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Abstract

There has been a long tradition of presumed perfect mobility in urban

economics. Workers switch their locations in direct response to differences

in local economic performance. Recent empirical observations prove other-

wise. The number of movers rapidly declines with distance while there is a

positive correlation between distance moved and city size. I build a general

equilibrium model of a system of cities to explain the city-size distribution as

a result of imperfect mobility. Consumers’ logarithmic perception of distance

makes the city-size distribution heavy tailed. I also extrapolate how toler-

ant residents are to distance in each US city from the data on city size and

interurban migration.

Keywords: geographic mobility, internal migration, city-size distribution

JEL classification: J61, R12

1 Introduction

1.1 Consumers Are Not Footloose

Labor mobility exhibits distinct geographic patterns. There is a log linear rela-

tionship between the number of incoming residents and their distance moved as
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can be seen in figure 1. An exceeding share of domestic migration occurs within

10
3

distance moved (km)

10
-3

10
-2

10
-1

in
fl

o
w

 p
e
r 

to
ta

l 
o

u
tf

lo
w

 o
f 

o
ri

g
in

Chicago-Naperville-Elgin, IL
-IN-WI

Winston-Salem, NC

Bangor, M
E

Los Angeles-Long Beach-Anaheim, CA

Fairbanks, AKAnchorage, AK

Urban Honolulu, HI

Springfield, ILCape Girardeau, MO-IL

Springfield, MO

Joplin, MO

log(in/out) = 1.144
**

 -0.953
***

log(km) 

                    (1.75)    (-10.01)     R 
2
=0.2790

log(in/out) = 1.821
**

 -1.056
***

log(km) 

                    (2.75)    (-10.92)     R 
2
=0.3178

Figure 1. Number of in-migrants to St.

Louis by distance. Colors and dots are

size proportionate. Two lines represent

ordinary least squares regression. Black

line includes Alaska and Hawaii. Gray

line does not. ∗∗∗ and ∗∗ denote coefficient

significant at 1% and 5% respectively.

a close proximity and there are only a

few who move coast to coast. Take St.

Louis for example. The vast majority

of incoming residents are from Missouri

and Illinois when in fact workers are

free to move anywhere in the country.

The inflow drops at an exponential rate

with distance. When the distance in-

creases by 1%, the inflow from that area

drops by 1%.

The city-size distribution is a result

of household relocation. Any city size is

the sum of the inflows into, less the out-

flows out of, the city over time. It is then

logical to speculate that mobility weighs

in on its determination. It is known that

the city-size distribution has a heavy tail

(cf. figure 2(c), Gabaix and Ioannides

[GI04], and Duranton [Dur07]). Inter-

city migration itself has a heavy tail as

well, from which the city-size distribution is derived (compare figure 2(b) to fig-

ure 2(d)).

Models of the city-size distribution traditionally assume perfect mobility. Work-

ers move to another city in direct response to local economic conditions regardless

of how far their destination is. The resulting city-size distribution is independent

of where workers were in the period before.

This paper aims to explain the city-size distribution as a result of the observed

intercity migration patterns above. In a general equilibrium model of a system of

cities, workers draw their type and tolerance level for relocation. They make their

location choices based on their type and how far they were born from their des-

tination city. The equilibrium city size depends on their attitude towards reloca-

tion. Empirical estimations reveal that workers perceive distance on a logarithmic

scale. Consequently, the majority of cities source their residents only from within

its immediate vicinity and thus remain small. However, there are certain types of

workers who do not mind moving far in favor of earning opportunities in a large

city. These types are rare but most of them will come to the city because distance
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(b) Probability density function of figure 2(a).
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(d) Probability density function of figure 2(c).

Figure 2. Data source: US Census Bureau, 2009-2013 American Community Survey. Colors

and dots are size proportionate.

plays only a limited part in their location decision. Consequently, the city gathers

workers from across the country and becomes gravitationally large. The resultant

city-size distribution features a large number of small cities made up of nearby

in-migrants, paired with a small number of exceptionally large cities filled with

globally oriented workers.

1.2 Related Literature

Geographic mobility literature theorises about the probability of internal migra-

tion as a function of associated net gains (e.g., Sjaastad [Sja62] or Harris and
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Todaro [HT70]). Various factors involved in relocation choice have been studied

(see Molloy et al. [MSW11]). Davis and Dingel [DD12] and Rauch [Rau13] spec-

ulate on the heterogeneous search behavior by workers of different skill levels as

a possible cause. Falck et al. [FHLS12] turn to regional and cultural factors. They

document Germans’ reluctance to move outside of their shared area of regional

dialect. Woodard [Woo11] suggests similar cultural divides in the US.

On the empirical side, the primary focus is on whether a consumer moves or

not, but not on by how far he moves. In Bowles [Bow70], there are two distances:

whether a consumer is in the South or not. In Ladinsky [Lad67], there are four.

I measure the distance between every pair of 381 metropolitan statistical areas

(MSA), totalling 72,390 distinct distances, which enables me to examine the exact

role that distance plays. Haag et al. [HMP+92] feature the city-to-city distance in

France as well. Their work differs from the current paper as they work with a re-

duced form. Moreover, the literature concerns about the identification of relevant

causes for relocation, but not necessarily about the resulting city-size distribution.

By contrast, the city-size distribution has been one of the primary areas of

focus in urban economics.

Urban economics usually assumes no relocation cost (cf. Starrett [Sta78], and

Boyd and Conley [BC97]), and in labor economics, relocation cost is usually a

fixed cost that does not depend on the distance moved. For instance, in Manning

[Man10] and Hirsch et al. [HJO16], market imperfections lead to reduced mobility

in terms of type-matched industry, but not geographic mismatch.

The present paper is based on the works of Behrens et al. [BDRN14] and Eeck-

hout et al. [EPS14]. Behrens et al. show that workers sort into a city and select their

occupation according to their skill level. Along with skill levels, location-variant

serendipity determines the productivity and in turn the degree of agglomeration

in each city. Eeckhout et al. find evidence in support of extreme skill complemen-

tarity where the co-presence of workers from top- and bottom-tier skill levels does

not undermine but rather enhances their productivity. Migration in the present

paper is also motivated by heterogeneous skills. However, urban productivity is

simplified in the interest of incorporating distance-dependent relocation costs.

A myriad of socioeconomic and political factors are involved in the determi-

nation of city size. Considering that the city-size distribution is the upshot of

these individual cities that are already convoluted in and of themselves, it is un-

likely that one factor can single-handedly explain it all. Urban economists pick

one factor of interest and examine its explanatory power such as random growth

(Eeckhout [Eec04]), transportation cost (Berliant and Watanabe [BW18]) or col-
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lective decision (Duranton and Puga [DP19]) while keeping other factors such

as imperfect mobility turned off. Here, I will tune in to imperfect mobility and

tune out other factors. The ultimate model of the city-size distribution is likely

an amalgam of all these models. I intend to add a model with a yet unexplored

perspective to the pool of existing models that, when combined, yield a compre-

hensive description of the subject.

1.3 Reasons for Imperfect Mobility

There are many reasons for imperfect geographic mobility. For example, the ge-

ographic extent of job search expands with the level of skill. Ph.D students on

the job market fly everywhere for interviews, whereas it is not likely to see high

school graduates doing the same. According to the US Census, 35% of degree

holders moved for employment reasons whereas that of non high school gradu-

ates is only 13%.1 The same goes for the receiving end (cities) as well. 30% of the

residents in the 100 largest core-based statistical areas hold BA or Ph.D, whereas

that of the smallest 100 is 19%.

Along with the heterogeneous skill levels, uncertainty aversion may deter

long-distance relocation. It is usually difficult to know the quality of life in a new

city in advance. Furthermore, even if a worker herself may be mobile per se, it is

prohibitively costly to move the entire network of people she meets in her daily

life. The pecuniary cost of relocation is a one-time expense, but out-of-towners

may incur implicit costs as above over a long period of time, be it personal, social,

cultural or economic.

The rest of the paper is organized as follows: In the upcoming section I will lay

out the model and uncover the relationship among distance, inflow and city size.

I will empirically validate my theoretical predictions in sections 3 and 4, interpret

them in section 5, and summarize them in section 6.

1Data source: https://www.census.gov/data/tables/2015/demo/geographic-mobility/

cps-2015.html.
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2 Model

2.1 Landscape

Consider a closed production economy. I take the country to be a circle with

its perimeter normalized to 1 in order to remove the border that may otherwise

produce an unwanted asymmetric result. Cities line up along the perimeter X .

There are I of them indexed by i.

The model rolls out in two stages. Initially, there are N (∈ R+) consumers

uniformly distributed over X . Each consumer is endowed with a pair (t, 2) ∈

{1, · · · , T}×Y (⊆ N×R). The first entry is type t representing her skill. It identifies

her best suited industry to work in. There are nt of type-t consumers. Along

with the type, she also draws her distance-tolerance factor 2 from the distribution

with probability density function (pdf) ft(2) and cumulative distribution function

(CDF) Ft(2). A high 2 implies that she does not mind moving far. Note that
∫

Y
ft(2)d2= nt for all t, totaling up to

∑

t

∫

Y
ft(2)d2= N nationwide.

Type distribution ft(2)may depend not only on t but also on birthplace. How-

ever, since consumers cannot choose a place to be born in,2 it is safe to assume

that ft(2) takes the same form regardless of the location.

In the second stage, consumers of type t make simultaneous and uncoordi-

nated decisions on their location. A type-t consumer can either stay at her initial

location or move to the city that matches her type. Following the example of Eeck-

hout [Eec04], each city i produces one commodity ci. For simplicity, I assume that

there are as many cities as there are types, that is, I = T . From here on I refer to

type t by its corresponding city i and use the term “city”, “type” and “industry”

interchangeably where applicable.

I write x i(∈ X ) to mark the birthplace of a type-i consumer measured by the

shorter arc length from city i. If I place this country on a compass with city i

facing the east, x i =
1

4
is found on the north or south and x i =

1

2
is on the west end

of the country.

2.2 Consumption and Location Choice

Consider a type-i consumer born distance x i away from city i. Her preferences

over a numéraire composite consumption good ci and housing hi are represented

2I will discuss the possibility of intergenerational dependence over space in appendix A.1.
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by

u(ci, hi) = ci +η log hi, (1)

where η measures the portion of her expenditure on housing. She is endowed

with a unit of time, which she converts into ci to earn wage 4i. Her budget

constraint is

4i ≥ ci + pihi +ρ(x i, 2), (2)

where ρ(·) measures the lifelong opportunity cost of relocation as discussed in

section 1.3. I will make following assumptions regarding ρ(·):

Assumption 2.1 Logarithmic Perception of Distance:

For any given 2 ∈ Y , the opportunity cost of relocation ρ(·) satisfies

ρ(0, 2) = 0, (3)

∂ ρ(x i, 2)

∂ x i

> 0, and (4)

∂ 2ρ(x i, 2)

∂ x2
i

< 0 (5)

over X .

Consumers’ nonlinear perception of distance gives grounds for (5). A St. Louis

native finds a move from St. Louis to Chicago more draining than a move from

Fairbanks to Anchorage (roughly the same distance apart). The additional cost

increase wears out with distance.

Coupled with assumption 2.1, I also assume that ∂ ρ(x i, 2)/∂ 2 < 0, i.e., the

higher the distance tolerance is, the lower the relocation cost will be.

In addition to finding the optimal consumption bundle, she also needs to de-

cide whether she will move to city i or stay put at x i. I will denote her decision

by a location choice function 1i(x i, 2) : X × Y → {0, 1}. If she drew (x i, 2) and

decides to move out of her birthplace, 1i(x i, 2) = 1. Otherwise, 1i(x i, 2) = 0.

2.3 Feasibility

Given the location choice function, a measure of type-i residents in city i is

si =

∫

X

∫

Y

1i(x i, 2) dFi(2)d x i. (6)

Let H denote the housing supply in each city. Using (6), define the feasible allo-

cation in this economy as follows:
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Definition 2.2 Feasible Allocation:

An allocation is a list of functions [ci(x i, 2), hi(x i, 2), 1i(x i, 2)]
I

i=1
with ci : X × Y →

R+, hi : X ×Y → R+, location choice 1i : X ×Y → {0, 1}, and output (zi)
I
i=1
∈ RI

+
. Given

type-size distribution (ni)
I

i=1
and distance-tolerance distribution [ fi(2)]

I

i=1
, an allocation

is feasible if

sizi =

∫

X

∫

Y

1i(x i, 2) ci(x i, 2)dFi(2)d x , (7)

H =

∫

X

∫

Y

1i(x i, 2) hi(x i, 2)dFi(2)d x , and (8)

si ≤ ni

for any i, where si is defined by (6).

2.4 Production

Turning to production, as mentioned earlier, workers supply one unit of (perfectly

inelastic) labor to produce the composite goods with a constant returns to scale

technology: τ units of labor produces zi = Ai(si)τ units of composite goods. Con-

trary to what is conventionally assumed, Ai(si) does not vary with industry i or

city size si (unless it is zero). In particular

A(si) =

(

1 if si = 0

a(> 1) if si > 0.
(9)

In the current model, I do not rely on productivity differences to break the oth-

erwise uniform distribution of workers. I shut off the channel through which

productivity differences bring in variations in city sizes (as documented in Rosen-

thal and Strange [RS04]) in order to isolate the role that distance tolerance plays

(or else I will not be able to tell how much of the size difference is the result of im-

perfect mobility). However, I still do need to secure some incentive for residents

to clump together in one location. Absent economies of localization, no one will

move to a city (cf. Glaeser et al. [GKS01]). Specification (9) is the minimally inva-

sive way to do so without introducing added complications from type-dependent

productivity.

Firms are a price taker and earn zero profit in equilibrium. Thus, each worker

earns

4i = a. (10)
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2.5 Rural Residents

Let us turn to a resident who stays put. He becomes a Robinson Crusoe-type

rural resident to lead a life under the backyard capitalism. His marginal product

gets pushed back to A(si = 0) = 1(< a) according to (9), housing consumption

becomes independent of the city size, and the cost of relocation becomes zero.3

I mark his maximized utility level by 3i, which, by construction, is independent

of x i. In order to keep the model on point, assume that the land in the rural

area is abundant enough and the number of people who do not move out of the

birthplace will not affect the value of 3i. Furthermore, assume 3i = 3 for all i in

order to remove arbitrariness.

2.6 Trans-Tolerance Value

Circling back to a consumer who leaves her birthplace, her indirect utility function

is

3 (pi, 4i; x i, 2, si) = 4i −ρ(x i, 2)−η+η (logη− log pi) . (11)

The housing market (8) clears when

sihi = H, (12)

from which I obtain the equilibrium rent

pi =
ηsi

H
, (13)

i.e, the more crowded the city becomes, the more expensive the rent per unit will

be.4 Firm’s first-order condition (10) and housing market clearance (12) further

simplify her indirect utility function (11) to

3 (a, x i, 2, si) = a−ρ(x i, 2) +η(− log si + log H − 1). (14)

The farther she is from, the lower her utility level will be, holding everything else

constant. Notice the trade-off among the economies of agglomeration a, disec-

onomies of agglomeration −η log si and distance tolerance 2. Holding the value of

3Location x i is identified by the distance from city i, which itself is located at x i = 0. For a non-

mover, the distance moved is x i − x i rather than mover’s x i − 0 so that ρ(x i − x i , 2) = 0 following

(3).
4Note that the expenditure on housing is always pihi = η regardless of the city size. A city resi-

dent copes with an increasing city size by reducing her lot size without changing her expenditure

share of housing.
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3i(·) constant, if the destination city becomes crowded or the productivity boost a

gets smaller, the only residents with high enough tolerance 2 would move to the

city.

Let us revisit the location choice 1i(x i, 2). A type-i consumer will move to her

type-matched city if her utility level (14) is greater than the fallback value 3 :

3 (a, x i, 2, si) = a−ρ(x i, 2) +η(− log si + log H − 1)≥ 3. (15)

A resident at the margin meets (15) with equality. Since ρ(·, 2) is strictly monotone

decreasing in 2, one can solve (15) with equality for 2 to define a trans-tolerance

function

2i(x i) ··= ρ
−1
�

x i, a+η(− log si + log H − 1)− 3
�

. (16)

This establishes the following:

Proposition 2.1 Location Choice Rule

A consumer who drew (x i, 2) makes her location choices 1i(·) in reference to the trans-

tolerance value 2i(x i) prevalent at her birthplace x i as follows:

1i(x i, 2) =

¨

0 if 2≤ 2i(x i) ··= ρ
−1
�

x i, a+η(− log si + log H − 1)− 3
�

1 otherwise.
(17)

A couple of observations on (16) and (17) are in order. First off, 2i(x i) deter-

mines the fraction of people moving to city i. Anyone who drew 2≥ 2i(x i) moves

out because she does not show much affinity to her birthplace or her opportunity

cost of staying put is too high. On the contrary, anyone with 2≤ 2i(x i) has a lot to

lose by relocation and thus stays in. Therefore, the higher the trans-tolerance is,

the higher the ratio of non-movers will be.

Second, 2i(x i) is increasing in x i because ρ(·) is increasing in x i. In the vicinity

of city i, the number of non-movers is very small because it does not take much to

turn residents into a city dweller. As a result, the borderline tolerance is very low.

As the distance to city i increases, the cost of relocation bears down on consumers.

They will not become a city resident as easily as before unless their tolerance is

high, making the threshold high as well.

However, since ρ−1(·) is concave in x i, the effect of increasing trans-tolerance

value becomes less pronounced as x i increases:

Proposition 2.2 Trans-Tolerance Function Is Concave

Suppose that the opportunity cost of relocation ρ(x i, 2) is concave in x i. Then trans-

tolerance function 2i(x i) is concave in x i as well.
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Proof. Immediate from (16). �

The proposition hinges on assumption 2.1 that consumers perceive distance

on a logarithmic scale. I will validate this supposition in section 4.

There are in fact two ways to go about the trans-tolerance value. One is to

assume that the trans-tolerance function is identical over type: 2i(x i) = 2(x i) for

all i. The other is to allow 2i(x i) to take different values depending on the type. I

will explain the difference between them below.

(a) Type-independent trans-tolerance with

type-dependent distribution of 2.

(b) Type-dependent trans-tolerance with

type-independent distribution of 2.

Figure 3. Two possible specifications for the distribution of distance-tolerance value and

the trans-tolerance function at some location x i = x j = x ∈ X . The shaded area represents

a measure of workers who move distance x to live in their type-matched city i (in blue

and green) or j (in green). The remainder represents those who stay distance x away from

their type-matched city (i.e., non-movers). The outflow from location x i is larger than that

from location x j in both scenarios.

First suppose that 2i(x i) = 2 j(x j) = 2(x) for all i, j at any x i = x j = x ∈ X .

If 2i(x) will be the same across the types, then 2 should have been drawn from

different distributions depending on the type as in figure 3(a) (or else the city-

size distribution will be uniform). In this case, if fi(2) first-order stochastically

dominates f j(2), then si > s j (cf. proposition 2.3 below). Type i should be more

distance-tolerant than type j so that at any given x , more of type i must have

drawn 2 ≥ 2(x) than type j. In this case, 2 can be interpreted as a skill level

that indicates the favorable degree of concentration of workers. Industry j fea-

tures low-skill labor that does not benefit from concentration of workers within

the same industry. Consequently, their distance tolerance is drawn from the dis-

tribution with a low mean. By contrast, industry i involves a type of workers who
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capitalize on large-scale interactions among them.

Alternatively, type can be thought of as a manifestation of risk tolerance. If

fi(2) first-order stochastically dominates f j(2), then type i is made up of those

who are willing to take on new challenges in an unfamiliar city. Large cities

are large because they attract adventurous types, who are ready to go through a

long-distance relocation process and consequently, the total inflow is large.

Now suppose instead that 2i(x) can differ from 2 j(x) at some x i = x j = x ∈ X

but 2 itself is drawn from the identical distribution f (2) regardless of the type as

in figure 3(b). In this case, if 2i(x) < 2 j(x), then si > s j. The variation in city size

arises directly from trans-tolerance (16) itself, rather than the distribution from

which 2 is drawn. City i has a larger influx of people because the net effect of

agglomeration a −η log si is large enough to make up for the fallback utility level

3. Once again, type i is likely to be a high-skill type whereas industry j does not

call for much concentration of workers.

Empirically speaking, I cannot tell which one is at work because I do not

have direct observations of fi(2) or ρ−1(·). To cover all bases, I will consider

both type-dependent and -independent trans-tolerance for the empirical analy-

sis in sections 3 and 4. For the theoretical analysis to follow, I will take type-

independent trans-tolerance (figure 3(a)) as an example but the same argument

goes for figure 3(b) as well.

Most of the models of city-size distributions can be thought of as a limit-

ing case of the present model where trans-tolerance tends to negative infinity

(2i(x) → −∞) so that everyone moves out of their place of birth no matter how

far they are from their destination city. This can happen in a couple of different

ways. Looking at (16), if I remove the concept of distance, that is, if the distance

to the city is the same (typically zero in the literature) from anywhere, then no

one bears the cost of relocation ρ(0, ·) = 0 so that for sufficiently low 3 every-

one moves to the city and the size distribution turns uniform. Alternatively, if a

becomes dominant, everyone moves to their type-concordant city. The resulting

city-size distribution (si)
I
i=1

becomes the (exogenous) type distribution (ni)
I
i=1

it-

self. Existing models endogenously derive the city-size distribution using other

factors of choice than imperfect mobility to frame agglomeration (something more

complex than a rudimentary urban productivity defined in (9)).

Put differently, existing models start from stage two (and usually have more

steps to follow), whereas the current model focuses on the transition from stage

one to two.
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2.7 Competitive Equilibrium and City Size

Given the trans-tolerance function above, define

Definition 2.3 Competitive Equilibrium:

An equilibrium is a feasible allocation [ci(x i, 2), hi(x i, 2), 1i(x i, 2)]
I
i=1

and (zi)
I
i=1

, and

price system (pi)
I
i=1
∈ RI

+
, such that [ci(x i, 2), hi(x i, 2), 1i(x i, 2)]

I
i=1

maximizes the

utility level and (zi)
I
i=1

maximizes the profit under (pi)
I
i=1

for any (x i, 2) ∈ X × Y and

i ∈ {1, · · · , I}.

With the equilibrium conditions above, goods market (7) is written as

si =
1

a

∫

X

∫ ∞

2(x i)

{a−ρ(x i, 2)−η} dFi(2)d x i. (18)

Using the survival function Si(2) ··= 1− Fi(2), this further simplifies to

si = ni

∫

X

Si[2(x i)]d x i, (19)

from which the city-size distribution is derived.

2.8 Empirical Connection

I will reformulate theoretical predictions so far of city size and trans-tolerance in

preparation for empirical testing in sections 3 and 4.

2.8.1 City Size

I will differentiate distance-tolerance distributions by certain criteria to make

testable predictions out of (18). There are various ways to rank density func-

tions. I propose two of them below and discuss their implications for the city-size

distribution.

Proposition 2.3 First-Order Stochastic Dominance and City Size

If fi(·) first-order stochastically dominates f j(·), si ≥ s j in equilibrium.

Proof. Suppose that fi(·) first-order stochastically dominates f j(·). For any given

location x i = x j = x ∈ X , Si[2(x)] ≥ S j[2(x)]. Integrating both sides of the inequal-

ity over the country,

si = ni

∫

X

Si[2(x)]d x ≥ n j

∫

X

S j[2(x)]d x = s j (20)

from (19). �
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Remark. For the role of ni in (20), see appendix A.1.

In order to prepare a testable prediction, I will further specify a component of

city size (19) as follows:

niSi [2(x i)] = αi + βi x i. (21)

The left-hand side measures the inflow from location x i. Coefficient βi measures

the rate of decline in the inflow as a birthplace gets farther.

Proposition 2.4 Change in Inflow and City Size

Suppose that the inflow is linear in distance as in (21). Then the equilibrium city size is

si = αi +
1

4
βi. (22)

5

Proof. City size (19) implies si = ni

∫

X
Si[2(x i)]d x i =

∫

X
(αi + βi x i) d x i, from which

(22) is obtained. �

Remark. The slope βi reflects two items that appear in (18). First, it captures trans-

tolerance. If 2(x i) makes a rapid ascent with x i, then βi will be small because the

inflow will drop fast with distance. Second, it picks up the opportunity cost of

relocation. If ρ(x i, 2) does not flatten out with x i much, then again βi is small for

the same reason.

The remaining entries in (18) do not depend on the distance and thus are

picked up by αi rather. For instance, distance-tolerance distribution fi(2) does not

depend on x i and thus it will be folded into αi, which in turn measures type i’s

general distance tolerance or propensity to move out.

What applies to si goes for pi as well because it is proportional to si via (13).

Thus, if 2i has a high mean, then type-i consumers face a high rent in their city. An

increased rent functions as a repellent but type i has low enough 2(x i) to accept

it. Conversely, if 2 j has a low mean, p j will be low, but that will not be enough to

make up for their low distance tolerance and the city will be small.

2.8.2 Trans-Tolerance

Trans-tolerance is not observable but can be constructed from the recorded do-

mestic migration patterns.6 It is then useful to write trans-tolerance as a function

5The coefficients 1 and 1
4 in (22) do not carry much empirical meaning as they are an artifact

from having a circle of perimeter 1 for an economy.
6Note that (unobservable) 2(x i) determines (observable) mi(x i), not the other way around.
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of the inflow by distance. Let mi(x i) denote a measure of in-migrants to city i

from location x i.

Proposition 2.5 Inferred Trans-Tolerance

Suppose Fi(2) is strictly monotone increasing. In equilibrium, trans-tolerance can be

extrapolated from in-migration as follows:

2(x i) = S−1
i

�

mi(x i)

ni

�

(23)

at any x i ∈ X .

Proof. From (19), mi(x i) ··= niSi[2(x i)] at any x i ∈ X . Since Fi(2) is strictly monotone

increasing, its survival function Si(2) is strictly monotone decreasing in 2. Thus,

for any given x i, 2(x i) = S−1
i

�

mi(x i)

ni

�

. �

Sections 3 and 4 investigate the empirical validity of propositions 2.4 and 2.5

respectively, namely, section 3 estimates the size of cities whereas section 4 esti-

mates the type of cities.

3 Testing the Impact of Imperfect Mobility on City

Size

3.1 Data Employed

I use the US Census Bureau’s American Community Survey (ACS) 2009-2013.7

The questionnaire asks which MSA a responder lived a year prior to the survey. A

total of 381 MSA’s report in- and out-migration so that there are 381×380=144,780

entries of inflow and outflow recorded between each pair of cities.

I will make several adjustments to the data in order to test theoretical implica-

tions of section 2.

In theory, the initial distribution is uniform whereas in reality, all locations are

pre-populated with the number of consumers inherited from the previous period.

To make the initial distribution as close to a uniform distribution as possible and

eliminate the initial heterogeneity, I normalize the inflow by the total outflow from

the location of origin.

7Data available at https://www.census.gov/data/tables/2013/demo/

geographic-mobility/metro-to-metro-migration.html.
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The model features a circle. The maximum moving distance possible is .5

regardless of the destination. In contrast, the actual US stretches over a limited

expanse of land. The maximum distance differs city to city. Among 381 MSA’s,

Carson City, NV8 has the shortest maximum distance possible of 4,187 km, from

Bangor, ME. In turn, Honolulu and Bangor have the longest maximum distance

possible of 8,293 km, between each other. While the gap between the top and

bottom of the maximum range is mitigated by the fact that Alaska and Hawaii

are included, this may nevertheless contaminate the estimation results: I may

inadvertently underestimate Carson City’s size for the reasons other than distance

tolerance. Even if there were someone willing to move to the city from 8,293 km

away, that worker will not show up in the data because the country cuts off at

4,187 km in. I may overshoot Honolulu and Bangor’s size vice versa.

That said, I do not detect any systemic interaction between the maximum

range and city size in figure 4. The cap on the distance does not affect the city size.
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Figure 4. City size over maximum moving distance possible. Location of MSA, be it near

the center or border of the country, has no statistically significant bearing on its size. ∗∗∗

denotes coefficient significant at 1%.

While the longest cutoff is about twice as long as the shortest cutoff, consumers

perceive the distance on a logarithmic scale. The perceived gap is thus much

smaller than twofold as a linear scale implies. I will nevertheless regress city size

on inflow and the maximum range in section 3.2. The latter captures the said

8Coincidentally, Carson City was also the smallest MSA in 2013.
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non-economic constraints so that the coefficient on the former will not be watered

down by their presence.

I will validate proposition 2.4 in section 3.2 and then back it up with a different

type of regression in section 3.3 for robustness.

3.2 Regression on Distance Elasticity of Inflow

Empirical testing of proposition 2.4 requires two rounds of estimations. First, I

regress the city size on its inflow over log x i and compute coefficient βi of log x i

as I did in figure 1, not only for St. Louis but for all 381 MSA’s. Then I further

regress city sizes on αi and βi thus obtained. To this end, I write (22) as

log si = γ0 + γ1αi + γ2βi

�

+γ3αiβi + γ4 log(maximum distance possible
i
)
�

. (24)

Note that γ1 and γ2 are coefficients of αi and βi, which themselves are coefficients.

Since I take a log of x i and si, βi measures a percentage increase in size over a

1% increase in distance, i.e., the distance elasticity of inflow. It is more suited

for empirical use than the rate of decline in inflow by distance originally cited in

proposition 2.4.

I included the interactive term αiβi as a regressor. This product tends to be

high among large cities than among small cities. The maximum moving distance

possible is included as well.
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Figure 5. Projected city size over distance elasticity of inflow. Dot size and color are

proportional to city size.
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intercept αi βi αiβi log(maxx i) R2 adjusted R2

coefficient 12.79∗∗∗ .2183∗∗∗ .3641 .3624

t-statistic 285.53 14.73

coefficient 11.22∗∗∗ -1.394∗∗∗ .1736 .1714

t-statistic 66.37 -8.92

coefficient 20.35∗∗∗ .9360∗∗∗ 6.914∗∗∗ .7000 .6985

t-statistic 55.15 25.76 20.58

coefficient 20.69∗∗∗ 1.101∗∗∗ 7.106∗∗∗ .1287∗∗∗ .7224 .7202

t-statistic 57.37 23.92 21.83 5.51

coefficient 12.61∗∗∗ .005915 1.196e-06 -.002637

t-statistic 5.17 .02

coefficient 7.054∗∗∗ 1.109∗∗∗ 6.525∗∗∗ .1462∗∗∗ 1.487∗∗∗ .7771 .7747

t-statistic 4.84 26.85 21.88 6.95 9.60

Table 1. The impact of the distance elasticity of inflow on city size. Reported values

represent γ’s in (24). ∗∗∗ denotes coefficient significant at 1%.

Table 1 and figure 5 report the results.

Table 1 presents empirical evidence for proposition 2.4. Coefficient αi has a

positive impact on city size as expected. It simply means that a type with a high

average propensity to move tends to create a large MSA. However, even after I

controlled for this size difference in MSA’s, the distance elasticity of inflow βi still

exerts a positive effect on the size. The city size indeed increases by as much as

6.5% when the distance elasticity of inflow grows by 1%. It would have been 0%

if distance moved did not depend on city size. A city is large not only because it

is a destination for a large fraction of out-migrants but also because the number

of its in-migrants declines only gradually with distance. This attests to the strong

presence of heterogeneity among consumers by type. Hence, perfect mobility is

statistically unlikely.

The product of the two regressors above, αiβi, also influences the city size.

Even when a city can attract many residents nearby, if there is no sustained inflow

from around the country, the city will not be large. Conversely, even when a

city has a constant inflow of residents over X , if its potential movers have a low

propensity to move out, then the city will not be large either. This applies in

particular to four MSA’s in Alaska and Hawaii as I will discuss below.

As figure 4 and table 1 show, the maximum moving distance possible per se

has virtually no impact on the city size. However, if two MSA’s have the same

distance elasticity of inflow, the one with the longer maximum distance possible
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will have a larger size, for the reason I explored in section 3.1. Thus, its inclusion

is deemed necessary to obtain an accurate reading of γ’s.

In figure 5, all four entries from Alaska and Hawaii cut below the expected

size. It is a systemic pattern that emerges from their geographic disposition rather

than for economic reasons. Given their size, these cities should have lower βi and

they would have if they were surrounded by other cities nearby. In reality, they

are surrounded by Canada or the Pacific, neither one of them provides an inflow.

Inevitably, βi cannot drop despite their size to account for distant inflows from the

lower 48. Namely, their distance elasticity of inflow is high because of distance

rather than inflow. Other MSA’s in remote locations suffer the same symptom as

well but to a lesser degree.

None of these would matter if one assumed perfect mobility. New York City

may be composed exclusively of people from New England or of California na-

tives, with no difference in its size in the end. In this case βi = 0 across the country

and the resultant city size si simply matches the exogenous type size ni. In con-

trast, the present model anticipates that New York City cannot have the size it has

unless it gathers workers 1) of distance tolerant type (high αi), and 2) from across

the country (high βi). ACS indicates that both regressors are markedly different

from 0 and exert a crucial influence on the development of MSA.

3.3 Regression on Moments

To assess the robustness of the findings in section 3.2, I will regress city size on

the moments of its inflow. A high αi translates to mi(x i) having a high mean and

a high βi translates to a high variance. If the findings in section 3.2 are valid, these

moments should have a positive effect on the size of the destination city as do αi

and βi.

Table 2 and figure 6 report the result, which is in lockstep with section 3.2.

When the mean or the standard deviation of inflow inflates by 1%, the destina-

tion’s size grows by .5% and .7% respectively. The findings indicates that the pdf

of distance tolerance flattens out and shifts to the right with the city size in line

with proposition 2.3. For any given x i, large cities have a higher mean of inflow

than small cities, which in turn implies that the former first-order stochastically

dominates the latter in 2 and thus has a high αi. In addition, as βi becomes higher,

the variance of inflow becomes larger as does the city size, which also supports

proposition 2.4. Note that if one assumes perfect mobility instead, the moments

of distance moved would be the same for any i and thus orthogonal to the city
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size, which is unlikely according to figure 6.
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Figure 6. City size over the mean and standard deviation of distance moved among

in-migrants. Colors and dots are size proportionate.

intercept mean standard deviation R2 adjusted R2

coefficient 7.365∗∗∗ .8059∗∗∗ .1079 .1056

t-statistic 9.39 6.77

coefficient 6.975∗∗∗ .8024∗∗∗ .4005 .3989

t-statistic 19.38 15.91

coefficient 3.988∗∗∗ .5123∗∗∗ .7487∗∗∗ .4423 .4394

t-statistic 6.02 5.32 15.05

Table 2. City size regressed on the mean and standard deviation of inflow. ∗∗∗ denotes

coefficient significant at 1%.

Four MSA’s in Alaska and Hawaii (two each in each state) have a high mean

and variance for their size. Their mi(·) does not take off until later because they

only have one city nearby (the one and only other MSA in the same state) and the

next hike in value needs to wait till they cross the Pacific or Canada. As in sec-

tion 3.2, this is largely a geographic artifact and it does not necessarily mean that

they gather high-skilled and/or distance-proof labor. Aside from them, among

large cities, Philadelphia and Riverside have roughly the same mean distance

moved. However, Philadelphia consists mostly of locally sourced labor, whereas
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Riverside takes in workers of various origins.

While both of them are significant, table 2 indicates that the standard deviation

exerts more influence on city size than the mean does. The size responds more to

how diverse the locations of origin are than to how far people moved on average.

4 Estimation of City Types

Along with the impact of imperfect mobility in section 3, the present model fur-

ther makes predictions about the type of city. This section examines what each

MSA is composed of by way of trans-tolerance computed in proposition 2.5.

In the absence of direct observation, I assume that 2 follows the normal distri-

bution with mean µi and unit variance for expository purposes. (In practice, any

distribution that satisfies the assumption in proposition 2.5 will do). I set µi equal

to the log of the total inflow the destination receives, and shift it upwards by µ171

across the board so that the city of geometric mean size (Tuscaloosa, AL, 171st in

rank) will have a mean of zero. I ran kernel density estimation on inflow first to

filter out the noise.
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rank remark MSA total inflow 2i

�

100
�

2i

�

101
�

2i

�

102
�

2i

�

103
�

2i

�

104
�

2i

�

105
�

1 Los Angeles-Long Beach-Anaheim, CA 244,099 -9.74 -6.14 -4.28 -2.89 -1.46 0.46

2 New York-Newark-Jersey City, NY-NJ-PA 228,599 -7.85 -5.89 -4.19 -2.85 -1.36 0.51

3 Washington-Arlington-Alexandria, DC-VA-MD-WV 196,434 -9.73 -5.91 -4.04 -2.58 -1.04 0.89

4 Riverside-San Bernardino-Ontario, CA 178,510 -5.28 -4.30 -3.33 -2.39 -1.49 -0.60

5 Dallas-Fort Worth-Arlington, TX 172,896 -10.87 -7.06 -4.64 -2.66 -0.29 2.33

12 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 126,264 -9.49 -5.51 -3.24 -1.75 -0.22 2.05

34 St. Louis, MO-IL 52,944 -9.17 -5.56 -3.26 -1.28 0.70 2.85

44 max range Urban Honolulu, HI 41,804 −∞ −∞ -4.32 -3.22 -0.13 5.95

95 1st quarter Santa Maria-Santa Barbara, CA 22,928 -6.87 -3.47 -1.65 -0.12 1.24 2.97

171 geometric mean Tuscaloosa, AL 11,911 -2.69 -1.64 -0.63 0.36 1.32 2.27

191 2nd quarter Sierra Vista-Douglas, AZ 10,576 -2.97 -1.92 -0.90 0.11 1.11 2.14

286 3rd quarter Albany, OR 5,658 −∞ -2.88 0.61 1.59 3.40 7.76

314 max range Bangor, ME 4,540 -5.01 -1.96 -0.26 1.22 2.56 4.10

366 min range and size Carson City, NV 3,062 -0.66 0.08 0.81 1.54 2.27 2.99

371 Bay City, MI 2,770 -5.78 -1.19 1.54 2.45 4.38 8.38

381 last quarter Lewiston, ID-WA 1,732 -1.79 -0.44 0.88 2.15 3.39 4.64

Table 3. Estimated trans-tolerance values of select MSA’s at x i = 100, · · · , 105. For

instance, a St. Louisan born 100 km away from St. Louis must have had the tolerance

value greater than 2St. Louis(100) = −3.26. Those who drew a value below −3.26 stay 100

km away from the city.

Figure 7 plots 2i(x) for all the destinations and table 3 lists 2i(x) for select

destinations at x = 100, 101, · · · , 105 km.9 All in all, large cities register lower

trans-tolerance values than small cities. Moreover, large MSA’s trans-tolerance

tends to take off more slowly than small MSA’s.

For instance, a resident x i = 103 km away from her type destination has to

have only 2 = −2.89 or above to move to Los Angeles, whereas that of Lewiston,

ID and WA needs to exceed 2.15. In other words, a mover with a tolerance level

of −1.46 could have been born as far as 104 km away from Los Angeles but the

same person has to have been born less than 10 km away from Lewiston. If 2i(x)

is assumed (and likely) to be negatively correlated with the skill level for instance,

then those who move to Los Angeles are more skilled than those who move to

Lewiston, ID and WA.

A slow rise in 2i(x i) among large MSA’s are most notable in Riverside, CA.

The city keeps picking up in-migrants well past 104 km, at which point the trans-

tolerance of other MSA’s such as Philadelphia starts to climb faster. Riverside

9Some destinations record −∞ in their immediate vicinity. These represent trans-tolerance

values for residents who were born only 100 or 101 km away from their type destination, which

are expectedly low. While x starts from 0 in theory, most MSA’s are more than 100 km apart from

each other. I do not have enough data density from which to extrapolate those residents’ accurate

trans-tolerance value. They are likely to be recorded as movers within the same MSA in practice.
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seems to attract workers from a wider range of locations for its size, in keeping

with the previous analysis in section 3.3. The opposite applies to small MSA’s,

whose in-migrants are locally sourced. Trans-tolerance of Bay City, MI makes a

steep ascent early on at around xBay City = 102. The majority of its incoming resi-

dents are from nearby Saginaw, followed by Midland, Flint, Lansing and Detroit,

all located in Michigan. Past these source locations, it becomes extremely unlikely

that a worker changes her residence to Bay City.

5 Interpretation of Results

Sections 3 and 4 have established the pivotal role that geographic mobility plays

in the determination of the city-size distribution. The city-size distribution simply

becomes uniform if one assumes perfect mobility in the current model.

Exactly what is it about imperfect mobility that gives the city-size distribu-

tion a heavy tail? To answer this question, let us revisit the assumptions about

f (x i), 2(x i) and ρ(·) made in section 2.7. I will let f (x i) pick up type differences

as before but the same argument goes for the other two as well.

City i is larger than city j because fi(·) first-order stochastically dominates f j(·)

from proposition 2.3. According to figure 3(a), the city-size distribution is heavy

tailed because the majority of types have its distance-tolerance CDF taking off

long before it reaches the trans-tolerance value. Thus, few people move out and

the resulting city size is small. However, there exist certain types whose CDF

starts to rise near or past the trans-tolerance value. While these types are very

rare, if a city happens to be of this type, then almost all of its potential workers do

move to the city, resulting in an explosively large population. Thus, large cities

are few and far between because 1) most people are distance intolerant but 2)

those who are tolerant will move to a select few cities with a high probability

regardless of how far their birthplace is.

One of the root causes behind a large skewness of the empirical city-size dis-

tribution is found in assumption 2.1. If people perceive distance linearly, the

trans-tolerance value climbs at a constant rate and cities will come uniform in

size. On the contrary, the robust empirical evidence so far indicates that a linear

scale cannot explain the observed migration patterns. People sense distance log-

arithmically. This leaves countering effects on small and large cities: For a small

city, the source area of in-migrants is restricted to a very short radius. The differ-

ence between 100 km and 110 km appears as large as the one between 10,000 km
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and 11,000 km to them. For a large city, if it is attractive enough or its incoming

residents are tolerant enough to push the source radius beyond a certain point,

distance plays barely any role in the location choice of workers born far from the

city. To them, in reverse, the difference between 10,000 km and 11,000 km appears

as small as the one between 100 km and 110 km. While the gap between the

absolute distance is 10 km over 1,000 km, the gap between the relative distance

is the same factor of 1.1 for both. It is the latter concept of distance that people

call on when making location choices. Consequently, the source area becomes

exponentially large, as does the city size itself. Limpert et al. [LSA01] suggest

that something of multiplicative (rather than additive) nature underlies many

economic phenomena. Workers’ tendency to gauge distance in relative (rather

than absolute) terms may be one of those fundamental causes that give rise to the

heavy-tailed city-size distribution.

6 Conclusion and Extensions

I examined the role that distance moved plays in determining the city-size distri-

bution. Each worker draws a distance tolerance level from the distribution unique

to her type. She then makes a decision on whether to stay put or move to a city

to tap into urban productivity that the city has to offer. She compares urban pro-

ductivity with an urban housing market, a fallback value of her utility level when

she stays and, exclusive to the current model, how far the city is from her birth-

place when making location choices. The city-size distribution arises as a result

of factors specific to each industry and city, which determine how many people

move to the city and how far they move.

I regressed the city size on several aspects of the underlying distribution of

distance tolerance. The empirical data are in accordance with the predictions from

the model. The majority of types are distance intolerant. They gather only in small

numbers as most of them prefer to stay at their birthplace unless they happened

to be born close to the city. Then there are a very few but noticeable types who

are willing to move. They gather in large numbers to create gravitationally large

cities as most of them will move to the city regardless of where they were born.

The data also reveal that consumers recognize distance on a logarithmic scale,

which cements the heavy tail of the city-size distribution.

I assumed that each city hosts at most one type. Actual cities host multiple

types. Assuming co-location of different types in the same way as Eeckhout et al.
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[EPS14] would yield a finer result than above, provided that relocation data are

recorded by industry. I do not know of such data.

In order to stay focused on the city size, I left urban productivity as plain

as possible. In reality, the distance moved may be correlated with in-migrants’

productivity, the aggregate of which defines the citywide productivity. It will

be useful to relax the current assumption on urban productivity and have the

distance moved explain it.

I assumed that each type knows where his type-matched city is. However, it is

not easy to know in advance where that city is located. Skill compatibility is not

fully understood until workers actually start working at their destination, which

may or may not be their right destination. One may introduce some uncertainty

in matching between type and industry.

A Appendix

A.1 Role of Type Distribution

Observe that the inequality (20) will be flipped if n j is sufficiently larger than

ni. That is, there is a trade-off between the distance-tolerance distribution and the

number of potential city residents. Even when type i is tolerant towards relocation

overall, its corresponding city size may be trumped by more intolerant type j if

type i is outnumbered by type j in the hinterland to begin with.

While the current model considers only two stages of decision making, the

time horizon can be extended to allow for intertemporal dependence of type. A

child of distance tolerant parents is likely to be born in his type-matched city

because there is a good chance that his parents have already moved to the city. If

the child’s type is same to his parent’s, a big city tends to seal its top-tier status

through this positive feedback loop (cf. Duranton [Dur07]). In this case, constant

ni will be replaced by νi(x i) with
∫

X
νi(x i)d x i = ni so that (18) becomes a law of

motion si, t+1 =
∫

X
νi(x i, t)Si[2(x i, t)]d x i, t , where the city size si, t+1 in the next period

is determined by the current distribution νi(x i, t) and size si, t .

In this case, νi(x i) works in the same way as fi[2(x i)]. While I made fi(·)

exogenous, it can be interpreted as what νi(x i) converges to in a steady state.

Or even within the life span of one worker, he may relocate a number of times

over the course of life. Because the cost of relocation ρ(·) is concave in distance

moved, relocation becomes less costly as the second relocation is less draining
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than the first. (To model this, one needs to forgo the assumption that a type forms

a one-to-one correspondence with an industry).

Both extensions will not counteract but only reinforce the result derived from

the current model. Thus, I will take the current model’s predictions as the most

conservative results and leave the extensions above for future research, which

should find a wider and more intense impact of imperfect mobility on the city-

size distribution.
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