that institutional arrangements,

such as weak contract enforcement and poorly defined property rights, impede the bank

lending channel. According to the World Bank Doing Business Indicators, the number

of days to enforce contracts in India has remained steady at 1445 days over the sample

period. Thus, the effect of contract enforcement on monetary transmission is absorbed by

the constant terms in our regressions. Though we concede that institutional arrangements

would play a more prominent role in a cross-country analysis.

banks (excluding regional rural banks) to link all new floating rate personal or retail loans and floating rate
loans to micro and small enterprises (MSEs) to the policy repo rate or any other benchmark market interest
rate published by Financial Benchmarks India Private Ltd. (FBIL).
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5.2.5 Results

Static Estimates: Table 2 reports the OLS estimates for the aggregate level regression.

When we consider the full sample, the estimates suggest that the mean and dispersion of

lending rates significantly reduce the wedge between lending rates and the policy rate.

When we split the sample into private and non-private banks, we find that the effect of

mean lending rates is not statistically away from zero. However, the effect of dispersion

in lending rates (which measures the lack of precision of the signal of the aggregate cost

of credit) remains positive and statistically significant. Figure 8 graphically depicts the

positive relationship between the first two moments of the distribution of lending rates

and monetary transmission.

Table 3 reports the panel estimates in bank-month units using our first measure of

monetary transmission, that is, the spread between the MCLR and the Repo rate. These

results are consistent with the findings from the aggregate level regressions. Table 4 re-

ports the panel estimates using the alternate specification. The coefficient on the interac-

tion term featuring the cross-sectional mean of other bank lending rates is negative and

statistically significant. This supports our baseline estimates and is consistent with the hy-

pothesis that higher lending rates offered by other banks dampen monetary transmission.

However, the coefficient on the interaction term featuring the cross-sectional dispersion

of other bank lending rates do not support our baseline results.

Dynamic Estimates: Figure 9 depicts the impulse response function of changes

in the MCLR to a monetary policy shock in the PVAR specification with ordering

[∆MCLR ∆REPO × LAF], i.e., our baseline PVAR specification without any interaction

terms or exogenous controls.

Figure 10 decomposes these effects.11,12 The estimated effects of policy rate changes

and the interaction terms have signs that are consistent with our baseline static estimates.

The estimated effects of Repo rate changes and the interaction term featuring the cross-

sectional average of other banks’ lending rates are significant, both with and without

the exogenous controls. The estimated effect of the interaction term featuring the cross-

sectional dispersion of other banks’ lending rates is significant without controls, but be-

comes imprecise when we control for the time deposits share, the consistency of the mon-

etary policy stance, and the SLR. Moreover, these effects persist for about 2-3 months post

the shocks.

11We find evidence that all past values are useful in prediction using a VAR-Granger causality Wald test
(Granger, 1969).

12The model is stable as all moduli of the companion matrix based on the estimated parameters are
smaller than one. Using levels instead of percent first differences, in contrast, fails the unit root test and
yields explosive dynamics.
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5.2.6 Inferring Network Effects

The graph of multiple banking relationships in India features a core-periphery (CP)

architecture. Such networks have received considerable attention in the literature on fi-

nancial networks. Galeotti and Goyal (2010), Lux (2015), and Van der Leij et al. (2016)

provide a rationale for the emergence of such a structure using network formation the-

ory. Craig and Von Peter (2014) provide evidence on the existence of CP networks in in-

terbank markets. Our findings reveal that the network of multiple banking relationships

also exhibits a similar structure. We use this structure to investigate the key mechanism

of the model. Specifically, we ask if the coordination channel is more pronounced in the

densely connected core relative to the sparsely connected periphery.

Following Carmi et al. (2007) and Garas et al. (2012), we use a k-shell decomposition

to identify the set of core banks in the multiple baking network. We begin by eliminating

all unconnected banks. Then, in each iteration, we discard the least connected bank.13

That is, we eliminate the bank with the lowest eigenvector centrality in the connected

network. We repeat the process until we arrive at the smallest non-empty subgraph of

connected banks. After this iterative pruning process is completed, all remaining nodes

in the subgraph have an eigenvector centrality of 0.15. The core group of the multiple

banking network comprises of 47 banks. We refer to the set of banks that exclude the core

as the periphery.

We re-run specification (6) using sub-samples of core and periphery banks. Figure 11

reports the estimated effect on monetary transmission (as measured by credit spreads) of

the mean and dispersion of lending rates of other banks in the respective sub-sample. The

results suggest that coordination plays a larger role in shaping monetary transmission in

more connected banking networks. The mean effects for core banks are about 2.5 times as

large as for periphery banks, while the dispersion effects are about five times as large.

5.2.7 Robustness: Endogeneity Concerns

One potential problem in our baseline empirical strategy is the collinearity of lending

rates and policy rates. To circumvent this issue, we exploit an institutional change that

led to a substantial reduction in average lending rates to infer the effect of lending rates

on monetary transmission.

Demonetization led to a sweeping decrease in bank lending rates. The average MCLR

decreased by 4 percent m-o-m in January 2017, from 9.1 percent to 8.7 percent. The reduc-

tion in lending rates was consistent across private, public, and foreign banks; see Figure 4.

The reason for this decrease in lending rates was that the regulation forcefully increased

13If the set of least connected banks is a non-singleton, we discard in alphabetical order.
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deposits in the banking system. This exerted downward pressure on deposit rates, aiding

balance sheet positions of banks, and allowed banks to lower their lending rates. Chanda

and Cook (2019) find that deposit growth during demonetization was accompanied by

subsequent increases in lending by the banking system, and higher economic activity.

We argue that part of this expansionary effect could have been driven by an increase in

monetary transmission.

To estimate the impact of demonetization on lending rates and monetary transmission,

we use a Regression Discontinuity in Time (RDiT) design to exploit temporal variation.

The fact that demonetization was an unexpected shock to the banking system is critical

to this identification strategy. We restrict attention to levels instead of first differences

here as the Repo rate remained steady at 6.25 percent during demonetization, leaving no

variation to exploit when measuring the change in monetary transmission during this

period. In particular, we consider the following specification:

MCLRi,t = α+ β1REPOt × LAFt + β2✶(D)t ×REPOt × LAFt + β3✶(D)t + β4X t + ξi + ǫi,t.

(8)

Here ✶(D) denotes an indicator variable for observations after December 2016, which

was the deadline to deposit old currency notes, and before April 2017, which is when

the transfer limits on cash withdrawals that were imposed during demonetization were

lifted, and deposits could be taken out of the banking system.14

Table 5 reports the estimation results. Consistent with our hypothesis, the estimate

for β3 is negative and significant, suggesting that demonetization significantly decreased

lending rates. Moreover, the estimate for β2 is positive and significant, which indicates

that this period witnessed increased monetary transmission.

5.3 Implications for Inflation and Output

In this section, we estimate the effect of bank coordination on monetary transmission

to inflation and output. In particular, we use the following model:

YY
t = αY + βY

1 Ŷt + βY
2 ėt + βY

3 ∆REPOt × LAFt + βY
4 ∆REPOt × LAFt × R̄j 6=i,t (9)

+ βY
5 ∆REPOt × LAFt × σ(R)j 6=i,t + βY

6 X t + ξi + Ξi,t + ǫi,t, ∀(Y, Ŷ) ∈ (ẏ, π) : Y 6= Ŷ.

Here ẏ denotes month-on-month output growth, which is proxied by the growth rate of

the Index of Industrial Production. The inflation rate, π, is calculated using month-on-

month CPI growth.

14We also consider a specification in which the indicator variable is active after the announcement of
Demonetization, and obtain similar conclusions.
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In addition to the standard set of controls, we also control for the growth in the

monthly average INR-USD exchange rate, which we denote as ė. The exchange rate

could potentially affect both independent as well as dependent variables in our base-

line specification. Concerning the outcome variables, there exists an extensive literature

that documents the incidence of changes in the exchange rate on growth, which operates

via the current account. The underlying mechanism is simple: changes in the exchange

rate affects the terms of trade and, thus, the export-import mix, which in turn affects out-

put and inflation. Concerning the explanatory variables, the Uncovered Interest Parity

(UIP) suggests that expected future changes in the nominal exchange rate are related to

the difference between domestic and foreign interest rates. Barring episodes in which

the Indian Rupee was sterilized, we suspect that the link between interest rates and the

exchange rate has been tight. In this case, the correlation between exchange rates (a po-

tential component of the error term) and interest rates (explanatory variable) could bias

the point estimates.

The results in Table 6 show the effects of lending rate moments on the transmission

of monetary policy shocks to inflation and output. The estimated effects of an increase in

the policy rate on inflation and output are negative and significant. Our empirical results

also suggest bank coordination dampens monetary transmission to inflation and output.

In particular, the coefficients on the interaction terms featuring the mean and dispersion

of lending rates are positive and significant.

6 Quantitative Results

In this section, we use the NK model to show how bank coordination affects mon-

etary transmission to the key macroeconomic targets of the central bank, i.e., inflation

and output. In the model, as in the data, lending complementarities dampen monetary

transmission to inflation and output.

6.1 Parameterization

We follow a two-step strategy to estimate the parameters of the model. First, we ex-

ternally estimate the Taylor rule coefficients, {φπ, φy}, using OLS. We consider a contem-

poraneous data interest rate rule. Specifically, the parameter controlling the persistence

of the policy rate is set to ρ = 0. The observations for inflation and output respectively

correspond to HP-filtered log deviations from mean values of the CPI and the Index of

Industrial Production. The observations for the policy rate correspond to log deviations

of the Repo rate from mean values. This procedure yields φπ = 1.4 and φy = 0.43. These

estimates are broadly consistent with the New Keynesian literature (Galı́, 2008).
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Second, we internally estimate the deep parameters of the model, {γ, ϕ, θ, µ, ǫp}, using

Bayesian estimation to match log deviations of the policy rate from mean values. Barring

the curvature of lending complementarity, which is a novel addition to the NK model,

we set the prior mean of these parameters to values commonly found in the business

cycle literature. To remain agnostic about the underlying data generating process, we

use the average of the estimated parameters in the NK model and the model featuring

lending complementarities (NK-LC); see Table 7. This procedure yields the following set

of estimates. The coefficient of relative risk aversion is set to 1.06. The elasticity of the

marginal disutility with respect to labor, which determines the Frisch elasticity of labor

supply, is set to 0.65. The price rigidity parameter is set to θ = 0.81. The curvature of

lending complementarity is set to µ = 0.44.15 The standard error of the monetary policy

shock is set to ǫp = 0.08.

Lastly, the parameter controlling the persistence of the monetary shock process is set to

ρp = 0.4. The savings rate is set to Λ = 1/3, which is consistent with Indian data. The rate

of time-preference is set to β = 0.99. Table 8 summarizes our baseline parameterization.16

6.2 Model Fit

Here we show that the model with lending complementarities fits the data better in

terms of implied volatilities of inflation and output. Table 9 compares the volatilities of

inflation and output in the data with those simulated in the NK and NK-LC models. The

data moments correspond to standard deviations of HP-filtered log deviations from mean

values over the sample period. The model moments correspond to standard deviations of

log deviations from steady states. We compute these using a simulation of 100 economies

over 5000 periods. The standard deviation of inflation deviations is 0.006 in the model

with lending complementarities, which is relatively close to its data counterpart of 0.007.

In contrast, the volatility of inflation in the NK model is 0.009. The model with lending

complementarities outperforms the NK model in the output dimension as well. The stan-

dard deviation of output deviations is 0.04 in the data, 0.05 in the NK-LC model, and 0.07

in the standard NK model. Figure 12 shows that the NK model over-predicts the observed

variance of inflation and output, while the NK-LC model closely tracks the data.

6.3 Dampening of Monetary Transmission

The effect of lending complementarities on monetary transmission can be vividly seen

Figure 13, which compares the impulse response functions of inflation and output to a

15Since µ is absent from the NK model, we use the NK-LC estimate for this parameter.
16Notice that the necessary and sufficient conditions for the uniqueness of equilibria are satisfied in both

the NK and NK-LC models under this parametrization.
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monetary policy shock in the standard NK model with those in the NK-LC model. When

bank lending exhibits strategic complementarities, the impact of an increase in the policy

rate has a muted effect on output and inflation relative to that in the NK model. Lending

complementarities reduce monetary transmission to inflation and output by about a third

under the baseline calibration.

This estimate is sensitive to model primitives. Table 10 measures the impact of the co-

ordination channel on monetary transmission for various parameterizations by comput-

ing the percent reduction in the impulse of inflation/output to a monetary policy shock

in the NK-LC model relative to that in the standard NK model. The coordination channel

is highly elastic to the degree of price rigidity. Increasing the fraction of firms that can

alter prices substantially reduces the effect of lending complementarities on monetary

transmission. A moderate level of risk aversion also plays a crucial role in amplifying

the coordination channel. In contrast, the parameters that govern the Taylor rule and the

Frisch elasticity of labor supply have a modest impact on the coordination channel.

6.4 Interactions with Demand and Supply Shocks

Here we study how lending complementarities affect the relative contribution of de-

mand and supply shocks in the determination of macroeconomic variables. As in Smets

and Wouters (2007), we introduce demand and mark-up shock processes, which we

denote by ǫD
t and ǫS

t respectively.17 These shock processes are determined by ǫi
t =

ρiǫi
t−1 + ηi

t ∀i ∈ {D, S}. We set the persistence of demand and supply shocks (ρD and

ρS) to 0.9.

Table 11 reports the variance decomposition of inflation, output, the policy rate, and

the lending rate under the benchmark calibration. Lending complementarities have a

marginal effect on shock contributions to output. In both the NK and NK-LC models,

supply shocks explain about 94 percent of output variation. In contrast, the contribution

of supply shocks to inflation increases by about 2 percent when we introduce lending

complementarities. The effect of supply shocks on interest rates is also substantially larger

in the NK-LC model relative to that in the NK model.

7 Conclusion

In this paper, we argue that the lack of coordination in multiple banking relationships

dampens monetary transmission. When credit is uncoordinated, informational frictions

reduce monetary transmission further. We test these predictions using bank-level data

17The modified NK Phillips’ Curve is given by π̂t = βEt[π̂t+1] + κŷt + ǫS
t , and the modified IS Curve is

given by ŷt = Et[ŷt+1]−
1
γ (r̂t − Et[π̂t+1]) + ǫD

t .
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from India. We show that the impact of policy rate changes on lending rates reduces

significantly when the expected cost of credit extended by other banks is higher, and

when this signal is less precise. In the model, as in the data, lack of coordination and

information sharing across banks have persistent effects on monetary transmission.

There are several aspects of multiple banking that make it beneficial for financial

stability. Multiple banking relationships help insure against bank distress (Detragiache

et al., 2000) and alleviate a soft-budget constraint problem (Kornai, 1980; Dewatripont

and Maskin, 1995). These are relevant concerns for policymakers, as evidenced by the

recent release of a prudential framework by the RBI, which warned lenders with intent

to evergreen stressed accounts.18 Our work, in contrast, focuses on an under-appreciated

cost of multiple banking. We show that such relationships can blunt the impact of mone-

tary policy. In doing so, our analysis highlights a tradeoff between financial stability and

macroeconomic stability.
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Appendix

A Proofs

Proof of Proposition 1: As derived in the proof of Proposition 2, in a symmetric un-

coordinated lending equilibrium:

ptL
1−µ
t =

Rtα(µ + N)

N1−µ
. (10)

Furthermore, suppose that savings is a fixed fraction of output,

Bt = ΛYt, where Λ > 0. (11)

Substituting (11) and (1) in (10), we arrive at:

Rt =
pt(Yt)1−µ(ΛN)1−µ

α(µ + N)

Log-linearizing around steady states:

r̂t = p̂t + (1 − µ)ŷt. �

Proof of Proposition 2: As banks solve a static problem, we suppress the time nota-

tion. If banks are uncoordinated, then each bank i maximizes the following objective:

(∑
j 6=i

Lj + Li)
µLiRi −

L2
i p

2α

The first order condition of this problem can be rearranged to yield:

Ri

[

µ(∑
j 6=i

Lj + Li)
µ−1Li + (∑

j 6=i

Lj + Li)
µ

]

=
Li p

α

In symmetric equilibria, Lj = Li ≡ L. Thus,

L =

[
Rα(µ + N)

N1−µ p

] 1
1−µ

=⇒
∂LUncoordinated

∂p
= −

[
Rα(µ + N)

N1−µ

] 1
1−µ

(
1

1 − µ

)

p
µ

µ−1
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We now consider the case when banks coordinate lending. In this case, banks choose L to

maximize:

NµLµ+1R −
L2p

2α

The first order condition of this problem can be rearranged to yield:

L =

[
RαNµ(µ + 1)

p

] 1
1−µ

=⇒
∂LCoordinated

∂p
= −

[

RαNµ(µ + 1)

] 1
1−µ

(
1

1 − µ

)

p
µ

µ−1

As µ > 0 and N > 1, | ∂L
∂p | is larger when banks coordinate, which completes the proof

for part (i). To see part (ii), let D ≡ | ∂LCoordinated/∂p | − | ∂LUncoordinated/∂p |. Partially

differentiating this expression w.r.t. N:

∂D

∂N
=

(
1

1 − µ

)2

p
µ

µ−1
[
Rαµ

] 1
1−µ (Nµ − Nµ−1)

µ
1−µ Nµ−2(µ(N − 1) + 1) > 0. �

Proof of Proposition 3: Under incomplete information, the optimal choice of lending

satisfies the first order condition:

Ri

(
Ljσ

2
p

σ2 + σ2
p
+ 2Li

)

= cL(Li, p).

Since banks are atomistic, they treat the interest rate as fixed when making their lend-

ing decision. In this case, an increase in the policy rate (p) reduces lending (assuming R

is small). Therefore, a necessary condition for the optimality of bank i’s lending decision

under the special case for the cost function is:

Li =
Ljσ

2
p

(σ2 + σ2
p)(p/(Riα)− 2)

Differentiating the above expression with respect to the policy rate yields the following

result:
∂Li

∂p
= −

Ljσ
2
p

Ri(σ2 + σ2
p)(p/(Riα)− 2)2

.

All parts of the proposition immediately follow from this result. �

Proof of Proposition 4: Bank i solves the following problem:
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M

∑
j=1

Rji

N

∑
k=1

LjkLji −
(∑M

j=1 Lji)
2p

2α

Thus, a necessary condition for optimality of loan by bank i to firm j is:

Fji ≡
N

∑
k=1

Ljk + Lji −
M

∑
l=1

Lli p/(Rjiα) = 0 ∀i ∀j

Totally differentiating this expression

0 =
∂Fji

∂p
dp+

M

∑
l=1

N

∑
k=1

∂Fji

∂Llk
dLlk =⇒

dLji

dp
=

1

R̂−1
ji − 2αi

{

α ∑
k 6=i

dLjk

dp
− R̂−1

ji ∑
l 6=j

dLli

dp
−

M

∑
l=1

Lli

}

∀i ∀j.

Proof of Proposition 5: The dynamic system featuring lending complementarities can

be written as

[

ŷt

π̂t

]

= Ω

[

γ 1 − βφπ

κγ κ + β(γ + φy + 1 − µ)

] [

Et[ŷt+1]

Et[π̂t+1]

]

+ Ω

[

1

κ

]

ǫ
p
t

where

Ω ≡
1

γ + φy + κφπ + 1 − µ
.

Since both ŷt and π̂t are free, determinacy of the system hinges on both the eigenvalues

of

Ω

[

γ 1 − βφπ

κγ κ + β(γ + φy + 1 − µ)

]

being less than unity. The associated characteristic polynomial is given by

λ2 − λΩ[γ + κ + β(γ + φy + 1 − µ)] + Ωγβ = 0,

where λ denotes the eigenvalues. Thus, both eigenvalues are less than unity if

Ωγβ < 1 (12)

and

Ω[γ + κ + β(γ + φy + 1 − µ)] < 1 + Ωγβ. (13)

Equation (12) holds as β ∈ (0, 1). Equation (13) holds if κ(φπ − 1) + (1− β)(φy + 1− µ) >

0. �
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B Figures and Tables
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Figure 1: Illustration of Dependence of Monetary Transmission on Lending Moments
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(a) Variance in Lending Beliefs
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(b) Monetary Transmission
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Notes: The prior mean of lending of other banks in the incomplete information case is set to the full information level in
the uncoordinated equilibrium. We assume unit variance in the noise. We compute the change in lending in response to
a change in the policy rate from 1 percent to 2 percent. The lending rate is fixed at one for this exercise. α is set to 0.15 for
this exercise which satisfies Assumption 2.

Figure 2: The Effect of Coordination and Information on Monetary Transmission
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Figure 4: Aggregate Time Series
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Table 1: Summary Statistics

Public Sector Bank No. of Firm Degree Eigenvector Mean S.D. Corr(MCLR,
Banks ID Credit Rel. Centrality Centrality MCLR MCLR REPO)
Allahabad Bank∗ 3 642 74 0.13 8.63 0.41 0.50
Andhra Bank∗ 5 649 68 0.12 8.70 0.39 0.60
Bank of Baroda∗ 12 1681 79 0.14 8.57 0.36 0.50
Bank of India∗ 14 1474 78 0.13 8.60 0.36 0.58
Bank of Maharashtra∗ 15 1944 68 0.12 8.80 0.37 0.65
Bhartiya Mahila Bank 9.02 0.42 0.58
Canara Bank∗ 21 1569 76 0.13 8.60 0.34 0.51
Central Bank of India∗ 22 900 80 0.13 8.57 0.38 0.61
Corporation Bank∗ 26 912 79 0.14 8.88 0.30 0.62
Dena Bank∗ 31 466 69 0.12 8.70 0.43 0.61
IDBI Bank∗ 42 1453 83 0.14 8.85 0.30 0.68
Indian Bank∗ 44 735 69 0.13 8.64 0.36 0.54
Indian Overseas Bank∗ 45 958 73 0.13 8.73 0.37 0.49
Oriental Bank of Commerce∗ 60 1012 75 0.13 8.68 0.39 0.59
Punjab and Sind Bank∗ 61 226 62 0.12 8.78 0.38 0.56
Punjab National Bank∗ 62 1700 79 0.14 8.49 0.38 0.56
State Bank of Bikaner and Jaipur∗ 72 283 59 0.11 9.27 0.39 0.62
State Bank of Hyderabad∗ 73 397 61 0.12 9.30 0.39 0.67
State Bank of India∗ 74 5591 83 0.14 8.31 0.39 0.52
State Bank of Mysore∗ 76 243 58 0.11 9.26 0.34 0.60
State Bank of Patiala∗ 77 271 59 0.11 9.04 0.54 0.73
State Bank of Travancore∗ 78 307 59 0.11 9.36 0.46 0.57
Syndicate Bank∗ 80 595 73 0.13 8.71 0.39 0.66
UCO Bank∗ 82 595 73 0.13 8.68 0.36 0.55
Union Bank of India∗ 83 1245 78 0.13 8.57 0.39 0.57
United Bank of India∗ 84 395 68 0.12 8.81 0.31 0.71
Vijaya Bank∗ 86 439 67 0.12 8.78 0.36 0.53

Private Sector Bank No. of Firm Degree Eigenvector Mean S.D. Corr(MCLR,
Banks ID Credit Rel. Centrality Centrality MCLR MCLR REPO)
Axis Bank Ltd.∗ 7 2753 79 0.14 8.58 0.36 0.54
Bandhan Bank Ltd. 9 24 36 0.07 10.61 0.90 0.51
Catholic Syrian Bank Ltd. 19 64 50 0.10 9.93 0.12 0.40
City Union Bank Ltd. 24 95 45 0.09 9.33 0.29 0.62
Development Credit Bank Ltd.∗ 30 148 65 0.12 10.28 0.41 0.03
Dhanalaxmi Bank Ltd. 33 69 58 0.11 9.90 0.23 0.33
Federal Bank Ltd.∗ 36 399 71 0.13 9.09 0.21 0.54
HDFC Bank Ltd.∗ 39 4645 82 0.14 8.47 0.33 0.40
ICICI Bank Ltd.∗ 41 3060 80 0.14 8.51 0.32 0.38
IDBI Bank∗ 42 1453 83 0.14 8.85 0.17 0.91
IDFC Bank Ltd∗ 43 237 72 0.13 9.04 0.35 -0.18
Indusind Bank∗ 46 754 77 0.13 9.44 0.34 0.22
Jammu and Kashmir Bank Ltd.∗ 50 158 71 0.13 8.88 0.27 0.65
Karnataka Bank Ltd.∗ 51 183 54 0.10 9.06 0.21 -0.26
Karur Vysya Bank Ltd.∗ 52 270 64 0.12 9.48 0.31 0.36
Kotak Mahindra Bank∗ 54 1354 77 0.13 8.88 0.33 0.69
Laxmi Vilas Bank Ltd.∗ 56 147 58 0.11 9.85 0.39 -0.25
Nainital Bank 59 10 25 0.05 8.52 0.27 0.53
RBL Bank∗ 64 331 72 0.13 9.83 0.36 0.33
South Indian Bank Ltd.∗ 70 207 63 0.12 9.29 0.30 0.42
Tamilnad Mercantile Bank Ltd.∗ 81 91 54 0.10 9.33 0.39 0.42
Yes Bank Ltd.∗ 89 1130 78 0.13 9.35 0.39 -0.21
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Foreign Bank No. of Firm Degree Eigenvector Mean S.D. Corr(MCLR,
Banks ID Credit Rel. Centrality Centrality MCLR MCLR REPO)
AB Bank Ltd. 1 1 2 0.00 7.14 0.66 0.18
Abu Dhabi Commercial Bank Ltd. 2 15 44 0.09 9.15 0.50 -0.21
American Express Banking Corporation 4 41 40 0.08 6.96 0.77 0.22
Australia and NZ Banking Group Ltd. 6 3 34 0.07 7.94 0.63 0.74
Bank International Indonesia 9.37 0.31 0.34
Bank of Bahrain and Kuwait 11 46 58 0.11 8.60 0.41 0.42
Bank of America 10 99 57 0.11 7.95 0.50 0.45
Bank of Ceylon 13 4 5 0.01 10.02 0.33 0.50
Bank of Nova Scotia 16 48 50 0.09 8.14 0.55 0.50
Bank of Tokyo Mits UFJ Ltd. 17 34 54 0.10 7.31 0.39 0.69
Barclays Bank 18 40 63 0.12 8.19 0.51 0.48
BNP Paribas 8 133 67 0.12 8.57 0.57 0.79
Citi Bank∗ 23 899 78 0.13 8.29 0.29 0.25
Commonwealth Bank of Australia 25 1 3 0.01 9.27 0.09 0.22
Credit Agricole Corp. & Investment Bank 27 35 50 0.10 7.86 0.53 0.82
Credit Suisse AG Bank 28 1 12 0.02 7.66 0.45 0.37
CTBC Bank Co.Ltd 20 13 36 0.07 7.91 0.54 0.68
Deutsche Bank∗ 32 311 72 0.13 9.56 0.48 0.34
Development Bank of Singapore∗ 29 246 76 0.13 8.51 0.30 0.63
Doha Bank QSC 34 6 37 0.07 8.60 0.35 0.30
Emirates NBD Bank (P.J.S.C) 35 6 36 0.07 8.31 0.36 0.73
First Abu Dhabi Bank PJSC 37 1 15 0.03 7.46 0.86 0.48
Firstrand Bank Ltd 38 6 34 0.07 8.71 0.41 0.47
Hongkong & Shanghai Bkg. Corpn∗ 40 629 77 0.13 8.43 0.37 0.15
Industrial and Commercial Bank of China 47 10 51 0.10 8.60 0.69 0.85
Industrial Bank of Korea 7.00 1.03 0.58
JP Morgan Chase Bank 48 38 52 0.10 8.49 0.67 0.75
JSC VTB Bank 49 2 35 0.07 10.50 0.00
KEB Hana Bank 53 1 0 8.39 0.12 0.40
Kookmin Bank 6.37 0.01
Krung Thai Bank PCL 55 1 1 0.00 8.23 0.24 0.32
Mashreq Bank 57 9 43 0.09 8.01 0.59 0.26
Mizuho Corporate Bank 58 55 49 0.09 7.92 0.48 0.64
National Australia Bank 8.23 0.68 0.01
Qatar National Bank S.A.Q 63 3 18 0.04 7.83 0.40 0.38
Rabobank International 65 15 35 0.07 8.16 0.48 0.45
Sber Bank 67 2 8 0.02 8.69 0.58 0.68
Shinhan Bank 68 24 38 0.08 8.31 0.22 0.11
Societe Generale 69 27 44 0.08 8.16 0.41 0.63
Sonali Bank Ltd. 7.22 0.82 0.12
Standard Chartered Bank∗ 71 959 79 0.14 9.07 0.33 -0.05
State Bank of Mauritius 75 22 54 0.10 9.28 0.66 0.36
Sumitomo Mitsui Banking Corporation 79 31 30 0.06 7.58 0.63 0.80
The Royal Bank of Scotland 66 147 53 0.10 7.52 0.95 0.07
United Overseas Bank 85 1 11 0.02 8.52 0.71 0.83
Westpac Banking Corporation 87 1 14 0.03 8.73 0.18 0.13
Woori Bank 88 3 22 0.04 8.24 0.42 0.03

Notes: ∗ indicates the set of core banks; the details of arriving at this set are provided in Section 5.2.6. The CMIE sample does not report
any bank-firm lending relationships for Bhartiya Mahila Bank, Bank International Indonesia, Industrial Bank of Korea, Kookmin Bank,
National Australia Bank, and Sonali Bank Ltd. The RBI started to categorize IDBI Bank as a ‘Private Sector Bank’ for regulatory purposes
with effect from January 21, 2019; IDBI Bank was categorized as a ‘Public Sector Bank’ in prior periods.
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Table 2: Aggregate Estimates: Effect of Lending Rate Moments on Monetary Transmission

All Banks⋄ All Banks⋆ Private Banks Other Banks

Average Lending Rate 0.693∗∗∗ 0.221∗ -0.0410 0.0970
(0.132) (0.120) (0.322) (0.165)

Lending Rate Dispersion 2.497∗∗∗ 2.446∗∗∗ 2.276∗ 1.247∗∗

(0.410) (0.324) (1.133) (0.520)

Time Deposit Share -0.272 7.124 -5.916 9.181∗

(5.783) (4.632) (8.069) (5.204)

Consistency in Monetary Stance -0.118 0.0360 0.0257 0.0347
(0.113) (0.0993) (0.130) (0.109)

SLR (first diff.) -0.206 -0.208 -0.144 -0.233
(0.286) (0.232) (0.467) (0.273)

Observations 44 44 44 44
Adjusted R2 0.330 0.372 0.070 0.058

Notes: This table reports OLS estimates from specification (5). Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01. ⋄ and ⋆ denote weighted and unweighted estimates respectively. Other banks include public banks and foreign
banks.
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Figure 8: Relationship between Lending Rate Moments and Monetary Transmission at
Aggregate Level
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Table 3: Effect of Lending Moments on Monetary Transmission

MT MT MT MT

Panel A: 100% Network Density

Average Lending Rate 0.285∗∗∗ 0.307∗∗∗ 0.345∗∗∗ 0.274∗∗∗

(0.0418) (0.0211) (0.0249) (0.0308)

Lending Rate Dispersion 2.373∗∗∗ 2.575∗∗∗ 2.285∗∗∗ 1.979∗∗∗

(0.175) (0.0848) (0.132) (0.148)

Observations 3901 3901 3901 3811

Panel B: Degree Centrality

C× Average Lending Rate -0.00162∗∗∗ 0.00448∗∗∗ 0.00550∗∗∗ 0.00383∗∗∗

(0.000220) (0.000299) (0.000321) (0.000393)

C× Lending Rate Dispersion 0.0288∗∗∗ 0.0449∗∗∗ 0.0360∗∗∗ 0.0341∗∗∗

(0.00242) (0.00140) (0.00161) (0.00170)

Observations 3664 3664 3664 3580

Panel C: Eigenvector Centrality

C× Average Lending Rate -0.838∗∗∗ 2.524∗∗∗ 3.166∗∗∗ 2.206∗∗∗

(0.127) (0.170) (0.183) (0.225)

C× Lending Rate Dispersion 16.23∗∗∗ 25.13∗∗∗ 20.08∗∗∗ 19.10∗∗∗

(1.395) (0.799) (0.924) (0.984)

Observations 3664 3664 3664 3580

Bank FE N Y Y Y
Bank-Month FE N N Y Y
Deposit Maturity Controls N N N Y
Monetary Stance Controls N N N Y
SLR Controls N N N Y

Notes: This table reports OLS estimates from specification (6). Robust standard errors in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01. The variables capturing the mean and dispersion of lending rates for bank i are over the
subsample of all banks j 6= i. In panel A, we assume that all banks are connected and the density of the network is
100 percent. In panels B and C, we respectively use the observed degree and eigenvector centrality of the multiple
banking network to measure exposure to lending beliefs. Banks that do have any recorded lending history to non-
financial firms in the CMIE data, and banks with zero network degree centrality are excluded from the sample in
panels B and C.
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Table 4: Alternate Specification: Effect of Lending Moments on Monetary Transmission

∆MCLR ∆MCLR ∆MCLR ∆MCLR

Panel A: 100% Network Density

∆REPO × LAF 3.283∗∗∗ 3.394∗∗∗ 3.037∗∗ 4.109∗∗∗

(1.228) (1.231) (1.247) (1.284)

∆REPO × LAF× Average Lending Rate -0.368∗∗∗ -0.385∗∗∗ -0.405∗∗∗ -0.527∗∗∗

(0.118) (0.118) (0.121) (0.126)

∆REPO × LAF× Lending Rate Dispersion 0.0814 0.119 0.797 0.711
(0.465) (0.469) (0.487) (0.518)

Observations 3722 3722 3722 3722

Panel B: Degree Centrality

∆REPO × LAF 0.275∗∗∗ 0.275∗∗ 0.282∗∗ 0.235∗∗

(0.106) (0.107) (0.113) (0.115)

∆REPO × LAF × C× Average Lending Rate -0.00331∗∗∗ -0.00331∗∗∗ -0.00349∗∗∗ -0.00298∗∗∗

(0.000484) (0.000493) (0.000510) (0.000508)

∆REPO × LAF × C× Lending Rate Dispersion 0.0346∗∗∗ 0.0347∗∗∗ 0.0368∗∗∗ 0.0309∗∗∗

(0.00538) (0.00544) (0.00559) (0.00564)

Observations 3498 3498 3498 3498

Panel C: Eigenvector Centrality

∆REPO × LAF 0.289∗∗ 0.290∗∗ 0.296∗∗ 0.250∗∗

(0.115) (0.115) (0.121) (0.124)

∆REPO × LAF × C× Average Lending Rate -1.848∗∗∗ -1.856∗∗∗ -1.954∗∗∗ -1.666∗∗∗

(0.282) (0.287) (0.297) (0.296)

∆REPO × LAF × C× Lending Rate Dispersion 19.20∗∗∗ 19.27∗∗∗ 20.47∗∗∗ 17.12∗∗∗

(3.148) (3.181) (3.271) (3.297)

Observations 3498 3498 3498 3498

Bank FE N Y Y Y
Bank-Month FE N N Y Y
Deposit Maturity Controls N N N Y
Monetary Stance Controls N N N Y
SLR Controls N N N Y

Notes: This table reports OLS estimates from specification (7). Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
The variables capturing the mean and dispersion of lending rates for bank i are over the subsample of all banks j 6= i. In panel A, we assume
that all banks are connected and the density of the network is 100 percent. In panels B and C, we respectively use the observed degree and
eigenvector centrality of the multiple banking network to measure exposure to lending beliefs. Banks that do have any recorded lending
history to non-financial firms in the CMIE data, and banks with zero network degree centrality are excluded from the sample in panels B and
C.
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Figure 9: PVAR Impulse Response Function: Response of ∆MCLR to ∆REPO Impulse
w/o Lending Rate Moment Interactions
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Figure 10: PVAR Impulse Response Function: Responses of ∆MCLR w/ Lending Rate
Moment Interactions
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Notes: These plots report OLS estimates and associated 95% confidence intervals from specification (6). The variables capturing the
mean and dispersion of lending rates for bank i are over the subsample of all banks j 6= i in the respective subgraphs of core and
periphery banks, which we identify using a k-shell decomposition.

Figure 11: Effect between Lending Rate Moments and Monetary Transmission: Core vs.
Periphery Banks
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Table 5: Effect of Demonetization on Monetary Transmission

MCLR MCLR MCLR

REPO × LAF 0.0409∗∗∗ 0.0423∗∗∗ 0.0380∗∗∗

(0.00587) (0.00297) (0.00280)

REPO × LAF × ✶(D) -0.0217 -0.0102 0.852∗∗∗

(0.317) (0.155) (0.160)

✶(D) 0.184 0.109 -1.936∗∗∗

(0.739) (0.361) (0.374)

Bank FE N Y Y
Deposit Maturity Controls N N Y
Monetary Stance Controls N N Y
SLR Controls N N Y
Observations 3818 3818 3728
Notes: This table reports OLS estimates for specification (8). Robust standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Effect of Lending Moments on Transmission to Inflation and Output

π π ẏ ẏ

∆REPO × LAF -0.0435∗∗∗ -0.133∗∗∗ -3.819∗∗∗ -3.319∗∗∗

(0.00506) (0.00377) (0.0681) (0.0769)

∆REPO × LAF× Average Lending Rate -0.000519 0.00738∗∗∗ 0.256∗∗∗ 0.208∗∗∗

(0.000529) (0.000380) (0.00653) (0.00747)

∆REPO × LAF× Lending Rate Dispersion 0.0634∗∗∗ 0.0925∗∗∗ 2.076∗∗∗ 1.948∗∗∗

(0.00190) (0.00189) (0.0343) (0.0370)

Bank FE Y Y Y Y
Bank-Month FE Y Y Y Y
Deposit Maturity Controls N Y N Y
Monetary Stance Controls N Y N Y
SLR Controls N Y N Y
Exchange Rate Controls N Y N Y
Observations 3728 3728 3728 3728

Notes: This table reports OLS estimates for specification (9). Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 7: Prior and Posterior Distribution of Estimated Parameters

Parameter Prior Mean Post. Mean (NK) Post. Mean (NK-LC) Prior Dist. Prior S.D.

γ 1 0.7962 1.3257 Normal 1
(-1.2768, 3.0963) (-0.1525,2.5421)

ϕ 1 0.5029 0.8013 Normal 1
( -1.4652, 2.4272) (-0.9908,2.2513)

θ 0.75 0.7132 0.8959 Normal 0.25
( 0.2712, 1.1195) (0.6551,1.1674)

µ 0.5 0.4386 Normal 0.25
(0.0389, 0.8134)

ǫp 0.05 0.0836 0.0711 Inverse Gamma 0.1
(0.0425, 0.1311) (0.0495, 0.0945)

Notes: The range reported below the posterior mean refers to the 90% HPD interval.

Table 8: Baseline Parameterization

Parameter Value Description

β 0.99 Rate of Time-preference
φπ 1.4 Coefficient on Inflation in Taylor Rule
φy 0.43 Coefficient on Output in Taylor Rule
γ 1.06 Relative Risk Aversion
ϕ 0.65 Elasticity of Marginal Disutility w.r.t. Labor
θ 0.81 Probability of Retaining Old Price
µ 0.44 Curvature of Lending Complementarity
ρ 0 Persistence of Policy Rate
ρp 0.4 Persistence of Monetary Policy Shock
ǫp 0.08 Standard Error of Monetary Shock
Λ 1/3 Savings Rate
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Table 9: Standard Deviation of Simulated Variables vs. Data

Data NK Model NK-LC Model

Inflation (π̂) 0.007 0.009 0.006
Output (ŷ) 0.04 0.07 0.05

Notes: The data moments correspond to HP-filtered log deviations from mean
values. The simulated moments correspond to log deviations from steady states.
Both the standard NK model as well as the model with lending complementari-
ties (NK-LC) are simulated over 5000 periods with 100 replicas.
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Notes: The data series correspond to log deviations from mean values. The cyclical components of inflation and
output are extracted using an HP-filter. The simulated series correspond to log deviations from steady states. We
simulate inflation and output in the NK and NK-LC model by feeding in the observed log deviations of the Repo
rate from mean values.

Figure 12: Distributions of Inflation and Output: Model(s) vs. Data
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Figure 13: Impulse Responses to Monetary Policy Shock

Table 10: Sensitivity Analysis

Baseline ϕ = 2 σ = 2 θ = 1/2 φy = 1/4 φπ = 3

0.3195 0.3147 0.2344 0.1836 0.3550 0.2853
Notes: This table reports the dampening of monetary transmission due to lend-
ing complementarities for various parameterizations as measured by the percent
reduction in the impulse of inflation/output to a monetary policy shock in the
NK-LC model relative to that in the standard NK model.

Table 11: Variance Decomposition (in percent)

NK Model NK-LC Model

Demand Supply Monetary Demand Supply Monetary
Shock Shock Shock Shock Shock Shock

Output 5.04 94.39 0.57 5.03 94.27 0.70
Inflation 2.45 97.54 0.01 0.59 99.40 0.00
Policy Rate 8.99 90.84 0.17 1.59 98.28 0.14
Lending Rate 8.99 90.84 0.17 4.77 95.17 0.06
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