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Abstract

Understanding how electricity demand is likely to rise once households gain ac-

cess to it is important to policy makers and planners alike. Current approaches to

estimate the latent demand of unelectrified populations usually assume constant elas-

ticity of demand. Here we use a simulation-based structural estimation approach,

employing micro-data from household surveys for four developing nations, to estimate

responsiveness of electricity demand and appliance ownership to income considering

changes both on the intensive and extensive margin. We find significant heterogeneity

in household response to income changes, which suggest that assuming a non-varying

elasticity can result in biased estimates of demand. Our results confirm that neglect-

ing heterogeneity in individual behavior and responses can result in biased demand

estimates.

1 Introduction

The ownership of household appliances and equipment determines the demand for elec-

tricity and fuels in residences around the globe. For households that still lack access to

1



electricity or are newly electrified, understanding what demand will be once they connect

and how it will grow is important for planning purposes. Such latent demand is rarely

estimated because of the challenges involved in doing so. Residential electricity demand

projections for power sector planning in developing countries typically involve assumptions

about average electricity use per consumer or estimate this applying constant average

income elasticity of demand estimates (van Ruijven et al., 2012; Pachauri et al., 2013; Ke-

mausuor et al., 2014; Mentis et al., 2017; Dagnachew et al., 2018). However, evidence from

studies using microdata shows that such average estimates mask vast heterogeneity poorly

explained by statistical methods. Household energy demand can vary tremendously across

incomes, climates, seasons and regions even within nations (Pachauri and Jiang, 2008;

Zeyringer et al., 2015; Zhou and Teng, 2013).

There is a large body of literature that focuses on electricity demand estimation, but

studies estimating household electricity demand in developing countries remain scarce. In

some part, this is the result of a lack of adequate data. Many studies estimate the rela-

tionship between per capita income and residential electricity using aggregate time series

or panel data. Recent examples of such work still largely assume a linear relationship

between income and electricity use (Liu et al., 2016). Yet, there is evidence that the lin-

earity assumption is in question and there maybe biases associated with estimates that

use aggregate data (Lescaroux, 2012; Halvorsen and Larsen, 2013). Studies using micro

household level data have adopted a largely econometric approach using either parametric

or non-parametric methods (Filippini and Pachauri, 2004; de Fátima S.R. Arthur et al.,

2012; Zhou and Teng, 2013). Electricity demand models that do not account for changes

in appliance ownership are likely to provide imprecise estimates of electricity demand, par-

ticularly in developing countries where the ownership of appliances is currently limited.

2



Few studies have focused on estimating household electricity demand in still electrify-

ing regions using household level microdata. Existing literature has focused largely on the

relationship between household income and the adoption of specific electrical appliances

that are expected to drive household electricity demand growth (Wolfram et al., 2012;

Auffhammer and Wolfram, 2014; Gertler et al., 2016; Rao and Ummel, 2017; McNeil and

Letschert, 2010; Dhanaraj et al., 2018). These studies find that while income is a key

predictor of appliance ownership, there is still considerable variation by income level and

non-income drivers matter as well. Especially, the quality and reliability of electricity sup-

ply can be important to explaining appliance ownership (Samad and Zhang, 2018; Dang

et al., 2019). Recent research also suggests that the sensitivity of energy demand to in-

come or price changes can vary significantly between high and low energy consumers and

spenders (Blundell et al., 2017; Harold et al., 2017; Wolfram et al., 2012).

Studies like those of Wolfram et al. (2012) and Gertler et al. (2016) suggest that, as the in-

come of the poor rises, their demand for electricity is likely to increase substantially along

the extensive margin as they buy electric appliances for the first time. However recent

evidence from studies such as those by Dhanaraj et al. (2018); Rao and Ummel (2017) sug-

gests that appliance diffusion can remain low despite rising incomes, if appliances are too

expensive to afford or electric supply remains unreliable. A recent study from Kenya also

corroborates these findings by providing evidence that many newly-connected customers

only consume limited amounts of electricity, which means that built capacity may remain

underutilized (Taneja, 2018). This also implies that in many instances, households that

are officially counted as having access to electricity actually enjoy very few modern energy

services.

In this study we contribute to the literature on the empirical estimation of electricity
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demand in developing countries by developing a model of household electricity demand

using micro-data from representative national surveys for a subset of countries represent-

ing different regions of the Global South. For the selected countries, from a few percent

to a quarter of the population still lack access to electricity. We contribute to the litera-

ture in two aspects. First, to the best of our knowledge, this is the first paper that uses a

simulation-based structural estimation approach, employing micro survey data, to estimate

responsiveness of electricity demand to income considering changes both on the intensive

and extensive margin, and accounting for non-linearity in the relationship between income

and demand. Second we apply the model to test the implications for electricity demand

of different socio-economic futures and policy scenarios regarding the achievement of the

United Nation’s 2030 Agenda for sustainable development, specifically goal 7 on universal

access to sustainable, reliable and affordable modern energy by 2030.

The rest of the paper is organized as follows. In the next section, we discuss the model,

data and estimation procedures to calculate electricity demand employing micro data. In

Section 3 we present results of our estimations employing the estimated parameters from

our model for a set of different socio-economic scenarios that also distinguish between those

where universal access to electricity is achieved by 2030 in accordance with the UN 2030

Agenda, and others where the goal is not achieved. Finally, in Section 4 we conclude by

summarizing our key results and discuss some implications of the research for policy.

2 Modeling Approach

The main objective of our modeling approach is not to attempt to match the empirical

data as closely as possible (for those purposes, other tools may be more appropriate, see

Rovenskaya et al. 2019; Poblete-Cazenave et al. 2020), but to create a model of explicit
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behavioral responses to assess different policy scenarios, where the channels of causality

are clearly identified. We consider two channels by which income can affect the demand

for electricity. First, is directly through the budget constraint, as households with higher

income can afford more electricity. Second, is indirectly, as households with higher income

can afford more electrical appliances, the ownership and use of which increase the demand

for electricity. To capture both these effects, we first model the probability that a house-

hold buys an appliance, and second, model the demand for electricity given the number of

appliances the household owns.

Our methodology builds on the classic model of Dubin and McFadden (1984), but with

several deviations, as our objective goes beyond the pure econometric analysis of the effect

of appliance ownership and household characteristics on the demand for electricity and

other fuels. Our approach is similar to that of Dubin and McFadden’s in that the con-

sumption of electricity and other fuels is determined by the choice of a set of appliances,

within the framework of an indirect utility maximization model. However, it differs in that

we follow a simulation-based approach, which allows us to model the ownership of a larger

set of appliances and estimate the associated fuel and electricity demands on a variety of

counterfactual and future scenarios, such as the ones we present in Section 3.

The model is defined as follows: consider the indirect utility function:

u = V (ȳ, p1, p2, s, w, ν)

A household of observable characteristics w and other unobservable characteristics ν will

choose a bundle of consumption {x1, x2, ȳ} and appliances s = i given prices p1 and p2 as
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long as:

Ui > Uj, ∀i 6= j

In particular, in terms of a choice model, the probability that a portfolio i is chosen is:

Pi(νi : Vi > Vj, ∀i 6= j)

A simple, linear functional form/maximization problem that is consistent with these prop-

erties is:

maxU = ln

(

α0 +
α1

α4

+ α1p1 + α2p2 + α3w + α4ȳ + νi

)

eα4p1 − α ln p2

s.t. ȳ = y − ρ

m
∑

j=1

Kjδj +
m
∑

j=1

α4+j

α4

δj

where the αs are preference parameters, Kj is the price of appliance j and δj is a dummy

variable representing the ownership of appliance j. Hence, as an outcome of this maxi-

mization problem, the household chooses the set of appliances and electricity consumption

in such a way that fuel consumption is a function of the explanatory variables we are

interested in. In particular, to derive the demand for electricity x1, we use Roy’s identity:

x1 = −

∂U
∂p1

∂U
∂y

= α0 + α1p1 + α2p2 + α3w + α4

(

y − ρ

m
∑

j=1

Kjδj +
m
∑

j=1

α4+j

α4

δj

)

+ νi
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Then, to make it such that the demand xi is consistently and asymptotically efficiently

explained with the explanatory variables we select, we need that:

E(νi) = 0

Var(νi) = σ2

νi
< ∞

For that, we can use either a likelihood or a method of moments estimator. Here we use

the latter. In this case, we have to make sure that:

E

(

xi −

[

α0 + α1p1 + α2p2 + α3w + α4

(

y − ρ

m
∑

j=1

Kjδj +
m
∑

j=1

α4+j

α4

δj

)])

= 0

Var

(

xi −

[

α0 + α1p1 + α2p2 + α3w + α4

(

y − ρ

m
∑

j=1

Kjδj +
m
∑

j=1

α4+j

α4

δj

)])

= σ2

νi

If the problem is well defined and we have enough data, we know this will hold. But in

our case, we have several cases with missing observations. Let’s say, for example, we don’t

know what the cost of a refrigerator f is for every household in the sample. What we can

do, is use a simulator sf such that:

µsf → E(Ksf ) = E(Kf )

σ2

sf → Var(Ksf ) = Var(Kf )

and estimate the parameters of interest using a random draw of a distribution with mean

µsf and variance σ2
sf . In this case, this is straightforward, as we can obtain consistent

estimators of µsf and σ2
sf using the empirical distribution for the households where we

have information. We only need to be careful to use a large number of draws, such that

the simulated mean µ̄sf → µsf and variance σ̄2
sf → σ2

sf . Using a similar logic for the

variables of interest we create our “simulated” data. In particular, first we estimate the
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asymptotic distributions and simulators of the appliances:

• The demand for space cooling options is done using a multinomial logit on the fol-

lowing alternatives: no space cooling, only AC, only fan, both AC and fan

• The demand for water heating, space heating and main cooking device options are

done using multinomial logit on: no device, electric device, gas device, kerosene

device, solid biomass device

• The demand for refrigerators and freezers are modeled jointly, as also the demand

for washing machines and dryers

• The demand for all remaining appliances is modeled independently using a simple

logit

Then we simulate the remaining variables and the model is estimated using a “simulated”

method of moments estimator, which is done as follows:

• Start by estimating the income, household size and rural/urban joint distribution

• Estimate distributions for other household characteristics, depending on the afore-

mentioned variables

• Get N random draws of these estimated distributions, to represent N simulated

households

• Using the estimated parameters from the discrete choice models, simulate the appli-

ance uptake by end use for the households in the simulated sample

• Give an initial guess for the unknown preferences parameters (i.e. αs), calculate the

household demands according to these parameter guesses
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• Use a minimization algorithm to find the preference parameters that approximate as

closely as possible the simulated moment conditions to the empirical moments

Specifically, we use Indirect Inference (Gourieroux et al., 1993) as our simulated method of

moment estimator, as, first, it allows us to better capture the joint effect of the household

characteristics and appliance ownership on electricity consumption, and second, it arises

naturally from the original linear model developed by Dubin and McFadden (1984). We

use the following auxiliary models:

• Two linear regressions (separate urban/rural) of log electricity expenditure over

prices, expenditure on other fuels, household characteristics and dummies for ap-

pliances

• Mean electricity consumption and consumption of other fuels for different urban/rural

quintiles

• Percentage of people with non-zero electricity consumption and of people with non-

zero consumption of other alternative fuels

In the following, we present details of the data sets we employ to apply the model and

some key results and insights gained from the analysis.

3 Model Results and Scenarios

3.1 Data and Estimation

We test our model by applying it to data from four developing countries with different reali-

ties: Ghana, Guatemala, India and South Africa. All of these nations have not yet achieved

universal electrification, and fall within the lower-middle income category of the World

Bank’s income classification. Nevertheless, they have different historical backgrounds, and
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Country Dataset Years

Ghana Ghana Living Standards Survey (GLSS) 2012-2013
Guatemala Encuesta Nacional de Condiciones de Vida (ENCOVI) 2014

India
India Human Development Survey (IHDS) 2011-2012
National Sample Survey (NSS) 2011-2012

South Africa Living Conditions Survey (LCS) 2014-2015

Table 1: Household Surveys Used

therefore, different institutional frameworks, as well as very different climates. Therefore,

both the supply and the demand of fuels vary greatly among them. For example, while

Ghana and Guatemala are closer to tropical areas and, therefore, may require space cool-

ing, South Africa and India also have much cooler regions in their territories, so require

space heating as well.

We use different data sources for these countries (Table 1), to create the estimation datasets

which are described in Tables A1 and A2. For these datasets, we employ variables re-

lated to fuel consumption, household characteristics and appliances, which can be found in

the aforementioned tables. Additionally, we impute climate information from Beck et al.

(2018). We use the level of regional disaggregation on climate for each country that is

provided in this data set.

We visually display the match from our simulation-based estimation to the empirical sur-

vey data in Figure 2 and numerically in Table 2. We can see that the model does a good

job in replicating the pattern and, partially, the dispersion of electricity consumption by

income, save some anomalies that can be observed in the empirical data. For example, in

the cases of Ghana and South Africa, block electricity tariffs create peak points of con-

sumption that are not replicated by the model, basically because our simulated dataset
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purposefully does not include these tariffs1. Additionally, there is a big peak in electricity

consumption at the beginning of the distribution in South Africa, which can be explained

by current public policies that provide free electricity up to a certain threshold to poor

households, something that is also not part of our modelling approach. Nevertheless, it is

extremely interesting to highlight the wide variance of the joint distribution of electricity

consumption and income, something that most modelling approaches based on matching

aggregate statistics cannot capture. These wide variances also bias our simulated means

for the case of Ghana and India, where electricity consumption is relatively high even for

households that are around middle levels of the income distribution.

Mean Std.Dev
Data Sim Data Sim

Ghana 1663.9 1780.6 3316.7 1288.9
Guatemala 1125.0 1125.0 1180.6 513.9
India 1272.2 1413.9 1486.1 1061.1
South Africa 2969.4 2977.8 3091.7 2763.9

Table 2: Mean and Standard Deviation of Annual Household Electricity Consumption
(KWh): Data vs Model Simulation

3.2 Appliance Ownership and End-Use Service Shares

The importance of taking into account appliance ownership in such behavioral demand

models is also reflected in the differences we observe in appliance uptake over income

across the different countries. Our analysis of appliance ownership patterns are similar to

patterns observed in other studies (Chunekar and Sreenivas, 2019; Twerefou and Abeney,

2020). As we can see in Figure 1, appliance diffusion is much less responsive to income in

Guatemala than in the other countries. Also, the rate of adoption/diffusion varies widely

1As the model is designed to assess future policy scenarios, we decided not to include time-specific
electricity tariff schedules.
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by country, appliance type, and income level. This evidence is in line with results from

prior research that point to the non-linear relationship between appliance adoption and

income (see e.g. (Gertler et al., 2016)). This is another reason supporting the argument

against using point estimates of income elasticity for the purposes of electricity demand

estimation and projection.

We apply the model to analyze the distribution of electricity consumption by end use. To

do so, we distinguish five end use groupings: thermal comfort (space cooling and water

and space heating), food preservation and preparation (stoves, fridges and freezers), clothes

maintenance (washing, drying, ironing), entertainment and fun (televisions, music equip-

ment, computers), and others. As we see in Table 3, the share of each group of appliances

in total electricity use varies widely by income level and household location. Some key

patterns are evident from our analysis. First, we find that the share of electricity use in

appliances in the food group rises steeply for households in the top income quintile in al-

most all countries. This is because refrigerators are aspired for among households that can

afford these, but also because high income households increasingly use electric cookstoves.

This is particularly true in South Africa, which is an exceptional case, as government pro-

grams in this country incentivize electric cooking through the free basic electricity policy.

A consequence of this relatively high adoption of electric cooking is that inequalities in

electricity use are much lower in South Africa.

For all countries, we find consistently that the share of electricity used in entertainment

appliances is the largest of the total of the five groups we distinguish, and this share does

not vary widely across income levels. We also observe an increase in the share of electricity

use in the clothes group, as richer households are able to afford the convenience of owning

their own washing machines and dryers, as opposed to doing laundry by hand or using
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(a) Television (b) Computer

(c) Refrigerator (d) Washing Machine

Figure 1: Diffusion of appliances by income in different countries

communal laundry services. Appliances for thermal comfort use about a quarter of total

electricity use in the larger nations of India and South Africa that include regions that

require cooling and heating. However, it is important to acknowledge that the appliances
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considered in this category are not the same across all countries, still, they represent the

most basic needs in terms of thermal comfort given differences in climate and levels of afflu-

ence. The biggest missing component is space cooling in South Africa, which, if anything,

would increase even more the already large share of thermal comfort in total electricity

consumption. The full list of appliances for which data are available in each of the country

surveys is presented in Table A2.

3.3 Scenarios

The biggest advantage of our modeling approach is that it lends itself to the assessment of

policy scenarios. As we use a specific choice model where households decide on both appli-

ance ownership and energy use based on the prices they face, their income and other impor-

tant socio-economic characteristics, we can estimate the behavioral responses to changes

in some of these relevant variables. We therefore simulate a variety of scenarios consider-

ing future developments in population by age, sex, and education (KC and Lutz, 2017),

income growth and distribution (Cuaresma, 2017; Rao et al., 2018), urbanization (Jiang

and O’Neill, 2017), and energy prices (Fricko et al., 2017) following the narratives of the

Shared Socioeconomic Pathways (SSPs) (Riahi et al., 2017) (see Table A3). We consider a

business as usual future of demographic and socio-economic change following the narrative

of the SSP2 scenario, but consider sensitivities under the SSP1 (higher growth) and SSP3

(lower growth) scenarios. Building on this, we then consider two alternative policy scenar-

ios: the first where we assume universal access to electricity by 2030 in line with the UN

2030 Agenda goals (referred to as universal access scenario), and the second, where elec-

tricity access is modeled as a logit function of income, urbanization, house characteristics

and regional zones, in such a way that households with higher income, in urban areas and

of better housing characteristics have a higher probability of being in an electrified area,

14



Thermal Food Clothes Entertainment Other
Country Location Quintile Comfort

Ghana Rural 1 11.57 2.31 7.55 31.17 47.40
2 10.24 5.61 7.98 36.71 39.46
3 13.17 5.94 11.96 39.52 29.41
4 14.88 8.45 13.57 40.36 22.73
5 15.84 12.15 16.14 38.51 17.36

Urban 1 9.10 8.85 22.89 37.15 22.01
2 8.73 12.66 27.05 36.52 15.04
3 8.56 14.94 28.63 35.28 12.59
4 7.93 16.43 31.12 33.84 10.68
5 6.92 21.12 30.82 32.01 9.12

Guatemala Rural 1 2.50 11.10 11.48 39.38 35.55
2 2.08 12.36 12.18 38.33 35.06
3 3.09 11.35 13.37 37.77 34.42
4 3.05 12.03 14.00 36.67 34.25
5 3.00 13.27 14.77 36.49 32.47

Urban 1 3.01 16.15 18.96 33.97 27.92
2 3.60 16.59 19.95 33.00 26.86
3 2.85 17.20 20.53 32.90 26.51
4 2.86 17.12 21.39 32.98 25.64
5 3.34 16.31 23.14 32.25 24.95

India Rural 1 27.70 1.02 0.39 33.48 37.42
2 28.54 2.31 0.34 38.17 30.63
3 26.92 3.69 0.56 42.00 26.82
4 24.91 5.60 1.48 45.75 22.26
5 22.41 10.44 2.92 46.40 17.82

Urban 1 26.93 5.24 0.79 43.72 23.32
2 24.33 9.13 1.75 43.60 21.19
3 21.32 13.22 3.36 43.64 18.45
4 18.86 16.15 4.98 43.05 16.96
5 13.30 19.11 9.69 44.36 13.54

South Africa Rural 1 29.16 22.93 1.85 28.80 17.26
2 25.84 25.41 1.93 31.52 15.29
3 25.30 26.45 4.47 30.81 12.98
4 25.72 25.95 4.84 31.35 12.13
5 26.24 25.50 7.72 29.39 11.15

Urban 1 37.57 21.51 2.19 26.66 12.07
2 35.23 22.29 4.79 27.14 10.55
3 33.98 22.33 7.00 27.16 9.52
4 31.05 21.19 9.31 28.60 9.85
5 29.52 19.15 11.41 29.36 10.55

Table 3: Estimated Percentage of Total Electricity Consumption of Appliances by Appli-
ance Group in the Base Year

but still universal access is not achieved by 2030 (referred to as the no new access policy

scenario). Nevertheless, it is important to note that our model allows for the possibility
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that households living in electrified areas may choose not to use electricity, because they

cannot afford it and other fuels satisfy their needs at lower expense.

(a) Ghana (b) Guatemala

(c) India (d) South Africa

Figure 2: Distribution of log Household Expenditure vs log Electricity Consumption: Data
vs Simulation

Indeed, as shown in the summary of the scenario results in Table 4, even under the univer-

sal access scenario, in almost all countries there is a small percentage of the population that

chooses not to use electricity. It is also interesting to note that we estimate a lower average

electricity consumption per capita for individuals that use electricity under the universal
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access scenario. This is because in the no new access policy scenario, households with

lower income, whose capacity to afford electricity and appliances is more limited, don’t

have access to electricity. This can be noticed visually in Figure 3, where the distributions

of electricity consumption in the universal access scenario are to the left of the distribution

in the no new access policy scenario.

Our estimates of average and total electricity consumption in 2030 for India and South

Africa are similar in magnitude to other estimates in the literature (de la Rue du Can et al.,

2019; Agency, 2020). The share of different end-uses in total household electricity use es-

timated for 2030 reflect the relationship of end-use shares and income for the individual

nations presented already in Table 3. These are, in turn, related to estimates of appliance

ownership in 2030 that are presented in Table 5. As estimated in other studies, we find a

rapid increase in ownership of appliances with increasing urbanization and income growth

over time.

Another interesting feature of our model is that it allows us to perform analysis of scenarios

at various levels of disaggregation relative to the respective household characteristics that

are included. For example, as mentioned above, our model includes the effect of different

climatic zones and urbanization on appliance uptake and energy demand. In Figures A1

to A4 we generate maps of average electricity consumption for the different countries in

our study. There are three levels of spatial disaggregation included: first, as mentioned

previously, we identify different climatic zones according to the Köppen-Geiger climate

classification (Beck et al., 2018), then we ascribe to each region/subregion (Hijmans, 2012)

the modal climatic zone, and finally, we find the average electricity consumption for in-

dividuals in rural and urban areas (Lloyd et al., 2017) at different levels of income. To

simplify the presentation of the income effects, we aggregate the population by income
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% Population Mean Elec Cons PerCap Total
Country Scenario using electricity If Using Elec (KWh) Elec Cons (billion KWh)

Ghana No New Access 69.02 558.3 13.85
Universal Access 98.55 475.0 16.82

Guatemala No New Access 82.42 175.0 2.94
Universal Access 99.37 163.9 3.32

India No New Access 88.95 341.7 464.56
Universal Access 100.00 336.1 513.78

South Africa No New Access 95.60 961.1 53.83
Universal Access 99.62 938.9 54.80

Percentage by End Use
Country Scenario Entertainment Thermal comfort Food Clothes Other
Ghana No New Access 33.30 8.08 19.31 28.18 11.13

Universal Access 34.60 7.66 17.82 27.20 12.72
Guatemala No New Access 33.99 3.13 16.12 20.67 26.10

Universal Access 34.37 3.17 15.49 20.39 26.57
India No New Access 46.33 15.42 15.87 8.15 14.22

Universal Access 46.41 15.90 15.42 7.62 14.65
South Africa No New Access 28.96 30.37 20.54 9.50 10.63

Universal Access 29.02 30.18 20.56 9.52 10.72

Table 4: Shares and quantities of electricity use in 2030 under access policy scenarios

quintiles. We deliberately keep the thresholds for belonging to a particular quintile fixed

at the level in the base year, as it allows us to see the transitions of households from

lower to higher levels of income over time. This means that, as average incomes rise,

the number of individuals in lower quintiles diminishes, while the number of individuals

in higher income quintiles increases, changing the average behavior of individuals in each

quintile. For example, in the case of India, we can see that in future scenarios, the av-

erage electricity consumption of households in the top quintile is lower than in the base

year. This is because, by keeping the income thresholds constant, households that belong

to the highest quintile in the base year, belong to the second highest quintile of the fu-

ture distribution (i.e., the income distribution of this quintile gets more skewed to the left).

We also analyze the variation in the cooling and heating needs of households under the

different scenarios. Here, we focus solely on India, as it is the only country in our sample
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Television Computer Refrigerator Washing Machine

Ghana No New Access Rural 34.6% 5.7% 18.6% 0.2%
Urban 75.9% 23.1% 57.0% 3.1%

Universal Access Rural 61.9% 9.7% 23.3% 0.5%
Urban 86.3% 24.9% 62.0% 3.2%

Guatemala No New Access Rural 50.6% 6.6% 27.3% 2.9%
Urban 82.6% 30.1% 59.8% 24.0%

Universal Access Rural 70.9% 8.4% 35.4% 4.5%
Urban 88.5% 32.3% 63.2% 26.1%

India No New Access Rural 79.5% 19.4% 52.5% 22.8%
Urban 96.9% 59.4% 88.1% 64.5%

Universal Access Rural 91.5% 21.6% 57.1% 23.2%
Urban 99.1% 61.4% 90.1% 66.0%

South Africa No New Access Rural 81.8% 22.4% 80.3% 30.1%
Urban 90.6% 45.0% 88.8% 61.4%

Universal Access Rural 86.0% 21.7% 83.1% 31.8%
Urban 93.0% 45.6% 91.8% 61.5%

Table 5: Appliances diffusion on the different electricity access scenarios

where we have information on the ownership of both cooling and heating appliances. The

interpretation of our results requires special attention, as these reflect both the direct and

indirect effects of income growth in interaction with climate under the different scenarios,

some of which may seem contradictory. For example, higher income growth implies that

households can spend more money on appliances and fuels. But also, that more efficient

appliances and fuels become affordable. Moreover, a higher income level allows households

to live in dwellings that are better insulated to avoid energy losses. These effects explain

what we see in Figure 4. As expected, households residing in urban areas in zones with

more extreme climates have higher demands for cooling and heating. However, the sce-

narios with lower income growth have higher energy needs because households in these

scenarios live in poorer quality buildings and own appliances and fuels with very low effi-

ciency performance. This explains the comparatively larger demand for space and water

heating in the SSP3 scenario. For simplicity, we assume here that the climate remains

unchanged till 2030. However, future work could use the model to explore how electricity

demand for thermal comfort changes in response to different climate impact scenarios, as
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(a) Ghana: SSP1 (b) Ghana: SSP2 (c) Ghana: SSP3

(d) Guatemala: SSP1 (e) Guatemala: SSP2 (f) Guatemala: SSP3

(g) India: SSP1 (h) India: SSP2 (i) India: SSP3

(j) South Africa: SSP1 (k) South Africa: SSP2 (l) South Africa: SSP3

Figure 3: Distribution of log Household Expenditure vs log Electricity Consumption: Uni-
versal Access vs No New Access Policy Scenarios in 2030
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well as to analyze how socio-economic and demographic changes interact with climatic

change to determine thermal electricity demands.

Cooling

SSP1 SSP2 SSP3

Heating

Figure 4: India: Mean Electricity Consumption at urban and rural areas in different
climatic zones by quintile for different scenarios

4 Conclusions and Discussion

Estimating appliance and electricity demand in countries that have not as yet achieved

universal access to electric services is important for policy makers and planners alike. Here

we develop a simulation-based estimation model to analyze changes in electricity demand

considering the effect of income on both the intensive and extensive margin. The model

is applied to micro-data from nationally representative surveys from four countries that

represent different regions of the Global South, with varying climates, incomes and extents

of electricity access. We find that our model closely approximates observed patterns in the
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micro survey data. The utility of the model is tested by applying it to scenarios exploring

differences in future income and population size and distribution. We find that appliance

and electricity demand under different future scenarios change in line with expected be-

havioral responses. In other words, in futures with high income growth and urbanization,

we estimate higher electricity demand compared to futures with lower income growth and

urbanization even though population growth is higher in such scenarios. In scenarios where

we consider policies that achieve universal access to electricity by 2030, total electricity

demand is higher than in no access policy futures. However, low-income households with

access to electricity pull the average per capita electricity demand lower compared to the

average in scenarios where low-income households do not get access to electricity.

We find the level of adoption of electrical appliances varies significantly by country, ap-

pliance type and income. In all four of the countries we studied, we find that the share

of electricity used in appliances for entertainment is the highest compared to all other

end-use services and remains relatively unchanged as incomes rise. This is also consistent

with our finding that the ownership of televisions is high and more equitably distributed

across populations in comparison to the ownership of other major white goods. The share

of electricity used in appliances for food preservation and preparation as well as for the

maintenance of clothes rises significantly with income as people are able to afford more

expensive appliances that provide greater convenience and comfort. Finally, we observe

interesting shifts in the electricity demand for appliances that provide thermal comfort be-

cause while higher incomes allow households to afford more cooling and heating appliances,

they also allow households to shift from less efficient fuels and appliances to more efficient

electric appliances and to afford better and more insulated housing.

Our model contributes to the literature in many regards. First, it is not a purely sta-
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tistical model, and therefore, it explicitly considers several channels or drivers that are

relevant in explaining household behavior regarding electricity consumption. Additionally,

the use of simulated data allows us to model some of these drivers jointly. For example,

income may not only affect demand directly through the budget constraint and indirectly

through appliance ownership, but also through other household characteristics that are

related to income, such as the number of individuals in a household or the probability

of owning vs renting a dwelling, or living in a shack or more efficient dwelling. In this

way our approach of creating simulated data sets provides the flexibility of representing

different realities and simulate demand under future scenarios, policy changes and to carry

out counterfactual experiments. Finally, as this model is not calibrated, but estimated, the

behavioral parameters of the model are such that our simulated data set is able to mimic

the empirical reality for a wide variety of variables and drivers at the same time.

The model developed here provides a useful tool to assess how appliance and electric-

ity demand change under alternative future scenarios but is not without limitations. The

most critical limitation is actually the counterpart of its biggest strength. As the model is

completely driven by empirical data, it is not able to estimate the effect of things that are

not captured by the data. For example, due to our data limitations, we cannot estimate

the effect of air cooling appliances on the electricity consumption of South Africa, as the

survey does not include information on the ownership of cooling appliances. Additionally,

the estimation is time intensive and a full estimation round including bootstrapping can

take days to finish, depending on the available computing power. Finally, as with every

structural econometric model, it is, by construction, constrained by the behavioral model.

Assuming that the choice model is an appropriate representation of the behavior of house-

holds is a strong assumption of the approach.
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Our results suggest that there are significant differences in the extent to which differ-

ent appliances contribute to total electricity demand depending on income and climate.

An important policy implication of this work is that the demand for electric services in

developing and emerging countries will rise with income but making access to these elec-

tric services more equitable requires improving the availability and affordability of efficient

appliances, in addition to improving the reliability, affordability and extent of electricity

access. Additionally, it can be used to help policy makers in deciding appropriate levels

of subsidies to achieve certain purposes. For example, as we can see in the case of South

Africa, giving low income households certain levels of electricity for free can certainly help

to reduce energy poverty. Nevertheless, unless the cost of certain appliances is also sub-

sidized (for example, electric cookstoves or thermal comfort equipment), households may

still not be able to afford these and, instead, continue to use inefficient fuels and equipment

that harm their health and the environment.

Estimates and forecasts of the growth of residential or household electricity demand in de-

veloping countries are an important input to utility and electricity sector planning. They

signal what the appropriate scale of investments in electric infrastructure expansion might

be. Approaches such as the one developed in this work, can be used to significantly im-

prove future estimates of demand and aid in integrated energy planning.
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Appendix

Ghana Guatemala India South Africa

Electricity consumption 3.616 3.091 3.720 8.672
Price of Electricity 29.401 90.718 38.669 42.637
Consumption of other fuels 13.990 48.115 13.650 0.785
Avg Price of Other Fuels 25.967 22.902 20.124 56.245
Total Household Expenditure 7,321.098 10,312.320 6,828.443 11,659.210
Household Size 4.091 4.752 4.857 3.803
Urban 0.483 0.455 0.359 0.608
Age of household Head 44.041 46.347 49.715 49.217
Rented dwelling 0.488 0.098 0.062 0.176
Number of rooms in dwelling 1.756 2.298 2.739 4.437
Single family dwelling 0.250 0.983 0.386 0.935
Informal dwelling 0.355 0.064 0.021 0.096
Walls or roof of light material 0.943 0.844 0.315 0.974
Climate Zone Am 0.066
Climate Zone Aw 0.065 0.104 0.074
Climate Zone BWh 0.935 0.461 0.326
Climate Zone BWk 0.015 0.058
Climate Zone BSh 0.115
Climate Zone BSk 0.280 0.209
Climate Zone Csa 0.220
Climate Zone Csb 0.009
Climate Zone Cwb 0.284
Climate Zone Cwc 0.369 0.004 0.398
Climate Zone ET 0.008

Note: Sample averages for each country, fuel values in GJ, monetary values in 2010USD

Table A1: Fuel consumption, prices and household characteristics per country in the em-
pirical sample
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Ghana Guatemala India South Africa

Air Conditioner 0.007 0.023
Fan 0.406 0.094 0.758
Water Heater (any fuel) 0.007
Electric Water Heater 0.007 0.808
Gas Water Heater 0.060
Kerosene Water Heater 0.033
Firewood Water Heater 0.131
Electric Space Heating 0.440
Gas Space Heating 0.072
Kerosene Space Heating 0.180 0.078
Firewood Space Heating 0.201 0.157
Electric Stove 0.007 0.010 0.010 0.793
Gas Stove 0.226 0.216 0.368 0.030
Kerosene Stove 0.011 0.034
Charcoal Stove 0.272
Firewood Stove 0.521 0.764 0.617 0.13
Kerosene Lightning 0.028 0.562
Television 0.496 0.701 0.664 0.830
Personal computer 0.089 0.145 0.077 0.236
Music equipment 0.628 0.362 0.281 0.645
Refrigerator 0.267 0.401 0.294 0.742
Freezer 0.048 0.316
Electric kettle 0.048
Vacuum Cleaner 0.004 0.005 0.144
Washing Machine 0.006 0.089 0.107 0.377
Dryer 0.009 0.108
Iron 0.373 0.453

Note: Sample averages for each country of dummies representing appliance
ownership per household

Table A2: Appliance ownership per country in the empirical sample
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SSP1 SSP2 SSP3

Ghana Population 37.6% 47.3% 56.3%
GDP 181.4% 133.1% 103.2%
Urban Share 32.5% 22.2% 8.8%
Bio Price -17.9% -8.2% -1.1%
Gas Price 18.2% -2.7% 34.6%
Elec Price 9.2% 14.2% 29.6%

Guatemala Population 30.1% 41.8% 59.3%
GDP 164.6% 135.3% 115.7%
Urban Share 32.9% 22.9% 8.8%
Bio Price 35.7% 55.7% 2.2%
Gas Price 18.1% 26.5% 37.9%
Elec Price 35.8% 25.3% 45.7%

India Population 19.1% 24.8% 31.0%
GDP 448.9% 407.4% 359.6%
Urban Share 64.4% 38.6% 11.3%
Bio Price 189.9% 243.4% 34.2%
Gas Price 14.8% -6.5% 14.6%
Elec Price -13.9% 74.7% 105.6%

South Africa Population 16.6% 16.9% 13.7%
GDP 128.4% 105.4% 80.1%
Urban Share 21.8% 15.9% 5.7%
Bio Price -17.9% -8.2% -1.1%
Gas Price 18.2% -2.7% 34.6%
Elec Price 9.2% 14.2% 29.6%

Table A3: Percentage changes from base year by country and SSP scenario
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Figure A1: Ghana: Mean Electricity Consumption at urban and rural areas in different
climatic zones by quintile for different scenarios
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Figure A2: Guatemala: Mean Electricity Consumption at urban and rural areas in different
climatic zones by quintile for different scenarios
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Figure A3: India: Mean Electricity Consumption at urban and rural areas in different
climatic zones by quintile for different scenarios
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Figure A4: South Africa: Mean Electricity Consumption at urban and rural areas in
different climatic zones by quintile for different scenarios
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