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Abstract

In this paper we present evidence on the association between unemployment and out-

put in the G7 economies, which has direct implications for the validity of Okun’s Law.

Specifically, we investigate dependence and asymmetry between the residuals of the out-

put and unemployment first difference equations using the copula methodology. We find

that dependence between GDP and unemployment disturbances is strong only in USA

and France followed by Canada, the UK and Germany. There is no dependence in Italy

and Japan. This enhances the validity of Okun’s Law in the former countries without

invalidating it in Italy and Japan, since there is still a negative relationship given by the

systematic part of the output-unemployment difference equations estimates. Also, there

is asymmetry in the former five countries. Output disturbances are associated with unem-

ployment ones only during recessions, while they are completely disentangled throughout

contractions in the US, France, Canada, the UK and Germany. These findings imply that

USA and France, and less so Canada, Great Britain and Germany provide the most fa-

vorable environment for counter-cyclical economic policies. In these economies, policy

makers should react more than output-unemployment dynamic equations dictate in case

of output slumps. However, during recoveries in these countries and in Italy as well as

Japan during the whole business cycle, authorities ought to base stabilization policies

solely on the systematic part of the relation between output and unemployment changes.

Our results provide guidance to policy makers in addition to what is suggested by tradi-

tional empirical approaches, which focus on the estimation of the deterministic part of the

output-unemployment relationship.

Keywords: Okun’s Law; Dependence; Copula; Asymmetry
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1. Introduction

The objective of this paper is to fully investigate for the first time the association be-

tween the residuals of output and unemployment first difference equations in terms of

dependence and asymmetry in the G7 countries shedding light into cross-country com-

parisons between the world’s largest economies. The nature of this association has direct

and important implications for Okun’s law and the conduct of economic policy.

The term Okun’s law refers to the empirical regularity according to which a negative

relationship exists between cyclical unemployment and cyclical output or unemployment

changes and output changes. In particular, using quarterly US data, Okun stated ”In

the postwar period, on the average, each extra percentage point in the unemployment rate

above four percent has been associated with about a three percent decrement in real GNP”

(Okun, 1962). Except the theoretical importance of this regularity, since, combined with

the Phillips curve, it gives the aggregate supply curve, there is renewed interest on Okun’s

law after the onset of the 2008 economic crisis. This is related to a central puzzle re-

garding this crisis, i.e. that ensuing Great Recession there has been sluggish employment

growth during recovery, so called ”jobless recovery” (Chinn et al., 2013; Jaimovich and

Siu, 2012; Stock and Watson, 2012). Essentially, the basic issue has been whether struc-

tural unemployment has risen in the wake of the Great Recession and generally if the

correlation between unemployment and output fluctuations varies over time and across

countries. This is important for policy-makers in order to appraise the cost of lower out-

put growth in terms of higher unemployment. Especially in monetary unions, like the

EMU, this knowledge is very important both for central banks regarding monetary pol-

icy assessment and member countries for the formulation of other economic policies, e.g.

related to their fiscal positions and labor markets.

The novelty of our work lies in that it is the first one to use the copula methodology,

which offers important advantages relative to traditional empirical methods, to investigate

the dependence as well as asymmetry between output and unemployment residuals in the

G7 economies. A copula links two marginal distributions into a joint distribution (Joe,

2014; Nelsen, 2007). It captures dependence, because it contains all information on the

joint distribution of two or more variables not utilized by traditional empirical techniques.

Moreover, copulas are flexible in studying dependence separately from marginal distri-
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butions with no need for assumptions on the relation between those distributions (Dowd,

2008). So, we can fit different marginal distributions to different random variables, while

commonly used approaches require fitting the same marginal distributions to all random

variables. This implies much greater modelling flexibility compared to standard multi-

variate approaches, which is very useful, since different variables may be characterized

by different marginal distributions. Additionally, using copulas we are able to examine

all possible combinations of (upper and lower) tail dependence, which is not feasible with

methods commonly applied in the literature. This is very important, because the type of

dependence of variables like unemployment and output in Okun’s law may be very dif-

ferent far away from their central masses than close to them. For example, output and

unemployment may be strongly correlated close to average values but weakly correlated

in situations of high unemployment and low output. Also, their dependence may differ

between the two tails giving rise to asymmetry. Overall, copula methodology provides

additional guidance to stabilization policy compared to the rest of the literature, because

it informs policy makers on whether they should react more than the systematic part of

the relationship between unemployment and output dictates in the wake of disturbances

in order to reduce the severity of business cycles. Thus, our work contributes also to the

literature on economic policy uncertainty (Çekin et al., 2019; Guo et al., 2018)

As far as dependence between output and unemployment is concerned, there is a very

extensive literature, which supports Okun’s law. However, there are important differences

regarding the magnitude of the Okun coefficient. These are due to model specification

(regarding the variables used and dynamic specification), model estimation methodology,

estimation methodology of cyclical output and unemployment, sample period, data fre-

quency, stage of development of the countries studied and the choice of regional versus

national data (Perman et al., 2015). A paper related to ours is Moosa (1997), who exam-

ines the G7 economies and finds that the Okun coefficient is highest in North America and

lowest in Japan and explains this evidence in terms of differences in labor market charac-

teristics. He also estimates a rising absolute value of the coefficient over time due to labor

market reforms. The other two works, which are relevant to ours, are Malley and Molana

(2008) and Malley and Molana (2007), who conclude in favor of a persistent negative

relationship between output and unemployment only in Germany using data for G7 coun-
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tries. Ball et al. (2017) find that Okun’s Law is a strong relationship in most countries,

which is stable over time for the US since 1948 and 20 advanced countries since 1980.

They also argue that the Okun coefficient varies substantially across countries reflecting

special features of national labor markets. Dixon et al. (2017) reveal significant cross-

country variations in the Okun coefficient but also symmetry, i.e positive and negative

output gaps have the same effects on unemployment in 20 OECD countries over 1985-

2013. Rahman and Mustafa (2017) show that Okun’s Law is valid only for US and South

Korea, while the evidence is weaker for Canada, Finland, France, Japan, Italy, Nether-

lands, New Zealand, Sweden, UK and Australia. However, it is invalid for Germany in

1971–2013. Grant (2018) find that a given unemployment gap has been associated with

a smaller output gap since the Great Recession in the US. Nebot et al. (2019) conclude

that Okun’s coefficient for Germany, France and the Netherlands is similar and quite low,

whereas it is much higher for Spain.

Regarding the issue of asymmetry, at least two theoretical studies (Gomme, 1999;

Schettkat, 1996) suggest an asymmetric link between the relevant variables, i.e. that the

relative change in cyclical unemployment depends on whether the output gap is posi-

tive (expansion) or negative (recession). At the empirical front, testing for asymmetry is

very important, because if we ignore it when present, we are led to misspecified models,

which produces poor forecasting and erroneous inference; thus it may lead to a rejection

of the null hypothesis that there exists a long-run relationship between output and un-

employment, when it actually exists, resulting in false policy implications, especially for

unemployment policy. In light of this, many empirical papers have tested and confirmed

the presence of asymmetry. For example, Virén (2001) finds that output growth has a

strong effect on unemployment when unemployment is low and output is high, and vice

versa for 20 OECD countries. Especially for the US, Cuaresma (2003) concludes that

the contemporaneous effect of growth on unemployment is asymmetric and significantly

higher in recessions than expansions. Also, unemployment shocks tend to be more per-

sistent in the expansionary regime. This is in line with Silvapulle et al. (2004), who find

that cyclical unemployment is more sensitive to negative compared to positive cyclical

output using US data. Shin et al. (2014) find strong evidence of long-run asymmetry, i.e

that unemployment is more sensitive to busts than booms, applying the NARDL frame-
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work to the unemployment-output relationship in the US, Canada and Japan. Moreover,

particularly in Canada, they find dynamic asymmetries indicating that firms are quick to

fire and slow to hire.

Recently, Valadkhani and Smyth (2015) conclude that the extent of within-regime

asymmetry is stronger than across-regime asymmetry in the US. Moreover, Huang and

Chang (2005) show that Okun coefficients differ remarkably across the business cycle,

while confirming the validity of Okun’s law for Canada. Wang and Huang (2017) find

that Okun’s coefficients are more negative in the low-growth regime, implying that the

effect of output differences on unemployment differences is asymmetric, i.e more pro-

nounced in recessions in the US over 1948:Q1-2016:Q4. Bournakis and Christopoulos in

Bournakis et al. (2017) identify two regimes in Greece, i.e unemployment declines more

in response to output increases under the high growth (above 1%) regime than in the low

growth (below 1%) regime. Arabaci and Arabaci (2018) show that expansions and con-

tractions have asymmetric effects on cyclical unemployment in Turkey. They identify an

intermediate range of output gap, where cyclical unemployment does not decrease even

though cyclical output is positive. Also, during recessions unemployment rises more than

it falls during expansions. Finally, Nebot et al. (2019) estimate Okun’s relationship for

four European countries (France, Germany, the Netherlands and Spain) and confirm the

existence of two regimes in each country but different thresholds across countries. Okun’s

relationship for Germany, France and the Netherlands is similar and different from Spain

where it is much steeper.

In our analysis, first we investigate the stationarity and cointegration properties of

the time series. Second, we employ VAR estimation of the unemployment and output

differences for each country separately, extract the residuals and test them for serial cor-

relation, ARCH effects and normality. Third, we standardize the residuals and transform

them to copula data, which are then tested for independence and stability. Fourth, one

copula model is selected for the residuals of each country’s estimations out of a rich set

of seventeen copula models considered.

Regarding the results, first we find that dependence of the residuals from the output

and unemployment equations is relatively strong in the United States and France followed

by Canada, the UK and Germany. In Italy and Japan there is independence. Second, we
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uncover asymmetry in all former countries. Specifically, negative output disturbances

are associated with positive unemployment ones, while positive output disturbances are

completely disentangled from negative unemployment ones. Thus, the relationship be-

tween the stochastic part of the unemployment-output equations differs across countries

and within countries during the business cycle. As a consequence, countries are ranked

in decreasing order in terms of effectiveness of stabilization policies in three groups: i)

US, France; ii) Canada, the UK and Germany; iii) Italy and Japan. So, in the former two

country groups, policy makers should follow more aggressive counter-cyclical policies

than those implied by the deterministic part of the output-unemployment relations con-

trary to the latter two countries. Our findings are especially important for member states

of a monetary union, like the EMU, Germany, France and Italy in our sample, which lack

independent monetary policy instruments. The structure of the paper is as follows. In

Section 2, we analyze the empirical methodology used for the study of dependence and

asymmetry between output and unemployment residuals and in Section 3 we describe the

data and empirical modelling. In Section 4, we present the results, while in Section 5

we discuss the main findings. Finally, we outline conclusions and policy implications in

Section 6. The Appendix includes details on the findings.
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2. Copulas, rank correlation and tail dependence

Copulas dates back to Sklar (1959), but only recently copula models have experienced

widespread application in empirical models of joint probability distributions (see (Nelsen,

2007) for more details). These models use a copula function, which links two marginal

probability functions that may or may not be related to one another.

A two–dimensional copula, C(u1,u2), is a multivariate distribution function in the unit

hypercube [0,1]2 with uniform U(0,1) marginal distributions (Nelsen, 2007).1 As long as

the marginal distributions are continuous, a unique copula is associated with the joint

distribution, H, and is described by equation (1). This function constitutes a form of the

principal result of copula theory (Sklar’s theorem). It is obtained as:

C(u1,u2) = H(H−1
1 (u1),H

−1
2 (u2)) (1)

Similarly, given a two-dimensional copula, C(u1,u2), and two univariate distributions,

H1(x) and H2(x), equation 1 is a two-variate distribution function with marginals H1(x)

and H2(x), whose corresponding density function can be written as:

h(x,y) = c(H1(x),H2(y))h1(x)h2(y), (2)

where the functions h1 and h2 are the densities of the distribution functions H1 and H2

respectively.

The density function of the copula, C, given its existence, can be derived using equa-

tion 1 and marginal density functions, hi:

c(u1,u2) =
h(H−1

1 (u1),H
−1
2 (u2))

h1(H
−1
1 (u1))h2(H

−1
2 (u2))

(3)

1For simplicity we consider the bivariate case. The analysis, however, can be extended to a p-variate

case with p > 2.
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A rank based test of functional dependence is Kendall’s τ . It provides information

on co-movement across the entire joint distribution function, both at the center and at the

tails of it. It is calculated from the number of concordant (PN) and disconcordant (QN)

pairs of observations in the following way:

τN =
PN −QN(

N
2

) =
4PN

N(N −1)
−1 (4)

If a copula function (C) is known then τ can be calculated as:

τ = 1−4

∫ ∫

[0,1]2

∂C

∂u1

∂C

∂u2
du1 u2 (5)

Often, though, information concerning dependence at the tails (at the lowest and the

highest ranks) is extremely useful for economists, managers and policy makers. Tail

(extreme) co-movement is measured by the upper, λU , and the lower, λL, dependence

coefficients, such that λU , λL ∈ [0,1], which are defined as:

λL = lim
u↓0

P(U1 < u|U2 < u) = lim
u↓0

C(u,u)

u
(6a)

λU = lim
u↑1

P(U1 > u|U2 > u) = lim
u↑1

1−2u+C(u,u)

1−u
(6b)

where, given the random vector (X,Y) with marginal distribution, U1 for X and U2 for

Y, λU measures the probability that X is above a high quantile given that Y is also above

that high quantile, while λL measures the probability that X is below a low quantile given

that Y is also below that low quantile. In order to have upper or lower tail dependence,

λU or λL need to be strictly positive respectively. Otherwise, there is upper or lower tail

independence. Hence, the two measures of tail dependence provide information about

the likelihood for the two random variables to boom and cllapse together. For exam-

ple, in our work, positive upper and zero lower tail dependence estimates would provide

evidence that large unexpected increases in output are matched by large unexpected un-
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employment declines, whereas extreme output slumps are not likely to be transmitted to

unemployment.

This study considers a wide range of bivariate copula specifications. All of them are

members of the elliptical copulas and Archimedean copulas, since they permit consider-

able flexibility in capturing dependence between output and unemployment. Elliptical and

Archimedean copulas are two of the most commonly used copula families. The elliptical

copulas we evaluate are the Gaussian (or Normal) and Student–t. Among the one param-

eter Archimedean copulas we consider, there are the Clayton, Gumbel, Frank, and Joe.

Clayton-Gumbel, Joe-Gumbel, Joe-Clayton and Joe-Frank are among the two-parameter

Archimedean copulas we examine.

Table 1 presents the copulas under consideration in our study, their respective de-

pendence parameters, their relationship to Kendall’s τ as well as to λU and λL (upper

and lower dependence coefficients). Regarding the elliptical family, the Gaussian copula

is symmetric and exhibits zero tail dependence. Thus, irrespective of the degree of the

overall dependence, extreme changes in one random variable are not associated with ex-

treme changes in the other random variable. The t-copula exhibits symmetric non-zero

tail dependence (joint booms and slumps have the same probability of occurrence). Con-

cerning the one parameter Archimedean copulas, the Clayton copula exhibits only left

co-movement (lower tail dependence). The Gumbel and the Joe copulas exhibit only

right co-movement (upper tail dependence). The Frank copula has zero tail dependence.

As far as the two- parameter Archimedean copulas are concerned, the Gumbel-Clayton

and the Joe-Clayton allow for potentially asymmetric upper and lower co-movement. The

Joe-Gumbel exhibits only right co-movement, while the Joe-Frank exhibits zero tail de-

pendence.
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Table 1: Copula functions, parameters, Kendall’s τ , tail dependence (∗)

Copulas Parameters Kendall’s τ Tail dependence

(λL, λU )

1 Gaussian (N) θ ∈ (−1,1) 2
π arcsin(θ) (0,0)

2 Student-t (t) θ ∈ (−1,1) 2
π arcsin(θ) 2tν+1(−

√
ν +1

√
1−θ
1+θ ),

ν > 2 2tν+1(−
√

ν +1

√
1−θ
1+θ )

3 Clayton (C) θ > 0 θ
θ+2

(2
−1
θ , 0)

4 Gumbel (G) θ ≥ 1 1- 1
θ (0, 2 - 2

1
θ )

5 Frank (F) θ ∈ R\{0} 1− 4
θ +4

D(θ)
θ withD(θ) =

∫ θ
0

x/θ

exp(x)−1
dx (0,0)

6 Joe (J) θ ≥ 1 1+ 4
θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θ dt (0, 2 - 2

1
θ )

7 Clayton-Gumbel (BB1) θ1 > 0, θ2 ≥ 1 1− 2
θ2(θ1+2) (2

−1
θ1θ2 , 2 - 2

1
θ2

8 Joe-Gumbel (BB6) θ1 ≥ 1, θ2 ≥ 1 1+ 4
θ1θ2

∫ 1
0 (− log(1− (1− t)θ1) (0, 2 - 2

1
θ1θ2 )

×(1− t)(1− (1− t)−θ1))dt

9 Joe-Clayton (BB7) θ1 ≥ 1, θ2 > 0 1+ 4
θ1θ2

∫ 1
0 (−(1− (1− t)θ1)θ2+1 (2

−1
θ2 , 2 - 2

1
θ1 )

× (1−(1−t)θ1 )−θ2−1

(1−t)θ2−1 )dt

10 Joe-Frank (BB8) θ1 ≥ 1, θ2 ∈ (0,1] 1+ 4
θ1θ2

∫ 1
0 (− log( (1−tθ2)

θ1−1

(1−θ2)
θ1−1

)× (1− tθ2)(1− (1− tθ2)
−θ1))dt (0, 0)

13 Survival Clayton (SC) θ > 0 θ
θ+2

(0, 2
−1
θ )

14 Survival Gumbel (SG) θ ≥ 1 1- 1
θ (2−2

1
θ ,0)

16 Survival Joe (SJ) θ > 1 1+ 4
θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θ dt (0, 2 - 2

1
θ )

17 Survival BB1 (SBB1) θ > 0,δ ≥ 1 1− 2
θ2(θ1+2) (2

−1
θ1θ2 , 2 - 2

1
θ2 )

18 Survival BB6 (SBB6) θ > 1,δ ≥ 1 1+ 4
θ1θ2

∫ 1
0 (− log(1− (1− t)θ1) (0, 2 - 2

1
θ1θ2 )

×(1− t)(1− (1− t)−θ1))dt

19 Survival BB7 (SBB7) θ > 1,δ > 0 1+ 4
θ1θ2

∫ 1
0 (−(1− (1− t)θ1)θ2+1 (2

−1
θ2 , 2 - 2

1
θ1 )

× (1−(1−t)θ1 )−θ2−1

(1−t)θ2−1 )dt

20 Survival BB8 (SBB8) θ > 1,δ > 0 1+ 4
θ1θ2

∫ 1
0 (− log( (1−tθ2)

θ1−1

(1−θ2)
θ1−1

)× (1− tθ2)(1− (1− tθ2)
−θ1))dt (0,0)

(∗) Table adapted from (Joe, 2014) and (Schepsmeier et al., 2016).

1
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3. Data and empirical models

3.1. Data

Data for unemployment and GDP have been downloaded from the OECD website.2

The G7 countries have been considered, i.e. United States (USA), Canada (CAN), Japan

(JPN), Great Britain (GBR), Germany (DEU), France (FRA) and Italy (ITA). The rea-

sons for this choice are: (i) the application of copula methodology first to the biggest

world economies, which exert the largest influence on economic conditions worldwide

through trade and capital movements, therefore on smaller economies; (ii) better data

availability (higher quality and quantity) in the G7 countries relative to other groups of

economies, given that the use of copulas requires long time series. Regarding ∆GDP,

quarterly seasonally adjusted data on percentage change relative to the previous quarter

are used, which correspond to subject B1 GE and measure GPSA from the QNA table

(doi: 10.1787/data-00017-en). As for unemployment U , the quarterly harmonized per-

centage of unemployment (total, all ages) has been used, which corresponds to subject

LRHUTTTT and measure STSA of the LABOUR table (doi: 10.1787/mei-data-en). Data

were downloaded for the period 1994:Q1 to 2018:Q2, since there are no comparable data

before 1994. Sample code used to download the dataset can be found in Appendix E.

There are two broad ways of testing for Okun’s law in the literature. The first uses

cyclical components, while the second utilizes first differences of output and unemploy-

ment. Both have advantages and disadvantages. The former methodology requires use of

filtering techniques, of which there are many alternatives, but there is no agreement in the

literature as to which is the most appropriate. This is problematic, since the findings are

very sensitive to the filtering method (Arčabić and Olson, 2019; Huang and Yeh, 2013;

Lee, 2000; Moosa, 1997; Perman and Tavera, 2007; Silvapulle et al., 2004). However, the

utilization of first differences requires assumptions on the stochastic processes that the

data follow, i.e. that all variables correlated with output except unemployment (e.g. labor

force, capital stock) are in equilibrium or change pari passu with the latter (Okun, 1970).

In light of these, we proceed with the first-difference version of Okun’s law in line

2The OECD R package Persson (2016) has been used for database access and data download and ma-

nipulation. Data last accessed on January 04, 2019.
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with Prachowny (1993), Lin et al. (2008), Zanin and Marra (2012), Sögner (2001). Con-

sequently, we have constructed the following variable:

∆Ut =Ut −Ut−1 (7)

In order to obtain positively correlated data, which allows for the consideration of

extended copula families, data were transformed as follows:

∆GDPt =
GDPt −GDPt−1

GDPt−1
(8a)

−∆Ut =Ut−1 −Ut (8b)
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3.2. Preliminary analysis

Figure 1 displays the time series of ∆U and ∆GDP for the G7 countries.
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Figure 1: Time series plots of ∆U (left) and ∆GDP (right) data.

Table 2 displays descriptive statistics and basic tests of the −∆U and ∆GDP variables,

as defined in equations 8a and 8b respectively. Mean values of −∆U were quite close

to zero and substantially lower than the corresponding standard deviations, for example

0.0056 and 0.3083 for Canada. This is indicative of the absence of trend in −∆U data.

On the other hand, mean values of ∆GDP were found between 0.18 and 0.62 in all cases,

which indicates a positive trend in ∆GDP data.

Negative skewness values (left skewed data) were observed in all countries for both
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−∆U and ∆GDP variables. Fat tails in the data are indicated by the high values of the

kurtosis statistic in almost all countries, in both −∆U and ∆GDP. As a matter of fact,

normality was rejected by both Kolmogorov-Smirnov and Cramer von Mises tests, as in

most cases p-values were found to be very small for both −∆U and ∆GDP variables.

With the exception of ∆GDP in the case of Japan, the Lung-Box test suggested the

presence of serial correlation in the data. However, test results of ARCH effects were

mixed; low p-values of the test were found for −∆U in Canada, France, Great Britain and

Italy and ∆GDP in the case of France, Great Britain and Italy. In all other cases there was

no indication for the presence of ARCH effects in the data.
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Table 2: Descriptive statistics

CAN DEU FRA GBR ITA JPN USA

−∆U

Mean 0.0056 0.0313 -0.0028 0.0446 0.0446 0.0189 -0.0040

Std.Dev. 0.3083 0.2512 0.1571 0.2213 0.2164 0.2401 0.2932

Min -1.4000 -1.2667 -0.5333 -0.7333 -0.4000 -0.8333 -0.8333

Max 0.5000 0.5333 0.2667 0.5333 0.5333 0.5333 0.6000

Skewness -2.0184 -1.9131 -0.9171 -1.1464 -0.2031 -0.2321 -0.4943

Kurtosis 8.7281 10.7927 4.5399 5.3915 2.2152 4.3287 2.9473

KSa <1e-4 0.0002 0.0151 0.0009 0.0724 0.0032 0.0543

CvMa <1e-4 0.0002 0.0270 0.0004 0.0325 0.0052 0.1586

Q(12)b <1e-4 0.0150 0.0002 <1e-4 <1e-4 <1e-4 <1e-4

ARCH-LMc 0.0016 0.5648 0.0055 0.0027 0.0006 0.3351 0.1251

∆GDP

Mean 0.6134 0.3726 0.4167 0.5349 0.1835 0.2442 0.6192

Std.Dev. 0.6184 0.7960 0.4642 0.5926 0.6936 0.9631 0.5954

Min -2.2842 -4.4861 -1.6453 -2.1715 -2.7375 -4.7942 -2.1638

Max 1.8114 2.0582 1.2609 1.9277 1.6659 2.5252 1.8312

Skewness -1.3968 -2.4823 -1.3987 -1.7990 -1.2004 -1.6199 -1.2049

Kurtosis 7.3690 16.3263 7.4902 9.6054 6.6311 9.9347 7.3029

KS 0.0419 0.0025 0.1999 0.0000 0.0001 0.0004 0.0151

CvM 0.0240 0.0000 0.0462 0.0000 0.0000 0.0004 0.0036

Q(12) 0.0006 0.0004 0.0000 0.0000 0.0000 0.6844 0.0001

ARCH-LM 0.1847 0.9846 0.0442 0.0479 0.0477 0.4953 0.7647

a) p-values are displayed for the Kolmogorov-Smirnov (KS) and Cramer von Misses (CvM)

test for normality.

b) Q(12) lists the p-values of the Ljung-Box test for time series independence taking into

consideration 12 lags.

c) ARCH-LM lists p-values of the autoregressive conditional heteroskedasticity-Lagrange multiplier

test, also using 12 lags.
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Figure 2 displays the scatter plot of ∆U and ∆GDP data and the estimated equation:

∆GDPt = α̂ + β̂ ∆Ut (9)

OLS estimation results of a linear model above (eq. 9) are displayed in Table 3. At

this point we do not analyze further the linear fit results, which nevertheless exhibit a

negative relationship between unemployment and output changes as predicted by Okun’s

Law.
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Figure 2: Okun law plot and linear regression of ∆GDP (vertical axis) on ∆U ( horizontal axis).
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Table 3: OLS estimation of the Okun Law parameter

Country term estimate std.error statistic p.value

CAN (Intercept) 0.5315 0.0511 10.4001 < 1e−4

∆U -1.5370 0.2040 -7.5345 0.0000

DEU (Intercept) 0.2931 0.0771 3.8026 0.0003

∆U -1.5313 0.3670 -4.1725 0.0001

FRA (Intercept) 0.3710 0.0389 9.5331 < 1e−4

∆U -1.2801 0.1813 -7.0586 0.0000

GBR (Intercept) 0.4391 0.0516 8.5178 < 1e−4

∆U -1.6013 0.2354 -6.8027 0.0000

ITA (Intercept) 0.1857 0.0667 2.7837 0.0065

∆U -0.8104 0.2340 -3.4625 0.0008

JPN (Intercept) 0.2385 0.0969 2.4617 0.0156

∆U -1.0893 0.6420 -1.6968 0.0930

USA (Intercept) 0.5885 0.0510 11.5282 < 1e−4

∆U -1.1179 0.1750 -6.3897 0.0000

3.3. Testing for unit roots and cointegration

Stationarity or unit root presence in GDP time series is a controversial issue and has

long been a puzzle in the literature (see for example Cushman (2016) and references cited

therein). Similarly, the existence of unit root in unemployment data is questionable (see

(Lee et al., 2013, 2009) and references cited therein).

We have performed various tests in order to test for the presence of unit root in the data

(Hamilton, 1994; Phllips and Xiao, 1998), such as the Augmented Dickey–Fuller (ADF)

test (Dickey and Fuller, 1981), the Kwiatkowski, Phillips, Schmidt & Shin (KPSS) test

(Kwiatkowski et al., 1992), the Elliott, Rothenberg & Stock (ERS or DF-GLS) test (Elliott

et al., 1996), the Zivot & Andrews (ZA) test (Zivot and Andrews, 1992) Finally, we have

implemented the Carrion-i-Silvestre, Kim & Perron (CKP) test (Carrion-i Silvestre et al.,

2009), which is the only one allowing for multiple structural breaks in both the level and

slope of the trend function. Here, we should note that we have conducted the (Bai and
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Perron, 2003) test before the (CKP) test in order to determine the appropriate number of

breaks (up to five). Based on these findings, we have implemented the relevant version of

the CKP test.

In order to check for cointegration (Hamilton, 1994) the Johansen (Johansen, 1991)

and Gregory & Hansen (Gregory and Hansen, 1996) tests can be used.

To save space, all relevant results and details are available in the Appendix (Sec-

tion A).

3.4. Empirical modelling

We have employed the VAR methodology, which allows all dependent variables to

depend on their own lags and lags of all the other dependent variables, in order to extract

the random component of the data series. VAR modelling is routinely used in applied

macroeconomics research (Cover and Mallick, 2012; Stock and Watson, 2001).

A semi-parametric approach has been applied in the empirical part of this article (Chen

and Fan, 2006; Fan and Patton, 2014; Huang et al., 2016; Mokni and Youssef, 2019;

Patton, 2012):

1. ∆GDP and −∆U variables were filtered via VAR modelling (details are given be-

low).

2. Residuals of the resulting model were tested for autocorrelation and ARCH effects

and transformed to copula data via an empirical cumulative density function and

appropriately scaled by n/(n+1).

3. Pairs of copula data for each country were used for copula selection and estimation.

As a first step, a VAR model of 4th order was estimated, since quarterly data were

used, for pairs of ∆GDP and −∆U for each country (see equations 10).

−∆Ut = µ1 +
4

∑
i=1

Φ1,i (−∆Ut−i)+
4

∑
i=1

Θ1,i ∆GDPt−i +α1t +ut (10a)

∆GDPt = µ2 +
4

∑
i=1

Φ2,i (−∆Ut−i)+
4

∑
i=1

Θ2,i ∆GDPt−i +α2t + vt (10b)

Each VAR model was estimated by OLS and the optimal value of the number of lags

(n) was selected by applying the following information criteria: Akaike (AIC), Schwarz
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(BIC), Hannan and Quinn (HQ) and Final prediction error (FPE). Results of the lag order

selection procedure are shown in Table 4.

Table 4: Lag order selection according to four information criteria.

AIC HQ SC FPE USE

CAN 1 1 1 1 1

DEU 1 1 1 1 1

FRA 2 2 1 2 2

GBR 1 1 1 1 1

ITA 2 1 1 2 2

JPN 4 1 1 4 1

USA 2 2 1 2 2

The last column (USE) indicates the lag order finally used.

As it can be seen from Table 4, a lag order of 2 was selected for France, Italy and USA,

while a lag order of 1 was selected for Canada, Germany, Great Britain and Japan. In the

second step, the VAR model selected in the first step was re-estimated and variables with

|t − statistic| < 2 were dropped from the model. Details about the final model selection

are given in Table 5.

As an example, for Italy (ITA) the VAR model applied was:

−∆U ITA
t = µ1 +

2

∑
i=1

Φ1,i (−∆U ITA
t−i )+

2

∑
i=1

Θ1,i ∆GDPITA
t−i +α1t +ut (11a)

∆GDPITA
t = µ2 +

2

∑
i=1

Φ2,i (−∆U ITA
t−i )+

2

∑
i=1

Θ2,i ∆GDPITA
t−i +α2t + vt (11b)

3.5. Copula selection and estimation

Residuals of each VAR model were converted to ranks in order to be used in the cop-

ula estimation process. As a first step we tested for independence, based on a procedure

described by Genest and Fabre (2007). For those pairs that we found evidence for depen-

dence we proceeded with copula estimation.

We estimated all copula families shown in Table 1. Copula estimation was performed

using the VineCopula R package (Schepsmeier et al., 2016). Copula families were se-
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lected based on the Vuong (Vuong, 1989) and Clarke tests (Clarke, 2007), with Schwarz

correction. Recently, the Clarke test has gained popularity due to its high power.

If one can choose between N copula families then each family is tested again all

remaining (N-1) families. The copula family with the highest score is selected as the

most appropriate one.

Vuong 3 and Clarke tests are nested tests that compare two models in order to find

the best. If two models (model1 and model2 for example) are compared, then a score is

assigned:

1. +1, if model 1 is better than model 2

2. -1, if model 2 is better than model 1

3. 0, if the test cannot discriminate between two models.

In case of ambiguity regarding the Vuong and Clarke test results, log-likelihood, AIC

and BIC tests as well as goodness of fit p-values were also used as selection criteria

(Manner and Reznikova, 2012). Cramer von Misses (CvM) goodness of fit has also been

applied in order to properly discriminate the appropriate copula family (Berg, 2009; Gen-

est et al., 2009; Kojadinovic et al., 2011) We have used 1,000 bootstrap repetitions to

obtain p-values.

Copula invariance was tested with the Busetti & Harvey test (Busetti and Harvey,

2011). We have used a slightly modified code by Fousekis et al. (2017) to perform the

computations in R environment.

3There is some evidence that in small sample data sets Vuong test might work better. Unpublished

results are available upon request.
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4. Results

4.1. Unit Root and Cointegration Tests

First, we perform unit root tests of the GDP and unemployment series in first differ-

ences. We emphasize the results of Elliott et al. (1996), which has significantly higher

power than previous versions of the augmented Dickey-Fuller test. We also focus on the

Zivot-Andrews test (Zivot and Andrews, 1992), which allows for one structural break in

both the intercept and trend of a series. Finally, the CKP test, which allows for multiple

breaks in both the level and slope of the trend function, rejects the null of unit root in

most cases. The latter two tests are important, since we want to avoid the confusion of

structural breaks in the series with nonstationarity. Overall, accounting for one or more

structural breaks, changes in both unemployment and output are stationary in all coun-

tries. These findings are very similar according to the ERS test, so we can be confident

about them (See Appendix, Section A.1 and Section A.2).

In light of this evidence, there is no scope for conducting cointegration testing in any

country, since both series examined are I(0). The findings as a whole imply that VAR

modeling is sufficient to capture the short-run relationship between unemployment and

output in first differences, since there is no long-run relationship.

21



4.2. VAR modelling

Table 5 shows the estimation results of VAR modelling according to Equation 10 and

Table 4. As it can be seen from Table 5, GDP1 (first lag) is present in almost all equations

with two exceptions concerning the GDP1 equations of Japan and USA, while the first lag

of −∆U is kept as explanatory variable only in USA’s GDP1 equation and −∆U equations

for Germany, UK, Japan and the US. Second order lags and trends are only sporadically

observed, while most equations retain the constant in the right-hand side.

It has to be noted, as mentioned in Section 3.4, that all coefficients have |t−statistic|>
2. At this point, we use VAR modeling as a filtering method in order to get rid of autocor-

relation in the data.

Table 5: VAR estimation results

country variable ∆GDP1 −∆U1 ∆GDP2 −∆U2 const trend

CAN −∆U 0.2194 -0.0847

∆GDP 0.4980 0.2996

DEU −∆U 0.0462 0.7375

∆GDP 0.3089 0.2580

FRA −∆U 0.2205 0.3655 -0.0704

∆GDP 0.5922 0.1637

GBR −∆U 0.0685 0.5339

∆GDP 0.5998 0.2068

ITA −∆U 0.1262 0.3526

∆GDP 0.5884

JPN −∆U 0.0565 0.2512 -0.0893 0.0016

∆GDP 0.2515

USA −∆U 0.1842 0.3402 0.1237 -0.3100 0.0027

∆GDP 0.7506 0.9150 -0.0064
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Figure 3: Plot of observed (blue) and fitted (red) values of Unemployment changes (left panel) and GDP

changes (right panel) as estimated by VAR, described in Equation 10 and Table 4.

Figure 3 presents a realization of the fitted VAR model versus the observed values. In

general, we observe a good fit.

Table 6 presents the test statistics for serial correlation of the residuals obtained after
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VAR filtering. So, there is no significant serial correlation observed in the residuals in

most cases. In Canada, France, UK and Italy the ARCH-LM test indicates the presence

of ARCH effects in the residuals with 12 lags and 24 lags only in the UK of the ∆GDP1

equation. Also in Japan and the US VAR equation systems, the Portmanteau serial corre-

lation test gave p-value < 0.05 in the case of 12 lags. We consider these test results minor

problems and proceed with our analysis. The vast majority of the remaining test results

strongly indicate the absence of ARCH-LM effects and serial correlation in the residuals

of equation 10.

Table 6: ARCH-LM and Serial correlation test results

Country L arch −∆U arch ∆GDP arch-mul Portmanteau BG

CAN 12 0.8198 0.0478 0.8293 0.3305 0.4813

CAN 24 0.9926 0.4197 0.4872 0.5608 0.7451

DEU 12 0.4294 0.7725 0.1724 0.1523 0.4554

DEU 24 0.6669 0.9986 0.4872 0.3259 0.5899

FRA 12 0.3053 0.0291 0.0361 0.0747 0.1275

FRA 24 0.7213 0.5775 0.5449 0.1360 0.1151

GBR 12 0.1127 0.0175 0.1833 0.4446 0.5655

GBR 24 0.6549 0.0107 0.4872 0.4210 0.3929

ITA 12 0.1349 0.0070 0.0221 0.4928 0.0884

ITA 24 0.0945 0.1926 0.5449 0.8599 0.4819

JPN 12 0.1381 0.5468 0.0032 0.0206 0.0976

JPN 24 0.5857 0.9658 0.4872 0.2485 0.3084

USA 12 0.3533 0.9503 0.0050 0.0490 0.0723

USA 24 0.5569 0.9452 0.5449 0.1034 0.3015

p-values of the test statistics are presented. They have been computed with the R package vars (Pfaff, 2008, 2015).

L refers to the number of lags used in the corresponding test.

arch −∆U and arch ∆GDP refer to the ARCH-LM test for −∆U and ∆GDP variables of equation 10,

while the arch-mul refers to the corresponding multivariate ARCH-LM test for both variables.

The multivariate Portmanteau and Breusch-Godfrey (BG) tests (serial correlation) are given in the

last two columns.
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4.3. Copula Independence

We conduct the test of independence of the copula data derived from the output and

unemployment equations in each of the examined economies (Genest and Fabre, 2007).

According to the evidence presented in Table 7, there is dependence in Canada, Germany,

France, Great Britain and USA and independence in Italy and Japan. So, we exclude these

two countries from the analysis, which follows.

Table 7: Copula Independence test

t−statistic p−value

CAN 3.0450 0.0023

DEU 2.4372 0.0148

FRA 3.9642 < 1e−4

GBR 2.7791 0.0055

ITA 1.0063 0.3143

JPN 0.1836 0.8543

USA 3.6877 0.0002

4.4. Copula invariance

Concordance between two variables and the corresponding Kendall’s τ can vary over

time. It is thus necessary to extract information about the stability and invariance of

Kendall’s τ before proceeding with the estimation of a static copula model. In general,

copula stability is to be expected, due to the relatively short sample used in this study

(1994:Q1–2018:Q2). However, computing and plotting the Kendall’s τ for sub-samples

of the data set ensures that this hypothesis is justified.

Figure 4 displays how Kendall’s dependence measure evolves over time. It shows

rolling-window estimates (van den Goorbergh et al., 2005) of Kendall’s τ using window

sizes of 60 data points, that is, Kendall’s τ in period t is computed using the 60 previous

observations until period t.

The stability of Kendall’s τ is well demonstrated in the cases of Canada, Germany,

France, UK and US.
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Figure 4: Dynamic Kendall’s τ (vertical axis) vs Time.

Furthermore, the Busetti-Harvey test (Busetti and Harvey, 2011) of copula invariance

has been also used in order to assess copula invariance. Table 8 lists the results of this

test, including the values of the corresponding statistic. The critical values corresponding

to significance levels of 5% and 10% are 0.461 and 0.743 respectively. The test statistics

have been computed for three quantiles, i.e at τ = 0.25,0.50,0.75.

In all cases the test statistic takes values lower than the corresponding critical values

at the 5% level of significance. For example, for the US values of 0.267, 0.448 and 0.098

have been obtained, all of which are lower than 0.461.

So, we can be confident about the stability of the copula estimations.
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Table 8: Busetti-Harvey test of copula invariance

τ = 0.25 τ = 0.50 τ = 0.75

CAN 0.027 0.039 0.225

DEU 0.240 0.293 0.204

FRA 0.157 0.277 0.075

GBR 0.177 0.074 0.085

USA 0.267 0.448 0.098
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4.5. Copula selection and estimation

We proceed with copula selection and estimation only for the five countries, for which

we have established dependence (Canada, Germany, France, UK and USA). Table 10 lists

the results of copula estimation. Copula family selection was based on both Vuong and

Clarke tests (Table 9) and the AIC, BIC and log-likelihood information criteria. We have

estimated the latter for all copula families given in Table 1.

Table 9: Vuong (Vg) and Clarke (Ck) test results of copula selection procedure.

CAN DEU FRA GBR USA

Vg Ck Vg Ck Vg Ck Vg Ck Vg Ck

1 N 3 5 3 5 7 8 4 2 3 -3

2 t 0 3 -3 -7 -1 -1 -3 1 -5 -1

3 C 0 0 7 8 4 4 5 2 14 14

4 G 3 7 2 9 1 2 1 10 -2 -4

5 F 2 1 2 2 2 13 4 11 0 0

6 J 0 0 0 0 -1 -13 0 -1 -12 -11

7 BB1 -3 -2 -3 -6 -3 1 -3 -5 2 1

8 BB6 -2 -6 -5 -8 -3 -12 -5 -7 -13 -13

9 BB7 -2 0 -3 -4 -2 -5 -3 -11 2 1

10 BB8 -4 -5 -4 -5 -2 -4 -2 -3 -11 -13

13 SC 1 2 1 1 1 -13 1 -1 -4 -12

14 SG 6 10 9 10 6 13 8 13 9 14

16 SJ 0 -1 6 9 0 3 5 2 13 14

17 SBB1 0 -2 -3 -5 -2 3 -3 -3 1 4

18 SBB6 -1 -5 -3 -4 -2 -2 -3 -5 1 3

19 SBB7 1 0 -3 -2 -2 0 -3 -1 1 3

20 SBB8 -4 -7 -3 -3 -3 3 -3 -4 1 3

Bold face numbers indicate selected copula family based on highest score.
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Canada

Regarding Canada (CAN), the survival Gumbel copula is chosen by both Vuong and

Clarke tests (see Tables 9 and 10). Survival Gumbel copula scored 6 using the Vuong test,

while the second choices had a score of only 3. The Clarke test gave 10 for the survival

Gumbel, being only 7 for the second best choice (Gumbel copula). The AIC and BIC

information criteria (Table C.1) also corroborated the survival Gumbel copula, whilst only

the LogLikehood criterion suggested the survival BB7 copula. So, we select the survival

Gumbel family. The value of Kendall′s τ = 0.229 implies moderate dependence between

the residuals of the output and unemployment first difference equations. The values of

λL = 0.294 and λU = 0 indicate asymmetry between output and unemployment residuals,

specifically that their dependence holds only during recessions.

Germany

Vuong test corroborated for the survival Gumbel copula for Germany (DEU) with a

score of 9 and Clarke gave it a score of 10 (Table 9). The AIC, BIC and log-likelihood

criteria give results in favor of the Clayton copula family. As a consequence, we choose

the Clayton copula supported by all information criteria. However, τ , λL and λU esti-

mated values were found very similar in both cases (Clayton and survival Gumbel copu-

las), making the interpretation of the results (see following Discussion section) relatively

independent of the selected copula.4 The size of Kendall’s τ = 0.187 shows weak depen-

dence concerning output and unemployment residuals, i.e. lower than Canada, France,

UK and the US (Table 10). Also, the evidence is in favor of asymmetry; output and un-

employment residuals evolve in opposite directions only during recessions in line with

those of the above mentioned countries (Cuaresma, 2003; Holmes and Silverstone, 2006;

Silvapulle et al., 2004).

France

Concerning France (FRA), the Normal copula family is chosen by Vuong test, while

the survival Gumbel and F copulas have been chosen by the Clarke test (Table 9). The

AIC, BIC give also results in favor of Survival Gumbel, while the LogLikelihood crite-

4Survival Gumbel, or rotated 180o Gumbel copula, and Clayton are very similar to each other. Basically

there are no major differences between these two candidates.
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rion corroborates towards the SBB1 copula family (Table C.3). So, we end up with the

Survival Gumbel copula, which is chosen by two out of three information criteria. How-

ever, for all four copula families the estimated Kendall’s τ lies between 0.267 and 0.289

implying relatively strong dependence concerning the residuals of output and unemploy-

ment difference equations. Also, all four copulas show no upper tail dependence. They

only differ with respect to lower tail dependence; survival Gumbel and SBB1 are in favor

of strong dependence, while Normal and F imply moderate independence (Table 10). In

a nutshell, no relationship between unemployment and output disturbances is found in

expansions, but we tend to be in favor of strong dependence during recessions.

United Kingdom

For the United Kingdom (GBR) both Vuong and Clarke tests have produced results

in favor of the survival Gumbel copula with scores 8 and 13 respectively (Table 9). Two

of the three information criteria (AIC, BIC) were in favor of the survival Gumbel copula

(Table C.4), while the LogLikelihood criterion favors SBB1. Consequently, we prefer the

former copula family. However, in both cases, the estimated Kendall’s τ is almost identi-

cal being equal to 0.199, 0.201 respectively (Table 10). This makes the interpretation of

results independent of the copula selection. The findings imply moderate dependence be-

tween unemployment and output residuals, as in the cases of Canada and Germany. The

moderately high value of λL (0.258) and the zero value of λU show moderately strong

dependence between output and unemployment residuals during recessions and no de-

pendence throughout recoveries. So, the unexplained parts of output and unemployment

first differences move in opposite directions during recessions, but are not associated at

all, i.e. higher unexpected output growth is not accompanied by lower unexpected unem-

ployment change, during expansions. In other words, UK is similar to Germany in terms

of lower tail dependence and Canada, Germany, France and the US regarding upper tail

dependence.

United States

For the US, the Clayton copula is selected by the Vuong test with a score of 14, but

Clarke test provided mixed results giving equal score (14) to three copula families (Clay-

ton, survival Gumbel and survival Joe) (see Table 9). The selection between Clayton,

30



survival Gumbel and Survival Joe copulas was based on information criteria, where all

LogLikelihood, AIC and BIC values were in favor of Clayton copula (see Appendix,

Table C.5). It must be noted that τ , λL and λU estimated values were found very sim-

ilar for all three copula families, making the interpretation of the results (see following

Discussion section) relatively independent of the selected copula. Figure D5 displays the

corresponding copula plot. The size of τ = 0.297 (Table 10) indicates relatively strong de-

pendence between the residuals of the equations of output and unemployment differences.

The values of λL = 0.441 and λU = 0 (Table 10) show strong asymmetry between unem-

ployment and output disturbances in the recessionary vs recovery phases of the business

cycle. In particular, the unexplained parts of ∆GDP and −∆U move together downwards,

but not upwards. Effectively, output and unemployment unexplained components evolve

in opposite directions during recessions, but are completely disentangled, i.e. higher out-

put residuals is not accompanied by lower unemployment ones, during expansions. These

findings are in line with those of (Cuaresma, 2003; Holmes and Silverstone, 2006; Silva-

pulle et al., 2004).

Final results after copula selection are summarized in Table 10.

Table 10: Copula estimation results

family θ τ λL λU logL AIC BIC

CAN 14 SG 1.298 0.229 0.294 0.000 7.146 −12.292 −9.727

DEU 3 C 0.459 0.187 0.221 0.000 5.116 −8.232 −5.667

FRA 14 SG 1.365 0.267 0.338 0.000 8.866 −15.732 −13.178

GBR 14 SG 1.249 0.199 0.258 0.000 5.098 −8.196 −5.632

USA 3 C 0.846 0.297 0.441 0.000 13.238 −24.475 −21.921

Refer to Table 1 for copula families and parameters.

Only θ parameter is given as δ = 0 in all cases.

logL stands for log-likelihood criterion.
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5. Discussion

Generally, in terms of dependence we distinguish four groups of countries, namely

France, US (strong), Canada, Great Britain (medium), Germany (weak), while Japan and

Italy exhibit no dependence in line with Moosa (1997). Regarding (a)symmetry, all five

countries which exhibit dependence (France, US, Canada, Great Britain and Germany) are

also characterized by moderate to strong asymmetry, i.e output and unemployment first

difference residuals are negatively associated during recessions, but completely disentan-

gled throughout recoveries. Overall, we can distinguish four groups of countries. The

first group comprises US and France, the only economies characterized by moderately

strong dependence and strong asymmetry, where unemployment and output disturbances

are linked exclusively during recessions. The second team is composed by Canada and

the UK, both of which exhibit medium dependence and strong asymmetry, i.e output and

unemployment disturbances are associated throughout contractions. Germany is unique

in that it is characterized by weak dependence and moderate asymmetry. Finally, Italy

and Japan constitute the fourth group, where we find no evidence of dependence between

unemployment and output equation residuals throughout the whole business cycle. Thus,

unemployment and output differences are related exclusively according to the determin-

istic part of the respective equations in the latter countries.

In order to explain the above findings, we could argue that the flexible US and Cana-

dian labor markets would be expected to imply a stronger response of unemployment to

output during expansions compared to the response implied by our analysis given the lack

of job security provisions and restrictions on layoffs, which inhibit employers from reduc-

ing workforce during recessions and increasing it during expansions. A possible explana-

tion is that the response of the economy to unexpected output increases takes mostly the

form of an increase in labor force participation, productivity (Lim et al., 2019; Lin et al.,

2008) and hours worked (Okun, 1962; Prachowny, 1993). An explanation for the different

reactions of the economy in expansions compared to contractions is that employers are

more pessimistic during the downturns than optimistic in the upturns due to risk aversion

(Silvapulle et al., 2004). Regarding Germany, the policies followed in the early 2000’s,

which led to the liberalization of the labor market along with the continued presence of

decentralized collective bargaining agreements, which cover large sectors of the German
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economy and promote wage flexibility in the wake of output disturbances, partially ex-

plain the unemployment-output residuals association in Germany only during recessions

in our analysis. We can only explain the lack of dependence between output and unem-

ployment unexpected equation components during expansions by the same mechanisms

outlined above, i.e. higher labor force participation, productivity and working hours as

well as risk-aversion of the employers.

As far as Italy is concerned, the liberalization of labor market institutions initiated in

the late 1990’s, through e.g. the introduction of part-time regulation, along with the broad

collective agreement coverage should imply a higher responsiveness of unemployment to

output changes compared to the past. However, the residuals of the respective equations

seem to be completely disentangled during the whole business cycle partially in contrast

with earlier findings (Zanin and Marra, 2012). Again, there is the possibility of a response

in the wake of non-expected output variations in the form of changes in labor force partic-

ipation, productivity and especially hours worked during expansions (Zwick et al., 2016).

Moreover, the labor market reforms introduced in France in the late 1990’s, through e.g

facilitating part-time work concurrent with the introduction of reduced weekly working

hours, have made unemployment responsive to output disturbances during recessions, but

not throughout recoveries partially in line with Zanin and Marra (2012). On the other

hand, the mostly informal rigidities still characterizing the Japanese industrial relations

may explain why output and unemployment residual dynamics are completely disentan-

gled. At the same time, the UK labor market would be expected to imply a stronger

dependence between unemployment and output dynamics than we actually see above,

given that this country’s labor market is the least regulated in Europe regarding the terms

and conditions of employment and working time, minimum wages and trade union power

(Freeman, 2001; Moosa, 1997). This is so, even if we account for the VAR estimates (see

Table 5).

From a policy point of view, no country provides a very favorable environment for

counter-cyclical economic policies, since in all countries there is no evidence for unemployment-

output residual dependence during expansions. In other words, unemployment responds

to output according to the deterministic part of the VAR estimations, but the disturbances

of the output and unemployment equations do not respond to each other during recover-
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ies. Having that in mind, USA and France are characterized by strong dependence and

asymmetry where unemployment responds to output disturbances only during recessions.

In Canada and the UK moderate dependence is combined with asymmetry, where

unemployment responds moderately when output falls unexpectedly, but not at all when

it rises above what is predicted by VAR estimates. Germany exhibits weak dependence

along with asymmetry, where unemployment rises moderately during unexpected slumps.

Finally, disturbances in the first differences of output and unemployment seem to be com-

pletely disentangled throughout the whole business cycle in both Italy and Japan. As a

consequence, these variables are related only according to the deterministic part of the

VAR estimates. Thus, stabilization policies in the US, France, Canada, Germany and the

UK are predicted to be relatively effective in avoiding unemployment hikes in the wake

of recessions, but less effective in achieving lower unemployment during recoveries. This

holds especially for the US and France and less so for the remaining three countries.

Obviously such policies will be less effective in Italy and Japan, where policy makers

can smooth business cycles based on the output-unemployment relationship shown by the

coefficient estimates of the VAR equations.
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6. Conclusions

In this paper we have examined the association between the residuals of the output and

unemployment first difference equations in the G7 economies using copulas for 1994:Q1–

2018:Q2, which has implications for the validity of Okun’s Law. The copula methodology

provides flexibility to fit dependence using a joint distribution separately from marginal

distributions along with flexibility over the choice of the type of dependence. After ex-

amining our series in terms of stationarity, we extract the copula data by employing VAR

methodology and investigate dependence along with asymmetry between disturbances in

output and unemployment variations. We conclude that dependence between output and

unemployment unexpected variations is relatively strong only in USA and France, fol-

lowed by Canada, UK and Germany. Italy and Japan exhibit no dependence. Also, we

find asymmetry in all the former five countries. Specifically, output disturbances are asso-

ciated with unemployment disturbances only during recessions, while they are completely

disentangled from each other throughout expansions in these economies.

These findings imply that USA, France, and less so Canada, UK and Germany provide

the most favorable conditions for effective counter-cyclical economic policies due to their

dependence and symmetry characteristics regarding the output-unemployment relation-

ship. In other words, policy makers in these countries should react more in the wake of

output slumps than VAR estimates imply to avoid deepening of recessions. Moreover, in

Italy and Japan, stabilization policy should be focused on smoothing business cycles based

solely on the deterministic part of the output-unemployment first difference relationship.

Our findings should prove useful to policy makers in addition to what is suggested by

traditional empirical approaches, which do not analyze dependence and asymmetry of

disturbances in the output-unemployment relation. In future research, we aim to inves-

tigate thoroughly using copula techniques the role of labor force participation, working

hours, capital stock and technical progress in the output-unemployment relationship in

the context of Okun’s Law.
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Jesús Crespo Cuaresma. Okun’s law revisited. Oxford Bulletin of Economics and Statis-

tics, 65(4):439–451, 2003.

David O Cushman. A unit root in postwar us real gdp still cannot be rejected, and yes, it

matters. Econ Journal Watch, 13:5–45, 2016.

David A Dickey and Wayne A Fuller. Likelihood ratio statistics for autoregressive time

series with a unit root. Econometrica, 49:1057–1072, 1981.

Robert Dixon, GC Lim, and Jan C van Ours. Revisiting the okun relationship. Applied

Economics, 49(28):2749–2765, 2017.

Kevin Dowd. Copulas in Macroeconomics. Journal of International and global Economic

Studies, 1:1–26, 2008.

Graham Elliott, Thomas J. Rothenberg, and James H. Stock. Efficient tests for an autore-

gressive unit root. Econometrica, 64:813–836, 1996.

Yanqin Fan and Andrew J. Patton. Copulas in Econometrics. Annual Review of Eco-

nomics, 6:179–200, 2014. doi: 10.1146/annurev-economics-080213-041221.

Panos Fousekis, Christos Emmanouilides, and Vasilis Grigoriadis. Price linkages in the

international skim milk powder market: empirical evidence from nonparametric and

time-varying copulas. Australian Journal of Agricultural and Resource Economics, 61

(1):135–153, 2017. doi: 10.1111/1467-8489.12147.

Donald G Freeman. Panel tests of okun’s law for ten industrial countries. Economic

Inquiry, 39(4):511–523, 2001.

37



Christian Genest and A. C. Fabre. Everything you always wanted to know about copula

modeling but were afraid to ask. Journal of Hydrologic Engineering, 12:347–368,

2007.

Christian Genest, Bruno Rmillard, and David Beaudoin. Goodness-of-fit tests for copulas:

A review and a power study. Insurance: Mathematics and Economics, 44:199–213,

2009. doi: 10.1016/j.insmatheco.2007.10.005.

Paul Gomme. Shirking, unemployment and aggregate fluctuations. International Eco-

nomic Review, 40(1):3–21, 1999.

Angelia L Grant. The great recession and okun’s law. Economic Modelling, 69:291–300,

2018.

Allan W Gregory and Bruce E Hansen. Residual-based tests for cointegration in models

with regime shifts. Journal of Econometrics, 70:99–126, 1996.

Peng Guo, Huiming Zhu, and Wanhai You. Asymmetric dependence between economic

policy uncertainty and stock market returns in g7 and bric: A quantile regression ap-

proach. Finance Research Letters, 25:251–258, 2018.

James Douglas Hamilton. Time series analysis. Princeton University Press, 1994. ISBN

0-691-04289-6.

Mark J Holmes and Brian Silverstone. Okun’s law, asymmetries and jobless recoveries in

the united states: A markov-switching approach. Economics Letters, 92(2):293–299,

2006.

Ho-Chuan Huang and Chih-Chuan Yeh. Okun’s law in panels of countries and states.

Applied Economics, 45(2):191–199, 2013.

Ho-Chuan River Huang and Ya-Kai Chang. Investigating okun’s law by the structural

break with threshold approach: Evidence from canada. The Manchester School, 73(5):

599–611, 2005.

38



Wanling Huang, Andre Varella Mollick, and Khoa Huu Nguyen. Us stock markets and

the role of real interest rates. The Quarterly Review of Economics and Finance, 59:

231–242, 2016.

Nir Jaimovich and Henry E. Siu. The Trend is the Cycle: Job Polarization and Jobless

Recoveries. http://www.nber.org/papers/w18334, 2012.

Harry Joe. Dependence Modeling with Copulas. CRC Press, 2014.

Søren Johansen. Estimation and hypothesis testing of cointegration vectors in gaussian

vector autoregressive models. Econometrica, 59:1551–1580, 1991.

Ivan Kojadinovic, Jun Yan, Mark Holmes, et al. Fast large-sample goodness-of-fit tests

for copulas. Statistica Sinica, 21:841–871, 2011.

Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. Testing the

null hypothesis of stationarity against the alternative of a unit root. Journal of Econo-

metrics, 54:159–178, 1992.

Cheng-Feng Lee, Te-Chung Hu, Ping-Cheng Li, and Ching-Chuan Tsong. Asymmetric

behavior of unemployment rates: Evidence from the quantile covariate unit root test.

Japan and the World Economy, 28:72 – 84, 2013.

Jim Lee. The robustness of okun’s law: Evidence from oecd countries. Journal of macroe-

conomics, 22(2):331–356, 2000.

Jun-De Lee, Chien-Chiang Lee, and Chun-Ping Chang. Hysteresis in unemployment

revisited: Evidence from panel lm unit root tests with heterogeneous structural breaks.

Bulletin of Economic Research, 61:325–334, 2009.

Guay C Lim, Robert Dixon, and Jan C van Ours. Beyond okuns law: output growth and

labor market flows. Empirical Economics, pages 1–23, 2019.

Shu-Chin Lin et al. Smooth-time-varying okun’s coefficients. Economic Modelling, 25

(2):363–375, 2008.

Jim Malley and Hassan Molana. The relationship between output and unemployment with

efficiency wages. German Economic Review, 8(4):561–577, 2007.

39



Jim Malley and Hassan Molana. Output, unemployment and okun’s law: Some evidence

from the g7. Economics Letters, 101(2):113–115, 2008.

Hans Manner and Olga Reznikova. A survey on time-varying copulas: Specification,

simulations, and application. Econometric Reviews, 31:654–687, 2012.

Khaled Mokni and Manel Youssef. Measuring persistence of dependence between crude

oil prices and gcc stock markets: A copula approach. The Quarterly Review of Eco-

nomics and Finance, 72:14–33, 2019.

Imad A. Moosa. A cross-country comparison of okun’s coefficient. Journal of Compar-

ative Economics, 24(3):335–356, 1997.
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A Sklar. Fonctions de Répartition à N Dimensions Et Leurs Marges. Publications de L’

Institut Statistique de L’ Universite de Paris, pages 229–231, 1959.
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Appendix A Unit Root Tests

In this section we present unit root test results for the ∆GDP and −∆U time series.

For the sake of completeness and to facilitate readability of the tables we also present

critical values of the tests at 0.01, 0.05, 0.10 levels of significance. Related references can

be found in the main text of the manuscript.

Critical values of unit root tests

Table A.2: Critical values of the Augmented Dickey–Fuller (ADF) test

Level of significance

Type Statistic 0.01 0.05 0.10

none tau1 −2.60 −1.95 −1.61

drift tau2 −3.51 −2.89 −2.58

phi1 6.70 4.71 3.86

trend tau3 −4.04 −3.45 −3.15

phi2 6.50 4.88 4.16

phi3 8.73 6.49 5.47

H0 : There is a unit root

Reject the null if test-value < crit-value

Table A.3: Critical values of the Kwiatkowski, Phillips, Schmidt & Shin (KPSS) test

Level of significance

Type 0.01 0.05 0.10

mu 0.739 0.463 0.347

tau 0.216 0.146 0.119

H0 : There is no unit root

Reject the null if test-value > crit-value
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Table A.4: Critical values of the Elliott, Rothenberg & Stock (ERS or DF-GLS) test

Level of significance

Model 0.01 0.05 0.10

constant −2.59 −1.94 −1.62

trend −3.58 −3.03 −2.74

H0 : There is a unit root

Reject the null if test-value < crit-value

Table A.5: Critical values of the Zivot & Andrews (ZA) test

Level of significance

Model 0.01 0.05 0.10

intercept −5.34 −4.80 −4.58

trend −4.93 −4.42 −4.11

both −5.57 −5.08 −4.82

H0 : there is a unit root

Reject the null if test-value < crit-value

A.1 Unit root tests for Unemployment time series

In the table shown below, L denotes the lag order.
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Table A.6: Unit root test results for Canada (CAN) ∆U data.

Test Model L=0 L=1 L=2

ADF none -6.016*** -4.980*** -4.674***

drift -6.124*** -5.056*** -4.761***

trend -6.129*** -5.026*** -4.727***

KPSS mu 0.366** 0.254*** 0.210***

tau 0.185* 0.129** 0.107***

ERS constant -4.190*** -3.126*** -2.722***

trend -5.549*** -4.317*** -3.916***

ZA intercept -6.708*** -5.496*** -5.117**

trend -6.391*** -5.240*** -4.971***

both -6.665*** -5.460** -5.230**

Table A.7: Unit root test results for Germany (DEU) ∆U data

Test Model L=0 L=1 L=2

ADF none -3.027*** -3.593*** -3.056***

drift -3.148** -3.703*** -3.151**

trend -3.232* -3.925** -3.397*

KPSS mu 1.097 0.606* 0.444**

tau 0.235 0.131** 0.097***

ERS constant -2.924*** -3.475*** -2.950***

trend -3.266** -3.970*** -3.437**

ZA intercept -4.727* -5.491*** -4.935**

trend -3.371 -4.027 -3.523

both -4.700 -5.440** -4.875*
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Table A.8: Unit root test results for France (FRA) ∆U data

Test Model L=0 L=1 L=2

ADF none -4.873*** -3.260*** -3.614***

drift -4.935*** -3.289** -3.642***

trend -4.954*** -3.272* -3.630**

KPSS mu 0.575* 0.363** 0.270***

tau 0.252 0.160* 0.119**

ERS constant -4.826*** -3.183*** -3.490***

trend -4.997*** -3.306** -3.659***

ZA intercept -5.569*** -3.933 -4.336

trend -5.273*** -3.496 -3.859

both -5.979*** -4.278 -4.639

Table A.9: Unit root test results for United Kingdom (GBR) ∆U data

Test Model L=0 L=1 L=2

ADF none -4.277*** -3.428*** -3.471***

drift -4.425*** -3.546*** -3.570***

trend -4.383*** -3.495** -3.498**

KPSS mu 0.912 0.550* 0.412**

tau 0.792 0.479 0.359

ERS constant -3.412*** -2.635*** -2.503**

trend -4.135*** -3.247** -3.141**

ZA intercept -6.117*** -5.189** -5.278**

trend -5.555*** -4.599** -4.682**

both -6.054*** -5.077* -5.151**
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Table A.10: Unit root test results for Italy (ITA) ∆U data

Test Model L=0 L=1 L=2

ADF none -6.903*** -3.659*** -3.109***

drift -6.866*** -3.639*** -3.082**

trend -6.897*** -3.629** -3.171*

KPSS mu 0.556* 0.419** 0.319***

tau 0.341 0.259 0.198*

ERS constant -6.579*** -3.470*** -2.814***

trend -6.665*** -3.551** -2.903*

ZA intercept -8.539*** -4.963** -4.307

trend -7.560*** -4.089 -3.839

both -8.828*** -5.162** -4.822*

Table A.11: Unit root test results for Japan (JPN) ∆U data

Test Model L=0 L=1 L=2

ADF none -6.264*** -4.547*** -3.594***

drift -6.235*** -4.531*** -3.580***

trend -6.926*** -5.089*** -4.205***

KPSS mu 1.284 0.910 0.744

tau 0.097*** 0.073*** 0.063***

ERS constant -5.944*** -4.340*** -3.400***

trend -6.365*** -4.668*** -3.711***

ZA intercept -7.552*** -5.687*** -4.888**

trend -6.927*** -5.121*** -4.231*

both -7.524*** -5.667*** -4.862*
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Table A.12: Unit root test results for United States (USA) ∆U data

Test Model L=0 L=1 L=2

ADF none -4.040*** -3.098*** -3.151***

drift -4.027*** -3.089** -3.134**

trend -4.053*** -3.122 -3.190*

KPSS mu 0.525* 0.307*** 0.224***

tau 0.466 0.273 0.200*

ERS constant -3.086*** -2.325** -2.256**

trend -3.613*** -2.748* -2.705

ZA intercept -5.247** -4.282 -4.232

trend -4.434** -3.455 -3.501

both -5.167** -4.144 -4.074
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A.2 Unit root tests for ∆GDP time series

Table A.13: Unit root test results for Canada (CAN) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -3.822*** -3.389*** -2.951***

drift -5.643*** -5.311*** -4.906***

trend -5.819*** -5.507*** -5.131***

KPSS mu 0.955 0.634* 0.528*

tau 0.136** 0.092*** 0.079***

ERS constant -3.921*** -3.394*** -2.893***

trend -5.491*** -5.067*** -4.604***

ZA intercept -6.324*** -5.893*** -5.478***

trend -5.955*** -5.665*** -5.318***

both -6.269*** -6.067*** -5.853***

Table A.14: Unit root test results for Germany (DEU) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -6.248*** -4.527*** -3.741***

drift -7.157*** -5.395*** -4.564***

trend -7.119*** -5.366*** -4.541***

KPSS mu 0.076*** 0.058*** 0.051***

tau 0.076*** 0.058*** 0.051***

ERS constant -5.526*** -3.953*** -3.153***

trend -6.579*** -4.889*** -4.022***

ZA intercept -7.497*** -5.735*** -4.877**

trend -7.174*** -5.442*** -4.618**

both -7.452*** -5.684*** -4.884*
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Table A.15: Unit root test results for France (FRA) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -3.573*** -2.839*** -2.714***

drift -4.952*** -3.855*** -3.928***

trend -5.249*** -4.024** -4.223***

KPSS mu 1.268 0.799 0.611*

tau 0.194* 0.125** 0.097***

ERS constant -4.685*** -3.546*** -3.605***

trend -5.304*** -4.067*** -4.270***

ZA intercept -5.659*** -4.503 -4.703*

trend -5.464*** -4.169* -4.440**

both -5.985*** -4.730 -5.109**

Table A.16: Unit root test results for United Kingdom (GBR) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -3.560*** -2.948*** -3.096***

drift -4.892*** -4.132*** -4.601***

trend -5.067*** -4.287*** -4.827***

KPSS mu 1.137 0.709* 0.549*

tau 0.243 0.154* 0.121**

ERS constant -3.772*** -3.028*** -3.225***

trend -4.943*** -4.143*** -4.621***

ZA intercept -5.645*** -4.896** -5.574***

trend -5.332*** -4.553** -5.193***

both -6.100*** -5.391** -6.332***
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Table A.17: Unit root test results for Italy (ITA) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -4.976*** -4.088*** -4.045***

drift -5.146*** -4.239*** -4.225***

trend -5.322*** -4.393*** -4.425***

KPSS mu 1.062 0.677* 0.531*

tau 0.240 0.156* 0.124**

ERS constant -4.421*** -3.531*** -3.420***

trend -5.316*** -4.376*** -4.400***

ZA intercept -5.863*** -4.943** -5.050**

trend -5.749*** -4.834** -4.979***

both -6.502*** -5.652*** -5.978***

Table A.18: Unit root test results for Japan (JPN) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -8.327*** -5.581*** -5.506***

drift -8.754*** -6.015*** -6.047***

trend -8.712*** -5.998*** -6.020***

KPSS mu 0.072*** 0.065*** 0.061***

tau 0.056*** 0.051*** 0.047***

ERS constant -7.712*** -5.127*** -4.830***

trend -8.544*** -5.874*** -5.765***

ZA intercept -9.223*** -6.372*** -6.394***

trend -8.800*** -6.166*** -6.174***

both -9.135*** -6.344*** -6.428***
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Table A.19: Unit root test results for United States (USA) ∆GDP data

Test Model L=0 L=1 L=2

ADF none -4.080*** -2.655*** -2.114**

drift -6.536*** -4.347*** -3.688***

trend -6.849*** -4.502*** -3.890**

KPSS mu 1.098 0.797 0.636*

tau 0.249 0.188* 0.154*

ERS constant -5.920*** -3.810*** -3.207***

trend -6.863*** -4.515*** -3.901***

ZA intercept -7.491*** -5.068** -4.492

trend -7.442*** -4.986*** -4.467**

both -7.927*** -5.461** -4.937*

Breakpoints

Bai and Perron (2003) test to indetify the number of breakpoints in time series.
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Table A.20: Breakpoints according to Bai-Perron test

Series Country Breaks Dates

∆GDP CAN 1 2000:Q1

DEU 0

FRA 1 2007:Q2

GBR 2 2007:Q4, 2011:Q2

ITA 2 2008:Q1, 2013:Q1

JPN 0

USA 2 2006:Q1, 2009:Q3

∆U CAN 0

DEU 4 1997:Q3, 2001:Q1, 2005:Q1, 2008:Q3

FRA 2 2007:Q4 2013:Q1

GBR 3 1997:Q4 2007:Q3 2011:Q3

ITA 3 1998!Q3, 2007:Q1, 2013:Q3

JPN 3 2003:Q1 2007:Q1 2010:Q3

USA 2 2006:Q1 2009:Q3

Carrion-i-Silvestre test under possible multiple breaks

Carrion-i-Silvestre et. al.(2009) developed five tests in order to test for unit roots in

time series with possible multiple breaks. The test has H0 : there is a unit root under

structural breaks.

We present below the results concerning the five tests, where: PT represents feasible

point optimal statistic, MPT is the feasible point optimal statistic, MZα , MSB, and MZt

represent the M-class test statistics. The asymptotic critical values are computed via boot-

strap. Rejection of the null hypothesis in the GLS unit root tests implies the absence of a

unit root.

In the tables below with evaluate the test-statistic with 1% (3 asterisk), 5% (2 asterisk)

or 10% (1 asterisk) significance level. If the test did not pass the 10% significance level

there is no asterisk and the value in parentheses represent the critical value at the 10%

significance level.
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We obtained the number of the structural breaks from the Table A.20. If there is no

structural break we did not perform the test.

There are three possible model specifications for the test:

• Model = 0 : for the constant case, without structural breaks

• Model = 1 : for the linear time trend case, without structural breaks

• Model = 2 : for the linear time trend that is affected by multiple structural breaks;

the structural break affects both the level and the slope of the time trend

Obviously the last case (Model = 2) is of interest here. However we list results of all

possible models for the sake of completeness.

Table A.21: Carrion-i-Silvestre test Canada

Series Model Breaks PT MPT MZα MSB MZt

∆GDP 0 1
1.371*

(1.956)

1.100**

(1.211)

-23.058**

(-14.830)

0.147***

(0.166)

-3.384***

(-3.163)

1 1
1.372*

(1.956)

1.100**

(1.211)

-23.058**

(-14.831)

0.147***

(0.166)

-3.385***

(-3.163)

2 1
4.673***

(4.741)

3.974***

(4.741)

-37.007***

(-30.314)

0.116***

(0.127)

-4.301***

(-3.877)

Table A.22: Carrion-i-Silvestre test Germany

Series Model Breaks PT MPT MZα MSB MZt

∆U 0 4
1.812*

(1.956)

1.711*

(1.956)

-14.568*

(-11.090)

0.185**

(0.212)

-2.691**

(-2.335)

1 4
5.149**

(5.544)

5.250**

(5.544)

-17.478**

(-17.326)

0.169*

(0.186)

-2.950**

(-2.896)

2 4
15.096

(10.898)

13.972

(10.898)

-26.953

(-35.170)

0.136

(0.119)

-3.669

(-4.136)
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Table A.23: Carrion-i-Silvestre test France

Series Model Breaks PT MPT MZα MSB MZt

∆GDP 0 1
1.362*

(1.956)

1.288*

(1.956)

-20.512**

(-14.831)

0.155***

(0.166)

-3.176***

(-3.163)

1 1
3.471***

(3.833)

3.543***

(3.833)

-25.722***

(-24.485)

0.139***

(0.142)

-3.586***

(-3.471)

2 1
8.098*

(8.356)

7.326*

(8.356)

-28.056*

(-25.023)

0.133*

(0.142)

-3.732*

(-3.511)

∆U 0 2
1.480*

(1.956)

1.490*

(1.956)

-16.719**

(-14.831)

0.173**

(0.212)

-2.885**

(-2.335)

1 2
5.155**

(5.544)

5.256**

(5.544)

-17.799**

(-17.326)

0.166**

(0.168)

-2.961**

(-2.896)

2 2
10.909

(8.462)

9.931

(8.462)

-19.811

(-24.045)

0.159

(0.143)

-3.147

(-3.447)

Table A.24: Carrion-i-Silvestre test United Kingdom

Series Model Breaks PT MPT MZα MSB MZt

∆GDP 0 2
1.840*

(1.956)

1.528*

(1.956)

-17.022**

(-14.831)

0.170**

(0.212)

-2.894**

(-2.335)

1 2
3.254***

(3.833)

3.228***

(3.833)

-28.515***

(-24.485)

0.132***

(0.142)

-3.770***

(-3.471)

2 2
8.914*

(9.587)

6.823**

(8.241)

-35.097**

(-29.001)

0.119**

(0.130)

-4.171**

(-3.791)

∆U 0 3
2.229

(1.956)

1.904*

(1.956)

-12.870*

(-11.090)

0.197**

(0.212)

-2.537**

(-2.335)

1 3
5.234**

(5.544)

5.051**

(5.544)

-18.800**

(-17.326)

0.161**

(0.168)

-3.033**

(-2.896)

2 3
6.828**

(7.327)

6.252**

(7.327)

-39.700**

(-33.284)

0.112**

(0.122)

-4.442**

(-4.071)
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Table A.25: Carrion-i-Silvestre test Italy

Series Model Breaks PT MPT MZα MSB MZt

∆GDP 0 2
1.305*

(1.956)

1.165**

(1.211)

-21.622**

(-14.831)

0.152***

(0.166)

-3.279***

(-3.163)

1 2
2.947***

(3.833)

2.976***

(3.833)

-31.021***

(-24.485)

0.127***

(0.142)

-3.932***

(-3.471)

2 2
6.817**

(7.755)

6.364**

(7.755)

-36.363**

(-29.868)

0.117**

(0.129)

-4.258**

(-3.845)

∆U 0 3
2.447

(1.956)

2.332

(1.956)

-11.588*

(-11.090)

0.203**

(0.212)

-2.352**

(-2.335)

1 3
7.668

(6.780)

7.695

(6.780)

-12.019

(-14.000)

0.202

(0.186)

-2.431

(-2.607)

2 3
12.834

(8.622)

11.836

(8.622)

-22.379

(-31.082)

0.149

(0.127)

-3.341

(-3.933)

Table A.26: Carrion-i-Silvestre test Japan

Series Model Breaks PT MPT MZα MSB MZt

∆U 0 3
2.313

(1.956)

2.298

(1.956)

-10.773

(-11.090)

0.215*

(0.235)

-2.315*

(-2.105)

1 3
6.973

(6.780)

6.690*

(6.780)

-13.669

(-14.000)

0.191

(0.186)

-2.610*

(-2.607)

2 3
8.736

(8.625)

7.457*

(8.625)

-35.081**

(-34.995)

0.119*

(0.127)

-4.184**

(-4.166)
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Table A.27: Carrion-i-Silvestre testUSA

Series Model Breaks PT MPT MZα MSB MZt

∆GDP 0 2
1.443*

(1.956)

1.390*

(1.956)

-17.760**

(-14.831)

0.168**

(0.212)

-2.977**

(-2.335)

1 2
3.634***

(3.833)

3.695***

(3.833)

-26.116***

(-24.485)

0.137***

(0.142)

-3.579***

(-3.471)

2 2
7.977*

(9.214)

7.214**

(7.935)

-32.964**

(-30.146)

0.123**

(0.128)

-4.059**

(-3.861)

∆U 0 2
2.835

(1.956)

2.389

(1.956)

-10.297

(-11.090)

0.220*

(0.235)

-2.267*

(-2.105)

1 2
7.082

(6.780)

6.624*

(6.780)

-13.952

(-14.000)

0.188

(0.186)

-2.625*

(-2.607)

2 2
14.925

(10.114)

12.095

(10.114)

-19.674

(-23.644)

0.159

(0.143)

-3.132

(-3.420)
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Appendix B VAR related formulas

Information criteria used for lag selection in VAR modelling.

Each VAR model was estimated by OLS and the optimal value of number of lags (n)

was selected by applying the following information criteria:

AIC(n) = ln

[
det

(
T−1

T

∑
t=1

ût û
′
t

)]
+

2

T
nK2 [Akaike] (B.1)

HQ(n) = ln

[
det

(
T−1

T

∑
t=1

ût û
′
t

)]
+

2ln(ln(T ))

T
nK2 [Hannan–Quinn] (B.2)

SC(n) = ln

[
det

(
T−1

T

∑
t=1

ût û
′
t

)]
+

ln(T )

T
nK2 [Schwarz] (B.3)

FPE(n) = det

(
T−1

T

∑
t=1

ût û
′
t

)(
T +n⋆

T −n⋆

)K

[Akaike FPE] (B.4)

where ∑̃u(n) = T−1 ∑
T
t=1 ût û

′
t , n is the lag order and n⋆ is the total number of parameters

in each equation.
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Appendix C Copula estimation results

Note: in some cases estimation of p-value goodness of fit was not possible.

Table C.1: Canada (CAN) copula estimation (empirical τ = 0.310)

family θ δ τ λL λU p-value logL AIC BIC

1 N 0.367 0.000 0.239 0.000 0.000 0.727 6.038 −10.077 −7.512

2 t 0.342 4.943 0.222 0.139 0.139 0.527 7.001 −10.002 −4.873

3 C 0.536 0.000 0.211 0.274 0.000 0.468 5.924 −9.847 −7.283

4 G 1.278 0.000 0.218 0.000 0.280 0.593 5.463 −8.926 −6.361

5 F 2.032 0.000 0.217 0.000 0.000 0.475 4.927 −7.854 −5.289

6 J 1.360 0.000 0.169 0.000 0.335 0.739 4.151 −6.301 −3.737

7 BB1 0.313 1.143 0.243 0.144 0.166 0.714 6.676 −9.352 −4.223

8 BB6 1.001 1.277 0.218 0.000 0.280 0.615 5.460 −6.920 −1.792

9 BB7 1.211 0.411 0.244 0.185 0.227 0.780 6.770 −9.539 −4.411

10 BB8 2.234 0.755 0.211 0.000 0.000 0.285 5.198 −6.396 −1.267

13 SC 0.462 0.000 0.188 0.000 0.223 0.907 4.831 −7.661 −5.097

14 SG 1.298 0.000 0.229 0.294 0.000 0.283 7.146 −12.292∗ −9.727∗
16 SJ 1.406 0.000 0.186 0.363 0.000 0.774 6.216 −10.433 −7.868

17 SBB1 0.171 1.216 0.243 0.232 0.036 0.709 7.530 −11.060 −5.931

18 SBB6 1.001 1.297 0.229 0.294 0.000 0.257 7.145 −10.290 −5.161

19 SBB7 1.289 0.321 0.243 0.288 0.115 0.772 7.875∗ −11.750 −6.621

20 SBB8 6.000 0.313 0.212 0.000 0.000 0.294 4.808 −5.615 −0.487
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Table C.2: Germany (DEU) copula estimation (empirical τ = 0.310)

family θ δ τ λL λU p-value logL AIC BIC

1 N 0.318 0.000 0.206 0.000 0.000 0.476 4.402 −6.804 −4.240

2 t 0.309 30.000 0.200 0.000 0.000 0.431 4.291 −4.583 0.546

3 C 0.459 0.000 0.187 0.221 0.000 0.849 5.116∗ −8.232∗ −5.667∗
4 G 1.194 0.000 0.163 0.000 0.213 0.189 2.779 −3.558 −0.994

5 F 1.591 0.000 0.172 0.000 0.000 0.205 3.174 −4.349 −1.784

6 J 1.217 0.000 0.110 0.000 0.232 0.791 1.504 −1.008 1.556

7 BB1 0.451 1.005 0.188 0.217 0.007 0.837 5.117 −6.234 −1.105

8 BB6 1.001 1.194 0.163 0.000 0.214 0.190 2.775 −1.549 3.579

9 BB7 1.011 0.454 0.189 0.217 0.015 0.823 5.118 −6.236 −1.107

10 BB8 6.000 0.255 0.168 0.000 0.000 0.203 3.092 −2.185 2.944

13 SC 0.303 0.000 0.131 0.000 0.101 0.591 2.145 −2.291 0.274

14 SG 1.227 0.000 0.185 0.241 0.000 0.516 5.033 −8.066 −5.502

16 SJ 1.331 0.000 0.158 0.316 0.000 0.589 4.860 −7.720 −5.156

17 SBB1 0.001 1.227 0.185 0.241 0.000 0.361 5.033 −6.066 −0.937

18 SBB6 1.086 1.163 0.181 0.268 0.000 0.373 5.061 −6.121 −0.992

19 SBB7 1.282 0.135 0.185 0.282 0.006 0.552 5.153 −6.306 −1.177

20 SBB8 1.331 1.000 0.158 0.316 0.000 0.128 4.860 −5.720 −0.592
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Table C.3: France (FRA) copula estimation (empirical τ = 0.310)

family θ δ τ λL λU p-value logL AIC BIC

1 N 0.439 0.000 0.289 0.000 0.000 0.889 8.934 −15.867 −13.313

2 t 0.434 30.000 0.285 0.001 0.001 0.831 8.756 −13.512 −8.404

3 C 0.653 0.000 0.246 0.346 0.000 0.680 8.469 −14.938 −12.384

4 G 1.317 0.000 0.240 0.000 0.307 0.093 6.513 −11.025 −8.471

5 F 2.551 0.000 0.267 0.000 0.000 0.508 7.744 −13.487 −10.934

6 J 1.370 0.000 0.173 0.000 0.342 0.940 4.155 −6.309 −3.755

7 BB1 0.486 1.103 0.271 0.275 0.126 0.860 8.900 −13.799 −8.691

8 BB6 1.001 1.316 0.240 0.000 0.307 0.088 6.508 −9.015 −3.908

9 BB7 1.130 0.586 0.267 0.307 0.154 0.800 8.869 −13.737 −8.629

10 BB8 6.000 0.366 0.255 0.000 0.000 0.258 7.369 −10.738 −5.630

13 SC 0.506 0.000 0.202 0.000 0.254 0.278 5.532 −9.065 −6.511

14 SG 1.365 0.000 0.267 0.338 0.000 0.765 8.866 −15.732∗ −13.178∗
16 SJ 1.518 0.000 0.225 0.421 0.000 0.862 7.821 −13.643 −11.089

17 SBB1 0.084 1.320 0.273 0.309 0.002 0.920 8.953∗ −13.906 −8.798

18 SBB6 1.001 1.364 0.267 0.338 0.000 0.826 8.865 −13.730 −8.623

19 SBB7 1.402 0.280 0.267 0.360 0.084 0.849 8.870 −13.740 −8.632

20 SBB8 2.323 0.820 0.264 0.000 0.000 0.459 8.239 −12.479 −7.371
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Table C.4: United Kingdom (GBR) copula estimation (empirical τ = 0.310)

family θ δ τ λL λU p-value logL AIC BIC

1 N 0.314 0.000 0.203 0.000 0.000 0.404 4.296 −6.593 −4.029

2 t 0.316 10.922 0.205 0.029 0.029 0.456 4.578 −5.155 −0.026

3 C 0.460 0.000 0.187 0.221 0.000 0.327 4.552 −7.104 −4.539

4 G 1.216 0.000 0.178 0.000 0.232 0.267 3.109 −4.218 −1.654

5 F 1.866 0.000 0.201 0.000 0.000 0.192 4.211 −6.421 −3.857

6 J 1.255 0.000 0.127 0.000 0.262 0.735 1.764 −1.528 1.036

7 BB1 0.400 1.038 0.197 0.188 0.050 0.370 4.588 −5.176 −0.047

8 BB6 1.001 1.215 0.177 0.000 0.232 0.286 3.105 −2.210 2.919

9 BB7 1.001 0.459 0.187 0.221 0.001 0.325 4.552 −5.104 0.025

10 BB8 6.000 0.295 0.198 0.000 0.000 0.239 4.199 −4.399 0.730

13 SC 0.346 0.000 0.147 0.000 0.135 0.238 2.699 −3.398 −0.834

14 SG 1.249 0.000 0.199 0.258 0.000 0.188 5.098 −8.196∗ −5.632∗
16 SJ 1.348 0.000 0.165 0.328 0.000 0.751 4.589 −7.178 −4.614

17 SBB1 0.024 1.237 0.201 0.249 0.000 0.110 5.104∗ −6.208 −1.079

18 SBB6 1.001 1.248 0.199 0.258 0.000 0.184 5.098 −6.195 −1.067

19 SBB7 1.279 0.182 0.199 0.281 0.022 0.134 5.061 −6.121 −0.992

20 SBB8 6.000 0.297 0.200 0.000 0.000 0.274 4.199 −4.398 0.731
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Table C.5: United States (USA) copula estimation (empirical τ = 0.310)

family θ δ τ λL λU p-value logL AIC BIC

1 N 0.439 0.000 0.290 0.000 0.000 0.040 8.958 −15.916 −13.362

2 t 0.429 8.313 0.282 0.085 0.085 0.077 9.435 −14.871 −9.763

3 C 0.846 0.000 0.297 0.441 0.000 0.428 13.238∗ −24.475∗ −21.921∗
4 G 1.303 0.000 0.233 0.000 0.298 0.000 5.609 −9.218 −6.664

5 F 2.513 0.000 0.263 0.000 0.000 0.003 7.356 −12.712 −10.158

6 J 1.292 0.000 0.142 0.000 0.290 0.886 2.403 −2.805 −0.252

7 BB1 0.845 1.001 0.298 0.441 0.001 0.404 13.232 −22.465 −17.357

8 BB6 1.001 1.303 0.233 0.000 0.298 0.000 5.601 −7.202 −2.094

9 BB7 1.001 0.846 0.298 0.441 0.001 0.397 13.235 −22.469 −17.361

10 BB8 6.000 0.346 0.239 0.000 0.000 0.000 6.569 −9.139 −4.031

13 SC 0.412 0.000 0.171 0.000 0.186 0.281 3.416 −4.831 −2.277

14 SG 1.422 0.000 0.297 0.372 0.000 0.674 12.061 −22.121 −19.567

16 SJ 1.682 0.000 0.275 0.490 0.000 0.315 13.179 −24.358 −21.804

17 SBB1 0.001 1.421 0.297 0.371 0.000 0.574 12.054 −20.108 −15.000

18 SBB6 1.680 1.001 0.275 0.490 0.000 0.434 13.178 −22.356 −17.249

19 SBB7 1.682 0.001 0.276 0.490 0.000 0.443 13.178 −22.357 −17.249

20 SBB8 1.682 1.000 0.275 0.490 0.000 0.509 13.179 −22.358 −17.250
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Appendix D Copula plots

Copula data have been plotted in two ways for five out of seven countries under study,

since no dependence between the residuals of output and unemployment first difference

equations was found for Japan and Italy. In the left panel the contour plot of the normal-

ized copula data is displayed. In the right panel the χ and λ statistics plot is displayed.

Blue points correspond to ”lower” mode and red points correspond to ”upper” mode.

χi =
F̂U1,U2

(ui,1,ui,2)− F̂U1
(ui,1)F̂U2

(ui,2)

F̂U1
(ui,1)(1− F̂U1

(ui,1))F̂U2
(ui,2)(1− F̂U2

(ui,2))

λi = 4sgn(F̃U1
(ui,1), F̃U2

(ui,2)) ·max(F̃U1
(ui,1)

2, F̃U2
(ui,2)

2)

• F̂ , empirical distribution function.

• λi is a measure of the distance between a data point (ui,1,ui,2) and the center of the

bivariate data set.

• χ corresponds to correlation coefficient between U1 and U2.

• Under independence:

χi ∼ N (0,1/N)

λi ∼ U [−1,1]
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Figure D1: Contour plot of normalized copula data and χ plot of copula data for Canada
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Figure D2: Contour plot of normalized copula data and χ plot of copula data for Germany
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Figure D3: Contour plot of normalized copula data and χ plot of copula data for France
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Figure D4: Contour plot of normalized copula data and χ plot of copula data for Great Britain

D3



-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

-∆U

∆GDP

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0
.2

0
.6

1
.0

λ

χ

Figure D5: Contour plot of normalized copula data and χ plot of copula data for the USA
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Appendix E R code

Listing 1: Code to download data for this article (R OECD version)

l i b r a r y (OECD)

S t a r t P e r i o d <− ”1994−Q1”

E n d P e r i o d <− ”2018−Q2”

une <− g e t d a t a s e t (

”STLABOUR” ,

f i l t e r = ”CAN+DEU+FRA+GBR+ITA+JPN+USA . LRHUTTTT . STSA .Q” ,

s t a r t t i m e = S t a r t P e r i o d ,

e n d t i m e = End Per iod ,

p r e f o r m a t t e d = TRUE

)

gdp <− g e t d a t a s e t (

”QNA” ,

f i l t e r = ”CAN+DEU+FRA+GBR+ITA+JPN+USA . B1 GE . GPSA .Q” ,

s t a r t t i m e = S t a r t P e r i o d ,

e n d t i m e = End Per iod ,

p r e f o r m a t t e d = TRUE

)

Listing 2: Code to download data for this article (R SDMX version)

l i b r a r y ( rsdmx )

l i b r a r y ( t i b b l e )

b a s u r l <− ” h t t p s : / / s t a t s . oecd . o rg / r e s t s d m x / sdmx . ashx / GetData / ”

s e r u n e <− ”STLABOUR/CAN+DEU+FRA+GBR+ITA+JPN+USA . LRHUTTTT . STSA .Q/ ”

t i m q r y <− ” a l l ? s t a r t T i m e =1994−Q1&endTime=2018−Q2”

u n e u r l <− p a s t e 0 ( b a s u r l , s e r u n e , t i m q r y )

sdmx <− readSDMX ( u n e u r l )

une <− a s t i b b l e ( sdmx )

s e r g d p <− ”QNA/CAN+DEU+FRA+GBR+ITA+JPN+USA . B1 GE .LNBQRSA.Q/ ”
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g d p u r l <− p a s t e 0 ( b a s u r l , s e r g d p , t i m q r y )

sdmx <− readSDMX ( g d p u r l )

gdp <− a s t i b b l e ( sdmx )
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