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Abstract 

 

 

This study is conducted to examine the concerns of the foreign direct investment (FDI) causing 

environment degradation and also to test the validity of the traditional Environmental Kuznets 

Curve (EKC) in the context of emerging markets in the Asian region. Data of these countries from 

1980–2016 are utilised. This study employs panel cointegration Fully Modified Ordinary Least 

Squares (FMOLS), which treats the endogeneity problem, and its estimators are adjusted for serial 

correlation. Moreover, this study also uses panel Dynamic Ordinary Least Squares (DOLS), which 

includes contemporaneous value, leads and, lags of the first difference of the regressors to correct 

endogeneity problems and serial correlations. Findings from this study indicate that the pollution 

heaven hypothesis and the EKC curve are generally valid in the region. In addition, FDI has a strong 

impact on the environment. 
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1. Introduction 

For recent decades, emerging markets in Asia have achieved significant economic growth. Their 

economic growth depends heavily on capital. The nations have attracted foreign direct investment 

(FDI), which has a positive impact on economic growth in host countries. Thus, FDI has been 

becoming a gradually more important source of capital that transfers management skills and 

technologies and generates job opportunities and makes incremental contributions to export 

activities, thus improving the standard of living for millions of people in the region. However, FDI 

also leads to environmental degradation for the host countries. Host countries considered the trade-

off between environmental degradation and growth so that they are able to attract FDI to their 

countries. In practice, many incidents have occurred in relation to significant environmental damages 

for the host countries, such as the case of Formosa Chemicals Corporation in Vietnam in 2016 —a 

significant degradation led to at least 115 tons of dead fish; 450 hectares of coral reefs were 

significantly destroyed and more than 350 hectares of shrimp farming were killed, affecting the living 

conditions and income of more than 226,000 local vulnerable people in Vietnam [1]. This issue raises 

a fundamental question for many governments to find out whether FDI always provides positive 

effects on the host countries or whether it leads to environmental degradation. 

This study uses 25 emerging markets in the Asian region from the 1980–2016 period. Previous 

studies usually employed time series data for a specific country and the maximum of 5 countries is 

found in their analyses. In order to achieve robust evidence, this study provides evidence on the link 

among four fundamental determinants; they are FDI, CO2 emissions, economic growth, and oil 

consumption using panel data analysis method. 

This study is different from the previous studies on the following grounds. First, previous 

studies have not put great effort in to analyzing the complexity of the relationship between FDI and 

CO2 emissions. This relationship is of importance because developing countries attract FDI by 

adopting relaxed environmental regulations. However, if the findings prove that FDI promotes clean 

technology with low CO2 emissions, it will be a great potential for those countries to attract more FDI. 

Second, previous papers have not taken into account the important source of CO2 emissions from the 

oil sector, whose usage has been increasing rapidly in developing countries recently. Third, this study 

uses a sample of 25 countries, one of the largest samples of its kind of analysis, to provide robust 

evidence. 

2. Literature Review 

2.1. Theoretical Background 

The Kuznets curve hypothesis, which was first discussed by the economist Simon Kuznets in 

the 1950s, shows that as an economy grows, initial inequality increases and then decreases [2]. The 

Kuznets curve indicates that the economic center of the nation will shift to urban regions when the 

nation experiences industrialization, especially agricultural mechanization [2]. Therefore, farmers 

tend to flock into large cities in order to find better-paying jobs. This means that there is a considerable 

inequality gap between rural and urban areas. Because rural populations plunge while urban 

populations soar, firm owners earn more profit while laborers in these industries receive an income 

rise at a slower rate and farmer incomes reduce. However, the inequality then hopefully drops when 

economic growth reaches the highest point of average income and the well-being of the state, 

reaching from industrialization to democratization, allows beneficial growth, leading to an increase 

in GDP per capita. Kuznets shows that inequality would have a trend like an inverted U-shape as it 

first increases and then decreases along with the increase of GDP per capita. While Kuznets curve 

diagrams illustrate an inverted U-shape curve, several variables along the axes are usually mixed and 

matched, such as the Gini coefficient or inequality on the Y-axis and economic growth, time, or GPD 

per capita on the X-axis. 

After a few decades, Kruger and Grossman [3] applied this hypothesis in the environmental 

sector. It shows that economic development and environmental degradation is in an inverted U-

shaped correlation which is known as the Environmental Kuznets Curve (EKC) theory. The EKC 



  

theory states that economic development and environmental degradation have a positive 

relationship. When the country is at an early stage of economic growth, improvement in living 

standards may be at the expense of the environment. However, when a high level of economic growth 

and development has been achieved, concerns about the environment emerge (Figure 1). As a result, 

the inverted U-shape of the EKC curve is supported by evidence from various empirical studies, 

including Shafik [4] and Omotor and Orubu [5]; it was considered a standard feature in the creation 

of environmental policy. Onafowora and Owoye’s research [6] showed that the long-run relationship 

between economic development and CO2 release follows an N-shape. Al-Mulali and Oxturk [7] 

indicated a U-shaped relationship between GDP and CO2 emission. 

 

Figure 1. Environmental Kuznets curve. 

The second theory on the issue is generally known as the pollution heaven hypothesis, which 

states that polluting industries will be relocated to jurisdictions where environmental regulations are 

less stringent. There are two main arguments concerning the benefits that FDI brings to the economic 

development of host countries. First, FDI diminishes environmental degradation through 

technological innovation. Second, some have argued that FDIs take the environment issue more 

seriously, which increases CO2 emissions where pollution-intensive industries could be transferred 

from the rich to the poorer countries due to weak environmental law and regulations in the host 

countries. Similarly, in relation to economic growth and emission, this relationship is complicated 

and inconsistent. Findings from previous studies showed that FDI can have a positive or negative 

impact on the environment. 

2.2. Empirical Literature 

In general, there are three main schools of thought in relation to the causal relationship between 

FDI, economic growth, CO2 emissions, and energy consumption. The first stream is related to the 

empirical studies that mainly tested the validity of the Environmental Kuznets Curve (EKC) 

hypothesis. The second stream is the examination concentrating on the relationship between energy 

consumption and CO2 emissions. The final stream is the investigation of the hypothesis that there is 

a causal relationship between trade liberalization, which is represented by FDI flows, and CO2 

emissions. 

Utilizing panel cointegration with a pooled sample to test the EKC hypothesis, Lean and Smyth 

[8] concluded that, generally, for the whole sample of 5 Association of Southeast Asian Nations 

(ASEAN) countries, the EKC hypothesis is supported. However, at an individual country level, the 

relationship between economic growth and CO2 emissions varies. While the EKC hypothesis is 



  

supported in the Philippines, there is no support of EKC for Malaysia and Thailand. For Indonesia, 

income has a positive one-directional relationship with CO2 emissions. When panel Granger causality 

test is utilised, there is no causal relationship from income to CO2 emissions in both the short and the 

long run. However, there is a causal relationship between CO2 emissions and income in the long run. 

However, EKC theory is not supported by other studies. Narayan and Narayan [9] investigated 

the EKC hypothesis by comparing the long and short run income elasticity of 43 developing countries 

and found that the EKC was not supported. Their findings for ASEAN-5 is that there is no evidence 

supporting the EKC for Indonesia, Malaysia, Philippines, and Thailand, while income in the 

Philippines has a positive impact on its CO2 emissions. This study shows that there is a long-run 

relationship between income and CO2 emissions. 

Besides the test of the validity of traditional EKC theory (inverted U-shape), the new stream 

expanded into testing the existence of an N-shape relationship of income and CO2 emissions. This 

stream raised many empirical research questions for researchers such as Churchill et al. [10] , 

Sarkodie and Strezov [11], and Zhou et al. [12]. Churchill et al. [10] tested N-shape for OECD 

countries in the period 1870–2014 by using mean group estimators (MG, PMG, AMG, and CCEMG), 

and found there are two turning points of GDP per capita or the relationship exhibits N-shape for 

some countries, such as Australia, Canada, and Japan, but some countries do not follow this shape, 

such as Spain and the UK. Moreover, Sarkodie and Strezov [11] also tested this N-shape for the top 

five greenhouse gas emitting developing countries—China, Iran, Indonesia, India, and South 

Africa—by using panel quantile regression with data from 1982 to 2016. The findings stated there is 

an N-shape of per capita income and CO2 emissions for selected countries and this still supports EKC 

theory [11]. 

Niu et al. [13] utilized panel data to analyze the causal relationships between GDP, energy 

consumption, and CO2 emissions for the Asia–Pacific countries, including developing countries such 

as China, India, Thailand, and Indonesia, and the results are mixed. While there is a long-run nexus 

between energy consumption, coal, oil, and CO2 emissions, there is no long-run nexus between 

natural gas and electricity on CO2 emissions. Like previous studies, they concluded that the energy 

consumption is the main cause of CO2 emissions. Moreover, the individual countries were examined 

by applying the individually-fixed varying coefficient model between CO2 emissions and the amount 

of energy used per capita [13]. In addition, Granger causality test showed that there is a causality 

between CO2 emissions and GDP, and energy consumption and CO2 emissions in the long run. 

Nevertheless, for the short-run analysis, it is significant for unidirectional causality between energy 

consumption and CO2 emissions. 

Hossain M.S. [14] used panel data of 9 newly-industrialized nations, including Malaysia, the 

Philippines, and Thailand, to investigate the nexus between CO2 emissions, energy consumption, and 

economic growth as well as trade openness and urbanization. The paper found that income and 

energy consumption significantly impact on CO2 emissions in the long run for the Philippines and 

Thailand, whereas it is not significant for the case of Malaysia. Furthermore, the panel Granger 

causality test shows that there is no causal relationship between income, energy consumption, and 

CO2 emissions in the long run [14]. Nonetheless, in the short run, there was significant causality 

running from income to CO2 emissions. 

More specifically, Ang [15] examined the relationship between GDP, CO2 emissions and energy 

consumption in the long run for the Malaysia case. The study showed that CO2 emissions and energy 

consumption have positive impacts on GDP in the long run. Like [14], the Granger causality test 

found evidence of unidirectional causality running from GDP to energy consumption in the long run. 

Similarly, the causality nexus between CO2 emissions and growth is weak and, therefore, it is 

inclusive. 

There are a lot of empirical studies about the pollution heaven hypothesis (PHH) [16-27]; 

however, there are also conflicting findings between them. For instance, Sun et al. [16] used Auto 

Regressive Distributed Lag model (ARDL) to test this hypothesis for China; they confirmed the 

validity of PHH, but Zhang and Zhou [17], who also used it with Chinese data, found contrasting 

findings—a negative nexus between FDI and CO2 emissions. In addition, Zhu et al. [18] researched 



  

for 5 countries in Asia from 1981 to 2011 using panel quartile regression; they rejected the validity of 

PHH in these countries, while Behera and Dash [19] used data from 17 countries in Asia (including 5 

countries from Zhu et al. [18]) from 1980 to 2012 and found contradictory results—a positive nexus 

between FDI and CO2 emissions; this supported the PHH. Furthermore, Tang and Tan [20], who used 

time series data in Vietnam from 1976 to 2009, found a negative nexus, while Phuong and Tuyen [21], 

also using data from Vietnam from 1986 to 2015, found no evidence on FDI and CO2 emissions. 

Moreover, a lot of previous empirical studies had similar conflicts in their findings. For the support 

side of PHH, Solarin et al. [22], who used the ARDL model with Ghanaian time series data, Zakarya 

et al. [23], who used panel data from 6 BRICS countries (Brazil, Russia, India, China, and South Africa) 

from 1990–2015, and Zhou et al. [12], who used data from 285 cities in China with GMM method for 

Random and Fixed Effect model, found a long-run positive relationship between FDI and CO2 

emissions. For the rejected side, Kirkulak et al. [24], Acharya [25], and Jorgenson [26] found the 

negative nexus. In an opposite analysis, Atici [27] used panel data from 1970 to 2006 of ASEAN 

countries and Japan and found no evidence for this relationship. 

In conclusion, previous studies show the complexity of the causal relationship between CO2 

emissions, energy consumption, and economic growth [8-27]. The findings on these relationships are 

not robust. The evidence is inclusive and mixed among the studies. Moreover, the evidence on testing 

the validity of the EKC is also mixed in previous empirical studies. In addition, previous studies had 

not put great emphasis on analyzing the complexity of the relationship between FDI and CO2 

emission. All these weaknesses are considered in this study. 

3. Data and Methodology 

3.1. Data and Variables 

This study uses secondary data of 25 emerging markets and developing countries in the Asian 

region, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, China, Fiji, India, Indonesia, Kiribati, 

Lao, Malaysia, Maldives, Mongolia, Macedonia, Myanmar, Nepal, Papua New Guinea, Philippines, 

Samoa, Solomon Islands, Sri Lanka, Thailand, Tonga, Vanuatu, and Vietnam, from the 1980–2016 

period. 

Table 1 shows the brief description of selected variables in the regression model. The details of 

expect signs and the reason for choosing these variables will be analyzed in the next section. 

Table 1. Variables description. 

Variables 
Expect 

Sign 
Description Definition 

Sample 

Period 
Sources 

Carbon 

emissions 

(CO2) 

 Measured in Metric 

tons per capita 

Carbon dioxide emissions are generated from 

burning fossil fuels and producing cement. They 

produce carbon dioxide emissions while using 

solid, liquid, and gas fuels. 

1980–2016 

The Integrated 

Carbon 

Observation 

System - ICOS [28] 

Per capita 

income 

(GDP) 

+/− 
GDP per capita 

(current US$) 

GDP per capita is defined as gross domestic 

product divided by population measured in the 

middle of the year. 

1980–2016 
WDI—World Bank 

[29] 

Oil 

consumption 

(Oil) 

+ 

Consumption of oil 

(kg of oil 

equivalent per 

capita) 

Consumption of oil is transformed from daily 

barrels of oil equivalent to annual kg of oil 

equivalent by multiplying by 146.12 and 360 

days, then dividing by population data from 

WDI. 

1980–2016 

U.S. Energy 

Information 

Administration 

[30] 

FDI +/− 

Foreign direct 

investment, net 

inflows (BoP, 

current US$) 

Foreign direct investment is mentioned as direct 

investment in economic reports. It includes 

equity, income reinvestment, and other types of 

capital. 

1980–2016 
WDI—World Bank 

[29] 

Table 2 shows a statistical overview of all the variables that are used for analysis. The 

distributions of all the variables are biased; Kurtosis statistic also points out that seven distributions 

are focused more than normal distributions with the help of long tails. All figures for these variables 

are presented in Appendix A. 
  



  

Table 2. The descriptive statistics of all variables. 

Variable* CO2 FDI GDP GDP2 GDP3 FDI2  Oil 

Mean −0.2291 18.439 7.0918 51.5246 383.6231 351.1924 5.115 

Se(mean) 0.0446 0.1184 0.0376 0.5603 6.4754 4.2362 0.0416 

p50 −0.3403 18.6467 6.9983 48.976 342.7476 347.6984 5.2524 

Std. Dev. 1.3565 3.3481 1.1102 16.5261 190.9969 119.8189 1.2584 

Variance 1.8401 11.2097 1.2326 273.1113 36,479.82 14,356.56 1.5836 

Skewness 0.2173 −0.4674 0.5558 1.0321 1.5435 0.2373 −0.385 

Kurtosis 2.8909 4.2238 3.3666 4.4672 6.2551 2.8618 2.9596 

Sum −211.8964 14,751.2 6169.857 44,826.43 333,752.1 280,953.9 4669.983 

Range 7.1295 24.0938 6.2255 95.361 1155.864 691.465 6.8506 

Min −3.5603 2.3026 4.5462 20.6677 93.9591 5.3019 0.9444 

Max 3.5692 26.3963 10.7717 116.0288 1249.823 696.7669 7.795 

ID (n) 25 25 25 25 25 25 25 

T-bar 37 32 34.8 34.8 34.8 32 36.52 

Observations (N) 925 800 870 870 870 800 913 

Note: * All the variables are expressed in natural logarithm. 

3.2. Methodology and Specification 

From the traditional EKC theory (Kuznets, 1950s), the relationship between income and 

environmental degradation is non-linear and has an inverted U-shape [2, 3]. This implies that when 

income increases, environmental degradation increases until income reaches the threshold, and then 

degradation decrease. Therefore, the form of the model could be shown as below: 

Y = F(GDP, GDP2, X)  

where Y is an environment indicator, with common proxy by carbon emissions or greenhouse gas 

emissions. In this paper, we use carbon emissions proxies for Y since the up-to-date data for 

greenhouse gas are shorter than for carbon emissions. As a result, we have good results and analysis. 

GDP and GDP2 are the two traditional variables in EKC theory, but as we mentioned above, the 

recent trend in testing EKC concerns whether this nexus is N-shaped [10, 11, 12]. Thus, we add the 

cubic GDP to the model. As a result, we can simultaneously test the validity of EKC and the new 

shape for our selected developing countries, which has not been done before. 

X are other explanatory variables. In this paper, we use per capita oil consumption, foreign direct 

investment (FDI), and square FDI for testing the non-linear nexus, which is less of a concern in 

previous studies. The regression model is proposed as follows: 

CO2 it = π0 + π1Oilit+ π2Git + π3G2it+ π4G3it+ π5FDIit + π6FDI2it+ εit (1) 

where carbon emissions (CO2) is used as the dependent variable. 

Various independent variables are utilized, including per capita oil consumption, the per capita 

real GDP, net inflows of foreign direct investment, and the square and cube of per capita real GDP. 

All variables are transformed into logarithm form. 

For the explanation of the first variable—oil consumption: Within selected countries, the current 

economy is primarily based on the industrial orient economy. Thus, with an increase in oil use, 

emissions increase. As a result, the expected sign of oil is positive. 

The model includes the cube of GDP for testing whether the impacts of these variables are N-

shaped, which has just been stated in recent papers. If an N-shaped relationship between GDP and 

CO2 emissions exists, then the two turning points of GDP are calculated using the following formula: 

𝐺𝐷𝑃1,2∗ = 𝑒−𝛑𝟑± √𝛑𝟑𝟐−𝟑 𝛑𝟐𝛑𝟒𝟑 𝛑𝟒  
(2) 

If there is an inverted U-shaped relationship between FDI and CO2 emissions, then the threshold 

of FDI is calculated using the following formula: 



  

FDI* = 𝑒−𝛑𝟓 𝟐 𝛑𝟔  (3) 

From Equation (1) above, we conduct an empirical study on the direction of causality between 

variables, especially FDI and CO2 emissions. There are basically three steps to testing the causal 

relationship between economic growth and consumption in panel data. Firstly, the integration in time 

series of economic and energy variables is tested and arranged in order. After that, the long-run 

relationships among the variables in question are examined by using panel cointegration tests. 

Granger [31, 32] stated that the series are integrated in order because they are stationary after the first 

variance; therefore, linear combinations can exist by a feature through which the series are stationary 

and without differences; these are called cointegrated series. The next step after the integration of 

order is shown is examining the existing long-run relationship between the group of integrated 

variables in question by using cointegration analysis. While cointegration is discovered, the rest, with 

a lack of information on any long-run relationships among variables, can be treated by using a Vector 

Error Correction model (VECM) to investigate whether there is a stationary linear combination of 

nonstationary variables, which would indicate a long-run equilibrium relationship among the 

variables. Finally, the long-run direction of causal linkages among the variables is evaluated by 

employing dynamic panel causality tests. 

3.2.1. Test of Cross Sectional Dependence 

Pesaran [33, 34] points out that panel data are likely to display considerable cross-sectional 

dependence in error terms, due to unobserved and common shock factors. The effect of cross-

sectional dependence is estimated variously and relies on unobserved common factors such as the 

nature of cross-sectional dependence as well as the magnitude of the correlations across cross-

sections. The common effect of cross-sectional dependence leads to standard errors, which causes 

biases in estimation, whereas fixed-effects (FE) and random-effects (RE), although not efficient, have 

consistent estimators. For treating this problem, the use of the approach, which is proposed by 

Driscoll and Kraay [35], may not work, and the FE and RE estimators would be biased. Another 

method is the use of the instrumental variables (IVs) approach. But finding the IVs in practice is not 

easy. From Equation (1) above, T denotes the panel time dimension, N denotes the cross-sectional 

dimension, and uit denotes error term. The hypotheses are: 

H0: pij = pji = cor (uit, ujt) = 0 for i ≠ j 
H1: pij = pji ≠ 0 for some i ≠ j 

where pij is the pairwise correlation coefficient of the error term: 𝑝𝑖𝑗 = 𝑝𝑗𝑖 = ∑ 𝑢𝑖𝑡𝑢𝑗𝑡𝑇𝑡=1(∑ 𝑢𝑖𝑡2𝑇𝑡=1 )1 2⁄ (∑ 𝑢𝑗𝑡2𝑇𝑡=1 )1 2⁄  (4) 

With the Pesaran test [33, 34], Pesaran developed the following CD statistic, which is based on 

the LM statistic of Breusch and Pagan [36]: 

𝐶𝐷 = √ 2𝑇𝑁(𝑁 − 1) ∑ ∑ 𝑝̂𝑖𝑗 𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  (5) 

This CD statistic is better than the LM statistic because the exact mean for the fixed numbers T 

and N includes heterogeneous/homogeneous and nonstationary models. 

Friedman [37], who depended on the average Spearman’s rank correlation coefficient, 

developed the following statistic: 

𝑅𝑎𝑣𝑒 = 2𝑁(𝑁 − 1) ∑ ∑ 𝑟̂𝑖𝑗𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  (6) 

where rij is the sample rank correlation coefficient, which is calculated from residuals, and ri,t is the 

rank matrix of uit: 



  

𝑟𝑖𝑗 =  𝑟𝑗𝑖 =  ∑ {𝑟𝑖,𝑡 − (𝑇 + 1 2⁄ )}{𝑟𝑗,𝑡 − (𝑇 + 1 2⁄ )}𝑇𝑡=1 ∑ {𝑟𝑖,𝑡 − (𝑇 + 1 2⁄ )}2𝑇𝑡=1  (7) 

Frees [38] developed the test statistic shown below, which can solve this issue by using the sum 

of squared rank correlation from the residual: 

𝑅𝑎𝑣𝑒2 =  2 𝑁(𝑁 − 1) ∑ ∑ 𝑟̂𝑖𝑗2𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  (8) 

The test has a disadvantage in the case where T is small—it leads to poor Q distribution. When 

T is large, however, the test works well [39]. 

3.2.2. Panel Unit Root Test 

First and foremost, means of the panel unit root tests are employed to set the order of integration 

of the series. Next, if there is evidence suggesting non-stationarity among the variables, the existing 

cointegrating relationships among them should be examined to advocate the above specifications. 

After that, causality among the four variables is analyzed by carrying out Granger causality tests. 

Like financial and macroeconomic time series, energy series are ambiguous in the general 

literature. Thus, it is vital to examine the integration of mission series before conducting a test. A 

series is an integrated series of order zero I(0) if it is stationary [40]. On the other hand, a series is an 

integrated series of order one I(1) if it is nonstationary in the level in spite of its stationarity in the 

first difference. To test the appearance of unit roots in time series, Dickey-Fuller (DF) or Augmented 

Dickey-Fuller (ADF) tests are traditionally used [40]. Likewise, there is proof of developing panel-

based unit root tests relying on the time series tests in the literature, e.g. [41, 42]. Tests developed by 

Choi [42] are appropriated to examine integration between the variables of interest in a cointegration 

analysis when the time dimension of the sample differs from country to country. Thus, this paper 

follows Choi’s approach for testing the panel unit root test. 

Choi [42] suggested the use of a Fisher test, which combines the significance levels from 

individual unit root tests using Fisher’s [43] results; the model of Choi [42] is presented below: 𝑃𝑚 =  12√𝑁  ∑ (−2 ln 𝑝𝑖 − 2)𝑁𝑖=1  (9) 

The null and the alternative hypotheses of the Fisher-ADF test are: 

H0: pi = 0 for all i 

H1: Allows for some (but not all) of the individual variables to have unit roots. 

3.2.3. Panel Cointegration Test 

To test the appearance of long-run relationships between variables, the cointegration test is 

employed widely in the literature of time series. Based on Engle and Granger [44], there is 

cointegration between two nonstationary variables if these integration variables with similar orders 

have a linear combination with a lower order. For example, a linear combination of oil consumption 

and CO2 emissions is I(0) and of both of them is I(1); as a result, there is cointegration between two 

variables and a long-run relationship form that it is stationary in the long run, rather than having an 

ever-growing amount of difference, is created. 

Cointegration tests are similar to individual unit root tests in the literature of time series when 

the time dimensions are short, since they suffer from low power. Panel techniques might be better 

for discovering cointegration relationships because pooled-level regression corporates are cross-

sectional along with time series information while determining the cointegrating coefficients. 

Kao [45] and Pedroni [46] suggested that panel cointegration tests are the same as the framework 

of Engle and Granger [44], which contains an examination of the stationarity of the residuals from 

regression levels. In addition, Westerlund [47] proposed that an error-correction panel cointegration 



  

test is suitable for the appearance of cointegration in the country as well as panel level. The test of 

Kao relies on the model as follows: 

yit = αi  + βxit   + eit (10) 

yit = yi ,t −1 + uit (11) 

xit = xi ,t −1 + vit (12) 

where i = 1, …, N; t = 1, …, T; αi is the intercepts; β is the slope across i; eit is the error term; and both 

yit and xit contain a unit root. Kao’s test was established to examine the existence of cointegration 

between yit and xit [45]. Equation (10) is designed employing the Least Square Dummy Variable 

(LSDV) and the residuals tested rely on the ADF equation as follows: 

𝑒̂𝑖𝑡 = 𝑝𝑒𝑖,𝑡−1̂ + ∑ 𝛾𝑗𝑒𝑖,𝑡−𝑗̂𝑝
𝑗=1 + 𝑣𝑖𝑡𝑝 (10) 

where p presents the number of the lags shown to conduct the residuals in uncorrelated Equation 

(13). The ADF test statistic is donated as a usual t-statistic when p = 1 in Equation (13), distributed 

asymptotically according to the normal standard. To examine whether there is the existence of 

cointegration between xit and yit according to the ADF test statistic, the alternative and null 

hypotheses can be expressed as H0: p = 1 and H1: p < 1, respectively. 

Pedroni [46] improved on a different residual-based cointegration test relying on the null of non-

cointegrated for heterogeneous panels. In Equation (14), Pedroni’s test differs from Kao’s test with 
regard to assuming p to be heterogeneous across cross-sections. The test statistic relies on separately 

estimating cointegration test statistics for each cross-section and, after that, averaging them to look 

for a cointegration test for the whole panel; therefore, it carries out well if the size of a sample has an 

adequate time horizon for each cross-section. 

Pedroni’s model [46]: 

𝑒𝑖𝑡 =  𝑝𝑖𝑒𝑖𝑡−1 + ∑ 𝛹𝑖𝑗∆𝑒𝑖𝑡−1 + 𝑣𝑖𝑡𝑝𝑖
𝑗=1  (11) 

Westerlund’s model [47]: 

∆𝑦𝑖𝑡 = 𝛿𝑖′𝑑𝑡 + 𝛼𝑖𝑦𝑖𝑡−1 + 𝜆𝑖′𝑋𝑖𝑡−1 + ∑ 𝛼𝑖𝑗∆𝑦𝑖𝑡−𝑗 + ∑ 𝛾𝑖𝑗∆𝑋𝑖𝑡−𝑗 + 𝑒𝑖𝑡𝑝𝑖
𝑗=0

𝑝𝑖
𝑗=1  (12) 

3.2.4. Long-Run Estimates: 

The next stage continues determining the long-run relationship after there are cointegrations 

among the variables. Plenty of existing independent variables available for determining a 

cointegration vector employ panel data such as OLS (Ordinary Least Square), DOLS (Dynamic 

Ordinary Least Square), and FMOLS (Fully Modified Ordinary Least Square). Maeso-Fernandez et 

al.[48] stated that FMOLS, which is a non-parametric approach, takes responsibility for measuring 

the correlation between the first alternatives of independent variables and the error term along with 

the appearance of a constant term to solve reforms for serial correlations. Mehrara [49] suggested that 

DOLS is a parametric approach in which the lagged first-difference terms are determined clearly. In 

DOLS, the errors term is increased with lags, leads, and contemporaneous values of the independent 

variables. Determining the long-run equation by employing the ordinary least squares (OLS) method 

results in biased independent variables when the explanatory variables are not strictly exogenous so 

that the OLS independent variables cannot be employed for valid inferences in general. Pedroni [50] 

suggested FMOLS estimation, while Kao and Chiang [51] and Mark and Sul [52] proposed DOLS, as 

different methods of cointegration estimation in panel data. This paper uses the Pedroni model [46]: 𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝐸𝐶𝑖𝑡 + 𝜇𝑖𝑡; i = 1,2,…N and t = 1,2,…,T (13) 



  

where Yit denotes the dependent variable and EC denotes the vector of residual and different 

stationarity. 

𝑌𝑖𝑡 =  𝛼𝑖 + 𝛽𝑖𝐸𝐶𝑖𝑡 + ∑ 𝛾𝑖𝑘∆𝐸𝐶𝑖𝑡−𝑘 + 𝜇𝑖𝑡; 𝑖 = 1,2, … , 𝑇 𝑘𝑖
𝑘=−𝑘𝑖  

 

(14) 

The FMOLS and DOLS estimators are presented below: 

𝛽𝑓𝑚𝑜𝑙𝑠∗ = 𝑁−1 ∑(∑(𝐸𝐶𝑖𝑡 − 𝐸𝐶̅̅ ̅̅ 𝑖)2)𝑇
𝑡=1

−1 (∑(𝐸𝐶𝑖𝑡 − 𝐸𝐶̅̅ ̅̅ 𝑖)𝑦𝑖𝑡∗ − 𝑇𝛾𝑖̂) 𝑇
𝑡=1

𝑁
1  (15) 

𝛽𝑑𝑜𝑙𝑠∗ = 𝑁−1 ∑ (∑ 𝑍𝑖𝑡𝑍𝑖𝑡𝑖𝑇𝑡=1 )−1𝑁
𝑖=1 (∑ 𝑍𝑖𝑡𝑌𝑖𝑡∗𝑇

𝑡=1 ) 
(169

) 

where Zit is the 2(K+1) × 1 vector of regressors 𝑍𝑖𝑡 = {(𝑋𝑖,𝑡 − 𝑋̅𝑖), ∆𝑋𝑖,𝑡−𝑘, … , ∆𝑋𝑖,𝑡+𝑘};  Ỹ𝑖,𝑡 =  𝑌𝑖,𝑡 −  𝑌̅𝑖  (20) 

3.2.5. Panel Causality Test 

Based on the Granger theory, if two I(1) series become cointegrated, they might be defined as 

being created by a mechanism of error correction. Nevertheless, the appearance of a cointegration 

relationship might not signify direct causal linkages among variables. To analyze the direct causal 

linkages one should carry out a panel-based vector error correction model (VECM). This model might 

be determined relying on the two-step procedure of Engle-Granger. Firstly, the long-run relationship 

is calculated through Equation (17) to build an error correction term (ECT) for the following step. An 

ECT is determined by one-period lagged residuals and the clue implies whether there are variables 

(one or two) adjusting deviation from the long-run relationship. Moreover, the coefficients on the 

ECT characterize fast changes of each variable’s deviations from the long-run equilibrium and are 

then eliminated. Secondly, the VECM is determined by the LSDV (least square dummy variable) 

estimation proposed by Bruno [53]. In this step, the two-equation VECM can be written as the 

following models: 

∆𝐷𝑖𝑡 = 𝜃𝑙𝑖 + 𝜆1𝜀𝑖,𝑡−1 + ∑ 𝜃11𝑘∆𝐷𝑖,𝑡−𝑘𝑚
𝑘=1 + ∑ 𝜃12𝑘∆𝐼𝐷𝑖,𝑡−𝑘𝑚

𝑘=1 + 𝑢𝑙𝑖𝑡 𝜆1 < 0 (21) 

∆𝐷𝑖𝑡 = 𝜃2𝑖 + 𝜆2𝜀𝑖,𝑡−1 + ∑ 𝜃21𝑘𝑚
𝑘=1 ∆𝐼𝐷𝑖,𝑡−𝑘 + ∑ 𝜃22𝑘∆𝐷𝑖,𝑡−𝑘 + 𝑢2𝑖𝑡  𝜆2 > 0𝑚

𝑘=1  (22) 

Equations (21) and (22) have endogeneity because lags of dependent variables present as 

independent variables and all lags of dependent variables contain unobserved fixed effects. Even 

though within the transformation the fixed effect estimation is eliminated, the endogeneity still exists. 

The endogeneity is a popular problem for dynamic panel data models and it results in biased 

coefficient results of dependent variables’ lags. To determine unbiased coefficients, Anderson-Hsiao 

[54] proposed instrumental variable (IV) estimation and Arellano-Bond [55] developed a generalized 

method of moments (GMM) estimation. These estimation techniques are conducted according to 

transformations of the models in Equations (21) and (22) by first altering them to get rid of individual 

fixed effects and, after that, employing past values of dependent variables, like instruments for 

endogenous variables. One disadvantage of these estimations is that their features hold only when N 

is really large and T is small in such a way that they are employed to micro panel data in general. 

Nickell [56] claims that if T → ∞, the LSDV estimator will be suitable and will be biased to a 

trivial degree. Nonetheless, Judson and Owen [57] state that if T is smaller than 30, the LSDV 



  

estimator will have a bias of up to 20 percent in comparison with the true value coefficient of interest. 

They also point out that a bias-corrected LSDV works well in comparison with a GMM estimator or 

instrumental variable in a balance panel. Nevertheless, at the same time, Judson and Owen [57] stated 

that this method was limited because no one has developed this technique to implement it for 

unbalanced panels in such a way that they recommended employing one-step GMM by Arellano 

Bond [55] or AH estimator by Anderson-Hsiao [54] as the best alternative way when T is about 20. 

Their results relied on Monte Carlo simulation. Bruno [53] presented a formula for an LSDV estimator 

that calculated approximate bias and proposed an LSDV estimator to estimate bias-correction for 

unbalanced panels data when the average T across cross-sections is greater than or equal to 20 and 

when N is small. Because the LSDV estimator is not suitable without T → ∞, the bias-corrected LSDV 

employs and starts a suitable estimator, such as IV or GMM, and holds greater than 90 percent of the 

real bias of the LSDV estimator. 

As a note for future studies, a potential nonlinear causality relationship among the variables 

should be considered (see, for example, Bai et al. [58, 59] and Chow et al. [60]). In addition, advanced 

diagnostic check (see, for example, Hui et al. [61]) should be considered. 

4. Empirical Results 

4.1. Test of Presence of Cross-Section Dependence 

From the test of cross-section dependence, all the tests have general null hypotheses H0: Cross-

sectional independence and H1: Cross-sectional dependence. 

From test results in two specifications, which are shown in Table 3, Pesaran statistics have a p-

value of more than 5% which states that the null hypothesis is accepted. The results of Friedman are 

in line with Pesaran, this suggests that there is no cross-sectional dependence. In contrast, Free 

provides a rejection of null hypothesis at 1% level. This is different because both Pesaran and 

Friedman use the sum of the pairwise correlation coefficient of a residual matrix (such as LM statistic). 

This would make these tests weaker because of the disturbances with large positive and negative 

correlations, but they cancel each other out in the average. However, Frees [38] developed a test 

statistic that can solve this issue by using the sum of the squared rank correlation from the residual. 

Moreover, when T → ∞, the test works well, but the test has the disadvantage for the case when the 

T dimension is small, in which case it leads to poor Q distribution [39]. 

Table 3. Sectional independence tests. 

Tests Pesaran Friedman Frees 
 CD Test p-Value CD p-Value CD (Q) p-Value 

RE model 1.89 0.06 32.12 0.12 6.80 *** 0.00 

FE model 1.92 0.06 29.83 0.19 6.92 *** 0.00 

Note: FE and RE stand for fixed effects and random effects models, respectively. *** stated statistical 

significance at 1% level. 

All the tests have their advantages and disadvantages. In this paper, the conflicting results were 

shown; however, the results from this test show us the way to choose the method in testing causality. 

For the case where all coefficients are the same across the cross-section, the Granger causality test 

would be employed. For the case of cross-section dependence, however, the Dumitrescu-Hurlin [62] 

approach, which allows for the differences of all coefficients across countries, should be used for 

testing the causality relationship. With the two statistics from Perasan and Friedman, we can 

conclude that there is no cross-section dependence in our sample, but the result from the Frees test 

indicates that there may be two potential cases. As such, this study was primarily based on the 

Granger test; however, we still ran an additional causality test, which was the Dumitrescu-Hurlin 

[62] approach, and then compared the results to ensure that they are robust. 

4.2. Panel Unit Root Tests 



  

Before utilizing the cointegration test to check the long-run relationship between economic 

growth (GDP), FDI, oil consumption (Oil), and CO2 emissions, this study used the unit root test for 

testing whether all variables are stationary and integrated of the same order. The purpose of 

conducting the unit root test is to identify the order of integration of the variables and to ensure that 

none of the underlined variables is I(2). The Choi test [42] uses the null hypothesis that the variables 

have a unit root or the variable is nonstationary, while the alternative hypothesis (H1) is having no 

unit root or the variable is stationary. 

Table 4 presents the results of the unit root test for all variables in our model. At the 1 per cent 

significance level, all the variables are not stationary and have unit root in their level form. However, 

they all become stationary in their first difference form, I(1) in all 25 countries. Since the data are 

stationary in first difference, the cointegration test is taken for testing the existence of the long-run 

relationship between variables. If the test does not prove or show the existence of cointegration or 

long-run nexus, the Panel Vector Auto Regression (P-VAR) model should be applied to investigate 

the short-run effect [63,64]. In case of co-integration between variables, the FMOLS and the DOLS 

method can be used to estimate the long-run equilibrium coefficient before conducting the causality 

tests. 

Table 4. Root test results. 

Variable 
Level First Difference 

Conclusion 
Lag Length p-Value Lag Length p-Value 

CO2 1 0.99 1 0.00 I(1) 

GDP 1 1.00 1 0.00 I(1) 

FDI 1 0.64 1 0.00 I(1) 

Oil 1 0.94 1 0.00 I(1) 

GDP2 1 1.00 1 0.00 I(1) 

GDP3 1 1.00 1 0.00 I(1) 

FDI2 1 0.92 1 0.00 I(1) 

4.3. Panel Cointegration Test Results 

Nonstationary variables at the significance level increase the potential for cointegration 

relationships among variables, the cointegration test needs to be used in this study to avoid spurious 

causality results, such as the spurious presence of causality or spurious absence of causality, as well 

as identifying the order of integration of the variables. 

Table 5. Cointegration tests. 

Panel A: Kao [45] CO2 p-Value 

Modified Dickey-Fuller t −3.33 *** 0.00 

Dickey-Fuller t −3.64 *** 0.00 

Augmented Dickey-Fuller t −2.69 *** 0.00 

Unadjusted modified Dickey-Fuller t −4.81 *** 0.00 

Unadjusted Dickey-Fuller t −4.27 *** 0.00 

Panel B: Pedroni [46]   

Modified Phillips-Perron t 1.96 ** 0.03 

Phillips-Perron t −3.49 *** 0.00 

Augmented Dickey-Fuller t −3.91 *** 0.00 

Panel C: Westerlun [47]   

Variance ratio  −1.83 ** 0.03 

Note: ***, ** the rejection of null hypothesis of no cointegration is statistically significant at 1% and 5% 

levels, respectively 



  

In the cointegration test, this study considers three methods: Kao [45], Pedroni [46], and 

Westerlun [47]. All three methods have the general null hypothesis H0: There is no cointegration. All 

results, which are shown in Table 5 above, rejected the null hypothesis at 1 per cent significance level. 

This states that there are long-run relationships between variables with all tests showing high 

statistical significance. There may be one or more cointegration relationships among them. Thus, the 

P-VAR method should not be used in this paper. In the next step, we estimate the long-run effect of 

variables using the FMOLS and DOLS models. For the final step, we use panel causality in both 

approaches, as we mentioned above, the Granger and Dumitrescu-Hurlin approaches [31, 44, 62], to 

check the uni-direction and bi-direction relationships between variables in order to have good 

estimators and recommendations for policymakers. 

4.4. Regression Results 

In order to estimate the long-run equilibrium relationship and to avoid the bias of Ordinary 

Least Squares (OLS hereafter) estimators of the parameters in the cointegrated panel series, this study 

employs panel cointegration FMOLS, which treats the endogeneity problem and its estimators are 

adjusted for serial correlation [50]. Moreover, this study also uses panel DOLS, which includes 

contemporaneous values, leads, and lags of the first difference of the regressors to correct the 

endogeneity problem and the serial correlation. While both specifications are alternative methods for 

panel cointegration [50, 52], DOLS underperforms more than FMOLS because of the greater use of 

assumptions and the reduction in the degrees of freedom by using leads and lags [65]. Therefore, this 

study prefers the FMOLS results to the DOLS. As such, this study uses DOLS estimators as a 

confirmation in terms of direction and magnitude of a coefficient obtained by FMOLS. Furthermore, 

this study also runs regressions with time and without time trends for both specifications, since panel 

unit root tests state the series have popular stochastics trends and could lead to a bias in estimated 

results. 

The results presented in Table 6 indicate that all the coefficients of lnGDP, lnGDP2, and lnGDP3 

in both the FMOLS and DOLS techniques are statistically significant at the 1 per cent level (with and 

without trend) and the magnitude coefficient is very close. Thus, there is a strong long-run nexus 

between per capita income and CO2 emissions, especially, a non-linear relationship. 

Table 6. Results. 

Dependent 

Variable: lnCO2 

FMOLS DOLS 

Without Trend With Trend Without Trend With Trend 

lnGDP 
−8.836 *** −10.41 *** −9.811 *** −10.20 *** 

(1.876) (1.796) (0.914) (0.899) 

lnGDP2 
 1.465 ***  1.799 ***  1.632 ***  1.744 *** 

(0.311) (0.307) (0.149) (0.149) 

lnGDP3 
−0.0763 *** −0.0993 *** −0.0868 *** −0.0962 *** 

(0.017) (0.018) (0.008) (0.008) 

lnFDI 
 0.574 ***  0.514 *** −0.103 −0.0576 

(0.138) (0.129) (0.105) (0.103) 

lnFDI2 
−0.0165 *** −0.0149 ***  0.00136  0.000333 

(0.004) (0.003) (0.003) (0.003) 

lnOil 
 0.712 ***  0.181  0.840 ***  0.505 *** 

(0.046) (0.229) (0.031) (0.100) 

Time trend 
 0.0530 **   0.0341 *** 
 (0.023)  (0.010) 

Constant 
 8.338 ** 11.98 *** 16.19 *** 16.41 

(3.684)  (3.599)  (1.919)  (0.000) 

Turning points—TNP ($US) 

1st TNP of GDPPC 130 122 149 142 

2nd TNP of GDPPC 2797 1442 1869 1245 



  

Peak of FDIIF 35,817,222 30,963,577   

R-squared 0.977 0.984 0.996 0.996 

Standard errors are in parentheses; FDIIF denotes net inflow; GDPPC denote per capita income. *** p < 

0.01, ** p < 0.05. 

The first turning point of per capita income ranges from $122 to $149. This is quite low and from 

data of selected developing countries, it falls around the 1980s. The second turning point ranges from 

$1245 to $2797 across models; with the preferred FMOLS model, the difference is narrowed down to 

$1442 (with trend) and $2797 (without trend). The signs of lnGDP, lnGDP2, and lnGDP3 are negative, 

positive, and negative, respectively. This implies that there is an inverted N-shape for the nexus 

between GDP and CO2 emissions. 

Additionally, Table 6 presents the impact of oil consumption on carbon emissions across models 

(except FMOLS with trend) as highly significant. This long-run elasticity ranges from 0.50 to 0.84, 

with the preferred model, FMOLS, as 0.71; this implies that a one percentage increase/decrease in oil 

consumption on average will lead to an increase/decrease in per capita CO2 emissions of 0.71 per cent. 

From Table 6, the coefficients of lnFDI and lnFDI2 also have high statistical significance. In 

addition, the coefficients of lnFDI and lnFDI2 fall within a narrow range, from 0.514 to 0.574 and 

−0.0165 to −0.0149, suggesting that the nexus of FDI inflow and per capita CO2 emissions exhibits an 

inverted U-shape and this follows the traditional EKC shape. Using Formula (2) we calculated that 

the turning points of FDI are 35,817,222 and 30,963,577 for FMOLS without and with trend, 

respectively. From this turning point, the effect of FDI on carbon emissions will change from positive 

to negative. 

4.5. Panel Causality Test 

Based on the results of all tests above, especially the cointegration test, we continued to analyze 

causality through the pairwise directions, which tests for the uni-directional and bi-directional 

causality between variables, by the Granger causality tests for panel data. Hurlin and Venet [66] 

suggested that Granger causality testing, when applied to panel data, is better than time series data. 

This statement is explained through the following three reasons: (i) It controls the consistency 

between objects in the table data; (ii) it increases the reliability of the regression estimation; and (iii) 

it minimizes deviations in the use of research models and errors in time series data. From previous 

empirical studies, this is also the common method for testing causality but from the conflict test 

results between different statistics, this paper employs an additional approach, which is developed 

by Dumitrescu-Hurlin [62], for checking the robustness of the test results. As we mentioned above, 

the Granger test assumes all coefficients are the same across countries [31, 44], but the other approach 

allows for differences across cross-sections [62]. The two approaches have similar null hypotheses H0: 

Variable 1 does not cause variable 2. 

Table 7 shows the full variables from our Equation (1), including all the variables that have bi-

directional causality from both approaches. The full test results are presented in Appendix B and the 

summary for each test is presented in Appendices C and D. With the test result for our Equation (1), 

all variables strongly effect CO2 emissions, this supports the regression presented in Table 6. The 

results of both approach tests from Table 7 show that there are causal relationships between the main 

pairs of research models, as summarized Figure 2 below. 
  



  

Table 7. Causality test. 

Null Hypothesis  
Granger Causality Dumitrescu-Hurlin 

F-Statistic Prob.  W-Stat. Zbar-Stat. Prob.  

 LNFDI does not cause LNCO2 6.88 0.00 5.34 6.58 0.00 

 LNCO2 does not cause LNFDI 1.41 0.24 6.39 8.78 0.00 

 LNFDI2 does not cause LNCO2 7.70 0.00 5.62 7.18 0.00 

 LNCO2 does not cause LNFDI2 0.50 0.61 6.32 8.62 0.00 

 LNGDP does not cause LNCO2 5.56 0.00 4.43 4.76 0.00 

 LNCO2 does not cause LNGDP 3.33 0.04 3.88 3.62 0.00 

 LNGDP2 does not cause LNCO2 6.36 0.00 4.23 4.35 0.00 

 LNCO2 does not cause LNGDP2 3.37 0.04 3.71 3.25 0.00 

 LNGDP3 does not cause LNCO2 6.52 0.00 4.07 4.02 0.00 

 LNCO2 does not cause LNGDP3 3.81 0.02 3.59 3.00 0.00 

 LNOILCON does not cause LNCO2 3.34 0.04 4.05 4.11 0.00 

 LNCO2 does not cause LNOILCON 14.86 0.00 6.67 9.79 0.00 

 LNOILCON does not cause LNGDP 6.59 0.00 3.94 3.73 0.00 

 LNGDP does not cause LNOILCON 10.68 0.00 10.98 18.55 0.00 

 LNOILCON does not cause LNGDP2 5.78 0.00 3.81 3.44 0.00 

 LNGDP2 does not cause LNOILCON 10.35 0.00 9.96 16.41 0.00 

 LNOILCON does not cause LNGDP3 5.85 0.00 3.68 3.19 0.00 

 LNGDP3 does not cause LNOILCON 9.38 0.00 8.95 14.28 0.00 

 

Figure 2. Summary of long-run Granger and homogeneous causality test. 

Statistical evidence from Granger showed that uni-directional causality occurs for pairs of 

variables: LnFDI and LnCO2; LnFDI2 and LnCO2. Another detail, the results of the Granger test also 

reject the null hypothesis that the above independent variables do not cause LnCO2 at the 1 and 5 

per cent significance levels, meaning that the variables have a one-way effect on the LNCO2 variable. 

On the reverse side, there is not enough evidence about the existence of a causal relationship between 

LnCO2 and independent variables (LnFDI and LnFDI2) in the research model to reject the null 

hypothesis. 

Moreover, the bi-directional causality relationship in the research sample appears in pairs of 

variables: LnGDP and LnCO2; LnGDP2 and LnCO2; LnGDP3 and LnCO2; LnOil and LnCO2, for 

both approaches. From both directions, all statistical evidence from four pairwise rejects the null 

hypothesis that there is no causal relationship between them at the significance level of 1% and 5%. 

Thus, the implication of research has shown that the three variables, CO2 emissions, income, and oil 

consumption, have a mutually causal relationship. This implies that an effort to reduce oil 

consumption will have greater effect on both environmental quality and economic growth. Thus, this 

causality showed an impossible trinity for policymakers. 

4.6. Discussion 

The results obtained from the FMOLS and DOLS reveal that all variables, which in the model 

include variables such as Oil, FDI, GDP, and their square and cubic versions, strongly effect carbon 

emissions. We found the relationship between per capita income and CO2 emissions does not follow 

GDP 

CO2 

Oil 



  

the traditional EKC shape (inverted U), the results exhibit an inverted N-shape with the two turning 

points at $130 and $2797 (FMOLS estimators); this is quite new, from previous empirical studies. In 

order to explain the direction of this nexus, it should be divided into two stages, as presented in 

Figure 3. 

 

Figure 3. Schematic representation of income and CO2 emissions. 

For the first stage, the relationship between per capita income and CO2 emissions follows a 

normal U-shape. The plausible reason could be that all selected countries in Asia are currently 

developing countries and in the 1980s (the first stage) almost all these countries were poor and 

underdeveloped. The first turning point—the trough—coincides with the economy of almost all 

selected Asian countries at that time. When an economy was primarily based on agriculture (per 

capita income level is low), economic activities did not cause a bad and significant effect on the 

environment. However, after income increased to exceed the first threshold, when the countries 

started the industrialization process and adopted the open-door policies (e.g., Vietnam after 1986), 

the production grew rapidly, leading to an increase in energy consumption, especially oil 

consumption, and environmental degradation. Thus, the relationship followed a normal U-shape and 

this is consistent with the findings of Chandran and Tang [67], who used data from 1971 to 2008 from 

the ASEAN countries and found a normal U-shaped EKC for these countries. 

With the particular emphasis of this study, that is, the relationship between per capita CO2 

emissions and FDI inflow, the results presented in Table 6 show FDIs have a strong impact on CO2 

emissions. This is not consistent with findings from previous empirical researches, such as Zhu et al. 

[18], Atici [27], Kirkulak et al. [24], Acharya [25], and Tang and Tan [20] who rejected the validity of 

the pollution heaven hypothesis. Contrary to the findings from these papers, this study finds that 

there is a non-linear long-run relationship between per capita CO2 emissions and FDI net inflow (1 

per cent level in the preferred models with and without trend). The sign of these coefficients exhibits 

an inverted U-shape in both FMOLS specifications (with trend and without trend), thus the nexus 

between FDI and carbon emissions follows the shape of the EKC theory. These results support the 

findings from Zhou et al.[12]. Using the turning point, the peak of the FDI inflow is $35,817,222 

(without trend) and $30,963,577 (with trend). These results appear to be robust and coincide with the 

data of selected countries in the 2010s. The initial effect of FDI inflow on CO2 emissions is positive, 

this implies that the Pollution heaven hypothesis is sufficiently supported. At the early stage of the 

foreign capital inflow, the host countries competed with other countries to attract more funds and 

investments by relaxing environmental standards. From that, the increase in capital inflow leads to 

the process of rapid industrialization, which provides a boost to the economy and an increase in 

production and energy consumption, which are the main causes of environmental problems. 



  

However, the results also present evidence to confirm the view that, when the extreme point is 

achieved, the countries are moving into the second phase and that the nexus turns negative. This 

means, in the second phase, an increase in FDI could lead to a decrease in CO2 emissions. The possible 

reasons that could explain these findings are as follows. First, some countries in the region have 

achieved a certain level of pollution (such as air pollution from industries in Beijing, China in 2015 or 

Vietnam’s Formosa case in 2016). As such, environmental awareness requires that the countries must 

care about environmental quality and they need not trade-off between economic growth and 

environment by relaxing emission standards to attract more FDI. In contrast, the governments from 

these countries have raised discharge standards, requiring advanced technology for discharge 

treatment and limiting CO2 emissions for specific firms through auction permissions. As a result, the 

trend of improving environmental quality could reduce pollution in host countries and achieve 

sustainable growth goals. Second, the technology spillover benefits from developed countries to these 

developing countries raise efficiency in energy consumption and hence reduce CO2 emissions. This 

is in line with findings from Zhou et al. [12] and Lee [68]. Moreover, the inflow FDI leads to an 

increase in incentives from domestic R&D activities and a number of patents (empirical findings from 

Ito et al. [69] and Cheung and Ping [70]) and hence improves productivity, raises efficiency in input 

uses and energy consumption, and reduces emissions. Third, another way to reduce energy 

consumption is to use alternative sources. Clean and renewable energies, such as solar, wind, waves, 

electric, and geothermal energy, are currently in a great upward trend in developed countries that 

could dramatically reduce CO2 emissions. 

In addition, oil consumption from the empirical results from this study reveal the strong impact 

on per capita CO2 emissions (FMOLS and DOLS without trend specifications) and the relationship is 

positive. This result is consistent with previous empirical findings that used total energy 

consumption in their studies, such as Chandran and Tang [67], Acaravci and Ozturk [71], and Ang 

[15]. The sign of the oil consumption coefficient is positive. This is in line with our expectation that 

the more oil use, the more CO2 emissions. The magnitude of this effect is quite large (near 1), 

suggesting that an effort to reduce oil consumption would have a greater effect in improving 

environmental quality. 

Last but not least, the evidence from the causality test in both the Granger and Dumitrescu-

Hurlin [62] approaches stated that there are bi-directional causalities between carbon emissions, 

income, and oil consumption. Thus, the policy that affects one of them will impact the two remaining 

ones. In order to have good and appropriate policies, they must simultaneously achieve reduction in 

environmental degradation and growth without trade-offs. The recommendation based on our 

findings is that policymakers should prioritize developing the policies that have reduced oil 

consumption without impacting on growth, such as technology improvement, they should use clean 

and renewable energies, and should boost the incentive for R&D activities to increase productivity 

through an increase in the efficiency of energy consumption and hence, achieve sustainable growth. 

5. Conclusions 

This study examines the effect of foreign direct investment on environment degradation in the 

Asian region and tests the validity of the traditional EKC curve. Findings from this study can be 

summarized as below. 

First, in relation to the relationship between FDI and environmental degradation, we found that 

the pollution heaven hypothesis is valid in selected developing countries in the Asian region. FDI has 

a strong impact on the environment. This impact exhibits an inverted U-shape, which follows the 

traditional EKC curve. This means FDI can lead to an increase in emissions and also reduce the 

emissions. FDI leads to an increase in environment degradation at the first stage of economic growth 

and reduces it at the next stage. In order to have an appropriate and good policy for attracting FDI, 

the host country’s policymakers need to know clearly and exactly the optimal level of FDI for their 

country. The peak level of the inflow FDI, based on the threshold, can be estimated to ensure a good 

balance between environment and growth. 



  

Second, with regard to the relationship between per capita income and environment 

degradation, we found the inverted N-shape in the selected developing countries in Asia, but the 

traditional EKC theory still has validity. As such, the trade-off between environment and growth in 

these countries from the past has existed to boost the performance of the economy. 

Third, oil consumption is currently a major input of energy for industries and it has a strong 

effect on emissions in the selected developing countries in the Asia region. This implies that an effort 

to reduce oil consumption has dramatically provided a reduction in emissions or an improvement in 

environmental quality. 

Fourth, the sustainable growth goal has the conflict or trade-off between growth and 

environment degradation, with bi-directional causalities between carbon emissions, income, and oil 

consumption. The change in one of these factors would lead to the change in both other factors and 

vice versa. Thus, policymakers should prioritize policies that reduce oil consumption and 

environment degradation but still boost economic growth. Our recommendation as to these kinds of 

policies is to encourage the incentives for R&D activities, such as technology, effectively improving 

energy use, and using alternative energies sources, which now are currently trending upwards in 

developed countries. 

In conclusion, findings from this study support the view that policymakers in the Asia region 

should enhance the implementation of sustainable growth policies such as improving technology, 

capital, human resources, and the effective use of natural resources to ensure sustainable economic 

growth and development without negatively affecting the environment. 
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Appendix A. Figures for Individual Data 

 

Figure A1. Line chart for the historical trend of variables: lnCO2, lnGDP, lnFDI, and lnOilCon over 

1980-2016. 



  

 

Appendix B. Full Results from Causality Test 

Null Hypothesis 
Granger Causality Dumitrescu-Hurlin 

F-Statistic Prob.  W-Stat. Zbar-Stat. Prob.  

 LNFDI does not cause LNCO2 6.88 0.00 5.34 6.58 0.00 

 LNCO2 does not cause LNFDI 1.41 0.24 6.39 8.78 0.00 

 LNFDI2 does not cause LNCO2 7.70 0.00 5.62 7.18 0.00 

 LNCO2 does not cause LNFDI2 0.50 0.61 6.32 8.62 0.00 

 LNGDP does not cause LNCO2 5.56 0.00 4.43 4.76 0.00 

 LNCO2 does not cause LNGDP 3.33 0.04 3.88 3.62 0.00 

 LNGDP2 does not cause LNCO2 6.36 0.00 4.23 4.35 0.00 

 LNCO2 does not cause LNGDP2 3.37 0.04 3.71 3.25 0.00 

 LNGDP3 does not cause LNCO2 6.52 0.00 4.07 4.02 0.00 

 LNCO2 does not cause LNGDP3 3.81 0.02 3.59 3.00 0.00 

 LNOILCON does not cause LNCO2 3.34 0.04 4.05 4.11 0.00 

 LNCO2 does not cause LNOILCON 14.86 0.00 6.67 9.79 0.00 

 LNOILCON does not cause LNGDP 6.59 0.00 3.94 3.73 0.00 

 LNGDP does not cause LNOILCON 10.68 0.00 10.98 18.55 0.00 

 LNOILCON does not cause LNGDP2 5.78 0.00 3.81 3.44 0.00 

 LNGDP2 does not cause LNOILCON 10.35 0.00 9.96 16.41 0.00 

 LNOILCON does not cause LNGDP3 5.85 0.00 3.68 3.19 0.00 

 LNGDP3 does not cause LNOILCON 9.38 0.00 8.95 14.28 0.00 

 LNFDI2 does not cause LNFDI 20.19 0.00 3.52 2.79 0.01 

 LNFDI does not cause LNFDI2 7.48 0.00 3.38 2.50 0.01 

 LNGDP does not cause LNFDI 0.36 0.70 9.34 14.62 0.00 

 LNFDI does not cause LNGDP 3.09 0.05 6.48 8.75 0.00 

 LNGDP2 does not cause LNFDI 0.32 0.73 8.98 13.89 0.00 

 LNFDI does not cause LNGDP2 2.95 0.05 5.83 7.43 0.00 

 LNGDP3 does not cause LNFDI 0.30 0.74 8.75 13.41 0.00 

 LNFDI does not cause LNGDP3 2.74 0.07 5.14 6.01 0.00 

 LNOILCON does not cause LNFDI 0.73 0.48 5.75 7.44 0.00 

 LNFDI does not cause LNOILCON 1.12 0.33 3.43 2.61 0.01 

 LNGDP does not cause LNFDI2 1.42 0.24 8.74 13.39 0.00 

 LNFDI2 does not cause LNGDP 3.99 0.02 5.92 7.61 0.00 

 LNGDP2 does not cause LNFDI2 1.32 0.27 8.27 12.43 0.00 

 LNFDI2 does not cause LNGDP2 3.81 0.02 5.54 6.83 0.00 

 LNGDP3 does not cause LNFDI2 1.26 0.29 8.01 11.90 0.00 

 LNFDI2 does not cause LNGDP3 3.54 0.03 5.08 5.89 0.00 

 LNOILCON does not cause LNFDI2 0.86 0.42 5.57 7.06 0.00 

 LNFDI2 does not cause LNOILCON 1.58 0.21 3.24 2.21 0.03 

 LNGDP2 does not cause LNGDP 0.02 0.98 2.58 0.86 0.39 

 LNGDP does not cause LNGDP2 0.66 0.51 2.47 0.63 0.53 

 LNGDP3 does not cause LNGDP 0.10 0.91 2.54 0.78 0.44 

 LNGDP does not cause LNGDP3 2.52 0.08 2.36 0.41 0.69 

 LNGDP3 does not cause LNGDP2 1.25 0.29 2.45 0.60 0.55 

 LNGDP2 does not cause LNGDP3 2.98 0.05 2.39 0.46 0.64 

Table 8. Causality test results from both approaches for all variables. 

 

 



  

Appendix C. Summary of Long-Run Granger Causality Test 

 

Figure A2. Summary of long-run Granger causality test. 

Appendix D. Summary of Long-Run Homogeneous Causality Test 

 

Figure A3. Summary of long-run homogeneously causality test. 
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