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Abstract

This study simulates the spread of the coronavirus disease (COVID-19) using a

detailed agent-based model and the census data of Japan to provide a comprehen-

sive analysis of the effects of contact-tracing apps. The results reveal some crucial

characteristics of these apps. First, with regard to contacts of those diagnosed

with COVID-19, the apps that require them to be quarantined upon receiving an

alert are successful in achieving containment; however, the apps that require them

to get tested have a limited curve-flattening effect. Second, the former category

of apps perform better than the latter because they quarantine those who are

infected but have not become infectious yet; these are individuals who cannot be

detected by the current testing technology. Third, if the download rate of the apps

is extremely high, the apps that require quarantine achieve containment with a

small number of quarantined people, thereby indicating high efficiency. Finally,

given a fixed download rate, increasing the number of tests per day enhances

the effectiveness of the apps, although the degree of improved effectiveness is not

proportional to the change in the number of tests.

∗I acknowledge data provision from National Statistics Center and financial support from Tokyo
Foudation for Policy Research.

†Tokyo Foundation for Policy Research: asakochiba01@gmail.com.



1 Introduction

Contact-tracing apps have gained traction as strong policy tools to prevent the spread

of the coronavirus disease (COVID-19). This is because lockdowns, including social

distancing measures, inevitably force people to cut back on their expenditures and labor

supply, which leads to the long-term contraction of the economy. Although a lockdown

is considered to be effective in impeding the virus spread, many countries are reluctant

to assent to the heavy economic downturn caused by the stagnation in consumption and

production that would materialize if a lockdown were imposed for months. To regain

the level of social activities existing before the COVID-19 pandemic, it is essential that

only those who are assumed to be spreading the virus be isolated from the society.

At this point, testing and tracing strategies offer hope to policy makers, since it helps

in targeting the infected individuals and their contacts. In particular, contact-tracing

apps are expected to work because they shorten the time required to trace the contact

networks (Ferretti et al., 2020) and can be implemented widely and easily due to the

increasing popularity of smartphones.

Despite their expected effectiveness, little is known about the effects of contact-

tracing apps. However, recent studies have shown that contact-tracing apps have a

significant effect on preventing spread of COVID-19. Hinch et al. [2020] conducted

numerical analyses of the effects of the apps and demonstrated that apps largely reduce

the daily incidents only when more than 56% of the population downloads it. Similarly,

Kucharski et al. [2020] argue that the apps should be downloaded by a sufficiently large

number of people to ensure the effective reproduction number below unity. On the other

hand, Kretzschmar et al. [2020] showed that shortening the delay in getting the test

results and detecting the contacts is crucial. Although these studies provide quantita-

tive support to the view that the apps could successfully flatten the epidemic curve, a

qualitative analysis of the mechanisms behind this finding is absent. In particular, sev-

eral fundamental questions are left unanswered: the reason why these apps drastically

reduce the number of infections, whether their effectiveness can be replicated under

any conditions, and the extent to which these apps are effective compared with the

other policies, such as test-only policy, half-lockdown, and their combinations. Above

all, the trade-offs between the merits and shortcomings involved in adopting these apps

should be discussed, because even if they mitigate the large-scale spread of the virus,

all of the people who come in contact with the diagnosed are required to self-quarantine

regardless of their health status.

In this context, this study provides a detailed analysis focusing on the effects of the

contact-tracing apps and the mechanisms behind them. These apps notify the individu-

als who have been in contact with those diagnosed and are classified into two categories
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(for details, see Section 2) based on whether they require the notified individual to

quarantine themselves (hereafter referred to as type-Q apps) or to get tested (hereafter,

type-T apps). The existing literature implicitly assumes the apps in their analyses to

belong to the former category. However, this study is new in that type-T apps have

been taken into consideration as well. The analysis employs a detailed agent-based

model, which is largely an extension of the one by Kerr et al. [2020].

The spread of the virus is simulated by using the individual census data in Japan.

The main findings are as follows:

1. The apps’ effectiveness depends on their design: With type-Q apps, almost full

containment can be achieved. The results reveal that type-T apps have a much

weaker curve-flattening effect than type-Q apps.

2. The main reason why the type-Q apps perform better than the type-T apps is

that they quarantine the people who have caught the virus recently but have not

become infectious yet. Thus, the difference arises not because the tests conducted

on the notified type-T-app users have 70% sensitivity (which allows 30% of the

symptomatic to slip through the tests) but rather because the type-Q apps quar-

antine uninfected people. Since those who have been recently infected cannot be

detected in the current testing technology, it can be said that type-Q apps rea-

sonably prevent the expansion of the virus by complementing the limited ability

of testing.

3. When type-Q apps are downloaded by a sufficiently large number of people (more

than 80% of all smartphone-users, which is equivalent to 52% of the total popu-

lation), it not only drastically reduces the cases but also quarantines only a small

proportion of people. The reason is as follows: If the download rate is extremely

low, only a small proportion of those who had contact with the diagnosed re-

ceive the alert and get quarantined. Although the apps have limited or almost no

downward pressure on the number of the infected, the low download rate keeps

the number of quarantined persons small. On the other hand, when the download

rate is nearly 100%, almost all who had been in contact with the diagnosed are no-

tified and quarantined. This almost-complete tracing scenario restricts the virus

spread mainly because the infected are quarantined at the early stage of illness.

Thus, even if the number of quarantined persons per diagnosed person is large,

the low number of diagnosed persons eventually leads to only a limited number

of people being quarantined. In other words, there is a feedback effect between

the number of the quarantined and that of the infected. If the download rate is

in the intermediate range, the apps brings only a limited amount of benefits with
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regard to both the prevention of the spread of the virus and the decrease in the

probability of tracing. As a result, both the number of infected and quarantined

individuals are kept high.

4. Given a fixed download rate, increasing the number of daily tests on the symp-

tomatic persons tends to enhance the effectiveness of the apps, although the degree

of enhancement is not proportional to the increase in the probability of testing.

This study not only reveals the characteristics of the apps, but also features a qualitative

analysis using an agent-based model. Many studies, including the literature cited above,

present the results of simulations but do not provide sufficiently detailed analysis on

the apps’ mechanisms. The reason is that the models tend to be so complicated that

it is difficult to detect the main factors that generate the results. This is a crucial

shortcoming of the research using an agent-based model, as has been frequently pointed

out (Judd, 2006). The present study overcomes this issue due to the relatively simple

structure of the model: Although many detailed scenarios are introduced, the model,

so far, only deals with epidemics. By conducting counterfactual experiments in various

parameter sets, the analysis reveals the mechanism behind the results, which enables

us to get an intuitive understanding of each scenario.

The following sections present the model, data, results and analysis, and finally, the

conclusions and perspectives for future research.

2 Model

The analysis employs a detailed agent-based model, which is largely based on the study

by Kerr et al. [2020]. The extension of the model includes the contacts among the

workers in service industries and their customers, the contacts among the elderly living

in the nursing homes and the care workers, super-spreading environments that tend to

arise with a certain probability, 1 people’s jobs as their attributions, people with severe

or critical illnesses automatically being isolated until they recover, and importantly, the

contact-tracing apps with the memory of past contacts.

The dynamics under no interventions is described in the model as follows: On

the first day, COVID-19 is brought into a hypothetical society and a person becomes

infected. This is followed by the daily transmission of the virus through the contacts,

under the assumption that the community and the service industry contacts are updated

every day. The probability of a susceptible person becoming infected after meeting

with an infectious person depends on the overall infectiousness common to all contacts,

1It is assumed that the transmissibility in randomly selected contacts with probability 20% is 50
times as high as that in the other contacts.(Cave, 2020)
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the place where they meet, the relative susceptibility of the former, and the relative

transmissibility of the latter. The place where they meet (referred to as layer) is assumed

to be one of the determinants of the probability of transmission because the frequency

and the time of meeting each other depends on the type of the contact. For instance, if

these two people are linked in the family layer, they spend a longer time together than

in the other types of contacts, such as workplaces and schools. Thus, the probability

that an infected person transmits the virus to their contacts in the family layer is

assumed to be higher than that in the other layers. In addition, the elderly are more

susceptible than the young (see Table 1), and the transmissibility of the virus from the

infected person is higher in the early stage of illness than in the later one.2 The overall

infectiousness of the virus is calibrated by targeting the speed at which the number

of diagnosed persons increased in Japan from January to February, when no specific

policies were in place.3

Once a person becomes infected, they are initially noninfectious, and therefore,

asymptomatic. Their condition worsens across phases with certain probabilities: They

might become infectious, symptomatic, severely ill, critical, and die, or recover from

each stage (see Table 1 for the definition of each state). The transition probabilities are

computed based on the age-specific data on the infections in Japan with the interval of

10 years, which reveals a higher probability of getting worse for the elderly than for the

young.4 In addition, the number of days it takes for the infected individual to go from

one stage to the next follows a log-normal distribution with the moments exogenously

set, which is also based on the observations (Table 2).5 In reality, people who are

severely ill and critical are hospitalized, or cannot participate in social activities and,

therefore, stay at home. Thus, it is assumed that they have no outside contacts, with

contacts at their homes and nursing homes decreasing by 20% from the levels in normal

times.

The design of contact-tracing-apps are crucial to determine the performance of the

2The model assumes that the transmissibility of the virus in the early stage of illness is twice as
high as that in the ensuing period. The early stage refers to the first N days after becoming infected,
with N defined as the minimum between the first four days or one-third of the expected duration of
the illness.

3The reported number of diagnosed people was 28 on February 14, and it witnessed a 30-fold
increase in a month.

4The transition probabilities of illness were computed primarily using the number of people in each
stage, as reported on June 10 (Ministry of Health, Labour and Welfare, 2020). The fact that the
reported cases only include the confirmed positive, and that even a small fraction of the symptomatic
could not get tested due to the limited testing capacity, suggests that the true number of the infected
persons should be much higher than the reported cases. According to the report on the antibody-
testing conducted in Tokyo from June 1 to 7, 0.10% of population were antibody positive, whereas the
cumulative number of the confirmed positive as of May 30 accounts for 0.038% (Tokyo Metropolitan
Government, 2020). Thus, the model assumes that the true number of the infected in each age group
is three-fold of the reported cases.

5These parameters are set equal to the default in Kerr et al. [2020].
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apps. Hinch et al. [2020] assumes that the apps should require those who have contacts

with the symptomatic to stay at home, whereas the apps used in Japan require those

who have contacts with the confirmed positive to get tested. To clarify the relevance of

the configuration of the apps, this analysis compares the difference between the effects

of these two types, calling the one in Hinch et al. [2020] as type-Q and the one applied

in Japan as type-T.

When testing-and-tracing apps are introduced, a certain fraction of people between

15 and 70 years of age download the apps in the initial period.6 In every period

thereafter, tests are conducted on a daily basis, which implies that randomly selected

symptomatic people are tested, and those who test positive are considered as diagnosed

and, consequently, isolated. It is assumed that it takes a day for the tested persons to

know the results.7 Isolation refers to completely refraining from any type of contact

until recovery, which describes hospitalization in reality. Sensitivity of the tests are set

to 70%, which means that the tests can detect only 70% of the infected people who get

tested. Those who have tested positive and have downloaded the apps register their

diagnosis information as soon as they know the results. The app users are immediately

notified that they had probably been in contact with the diagnosed individual within

the last seven days. The action required to the alerted app users depends on the type

of the apps. In the case where the apps are type-Q, the alerted app users are required

to self-quarantine for 14 days after the notification. People in quarantine reduce their

daily contacts with people outside their homes by 90%, while their contact with their

family members would be as usual; If the apps are type-T, the alerted app users get

tested. If they test positive on the following day, they should commence self-isolation.

In these scenarios, people are assumed to completely accept the requirement: All of

the app users register the test results if they are diagnosed positive for COVID-19, and

they quarantine themselves on getting the alert in case of the type-Q app. In addition,

the apps in the model are assumed to perceive all the contacts in the past seven days,

without any error. These strong assumptions do not hold in reality. That is, with

regard to people’s behavior, some app users may not register the test results, or may

feel reluctant to self-quarantine. With regard to the technologies, the reports on the

errors in the apps suggest that they may fail to catch a fraction of the contacts, or

6The reported usage rate for smartphones differs across age groups, with a relatively small fraction
of people below 15 and over 70 years of age having one (Ministry of Internal Affairs and Communations
[2018]). For simplicity, the model assumes that only those between the ages 15 and 70, who account
for 65.8% of all population, have smartphones. Moreover, the term download rate denotes the ratio of
the number of app users to the number of smartphone users.

7In reality, it takes about one to three days for the tested individuals to get the results In Japan.
Simulations show that the length of this lag plays an important role in determining the effectiveness of
testing. The lag is set to 1 day in the analysis, since its main scope is how the apps could contribute
to decreasing the cases, rather than the effects of testing.
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they may count coexistence of two people at a distance with no actual contacts. Such

phenomena are taken into consideration in the simulations, as shown in the section on

robustness check.

The intra-day events including the interventions as described take place in the fol-

lowing order: First, the community and the service industry contacts are shuffled, and

interventions such as testing, quarantine, and isolation are applied if any. Second, the

susceptibility of the uninfected is computed based on their age and whether they are un-

der the ambit of interventions such as isolation or quarantine during the period; Third,

the transmissibility of the infected is computed based on whether they are in the early

stage of illness and whether they are part of any intervention. Fourth, people come in

contact with each other in each layer. The infected people probabilistically transmit the

virus to those who are uninfected when they meet with the others. Finally, everyone’s

health status is updated reflecting information such as whether they have been infected,

whether their condition has worsened, and whether they have recovered.

Table 1: Definition of each state.

Figure 1: Age-dependent susceptibility.
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Table 2: Durations and probabilities of state-transition.

3 Data

The analysis uses the individual census data of Japan as of 2015. Data are sampled

as follows: Within 125 million respondents, 25 thousand are randomly selected.8 The

attributes include age, sex, job, employment status, and data on their family members.

Employment status consists of information on whether the respondent is employed,

unemployed, educated, or none of these. Here, education refers to schools only and

does not include kindergartens and nurseries; thus, school-age children are categorized

as ”none of them.” In reality, about 60% of the children below seven years of age go

to kindergartens or nurseries (Cabinet Office, 2019), where the infection could spread.

Therefore, the following analysis, randomly selected 60% of the school-age children are

assumed to go to kindergartens or nurseries. The information on the family members

includes whether the respondents live in their homes or in nursing homes. The analysis

takes into account the community in the nursing homes, since the behavior of the

elderly is thought to be one of the crucial factors that determines the severity of the

virus spread. For each of the employed people, the industry they belong to and the

size of the firm they work for are added as their attributes based on their distributions,

conditional on age and sex as presented in the Economic Census for Business Activities

in 2016.

8The records of those below 15 years and those who answered that they do not go to school are
removed.
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For each of the respondents, a hypothetical family is created based on the informa-

tion on the family members. Each family member’s attributes are assigned following

their distributions, conditional on age and sex, which in turn is obtained from the census

data. This handling, which creates approximately 50 thousand additional hypothetical

people, increases the number of middle-aged and the young individuals who live with

their families. This creates a distortion in the age distribution in population, that is,

the proportion of the elderly so far is estimated to be smaller than that in reality. To

adjust this bias, the number of the elderly who live alone is doubled. In total, the

hypothetical society is populated by 75,614 people.

People in the society are assumed to have contacts through the networks in six places

(see Table 3): Family networks are automatically formed when family members are

created. Workplaces are the group of working people who are in the same industry and

the same prefecture, and who work for the same size of firms. Schools comprise a group

of up to 25 children and at most 2 teachers in each prefecture.9 Community contacts

are the networks that link people randomly with an expected size of 10. Similarly,

service industry contacts are the link between service workers and randomly selected

20 people (expected size) for each service worker. The networks in nursing homes are

constructed by grouping up to 20 people over 64 years of age, who live in care facilities,

and adding up to 6 care workers, for each prefecture.10

Table 3: Methods used to create the networks for each layer.

9The ratio of the number of teachers to students in elementary and junior high schools was about
7% (Ministry of Education, Culture, Sports, Science and Technology, 2008).

10The guidelines issued by the Ministry of Health, Labour and Welfare set the standard for the
number of care workers in each nursing home to be one-third of the number of the residents.
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4 Results

This section presents the simulation results. Each plot shows the average value of the

results obtained in the simulations conducted 100 times. Each scenario assumes that a

randomly selected person gets infected on February 14, when the actual first positive

individual was confirmed in Japan. When comparing the cumulative number of those

who are infected and those who are quarantined, it is necessary that the number of days

simulated is set sufficiently large, such that the peak is attained and the virus outbreak

ends long before the final day of the simulation in each scenario. In this analysis, it is

set to 500 days. Introduction of tests and apps are assumed to take place 33 days after

the initial day and are assumed to be in place until the final day in the simulations.

4.1 Type-T apps

Figures 2a, 2b, and 2c show the simulated timeseries data of the proportion of newly

infected people in the population, under the conditions that daily tests are conducted on

randomly selected 30%, 50%, and 70% of the symptomatic persons, respectively. The

blue dotted line shows the result in the baseline case, where no interventions including

tests and apps are introduced. The other solid lines show the results in the scenarios

where 0% to 100% of the people, of ages between 15 and 70 years, download the type-T

apps: Tests are conducted on a daily basis, the diagnosed register their test results,

and the alerted app users get tested. In any test probability, the number of infections

decreases as the download rate increases: in the extreme case where the download rate

is 100%, the peak value is about one-third of that in the baseline scenario, and the

peak is delayed by one to two months. Although these figures show that type-T apps

flatten the curve, they also indicate the limitation of this type of apps. Even if 70% of

the symptomatic individuals get tested and all the people in the target age group have

downloaded the apps, no less than 0.03% of the population get newly infected at the

peak. This would cause heavy social losses, such as overwhelming hospitals, substantial

increase in subsidies, and stagnations. Thus, it can be said that type-T apps have

limitations in preventing the spread of the virus.
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(a) The case where test probability is 30%.

(b) The case where test probability is 50%.

(c) The case where test probability is 70%.

Figure 2: Proportion of new infections in the population under conditions of daily tests
on randomly selected symptomatic persons: The case of type-T apps.
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4.2 Type-Q apps

Similarly, Figures 3a, 3b, and 3c show the simulated timeseries data of the proportion

of newly infected people in the population, under the condition that daily tests are

conducted on randomly selected 30%, 50%, and 70% of the symptomatic, respectively.

The result is compared for the baseline scenario and when type-Q apps are introduced

with the download rates varying from 0% to 100%. Compared with the type-T apps,

type-Q apps have significant effects on flattening the curve: If the probability of daily

tests is 70% and the download rate is 90%, the maximum number of newly infected

individuals after the introduction of the apps is 2 in 75 thousand. In fact, even in

the case where the download rate is 60% with the same probability of tests, or the

download rate is 90% and the probability of tests decreases to 30%, the curve is almost

flat. Although these extremely flattened curves appear only if the download rate is

sufficiently high, these figures indicate the remarkable effectiveness of type-Q apps.
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(a) The case where test probability is 30%.

(b) The case where test probability is 50%.

(c) The case where test probability is 70%.

Figure 3: Proportion of new infections in the population under conditions of daily tests
on randomly selected symptomatic persons: The case of type-Q apps
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A natural question arises as to what drives the difference between the curve-flattening

effects of type-T and type-Q apps. There are three possible factors: Test sensitivity

effect, test target effect, and lockdown effect. The first and the second are related to

the limitations of tests. 70% sensitivity means that 30% of symptomatic people slip

through the tests and possibly spread the virus. In addition, tests can detect only

those who are symptomatic (Sethuraman et al., 2020). Thus, the noninfectious, who

have caught the virus recently and do not have infectiousness yet, cannot be detected.

These factors may lead to the relative inferiority of type-T apps, which requires tests,

to type-Q apps, which requires quarantine instead. Finally, lockdown effect, refers to

the fact that type-Q apps do not distinguish the app users’ health status: The apps

require that all the users who had contacts with the diagnosed should self-quarantine,

including those who are uninfected. For the alerted app users who are uninfected, a

quarantine has a similar effect as a lockdown.

To identify the main driver, counterfactual experiments were conducted, assuming

that there are two hypothetical scenarios (Table 4). In one scenario, TC1, 100% sensi-

tivity of the tests conducted for the alerted app users is assumed. In another scenario,

TC2, these tests can detect not only the symptomatic but also the noninfectious. By

comparing the results in TC1 and those with type-T apps, one can estimate the test

sensitivity effect. Similarly, the difference between the results in TC2 and TC1 mea-

sures the magnitude of test target effect, and the difference between the results with

type-Q apps and TC2 measures the magnitude of the lockdown effect.

Figures 4a, 4b, and 4c show the proportion of the cumulative number of newly

infected people in the population, under the condition that daily tests are conducted

on randomly selected 30%, 50%, and 70% of the symptomatic, and compares the result

in the different scenarios—type-T apps, TC1, TC2, and type-Q apps. The download

rate is varied from 0% to 100%. One can observe that the cumulative infections in

TC1 is fewer than that with type-T apps. However, the difference is not significantly

large to account for the large gap in the results with the type-T and type-Q apps.

Rather, the TC2 results are similar to those of type-Q apps. This observation leads

to the identification of the main factor of the curve-flattening effect of type-Q apps:

they prevent virus outbreak because they quarantine the noninfectious. The result

is consistent with the literature that reports that the silent transmission of the virus

from pre-symptomatic or asymptomatic persons might be the main source of outbreaks

(Moghadas et al., 2020; for a literature review, see Furukawa et al., 2020). From a

practical point of view, the result also suggests the relative effectiveness of semi-targeted

quarantine over testing. In reality, tests cannot detect those who are in the early stage

of illness, although their behavior is the key to determine the speed and the degree of

the transmission of the virus. Thus, type-Q apps complement the limitation of testing

13



by quarantining all the app users who had been in contact with the diagnosed, including

those who have just caught the virus.

Table 4: Scenarios to identify the main driver of the effectiveness that type-Q apps
have.
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(a) The case where test probability is 30%.

(b) The case where test probability is 50%.

(c) The case where test probability is 70%.

Figure 4: Proportion of cumulative number of infections in the population under dif-
ferent scenarios.
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4.3 Effectiveness of the type-Q apps

So far, the apps have been evaluated by the curve-flattening effect, that is, how many

people have been able to maintain their health. However, the main aim of the policy

debate is to prevent the spread of the virus at low social costs. Thus, efficiency mat-

ters. Since the model does not contain any economic parameters, first, the number of

quarantined individuals and the number of infections were compared. Hereafter, only

type-Q apps are analyzed.

In three plots in Figure 5, the proportion of cumulative number of quarantined

persons in the population is shown on the x-axis; and the proportion of cumulative

number of infections in the population, on the y-axis. The scatter plots depict the

results as the download rate of type-Q apps is varied between 0% and 100%. For

comparison, the result in the baseline scenario is also plotted. Figures 5a, 5b, and 5c

show the results under the condition that daily tests are conducted on randomly selected

30%, 50%, and 70% of the symptomatic, respectivly. The apps are more effective if the

point is located at the bottom-left, because it means that the apps prevent the spread

of the virus with a small fraction of people getting quarantined. The plots illustrate the

case where the symptomatic persons are tested with probability 30%, 50%, and 70%.

Regardless of the probability of testing the symptomatic persons, the apps quarantine

a relatively large number of people if the download rate is around 40% or 50%. The

reason is as follows: If the download rate is extremely low, only a small fraction of those

who had contacts with the diagnosed receive the alert and get quarantined. Although

the apps have limited or almost no downward pressure on the number of the infected,

the low download rate keeps the number of quarantined persons small. On the other

hand, when the download rate is nearly 100%, almost all people who had contacts with

the diagnosed are notified and quarantined. This almost-complete tracing impeded the

virus transmission mainly because the infected are quarantined at an early stage of

their illness, as shown in the previous section. Thus, even if the number of quarantined

per diagnosed person is large, the low number of diagnosed people eventually leads to

the result that only a limited number of people are quarantined. In other words, there

is a feedback effect between the number of the quarantined and that of the infected.

In this context, what happens if the download rate is in the intermediate range? The

apps would neither prevent the spread of the virus nor decrease the probability of

tracing. As a result, both the number of infected and quarantined persons are kept

high. This mechanism can be also observed in the timeseries data. Figure 6 shows

the proportion of newly quarantined people in the population when the daily tests on

symptomatic persons are conducted with a probability of 30%, and the download rate

of the apps is 10%, 60%, or 100%. With the introduction of the apps, if the download
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rate is 100%, the fraction of quarantined people spikes to 0.7% of the total population,

which is nevertheless followed by a decreasing trend. When the download rate is 60%,

the initial spike is lower than in the case of a perfect download rate. However, the

subsequent increase in the numbers shadows the spread of the virus. This leads to a

substantially large fraction of people self- quarantining through the periods.

To analyze the efficiency more deeply, a simple method to estimate the social costs

is applied: compare the product of the number of quarantined people and the duration

of quarantine, and the product of the number of infected people and the duration of

the inactive time.11 Approximating social cost using this method is rationalized by

the fact that people who are in quarantine or isolation cannot participate in economic

activities. Thus, the social costs should increase as the number of isolated/quarantined

people increases, and the duration of isolation/quarantine becomes longer. The dotted

line in each plot in Figure 5 shows at which download rate the apps perform better

than the testing-only scenario: Its intercept is located at the plot in the case where the

download-rate is 0%, and its slope is the ratio of the expected duration of quarantine

(14 days), and that of isolation, conditional on being infected. If a plot is located

beyond this frontier, the apps create a relatively large amount of inactive labor force

and consumption, compared to what is realized under a policy wherein only daily tests

are conducted, and no apps are introduced. If the tests are conducted on 30% of the

symptomatic, apps perform better than the test-only policy, only if they are downloaded

by more than 90% of the people between the ages 15 and 70 years. As the probability

that the symptomatic get tested increases, the apps tend to mitigate the spread of the

virus with a smaller number of people being quarantined. Although the increase in

the test probabilities shifts the frontier downward, the effects are amplified if apps are

introduced, thus the degree of each dot’s shift to the bottom-left is larger than that

of the frontier.12 Overall, the apps perform better than test-only policy regardless of

the probability of testing the symptomatic and the download rate. As the download

rate increases, the efficiency frontier shifts downward: The line that is parallel to the

dotted line and, across the plots, corresponding to each download rate. Although, the

degree of shift is limited if the plot moves to bottom-right. Once the download rate

reaches to the turning point where the plot starts to move to bottom-left, the frontier

moves downward in a larger degree. These results emphasize that the apps, from the

viewpoint of efficiency, should be downloaded by a sufficiently large number of people;

11See Appendix for the computation of the duration of the inactive time.
12The increase in the probability of testing the symptomatic not only shifts the frontier downward,

but also moderates its slope. This is because the expected duration of isolation that the infected people
undergo becomes longer as the probability of their being detected positive increases. This leads to the
cost of quarantine being relatively mild compared to that of isolation, which eases the frontier and
widens the effective region. However, this effect is minor compared to the parallel shift of the frontier.
Therefore, the increase in the test probability makes the effective region smaller.
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otherwise, they only have a limited amount of efficiency gain which appears as the

downward shift of the intercept of the frontier. In addition, the results imply that, with

a fixed download rate, increasing the number of daily tests of the symptomatic tends

to enhance the effectiveness of the apps; however, the degree of enhancement is not

proportional to the increase in the probability of testing. For instance, if the download

rate is 90%, the effectiveness gain when the test probability increases from 50% to 70%

is much smaller than that when the test probability increases from 30% to 50%. It is

said that the efficiency of apps may be improved by a limited amount even if the test

probability increases, which holds even more ground, considering that conducting tests

are costly in reality.
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(a) The case where test probability is 30%.

(b) The case where test probability is 50%.

(c) The case where test probability is 70%.

Figure 5: Quarantine and infection when the download rate of type-Q apps are varied.
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Figure 6: Timeseries of the number of quarantined at different download rates.

5 Robustness

As mentioned in section 2, people and apps do not behave as they are expected to:

Some app users may feel reluctant to register the positive test results, and others may

not accept the requirement of self-quarantine even if they receive the alert of having

been in contact with the confirmed positive. With regard to the apps, several errors

are reported.13 Thus, the assumption in the main analysis that all app users will

register the test results and quarantine themselves when they receive the alert, can

be considered as optimistic. Figures 7a, 7b, and 7c depict the relationship between

the cumulative numbers of quarantined and infected individuals, under the assumption

that the probability of registration, apps’ perception rate14, and probability of self-

quarantining upon receiving the alert are varied between 0% to 100%, respectively.

The daily tests are conducted on the symptomatic randomly selected with probability

of 50%, and the download rate is set to 90%. The first and the last plot exhibit the

same pattern; if these rates decrease to 30%, the number of infections increases, and

as a result, the number of quarantined persons increases, thereby implying that the

apps’ performance has worsened. The results are different when the perception rates

are imperfect, as shown in the second plot. Except for the case where the perception

rate is 10%, the apps’ effects on the number of infected and quarantined persons do

not depend on the perception rate. This is because the apps fail to catch a certain

proportion of the contacts that are randomly selected from all the contacts in the past

seven days. Those who are linked at the layer of homes, nursing homes, schools, and

workplaces meet with each other every day, whereas the contacts in the other layers

13See, for example, Sugiyama [2020].
14Perception rate is defined as the probability that the apps detect the contacts
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are shuffled every day. Thus, even if the apps’ perception rate is low, such as 30%, the

transmissions on the layers where contacts are fixed are likely to be traced. Moreover,

in these layers, people tend to stay in close proximity for a long time, which is reflected

in the high likelihood of virus transmission (Table 3). To summarize, the number of the

infected, and accordingly, the number of quarantined individuals, are rarely affected by

the apps’ perception rate, because the key contacts are detected regardless of the apps’

ability.
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(a) The case where the probability of registration is varied.

(b) The case where the perception rate is varied.

(c) The case where the probability of quarantine is varied.

Figure 7: Cases under imperfect registration of test results, perception of contacts, and
quarantine.
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6 Conclusion and future research implications

This study, by simulating the spread of the virus using a detailed agent-based model

and census data in Japan, provides a numerical analysis and intuitions on the effects

of contact-tracing apps. Results show some crucial characteristics of the apps. First,

apps’ effectiveness depends on their design: The apps that require the people who had

contacts with the diagnosed to get quarantined upon receiving a notification, are suc-

cessful in achieving containment, whereas the apps that require them to get tested have

limited curve-flattening effect. Second, the main factor due to which the former type

of apps perform better than the latter type is that they quarantine the noninfectious

people who cannot be detected in the current testing technology. Third, if download

rate is extremely high, the former type of apps not only drastically reduce cases, but

also achieve containment at a small number of quarantined people. Finally, given the

download rate of the apps, increasing the number of testing per day enhances the ef-

fectiveness of the apps, although the degree of enhancement is not proportional to the

changes in the number of testing.

There are three possible directions for future research: First, the model can be

extended to incorporate economic parameters. The evaluation of effectiveness here is

quite simple, and hence, leaves room for its development as a tool for economic analysis.

If, for instance, social activities such as consumption and production are linked to the

interaction of people, one would be able to compute how much losses arise from isolation

or quarantine. Second, another important issue, namely the effectiveness of restricting

inter-prefecture migration, or movements across locations within a country, should be

introduced. Finally, the parameters regarding people’s contacts could be more refined.

For example, if there are data such as the attributes of people with whom a person of

a certain age tend to meet with, the contacts in the model can be closer to those in

reality.

Appendix

A. Computation of the duration of the inactive time

The expected duration of being inactive conditional on getting infected is derived by

the following equation:

Duration =
1

N

(

∑

a∈A

∑

s∈S,s 6=D

pasdas +
∑

a∈A

paDdaD̄

)

,
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where pas denotes the probability with which an infected person belonging to the age

group a in all age groups A recovers at the stage s in all stages S except for death,

and das denotes the duration of their inactive time, and N denotes the total popula-

tion. Similarly, paD and daD̄ denote the probability and the duration of inactive time

, respectively, for those who ultimately die. pas is computed using the figures in Table

2. As for das, an infected person becomes inactive when they get hospitalized or be-

come severely ill. If an infected person is confirmed positive, they are hospitalized and

all of their contact networks become inactive until they recover. Even if the infected

person is unable to get tested, they commence self-quarantine and subsequently pro-

ceed to the severely ill stage. This self-quarantine has almost the same social effect as

hospitalization—because it deactivates all contacts outside their home or the nursing

home (in case of the elderly) until recovery—except that it decreases their community

contacts by 90%. The inactive period ends when they recover. To summarize, das is

derived by the following equation:

das =
∑

0<i≤dM

pasMi
((dM − i) + dasS) +

(

1−
∑

0<i≤dM

pasMi

)

dasS,

where pasMi
denotes the probability with which an infected person belonging to the

age group a and recovering at the stage s gets tested on the i’th day being in the

moderate state, dM denotes the expected duration of exhibiting the moderate state

symptoms common to all people (set to 8); and dasS denotes their expected duration

from becoming severely ill until the recovery. Assuming that daily testing is conducted

for randomly selected people, the day when they get tested in the moderate state

follows the exponential distribution with the mean value equal to the inverse of the test

probability.

In the case where they die, the duration of their inactive time should be treated

differently from those in the other cases. If they die from the illness, the social cost

mainly lies in the loss of their lifetime activities that would have been realized if they

were alive, rather than the loss arising from hospitalization or self-quarantine. Based

on this assumption, the duration of inactive time of those who die in each age group a,

daD̄, is expressed as follows:

daD̄ = daD +max {L− a, 0} ,

where daD denotes the duration of their inactive time until death and L denotes the

average lifetime (set to 85).

The expected durations averaged over age groups derived by this method are 61.0

days, 61.8 days, and 62.2 days, if the daily tests are conducted for 30%, 50%, and 70%

24



of the symptomatic persons, respectively.

B. Model validation

As noted in Section 2, the parameters that characterize the COVID-19 infected cases

are calibrated by the number of people in each stage in each age group, the results

of antibody tests, and the growth rate of cases. Ideally, a model should be validated

by checking whether the result explains the data. A challenge is how to extract the

contribution of target phenomenon from the data. Specifically, people’s behavior, the

main determinant of the cases, is driven by many factors, including announcements and

implementation of interventions, self-protection (such as wearing masks), and people’s

psychology (such as anxiety and fear for the unknown threats of the new virus). The

present analysis abstracts away such issues regarding rigorous model validation. A

backward compatible method would be to compare the results with those in another

model which features similar settings. If the results between these two different but

similar models are consistent, the present model can be said to have validity.

The result that the type-Q apps significantly reduce cases is consistent with the

findings in Hinch et al. [2020], as noted in Section 4.2. To check the validity of the model

from another aspect, this section presents the effects of the lockdown and checks the

consistency with literature. Figure 8a shows the proportion of cases in the population

under lockdown that requires people in all age groups to decrease contacts by 30%,

50%, and 70% (horizontal lockdown). The results indicate that partial lockdown can

substantially flatten the curve only when no less than 70% of contacts are avoided,

which can hardly be maintained for 500 days in reality. In Figure 8b, the lockdown

targets particular age groups and requires them to decrease contacts by 70% (vertical

lockdown): The targets are people of over 60 years, those below 60 years, and people

of all age groups. A lockdown focused on the elderly shows little improvement in cases,

whereas a lockdown only of the younger population shows almost the same transition

of the cases as a full lockdown. The reason is that the elderly account for only a small

proportion of the population and they have lesser contacts than those in the younger

age groups in normal times. The results in the second plot is quite similar to what is

reported by Silva et al. [2020] and Duczmal et al. [2020].
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(a) Horizontal lockdown.

(b) Vertical lockdown.

Figure 8: Cases under horizontal and vertical lockdown.

C. Relation to SIR models

This section provides a perspective to understand how agent-based models are differ-

ent from the susceptible-infected-removed (SIR) models. An obvious difference is that

agent-based models take a bottom-up approach, meaning that the smallest unit in their

structure is an individual, which enables the analyses on inter-relationships among peo-

ple. Fundamentally, this can be interpreted as high-dimensional heterogeneity. That is,

in the agent-based models, each individual is characterized by a variety of attributes and

contacts. In other words, an agent-based model without this diversity is substantially

the same as an SIR model. Based on this view, cases are compared under the scenarios

with different degree of heterogeneity (Table 5). In the baseline scenario, attributes

of individuals, such as residence, age, industry, and job are varied. The layers where
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they form contact networks are distinguished, because the networks are constructed in

accordance with their attributes. The assumption of super-spreader is also taken into

account. In the scenario labelled “Age_Layer_SS Het.”, residence is omitted from the

set of attributes, and thus, contact networks in all the layers link people in the society.

Similarly, the other scenarios partially omit the attributes in the baseline environment.

In each scenario, parameters are set so that their population-averaged value is iden-

tical across scenarios. The results shown in Figure 9 suggest that a scenario with a

high degree of heterogeneity tends to generate smaller estimates of cases than a sce-

nario closer to perfect homogeneity. Specifically, the peak cases under the baseline in

the main analysis with full heterogeneity is less than 10% of those under the scenario

with perfect homogeneity, which can be regarded as a simple SIR model realized in the

present structure. In addition, the peak arrives more than two months later than in the

scenario with homogeneity. Thus, it can be said that multi-dimensional heterogeneity

strongly affects the estimation of cases, and accordingly, the simulated effects of various

policy interventions on virus outbreak.

Table 5: Scenarios with different degree of heterogeneity.

Figure 9: Cases and degree of heterogeneity.
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