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Abstract

We study the following game: each agent i chooses a lottery over nonnegative

numbers whose expectation is equal to his budget bi. The agent with the highest

realized outcome wins (and agents only care about winning). This game is motivated

by various real-world settings where agents each choose a gamble and the primary

goal is to come out ahead. Such settings include patent races, stock market competi-

tions, and R&D tournaments. We show that there is a unique symmetric equilibrium

when budgets are equal. We proceed to study and solve extensions, including set-

tings where agents must obtain a minimum outcome to win; where agents choose

their budgets (at a cost); and where budgets are private information.
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1 Introduction

The most basic version of the game that we study can be described as follows. Two

agents, Alice and Bob, each have a budget of chips for gambling. They each (simulta-

neously) place a single bet in (say) a casino. We assume that the outcomes of the bets
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are independent. Whoever ends up with more chips is named the winner, and chips are

worthless afterwards—the only goal is to win. What bets should Alice and Bob place?

To answer this question, we need to know what bets the casino is willing to accept.

Let us assume that, driven by competition, the casino is willing to accept any fair bet.1

That is, an agent can buy any lottery over nonnegative real numbers whose expectation

is equal to the agent’s budget.2

As an example, suppose Alice and Bob each have a budget of 10 chips. If Alice were

to choose the degenerate lottery that always results in 10 chips, Bob can win most of the

time by choosing the lottery that gives 11 chips with probability 10/11, and 0 chips with

probability 1/11. In this case, Bob wins with probability 10/11. A better response for

Alice, in turn, would be to choose the lottery that gives 12 chips with probability 9/11,

and 1 chip with probability 2/11. Alice would then win with probability 9/11+2/11 ·
1/11. As we will see, the unique equilibrium of this game is for both Alice and Bob to

choose the uniform lottery over [0,20].

In this paper, we study the equilibria of (the n-agent version of) this game, as well

as variants in which agents must end up with at least a certain number of chips in

order to win; in which agents have to first buy chips; and in which budgets are private

information.

In spite of their simplicity, games such as the above can model real-world scenarios.

Previous research has considered the strategic choice of lotteries as a means to char-

acterize incentives for risk-taking in R&D environments. Here, a choice of technology

leads to a distribution over the final quality (or improvement in quality) of the product,

which determines which firm will dominate the market. Examples include Anderson and

Cabral [2007]; Bagwell and Staiger [1990]; Bhattacharya and Mookherjee [1986]; Cabral

[1994, 2002, 2003]; Judd [2003]; Klette and de Meza [1986] and Vickers [1985]. All of

these earlier papers study a constrained environment in the sense that the set of possi-

ble lotteries is limited. Also, most of the previous work studies decisions that take place

over time. In particular, Cabral [1994, 2002, 2003] consider an environment with two

agents and two possible lotteries, a safe lottery (no variance) and a risky one (positive

variance). In each period of a repeated game, agents select between those two lotteries.

1Real-world casinos typically have payback rates of at least 90%.
2Incidentally, if an agent were able to place a sequence of bets, where the choice of later bets is allowed

to depend on the outcomes of the agent’s own earlier bets (but not on the outcomes of the other agent’s

bets), this would make no difference to the game, for the following reason. Any finite plan (strategy) for

betting will result in a (single) probability distribution over nonnegative numbers with expectation equal

to the agent’s budget, and thus the agent can simply choose this lottery as a single bet.
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Cabral shows that increasing dominance, a situation in which the leader advances more

and more rapidly in comparison to a laggard, can be the result of the laggard choosing

a riskier strategy. Judd [2003] extends this environment to continuous time. Anderson

and Cabral [2007] analyze the more general choice of lottery variance in a continuous

time setting that follows an Ito process. Both papers focus on the dynamics and wel-

fare implications drawn from a continuous-time game with two agents. In contrast, our

work focuses on the strategic choices made by agents in a static environment, where an

agent’s strategy choice set is larger.

Bhattacharya and Mookherjee [1986] and Klette and de Meza [1986] consider patent

race models where agents select their variance. Their models consider winner-takes-all

settings with two agents, where the winning agent’s utility is a function of the lottery

outcome and varies across agents. They show that in equilibrium, firms may take too

much risk from a social-welfare point of view due to competition. In contrast, we find

that in spite of competition, firms may take too little risk when compared to a risk-

neutral social planner.

An important difference between our work and all of the above work is that we allow

agents to select any fair lottery. In addition, our work abstracts from specific envi-

ronments such as patent or R&D races, leading to a simpler model. We do illustrate

throughout the paper how our model can apply in those settings.

Baye and Hoppe [2003] analyze relationships among rent-seeking, innovation, and

patent-race games. They establish the strategic equivalence of these types of games when

the Tullock [1980] logit form is employed as the probability of success given agents’

efforts. Skaperdas [1996] axiomatizes this probability of success function. Rosen [1991]

examines R&D contests and shows that in equilibrium, a large firm invests more than

a smaller firm but, by choosing safer R&D projects, makes fewer major innovations. In

our Example 2, we show that unlike Baye and Hoppe [2003], the probability of success

in equilibrium does not have the logit form. In addition, in contrast to Rosen [1991], we

find that while the firm that invests more does choose a safer R&D project, it still has a

higher chance of making a major innovation than the firm that invests less.

Gilbert and Shapiro [1990], van Dijk [1996], Denicolò [1996], and Denicolò [2000]

study the optimal selection of patent breadth (among other properties) given that firms

compete in quality improvement. Gallini [1992] analyzes the optimal selection of patent

breadth and length. In her setting, she shows that broad, short-lived patents are optimal.

In Section 4, we study the case where agents must obtain at least a threshold outcome

in order to win. This threshold can be interpreted as an existing patent’s breadth, or the
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quality of an existing product in the market (which must be exceeded for a new product

to be of value). A more general discussion of incentive properties of mechanisms for

intellectual property is given by Gallini and Scotchmer [2001].

There are certainly aspects of R&D competition and patent races that our model does

not capture (and many of these aspects are explored in other literature). A benefit of

our model is that it is simple and can be embedded in multiple frameworks, as we show

throughout the paper. Incorporating aspects that are not common to all of these appli-

cations into the model is likely to make it less generally applicable. For example, we do

not study repeated interaction, because how this should be done presumably depends

on the specific application. (In R&D, phenomena such as increasing dominance and per-

sistence of monopoly are of interest [Cabral, 2002]; whereas in patent races, the value of

an innovation over time is affected by patent regulation, raising the question of how to

regulate to encourage innovation [Denicolò, 1996].) Specializing the model to particular

applications is an important direction for future research. Additionally, it may be pos-

sible to add features to our model that do not significantly restrict its applicability. We

will discuss future research directions in more detail at the end of this paper.

In a working paper, Dulleck et al. [2006] (independently) propose what is effectively

the same game as the basic setting that we initially study in this paper, in a different

context. They study all-pay auctions in which each bidder is budget constrained, has no

opportunity cost for his budget, and has access to a fair insurance market. (An all-pay

auction is an auction in which each agent must pay his bid, even if he did not win. For an

overview on all-pay auctions, see Baye et al. [1996]. “Access to a fair insurance market”

means that agents can place any fair bet.) Dulleck et al. are motivated in part by a result

by Laffont and Robert [1996], who study the optimal (revenue maximizing) auction when

bidders face (common knowledge) financial constraints. Laffont and Robert show that

the optimal auction in this case takes the form of an all-pay auction. Because of the

equivalence of the games, all of our results also apply to this particular type of all-pay

auction. It must be admitted that this is not a very common model of an all-pay auction

(especially because bidders do not care about how much money they have left in the end),

and our results do not seem to have direct applications to more common all-pay auction

models. Dulleck et al. consider different questions from the ones in this paper, and

consequently their results are complementary to ours. They give an equilibrium for the

case of two agents whose budgets are not necessarily equal (our Example 2) and prove

that this equilibrium is unique. They also show that with n agents, an equilibrium exists.

In addition, they extend their results to allow for multiple prizes (which is reminiscent
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of the Colonel Blotto game as in Roberson [2006])—a setting that we will not study in

this paper.

The remainder of our paper is organized as follows. In Section 2, we present the

basic game and solve three examples. In Section 3, we show that when agents have

equal budgets, there is a unique symmetric equilibrium (which we provide explicitly).

We exhibit some properties of this equilibrium, and we also show that under certain

restrictions on the lotteries, the symmetric equilibrium is the unique equilibrium of the

equal-budget game. In Section 4, we extend our symmetric equilibrium characterization

to the case where agents must surpass a minimum necessary outcome in order to win.

In Section 5, we study an extension of the basic game in which agents must first select

their budgets (which come at a cost). In Section 6, we study an incomplete-information

variant in which agents do not know the other agents’ budgets.

2 The basic game

Let there be n agents, and let agent i ∈ {1, ...,n} be endowed with budget bi, which is

common knowledge. (In Section 6, we extend the model to allow private budgets.) The ba-

sic game consists of two periods. In the first period, each agent (simultaneously) selects

any fair lottery over nonnegative real numbers.3 We describe a lottery by its cumulative

distribution function (CDF) F(x) :R≥0 → [0,1]. That is, for any x, F(x) is the probability

that the realized lottery outcome is less than or equal to x. Agent i’s lottery Fi is fair if

its expectation is equal to bi, that is,
∫∞
0 xdFi(x)= bi. Thus, a pure strategy for an agent

in this game is any fair lottery over nonnegative numbers. Any mixed strategy (consist-

ing of a distribution over lotteries—a compound lottery in the Anscombe and Aumann

[1963] framework) can be reduced to a pure strategy by considering its reduced lottery,

the (simple) lottery that generates the same ultimate distribution over outcomes. Hence,

we do not need to consider mixed strategies. (To eliminate any chance of confusion,

because each distribution over outcomes is a pure strategy, there is no requirement that

agents are indifferent among the outcomes in their supports—in fact, naturally, they will

prefer the higher outcomes.)

In the second period, each lottery’s outcome is randomly selected according to its

corresponding probability distribution. The agent whose outcome is the highest wins.

3If negative lottery outcomes are allowed, then an agent can place an infinitesimal mass on an ex-

tremely negative outcome, and distribute the rest of his mass on large positive outcomes. As a result, no

equilibrium would exist.
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For now, we assume that agents only care about winning. Thus, without loss of general-

ity, we assume that an agent gets utility 1 for winning and 0 for not winning, so that the

game is zero-sum. (In Section 5, we extend the model to allow costly budgets.) Ties are

broken (uniformly) at random. This gives rise to the following ex ante expected utility for

agent i:4 Ui(Fi,F−i) =
∫∞
0

∏

j≠iFj(x)dFi(x). We will be interested in the Nash equilibria

~F∗ = (F∗1 ,F∗2 , ...,F∗n ) of the simultaneous move game.

Example 1. Consider the game between two agents, 1 and 2, with identical budgets b.

Agent 1’s expected utility from playing F1 given that agent 2 selects F2 is
∫∞
0 F2(x)dF1(x).

Suppose that F2 is uniform over [0,2b], so that F2(x)=x/2b for x ∈ [0,2b] and F2(x)=
1 for x > 2b. Then, there is no reason for agent 1 to select a lottery that places positive

probability on outcomes strictly larger than 2b. This is because any probability placed

above 2b can be shifted down to 2b without lowering agent 1’s probability of winning.

Then, to make the lottery fair again, mass elsewhere can be shifted up, which can only

improve agent i’s expected utility. It follows that agent 1’s problem is to select a distri-

bution F1 so as to maximize
1

2b

∫ 2b
0 xdF1(x) subject to the fairness condition (henceforth

budget constraint)
∫ 2b
0 xdF1(x)= b. We note that the integral in the objective must equal

b for any F1 that satisfies the budget constraint. Hence, any such F1 constitutes a best-

response to agent 2’s strategy. Thus, it is an equilibrium for each agent to select the

uniform lottery U[0,2b]. Moreover, because this is a two-agent zero-sum game, lottery

U[0,2b] is also a minimax strategy; it guarantees the agent an expected utility of at least

1/2. This is in contrast to the trivial strategy of just holding on to one’s budget b, which

can lead to an arbitrarily low expected utility: for any ǫ ∈ (0,1), the opponent can put

probability ǫ on 0 and probability 1− ǫ on b/(1− ǫ), so that the opponent wins with

probability 1−ǫ.

Example 2. Now, consider two agents with different budgets, b1 and b2, and without

loss of generality suppose that b1 <b2. Suppose that agent 2’s strategy F2 is the uniform

lottery U[0,2b2]. First, we note that similarly to Example 1, there is no reason for agent

1 to select a lottery that places probability on outcomes strictly larger than 2b2. Thus,

agent 1’s problem is to select F1 to maximize
∫ 2b2
0

x
2b2
dF1(x) subject to

∫ 2b2
0 xdF1(x)=b1.

4Technically, the expression is only well-defined if the distributions are continuous, that is, they have

no mass points. In a slight abuse of notation, we use the same expression for distributions with mass

points (as is common in the literature). It should be noted that (for example) in the two-agent case, if

agent 2 has a mass point at x, so that F2(x) > limǫ→0F2(x− ǫ), then the probability for 1 of winning

given that he obtains outcome x is not F2(x), but rather limǫ→0F2(x−ǫ)+ (F2(x)− limǫ→0F2(x−ǫ))/2.

This is only relevant if agent 1 also has a mass point at x.
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As before, any F1 that satisfies the constraint constitutes a best-response for agent 1.

Now, consider the following compound lottery F1:

1. Choose the lottery that with probability b1/b2 generates outcome b2, and with proba-

bility 1−b1/b2 generates outcome 0.

2. If outcome b2 was generated, then subsequently choose the lottery U[0,2b2].

Formally, F1(x) = 1−b1/b2 + (b1/b2)(x/2b2) over [0,2b]. That is, agent 1’s lottery

has a probability mass at 0. (p is a mass point of a cumulative distribution function

F if limǫ→0F(p+ ǫ)− F(p− ǫ) > 0.) Lottery F1 satisfies the constraint, and is thus a

best response to F2. Now, consider agent 2’s problem given that agent 1 uses F1. With

probability 1−b1/b2, agent 1 gets 0 (and given this, agent 2 wins with probability 1, as

long as agent 2 does not have a mass point at 0), and with probability b1/b2, agent 2

faces the lottery U[0,2b2]. Since we have already determined that U[0,2b2] is a best

response against U[0,2b2], it follows that U[0,2b2] is a best response against F1. Thus,

we have found an equilibrium. Again, because this is a two-agent zero-sum game, the

agents’ strategies are also minimax strategies. Figure 1 shows the equilibrium strategies

graphically.

2

F1

1

Outcome

Cumulative Density

2F

2b

Figure 1: Equilibrium strategies in Example 2

Since agent 1 has a chance of winning only if he won his initial gamble, after which he

has the same budget as agent 2, his probability of winning is b1/2b2. We note that agent

2’s equilibrium strategy does not depend on b1 (as long as b1 ≤ b2). In contrast, agent

1’s equilibrium strategy does depend on b2, because it places an initial, all-or-nothing

gamble to “even the odds” and reach b2. Dulleck et al. [2006] also study Examples 1 and

2, and show that the equilibrium described here is the unique equilibrium in each case.
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Example 3. Now, suppose there are three agents with identical budgets b, and consider

the lottery F such that F(x)= (3b)−
1
2x

1
2 over [0,3b]. Given that agents 2 and 3 employ

strategy F , there is no reason for agent 1 to allocate mass to outcomes larger than 3b.

Thus, agent 1’s problem is to select F1 to maximize
∫ 3b
0 F2(x)dF1(x)= 1

3b

∫ 3b
0 xdF1(x) subject to

∫ 3b
0 xdF1(x)= b. As in Example 1, any lot-

tery that satisfies the constraint is a best response. In particular, playing F is a best

response for agent 1. Hence, (F,F,F) is a symmetric equilibrium. In Section 3.2 we

will illustrate how symmetric equilibrium strategies change as the number of agents in-

creases.

3 Characterizing equilibria of the equal-budget game

In this section, we will study the case where all n agents have the same budget b > 0.

We refer to this setting as the equal-budget game. We will show that this game has a

unique symmetric equilibrium. We also show that under certain conditions on the set of

strategies, there are no other equilibria.

3.1 Properties of best responses

In this subsection, we prove that any best response in our setting (even in games with

unequal budgets) must have certain properties. These properties will be useful in the

remainder of this section, where we analyze the equilibria of the equal-budget game.

Consider agent i. Let F−i(x) be the probability that all agents other than i obtain an

outcome below x: F−i(x) =
∏

j≠iFj(x). The first three lemmas show that if i is best-

responding, then F−i must be linear in the support of Fi. (If this is not the case, then i is

better off changing his distribution, as we will show.) For given x1 < x2 < x3, Lemma 1

considers what happens if agent i shifts probability from (around) x2 to x1 and x3, in an

expectation-preserving way. If agent i is best-responding, this cannot leave them better

off, and this imposes some constraints on F−i.

Lemma 1. Consider x1,x2,x3∈R≥0 such that x1≤x2≤x3. Suppose that F−i is continuous

at x2, and let Fi be a best response for i to F−i. If x2 is in the support5 of Fi, then the

following inequality holds:

(x2−x1)F−i(x3)+ (x3−x2)F−i(x1)≤ (x3−x1)F−i(x2)

5In our use of the word “support”, the support is a closed set, that is, we include all the limit points in

the support.
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The proofs of Lemmas 1 and 2 are in the appendix. Nevertheless, to get some intu-

ition for why Lemma 1 is true, suppose that Fi has mass points at x1,x2,x3. Suppose we

modify Fi by shifting ǫ mass from x2 to x1 and x3. To preserve the expected value of

the distribution, it must be that the mass shifted to x1 is ǫ(x3−x2)/(x3−x1), and the

mass shifted to x3 is ǫ(x2−x1)/(x3−x1). Since we assumed Fi is a best response, this

modification cannot have increased the probability that i wins. Hence, it must be that

F−i(x2)ǫ ≥ F−i(x1)ǫ(x3−x2)/(x3−x1)+F−i(x3)ǫ(x2−x1)/(x3−x1), which is equiva-

lent to the expression in the Lemma. (The formal proof addresses the general case where

Fi does not necessarily have mass points.)

Whereas Lemma 1 considers shifting probability mass from outcome x2 to x1 and x3,

Lemma 2 considers the opposite. Intuitively, if outcomes x1 and x3 are in the support of

Fi, then agent i should not find it profitable to redistribute mass from (around) x1 and

x3 to x2 in an expectation-preserving way.

Lemma 2. Consider x1,x2,x3∈R≥0 such that x1≤x2≤x3. Suppose that F−i is continuous

at x1 and x3, and let Fi be a best response for i to F−i. If x1 and x3 are in the support of

Fi, then the following inequality holds:

(x2−x1)F−i(x3)+ (x3−x2)F−i(x1)≥ (x3−x1)F−i(x2)

Lemma 3 follows immediately from Lemmas 1 and 2, establishing that F−i must be

linear in the support of Fi if i is best-responding.

Lemma 3. Consider x1,x2,x3∈R≥0 such that x1≤x2≤x3. Suppose that F−i is continuous

at these outcomes and let Fi be a best response for i to F−i. If x1, x2, and x3 are in the

support of Fi, then the following equality holds:

(x2−x1)F−i(x3)+ (x3−x2)F−i(x1)= (x3−x1)F−i(x2)

Finally, we prove that the support of any best-response strategy has an upper bound

(unless the agent can win with probability 1).

Lemma 4. Given F−i, suppose that there is no strategy for i such that i wins with prob-

ability 1. Then the support of any best response strategy Fi for i has an upper bound.

Proof: Consider a best response Fi. Because agent i does not win with probability 1,

there must exist some x in the support of Fi, some ǫ > 0, and some δ, such that F−i(x+
δ)− F−i(x) > ǫ (and F−i does not have a mass point at x+δ). Now suppose that Fi
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has no upper bound. Then, there must exist some y in the support of Fi such that

F−i(y−δ) > 1−ǫ/4. For sufficiently small m, there exists some m′ >m/2 such that we

can change Fi an expectation-preserving way, as follows:

• Move mass m from around y to y−δ,

• Move mass m′ from around x to x+δ.

For sufficiently small m, this results in an increase in the probability of winning for i

of at least m(F−i(y −δ)−F−i(y))+ (m/2)(F−i(x+δ)−F−i(x)) > −m(ǫ/4)+ (m/2)ǫ =
mǫ/4> 0, which contradicts the original Fi being a best response.

The intuition behind Lemma 4 is the following. Shifting probability mass that is

placed on sufficiently large outcomes downwards slightly will not decrease the prob-

ability of winning significantly. Doing so will allow the agent to shift mass on lower

outcomes upwards, where this is more fruitful.

3.2 Symmetric equilibria with equal budgets

In the remainder of this section, we restrict attention to the equal-budget game. First, in

this subsection, we characterize the symmetric equilibria of this game. The results we

obtained in Subsection 3.1 assume that F−i is continuous (at certain points). The follow-

ing lemma and corollary establish that in a symmetric equilibrium, this assumption is

trivially satisfied.

Lemma 5. Consider the equal-budget case. Suppose that the strategy profile in which all

agents play lottery F constitutes a (symmetric) equilibrium. Then F has no mass points.

Proof: Suppose on the contrary that F places some positive massm on outcome k. Then

there is a positive probability of a tie at k. Consider agent i. Agent i’s budget constraint

implies that i has some mass on outcomes equal to or larger than b. Let ǫ > 0 satisfy

mǫ<

∫∞

b
xdF(x)

Agent i can shift the mass at k up to outcome k+ǫ. This will create an upward pressure

of mǫ on i’s budget constraint. In order to mitigate this pressure, mass can be shifted

from outcomes equal to or larger than b down to 0. As ǫ approaches 0, the mass that

needs to be shifted down becomes infinitesimally small, so that the cost of shifting down

the mass becomes infinitesimally small as well. However, due to a positive probability

10



of a tie at k, agent i’s gain from redistributing as prescribed is bounded away from 0.

Hence, agent i possesses a profitable deviation, which is contrary to the equilibrium

assumption.

Intuitively, if F had a mass point, then an agent would find it beneficial to deviate by

shifting this mass up infinitesimally (to avoid a tie) and shifting mass down elsewhere.

Since F is a cumulative distribution function with no mass points, F is continuous. F−i

is the product of continuous functions, and is thus continuous as well. We thus have the

following corollary:

Corollary 1. In the equal-budget game, suppose that the strategy profile in which all

agents play F constitutes a symmetric equilibrium. Then F is continuous. Furthermore,

F−i is continuous for all i.

We now show 0 is in the support of any symmetric-equilibrium strategy.

Lemma 6. Consider the equal-budget game. Suppose that the strategy profile in which all

agents play F constitutes a symmetric equilibrium, and that the greatest lower bound of

the support of F is l. Then l= 0.

Proof: Consider agent i. Since F constitutes a symmetric equilibrium, Corollary 1 tells us

that both F and F−i are continuous. Suppose on the contrary that l > 0. Continuity of F−i

implies that for any ǫ > 0, there exists a δ> 0 such that for |x− l|<δ, |F−i(x)−F−i(l)| =
F−i(x) < ǫ (where we make use of the fact that F−i(l)= 0). Let h denote the least upper

bound of the support, which exists by Lemma 4. Note that h > l and F−i(h) = 1 hold

by continuity. We set ǫ = l/h. Consider an upper neighborhood of l, [l,l+ψ], where

0<ψ< δ. Denote the probability mass spread over [l,l+ψ] by ǫl, so that

∫ l+ψ

l
dF(x)= ǫl (1)

Note that ǫl > 0 by continuity of F and the fact that l is in the support. Also, we have

that
∫ l+ψ

l
F−i(x)dF(x) < F−i(l+ψ)ǫl (2)

and

F−i(l+ψ) < ǫ (3)

where (3) holds since ψ<δ. Define ǫh by

∫ l+ψ

l
xdF(x)dx = ǫhh (4)
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In words, ǫh is the probability mass that would need to be placed on outcome h when

mass is removed from [l,l+ψ], so as not to change the expected outcome of the lottery.

Note that

ǫl(l+ψ) > ǫhh> ǫll (5)

holds by definition of ǫh. Thus, ǫh > ǫl(l/h). Lastly, define ǫ0 by

ǫ0 = ǫl−ǫh (6)

We plan on reallocating mass from [l,l+ψ] to outcomes 0 and h. Specifically, we will

shift mass ǫ0 to outcome 0 and ǫh to outcome h. Conditions (4) and (6) ensure that the

magnitude of the mass and the budget constraint will be preserved. By reallocating this

mass, agent i’s expected utility changes by

ǫhF−i(h)−
∫ l+ψ

l
F−i(x)dF(x)

> ǫh−ǫlF−i(l+ψ) (7)

> ǫh−ǫlǫ

= ǫh−ǫl
l

h

> 0

The first two inequalities follow from (1)-(3). The equality follows from the definition of

ǫ, and the last inequality follows from (5). Hence, agent i possesses a profitable deviation,

which is in contradiction to the equilibrium assumption. Thus, l= 0.

To give some intuition, consider the following. If all agents playing F constitutes a

symmetric equilibrium and l > 0, then an agent’s expected utility given that he obtained

an outcome in a close neighborhood of l is near 0. Hence, it is beneficial to reallocate

mass in a neighborhood of l to 0 and to some higher outcomes, contrary to the equilib-

rium assumption. We are now ready to derive the main result of this section.

Theorem 1. The equal-budget game has a unique symmetric equilibrium. It is for all

agents to select the following lottery:

F(x)= (nb)−
1
n−1x

1
n−1 (8)

over support [0,nb].
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Proof: First, note that lottery F is a viable strategy:

∫ nb

0
(nb)−

1
n−1x

1
n−1dx = b

Given that all agents other than i employ strategy F , agent i will not allocate mass to

outcomes larger than nb. Thus, agent i’s problem is to select Fi to maximize

nb
∫

0

∏

j≠i

Fj(x)dFi(x)=
1

nb

nb
∫

0

xdFi(x) (9)

subject to
nb
∫

0

xdFi(x)= b (10)

Note that because of the constraint, the integral in (9) must equal b for any Fi that

satisfies (10). Hence, playing F is a best-response to F−i for agent i, and so all agents

playing F constitutes a symmetric equilibrium.

To show that this is the only symmetric equilibrium, we proceed as follows. Consider

lottery G. Using Lemma 4, let h be the least upper bound of G (since we assume supports

to be closed, h is in the support), and suppose that G constitutes a symmetric equilib-

rium. Note that by definition, G(h)= 1. By Lemmas 5 and 6, 0 is in the support of G, and

G(0) = 0. Consider agent i. By Lemma 3 and Corollary 1, we know that for x1, x2, and

x3 in the support of G, such that x1 ≤ x2 ≤ x3, we have

(x2−x1)G−i(x3)+ (x3−x2)G−i(x1)

= (x3−x1)G−i(x2) (11)

Let x3 =h and x1 = 0. Substituting in (11), we obtain that for any x2 in the support of G

G−i(x2)=
x2

h

By symmetry, we also have

G(x)= (x2

h
)

1
n−1 (12)

To show that G has no gaps, suppose the contrary. Then, there exist l′ and h′, 0 < l′ <

h′ < h, such that l′ and h′ are in the support of G but the interval (l′,h′) is not. Since

(l′,h′) is not in the support, and by continuity of G, G(l′)=G(h′). However, since l′<h′,

this contradicts (12). Hence, G has no gaps. Since G has no gaps and G must satisfy the

budget constraint, we have that
h
∫

0

xdG(x)= b (13)
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From equalities (12) and (13) we can derive h=nb. Substituting for h in (12), we obtain

that F =G.

In the appendix, we provide an alternative method to derive Theorem 1 using results

from the common-value all-pay auction literature and some of the lemmas here. If all

agents use the lottery described in (8), then for every agent i, F−i is the uniform distribu-

tion over [0,nb]. Hence, any lottery over outcomes in [0,nb] is a best response. Figure

2 shows how the symmetric equilibrium strategy changes with the number of agents.

b

1

2b 3b 4b

Cumulative Density

2 F 3 F 4F

Outcome

5b

F 5

Figure 2: Cumulative distribution of symmetric equilibrium strategy for different values

of n, given equal budgets b = 5.

A random variable that is of particular interest is the maximum outcome. This vari-

able is especially interesting when we interpret the game as a model for competitive R&D,

where lotteries correspond to technologies that can be used and outcomes correspond to

qualities of products. In this setting, the maximum outcome corresponds to the quality

of the best product—the one that will dominate the market. The cumulative distribution

of the maximum outcome in equilibrium is (F(x))n, and its expectation is:

E[xmax]=
∫ nb

0
xd(F(x))n = n2b

2n−1
>
nb

2

This expectation is quite high, in the following sense. Suppose that we did not impose

any strategic constraints on Fi. Then, E[xmax] ≤ E[
∑

ixi] =
∑

iE[xi] = nb. That is, the

expected value of the maximum outcome in equilibrium is within a factor 2 of the high-

est expectation that can be obtained without any equilibrium constraint (Incidentally,

without the equilibrium constraint one can in fact come arbitrarily close to achieving

nb, as follows. Let Fi be the distribution that places 1−ǫ mass on 0, and ǫ mass on b/ǫ.
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The probability that at least one agent will receive b/ǫ is 1−(1−ǫ)n, hence the expected

quality of the product is (b/ǫ)(1− (1−ǫ)n), which as ǫ→ 0 converges to nb.) Moreover,

even if one can shift budgets among agents (in addition to prescribing their strategies),

it still holds that E[xmax]≤nb. By contrast, if each agent uses the degenerate strategy

that places all the probability mass on b, we would have E[xmax]= b.

3.3 Uniqueness of the symmetric equilibrium

Is the symmetric equilibrium unique, or do asymmetric equilibria exist? In this subsec-

tion, we show that under mild restrictions on the strategy space, the former is the case.

(We currently do not know whether these restrictions are necessary for this to be true.)

Specifically, we consider the following restrictions: (A1) Supports have no gaps, (A2) Fi

has no mass points for all i ∈ {1, ...,n}. The next lemma shows that if (A1) holds, then

all agents have 0 in their support.

Lemma 7. Suppose that ~F∗= (F∗1 ,F∗2 , ...,F∗n ) is an equilibrium strategy profile of the equal-

budget game and that (A1) is satisfied. Then 0 is in the support of F∗i for all i∈{1,2, ...,n}.

Proof: First, (A1) implies that all supports must have the same greatest lower bound

(henceforth GLB). To see this, note that if agent i has a higher GLB than j, then agent j is

guaranteed to lose the game given an outcome in the interval between his GLB and agent

i’s GLB. Hence, j would prefer to shift some of this mass down to 0, and the remainder

to outcomes that give him a chance of winning, resulting in a strategy with a gap. Thus,

all agents’ supports must have the same GLB. If this GLB were greater than 0, then any

agent would prefer to shift mass from a neighborhood of that GLB down to 0 in order

to reallocate other mass to higher outcomes (the formal argument here is similar to that

made in Lemma 6).

We are now ready to present the main result of this subsection.

Theorem 2. Given (A1) and (A2), the unique equilibrium of the equal-budget game is the

symmetric equilibrium described in Theorem 1.

Proof: Suppose, for the sake of contradiction, that an equilibrium that is not symmetric

exists. In this equilibrium, consider any two agents with different strategies and denote

their chosen lotteries by F and G. Denote the distribution of the maximum outcome of

all other agents by H. Let hF and hG denote the least upper bounds of the supports of
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F and G, respectively. (By Lemma 4, equilibrium strategies must always have an upper

bound.) Assume without loss of generality that hF ≤ hG. Because of (A1) and Lemma 7,

we know that every agent i’s support has the form [0,hi]. Also, Fi is continuous because

Fi is a nondecreasing function and (A2) rules out mass points. Since F−i is the product

of continuous functions, F−i is continuous as well. Finally, (A2) implies that F−i(0) = 0.

Hence, we can apply Lemma 3 to obtain

(x−0)G(hF)H(hF)+ (hF −x)G(0)H(0)= (hF −0)G(x)H(x)

Using the fact that G(0)H(0)= 0, we obtain:

G(x)H(x)= c1x

for some positive c1. Similarly,

F(x)H(x)= c2x

for some positive c2. Combining these conditions, we obtain that for x in [0,hF],

F(x)= c2

c1
G(x) (14)

Now suppose that hF < hG. Because supports have no gaps by (A1), it must be that

G(hF) < 1. Hence, in order for F(hF)= 1 to hold, we need

c2

c1
> 1

It follows that G first-order stochastically dominates F on [0,hG]. This entails that G has

a higher expectation, which contradicts our premise that all agents have equal budgets.

Therefore, hG = hF . It follows that all agents’ lotteries must have identical supports

[0,h]. However, by (14),

F(h)= c2

c1
G(h)

Since F(h) = G(h) = 1, it must be that c1 = c2. This means that F equals G, contrary to

the initial assumption that they were unequal. It follows that any equilibrium must be

symmetric. But Theorem 1 tells us that there is only a single symmetric equilibrium.

4 Adding a minimum outcome requirement

In this section, we add one feature to the equal-budget game from the previous section:

in order to win, agents must end up with an outcome that is at least as high as some
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threshold. In other words, the winning agent must obtain the highest outcome among

all agents, as well as reach or exceed some minimum outcome. If no agent reaches this

threshold, then no agent receives anything. (We note that the game is no longer zero-

sum.) Let us denote this threshold by r , where r > 0. For example, in a stock trading

competition, there may a specification that if a contestant does not outperform a risk-

free asset, then the contestant cannot win. Under the R&D interpretation, r represents

the existing product quality in the market (a "reserve" quality), a quality that research

departments must improve upon to generate any business value. In an innovation tour-

nament or in a patent race, r represents the breadth of the current patent on some

product. To be able to register a new patent, innovators must reach a level of innovation

that surpasses the breadth of the current patent. (For technical simplicity, we assume

that an innovation of quality exactly r can be registered.)

We wish to solve for the symmetric equilibrium of this modified equal-budget game.

We will make use of the following observations. First, it is never in agents’ interest to

select lotteries that place mass on outcomes in (0,r ). This is because outcomes in this

interval can never lead to winning, so an agent would always be better off reallocating

mass from this interval to 0 and to outcomes larger than r . Second, Lemmas 3, 4, and

6 still hold in this context. Moreover, Lemma 3 can be extended to hold at 0 even when

F−i is discontinuous there, because outcomes close to 0 can never lead to winning when

r > 0. (We call this the "extended" Lemma 3.) Third, Lemma 5 also holds, but only over

outcomes that are at or above r . Agents may have a mass point at 0.

4.1 The two-agent equal-budget game with a minimum necessary out-

come

Let us begin by solving for the symmetric equilibrium of the two-agent equal-budget

game. By the above discussion, for some h ≥ r , the support of the symmetric strategy

will be contained in {0}∪[r ,h]. (Let h be the smallest number for which this holds.) The

next lemma shows that r must be in the support.

Lemma 8. Consider the equal-budget game with a minimum necessary outcome of r .

Suppose that the strategy profile in which all agents play F constitutes a symmetric equi-

librium. Let S denote the support of F , and let l be the greatest lower bound of S−{0}.
Then l= r .

Proof: Let l denote the greatest lower bound of the support of F excluding 0. Then l≥ r .

Consider agent i. Lemma 5 and the fact that F constitutes a symmetric equilibrium tell
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us that both F and F−i are continuous over outcomes greater or equal to r . Suppose on

the contrary that l > r . Continuity of F−i over outcomes greater or equal to r implies

that for any ǫ > 0, there exists a δ > 0 such that for |x− l| < δ, |F−i(x)− F−i(l)| < ǫ.
Furthermore, F−i(r) = F−i(l) =mn−1, where m is the mass F places at 0. Let h denote

the least upper bound of the support, which exists by Lemma 4. Note that h > l and

F−i(h)= 1 hold by continuity. We set

ǫ= l−r
h−r (1−m

n−1)

and

δ=min{δ(ǫ),h− l}

Consider an upper neighborhood of l, [l,l+ψ], where 0<ψ< δ. Denote the probability

mass spread over [l,l+ψ] by ǫl, so that

ǫl =
∫ l+ψ

l
dF(x) (15)

ǫl > 0 by continuity of F in this region and the fact that l is in the support. Also, we have

that
∫ l+ψ

l
F−i(x)dF(x) < F−i(l+ψ)ǫl (16)

and

F−i(l+ψ) < ǫ+mn−1 (17)

where (17) holds since ψ< δ. Since r < l < l+ψ<h, there exist strictly positive ǫr and

ǫh such that

ǫrr +ǫhh=
∫ l+ψ

l
xdF(x)dx

and

ǫr +ǫh =
∫ l+ψ

l
dF(x)dx

In words, there exists a mean- and mass-preserving spread from [l,l+ψ] to outcomes r

and h. By definition,

ǫl(l+ψ) > ǫhh+ǫrr > ǫll

Substituting for ǫr = ǫl−ǫh, we obtain

ǫh >
l−r
h−r ǫl (18)

By reallocating mass from [l,l+ψ] to outcomes r and h as described above, agent i’s

expected utility changes by

ǫhF−i(h)+ǫrF−i(r)−
∫ l+ψ

l
F−i(x)dF(x)
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> ǫh+ǫrmn−1−ǫlF−i(l+ψ)

> ǫh+ǫrmn−1−ǫl(ǫ+mn−1)

= ǫh(1−mn−1)−ǫlǫ

= (1−mn−1)(ǫh−ǫl
l−r
h−r )

> 0

The first two inequalities follow from continuity of F−i and (16). The next two equali-

ties follow from the definitions of ǫr , ǫh, and ǫ. The last inequality follows directly from

(18). Hence, agent i possesses a profitable deviation, which is in contradiction to the

equilibrium assumption. Thus, l= r .

Intuitively, the reason for this result is as follows. Suppose l > r . Then, outcomes in

a close neighborhood of l have a significant chance of leading an agent to winning only if

all other agents obtain outcome 0. Because of this, outcome r provides almost the same

probability of winning as these outcomes. Thus, shifting mass from a neighborhood of l

to r does not have a large impact on an agent’s probability of winning, while it allows the

agent to shift some mass to higher outcomes. For sufficiently small neighborhoods of l,

doing so increases the agent’s probability of winning. Therefore, r must be the greatest

lower bound of S−{0}.
Lemmas 3, 5, and 8 imply that any symmetric equilibrium strategy has the form

F(x)= a+cx over [r ,h], where a and c are positive constants. Furthermore, this strat-

egy may place a massm> 0 at 0 (so that F(r)=m). The following claim establishes that

for x ∈ [r ,h], F(x) must lie on a line originating from the origin.

Claim 1. In the two-agent equal-budget game with a minimum necessary outcome of r ,

there is some c so that for x ∈ [r ,h], F(x)= cx. (That is, a= 0.)

Proof: Suppose on the contrary that a > 0. Let x1 = r , x2 = x ∈ (r ,h), and x3 = h.

Applying the result of of Lemma 3 and substituting for F gives

x(1−m)+hm= ha+hcx+r −ra−rcx (19)

Now set x1 = 0, keeping x2 = x ∈ (r ,h), x3 = h. Applying the result of the extended

Lemma 3 and substituting for F gives

x(1−m)+hm= ha+hcx (20)

19



Combining equations (19) and (20), we obtain c = 0, implying that the symmetric equilib-

rium strategy places a mass of 1 at 0. This is in contradiction to agents having positive

budgets.

Since F(r) =m, it holds that m = cr . In addition, since F(h) = 1, we have that h =
c−1. Finally, the budget constraint requires

∫ c−1

r xdF(x) = b. Substituting for F in the

constraint and rearranging, we obtain c(b,r) =
√
b2+r2−b
r2 . Thus, the unique candidate

symmetric equilibrium strategy is for each agent to select the lottery specified by

F(x)=































√
b2+r2−b
r if 0≤ x < r

√
b2+r2−b
r2 x if r ≤ x ≤ r2√

b2+r2−b

1 if x > r2√
b2+r2−b

(21)

It remains to verify that (21) indeed constitutes an equilibrium strategy. To check

this, suppose agent 1 employs strategy F . Given this, agent 2 would not find it opti-

mal to place mass on outcomes higher than c(b,r)−1. Thus, agent 2’s problem is to

choose lottery F2 to maximize
∫ c(b,r)−1

r F(x)dF2(x)= c(b,r)
∫ c(b,r)−1

r xdF2(x) subject to
∫ c(b,r)−1

0 xdF2(x) = b. For any F2 that satisfies the constraint and places no mass on

(0,r ),
∫ c(b,r)−1

r xdF2(x) equals b, so the objective becomes c(b,r) ·b. Hence, any such

F2 is a best response, including F . Figure 3 shows how the symmetric equilibrium strat-

egy varies as r increases.

Outcome

1

Cumulative Density

r=0 r=20r=10r=5

0.5

0.75

0.25

Figure 3: Cumulative distribution of symmetric equilibrium strategies for different val-

ues of r , given equal budgets b = 5.

We can observe the following facts about the equilibrium strategies from (21) and

Figure 3. First, as r approaches 0, c−1(b,r) approaches 2b, so that we converge to the
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equilibrium of Example 1. Second, c(b,r) is decreasing in r , so that, as r grows larger,

the cumulative distribution of the lottery chosen over outcomes larger than r becomes

flatter. Meanwhile, the mass m at 0 approaches 1. Thus, the equilibrium strategy be-

comes ever riskier as r increases.

4.2 The n-agent equal-budget game with a minimum necessary out-

come

We now extend the equilibrium result to n agents.

Theorem 3. In the n-agent equal-budget game with a minimum necessary outcome of r ,

the unique symmetric equilibrium strategy is for each agent to play F described by

F(x)=



















m(b,r) if x < r

(c(b,r)x)
1
n−1 if x ∈ [r ,(c(b,r))−1]

1 if x > (c(b,r))−1

where m(b,r) = (c(b,r)r)
1
n−1 and c(b,r) is implicity and uniquely defined by

1
n(c

−1−
c

1
n−1 r

n
n−1 )= b.

Proof: As in the two-agent game, the symmetric equilibrium strategy F will have support

in {0}∪ [r ,h], where h > r is some least upper-bound, which exists by Lemma 6. The

support is contained in this set because outcomes in (0,r ) can never lead to winning, and

an agent is better off redistributing mass over this interval to 0 and outcomes greater

than r . Now, for a given i, Lemmas 3, 8, and 5 imply that that over [r ,h], F−i = Fn−1

takes the form Fn−1(x)=a+cx, where a and c are positive constants. Letm≥ 0 denote

the mass F places at 0. Then by Lemma 5, Fn−1(0)= F−i(r)=mn−1. The following claim

establishes that Fn−1(x) must lie on a line originating from the origin.

Claim 2. In the two-agent equal-budget game with minimum necessary outcome, the sym-

metric equilibrium strategy F , with Fn−1(x)= a+cx over [r ,h], has intercept 0. Hence,

a= 0.

The proof follows a similar argument to the one made in the proof of Claim 1. It follows

that F(x)= (cx)
1
n−1 over [r ,h]. From F(h)= 1 we obtain h= c−1. Also, from Fn−1(r)=

mn−1 we obtain

m= (cr)
1
n−1 (22)

Finally, the budget constraint requires

∫ c−1

r
xdF(x)= b (23)
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Substituting for F in (23) we obtain

1

n
(c−1−c

1
n−1 r

n
n−1 )= b (24)

Equality (24) implicitly and uniquely defines6 c(b,r), whereas m(b,r) = (c(b,r)r)
1
n−1

from (22). The candidate symmetric equilibrium strategy is for each agent to select the

lottery specified by

F(x)=















































m(b,r) if x < r

(c(b,r)x)
1
n−1 if x ∈ [r ,(c(b,r))−1]

1 if x > (c(b,r))−1

(25)

By construction, the specification in (25) provides the unique candidate symmetric equi-

librium strategy. It remains to verify that (25) indeed constitutes an equilibrium strategy.

To check this, suppose all agents other than i employ strategy F . Given this, agent i

would not find it optimal to place mass on outcomes higher than c(b,r)−1. Then, agent

i’s problem is to select lottery Fi to maximize

∫ c(b,r)−1

r
F−i(x)dFi(x)= c(b,r)

∫ c(b,r)−1

r
xdFi(x)

subject to
∫ c(b,r)−1

r
xdFi(x)= b

Playing F is a best-response to F−i for agent i and thus F constitutes a unique symmetric

equilibrium strategy.

As in the two-agent game, it can be verified that c(b,r) is increasing in r . Also, as r

approaches 0, c(b,r) approaches 1/nb, so that F becomes the unique symmetric equi-

librium strategy described in Theorem 1. Figure 4 shows how the symmetric equilibrium

strategy changes as n increases.

Figure 4 resembles Figure 2 (where there is no minimum outcome requirement). One

additional effect that the minimum outcome requirement introduces is that as n gets

larger, the mass that the equilibrium strategy places on 0 increases—in fact, this mass

converges to 1 as n→∞.

6c(b,r) exists and is unique because the left-hand side of (24) is continuously decreasing in c, positive

when c is small, and negative when c is large.
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Figure 4: Cumulative distribution of symmetric equilibrium strategies for different val-

ues of n, given equal budgets b = 5 and r = 10.

5 Costly budgets

In this section, we study a variant in which agents can choose their budgets at the begin-

ning of the game, and each budget comes at a cost. After the budgets have been chosen,

the game proceeds as before. This variant is especially natural in many real-world ap-

plications, where agents must make some initial investment. For instance, a game can

model an R&D competition between two risk-neutral firms: to improve their product,

each firm can choose to pursue various technologies, each of which bears a different

cost. The chosen technology stochastically determines the final product quality, and the

firm with the highest realized product quality wins the entire market. Specifically, the

game proceeds as follows. In the first period, agents choose their budgets bi; in the sec-

ond period, they choose their lotteries Fi (whose expectation must equal bi); and in the

third period, outcomes are drawn from the lotteries and the winner is determined. An

agent’s utility is −bi if he does not win, and D−bi if he does win, where D is a constant

(e.g. , the benefit from winning the market). Agents maximize their expected utilities.

We only consider the 2-agent case, and we do not consider the possibility of a minimum

necessary outcome.

To solve this game, we apply backward induction. Suppose agent i has chosen budget

bi in the first period. To solve the subgame starting at the second period, we make use

of the equilibrium derived in Example 2 (which, by the work of Dulleck et al. [2006],

is unique). Assume without loss of generality that b1 ≤ b2. (Even though the game is
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symmetric at the beginning, the agents may choose different budgets in the first period.)

From Example 2, we know that it is an equilibrium for agent 1 to select lottery F1(x) =
1−b1/b2+ (b1/b2)(x/2b2) and for agent 2 to select lottery F2(x) = x/2b2, both with

supports [0,2b2]. (In fact, these are minimax strategies.) Given this, we can analyze the

first period. Since the game is symmetric between agents at this point, it will suffice to

focus on agent 1. Given that agent 2 has decided on budget b2 > 0, agent 1’s expected

utility as a function of b1 is given by

E[u1(b1,b2)]=







b1

2b2
D−b1 if b1 ≤ b2

(1− b2

2b1
)D−b1 if b1 > b2

When b1 ≤ b2, agent 1’s expected utility is linear in b1. Hence, he will choose to set

b1 ≥ b2 whenever D > 2b2. Furthermore, by differentiating the expected utility function

when b1 > b2, it can be shown that b1 =
√

b2D/2 maximizes expected utility, given that

D > 2b2. (We note that in this case, indeed, b1 =
√

b2D/2> b2.) Moreover, he will choose

to set b1 = 0 whenever D < 2b2, because in this case, any other budget will give him

a negative expected utility. Finally, when D = 2b2, any b1 ∈ [0,D/2] is optimal. To

summarize, agent 1’s (set-valued) best-response function is

b1(b2)=























{0} if b2 >
D
2

[0, D2 ] if b2 = D
2

{
√

b2D
2 } if 0< b2 <

D
2

We note that if b2 = 0, agent 1 would want to choose an infinitesimally small budget

in order to win, so the best response is not well-defined in this case. Figure 5 shows

the agents’ best-response curves. (To eliminate any chance of confusion, we note that

b1
D/2

D/2

b2(b1)

b1(b2)

b2

Figure 5: Best-response curves in budget selection stage

the variables on the axes of this graph are budgets, not probabilities; this graph is
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not intended to show mixed-strategy equilibria.) The best-response curves intersect at

(D/2,D/2). The unique subgame perfect pure-strategy equilibrium of this game is thus

for both agents to choose a budget of D/2 in the first period, and select the uniform

lottery over [0,D] in the second. Each agent’s expected utility is 0 in equilibrium. This

is reminiscent of the equilibrium of a common-value sealed-bid all-pay auction, where

both agents choose their bids uniformly at random from [0,D] (where D is the common

value), leading to an expected utility of 0 for each agent. We emphasize that while the

equilibria are similar, the games are quite different.

6 Private budgets

In this section, we consider an incomplete-information setting, where agents do not know

the other agents’ budgets. We consider the n-agent case, but do not consider the pos-

sibility of a minimum necessary outcome or costly budgets. Suppose that for every

j ∈ {1, ...,n}, agent j’s (nonnegative) budget is selected by Nature according to some

commonly known prior, described by the CDF Wj(b). Thus, this is a Bayesian game, and

we will use Bayes-Nash equilibrium as our solution concept. Suppose that agent j ≠ i

chooses lottery G
j
b when endowed with budget b, and consider agent i’s problem. Given

bi, agent i selects lottery F to maximize

∫∞

0
...

∫∞

0

∏

j≠i

G
j
bj
(x)dF(x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)

subject to
∫∞
0 xdF(x) = bi. Since agent i’s expected utility is bounded by 1, Fubini’s

Theorem allows us to change the order of integration in the objective function, which is

hence equivalent to

∫∞

0

[

∫∞

0
...

∫∞

0

∏

j≠i

G
j
bj
(x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)
]

dF(x)

(26)

Here, the bracketed expression in (26) gives the ex ante cumulative distribution over the

maximum outcome of all agents other than i, evaluated at x. Hence, the bracketed term

has a role that is analogous to the role of F−i(x) earlier in the paper: whereas before

the uncertainty derived only from the other agents’ strategies, now it derives both from

the other agents’ strategies and from Nature’s choice of their budgets. In order to use

our previous techniques for deriving equilibria, we would need this expression to be
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proportional to x. This is illustrated by the following two examples of prior distributions

and corresponding strategies that constitute symmetric equilibria:

1. Consider the two-agent game with identical prior W =U[0,h] for some h> 0. One

equilibrium is for both agents to acquire the degenerate lottery at b when endowed with

a budget b. (This is because given these strategies, the distribution over the other agent’s

outcome is uniform over [0,h], hence any strategy that uses only outcomes in [0,h] is a

best response.)

2. For some b > 0, let bL = 1
2b and bH = 3

2b. In a two-agent game with an identical

prior P(bi=bL)= 1
2 and P(bi=bH)= 1

2 , i∈{1,2}, the strategy that chooses U[0,b] when

bi=bL and U[b,2b] when bi =bH , constitutes a symmetric equilibrium. (This is because

given these strategies, the distribution over the other agent’s outcome is uniform over

[0,2b], hence any strategy that uses only outcomes in [0,2b] is a best response.)

More generally, a strategy profile ~G∗ = (G∗1, ...,G∗n), for which for every i∈ {1, ...,n}
the bracketed term in (26) is proportional to x for all x that are used in i’s supports,

constitutes an equilibrium. This is because, as in the complete-information case, the

objective function reduces to the constraint for every agent. Hence, any strategy that

satisfies the constraint is a best response, including that suggested by ~G∗. For example,

if the prior over all agents’ budgets is W , with expectation k, then a strategy G that

satisfies
∫ nk

0
Gb(x)dW(b)= (nk)−

1
n−1x

1
n−1 (27)

for all x ∈ [0,nk], constitutes a symmetric equilibrium. In order to obtain such a strat-

egy, we need to be able to transform the prior distribution W into another distribution.

Specifically, we need strategy G to map budgets in the support of the prior W to fair lot-

teries, so that the ensuing (expected) distribution over outcomes is as in (27). Let us say

that prior CDF W is transformable into another CDF J if there exists a strategy G such

that the ensuing distribution is J. The following theorem provides necessary conditions

for a prior W to be transformable into a CDF J.

Theorem 4. Consider a CDF W and a CDF J, with supports contained in R≥0. Suppose

that W is transformable into J. Then for any b in the support of W , the following two

inequalities must hold:7
∫ b
0 xdW(x)≥

∫ J−1(W(b))
0 xdJ(x), and

∫∞
b xdW(x)≤

7If J has mass points, then J−1(W(b)) is not necessarily defined. In this case,
∫ J−1(W(b))
0 xdJ(x) should

be interpreted to integrate x only over the lowestW(b)mass of J. Letting y be the point such that J(y)>

W(b) and J(y−ǫ) <W(b) for all ǫ > 0, a more precise expression would be
∫y
0 xdJ(x)−(J(y)−W(b))y .

The interpretation of
∫∞
J−1(W(b))xdJ(x) is similar.
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∫∞
J−1(W(b))xdJ(x).

Proof: Consider any b in the support of W and the probability W(b) of a budget at

or below it. The conditional expectation of this probability mass (i.e. the conditional

expectation of W given that the resulting budget is at or below b) is

(W(b))−1

∫ b

0
xdW(x)

Given a G that transforms W into J, all of the probability mass that W places on budgets

at or below b must correspond (i.e. get mapped by G) to probability mass in J. Moreover,

by the fairness constraint, that mass in J must have the same conditional expectation.

But a subset of the mass of J with a total probability of W(b) must have a conditional

expectation of at least

(W(b))−1

∫ J−1(W(b))

0
xdJ(x)

(because the mass in J with the lowest conditional expectation is the mass that is placed

on the smallest outcomes in the support). It follows that

∫ b

0
xdW(x)≥

∫ J−1(W(b))

0
xdJ(x)

Similarly, consider the probability mass that W places on outcomes greater than b (a

total mass of 1−W(b)). The conditional expectation of this mass is equal to

(1−W(b))−1

∫∞

b
xdW(x)

(Note that any mass at b should not be included in this integral.) Again, the mass must

correspond to mass in J, with the same conditional expectation. But a subset of the mass

of J with a total probability of 1−W(b) must have a conditional expectation of at most

(1−W(b))−1

∫∞

J−1(W(b))
xdJ(x)

(because the mass in J with the highest conditional expectation is the mass that is placed

on the largest outcomes in the support). It follows that

∫∞

b
xdW(x)≤

∫∞

J−1(W(b))
xdJ(x)

Specifically, consider the case where the prior over each agent’s budget is W , with

expectation k. In order for there to exist a strategy G that satisfies
∫nk
0 Gb(x)dW(b) =
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(nk)−
1
n−1x

1
n−1 for all x ∈ [0,nk] (and hence constitutes a symmetric equilibrium), Theo-

rem 4 tells us that for any budget b in the support of W , it is necessary that EW [x|0 ≤
x ≤ b]≥ k(W(b))n−1 and EW [x|x > b]≤ k

∑n−1
j=0 (W(b))

j . It is an open question whether

these conditions are also sufficient for the strategy to be transformable in the desired

way. However, the following theorem does provide a (more limited) sufficient condition:

Theorem 5. Consider a 2-agent private-budget game in which both agents’ budgets are

distributed according to a commonly known CDFW with expectation k. If the support ofW

is a subset of [k/2,3k/2], then W is transformable into U[0,2k] (and hence a symmetric

equilibrium exists).

Proof: For any budget b in the support of W , define p(b) by

k

2
p(b)+ 3k

2
(1−p(b))= b

So that

p(b)= 3k−2b

2k

Note that p(b)∈ [0,1] because b ∈ [k/2,3k/2]. Now, consider the following compound

(fair) lottery Fb:

1. Choose the lottery that with probability p(b) generates outcome k/2, and with

probability 1−p(b) generates outcome 3k/2.

2. If outcome k/2 was generated, then subsequently choose the lottery U[0,k]. If

outcome 3k/2 was generated, then subsequently choose the lottery U[k,2k].

Suppose agent i plays Fb given budget b. Since k is the expectation of W and strategy

Fb involves only fair lotteries, agent imust play U[0,k] with probability 1/2 and U[k,2k]

with probability 1/2 (so that the overall expected budget outcome equals k). Therefore,

the ex ante distribution over agent i’s outcome is U[0,2k].

Intuitively, if W ’s support is a subset of [k/2,3k/2], then given any budget, an agent

can choose a fair lottery over outcomes k/2 and 3k/2. Since W has expectation k, choos-

ing such lotteries results in a mass of 1/2 at each of these outcomes. The agent can

subsequently select lottery U[0,k] given outcome k/2, and U[k,2k] given outcome 3k/2.

The resulting distribution over outcomes is U[0,2k].
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7 Conclusions

We studied the following game: each agent i chooses a lottery over nonnegative numbers

whose expectation is equal to his budget bi. The agent with the highest realized outcome

wins (and agents only care about winning). We began by solving a few examples. Then, we

studied the case where each agent has the same budget. We showed that there is a unique

symmetric equilibrium, in which each agent chooses a lottery that randomizes over a

continuum of monetary outcomes. The expectation of the highest realized outcome in

this equilibrium is within a factor 2 of what a social planner could obtain if the goal were

to maximize the expectation of the highest realized outcome. We also showed that under

some restrictions on the lotteries, the symmetric equilibrium is the unique equilibrium

of the equal-budget game.

We proceeded to study variants of the basic game. First, we extended our symmetric

equilibrium characterization to the case where agents must surpass a minimum neces-

sary outcome in order to win. Next, we studied a game in which agents first choose

their budgets, which come at a cost. We found the unique pure-strategy subgame per-

fect equilibrium of this game, which gives the agents an expected utility of 0. Then,

we introduced an incomplete-information model in which agents do not know the other

agents’ budgets. We showed that our complete-information techniques can be applied

to this setting if it is possible to transform the prior over budgets into the appropriate

distribution over outcomes. We gave a necessary condition as well as a (more restrictive)

sufficient condition for this to be possible.

Future research can take a number of specific technical directions. The most obvi-

ous directions are to extend our results to the setting of unequal budgets, as well as to

investigate whether the symmetric equilibrium is the unique equilibrium of the equal-

budget game (without any restrictions on the lotteries). Another important direction is

to consider lottery spaces that are restricted (for example, allowing only lotteries over

a discretized space), or extended with unfair lotteries. Even more generally, we can al-

low agents to choose lotteries that are correlated with each other. Yet another direction

is to consider versions of these games in which agents may observe other agents’ bud-

gets over time. In the setting where there is a minimum necessary outcome, it is also

possible to consider the case where, if no agent reaches the minimum outcome, a fixed

agent wins. (This agent would represent the incumbent who owns the product that is the

current market leader, or who holds the current patent.) We can also consider different

utility functions: for example, the agent may derive some utility from coming in second
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place. Finally, in the private-budgets setting, we left as an open question whether our

necessary condition is also sufficient. There are many more open-ended modeling ques-

tions for future research. Specifically, it would be desirable to model other important

aspects of applications such as R&D and patent races. Examples include increasing dom-

inance, barriers to entry, optimal patent regulation, and mergers of R&D departments or

joint research. (In the introduction, we discussed related research that considers these

phenomena in the context of other models.)
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appendix

Proof of Lemma 1:

If x1 = x2 or x2 = x3, the lemma is trivial, so suppose without loss of generality that

x1 <x2 <x3. The proof proceeds by contradiction. Suppose on the contrary that

(x2−x1)F−i(x3)+ (x3−x2)F−i(x1) > (x3−x1)F−i(x2) (A-1)

Then
(x2−x1)

(x3−x1)
F−i(x3)+

(x3−x2)

(x3−x1)
F−i(x1) > F−i(x2) (A-2)

For any ǫ2 > 0, we have that

ǫ2
(x2−x1)

(x3−x1)
F−i(x3)+ǫ2

(x3−x2)

(x3−x1)
F−i(x1) > ǫ2F−i(x2) (A-3)

Define ǫ1 by

ǫ1 = ǫ2
(x3−x2)

(x3−x1)

Similarly, define ǫ3 by

ǫ3 = ǫ2
(x2−x1)

(x3−x1)

By definition, ǫ2 = ǫ1+ǫ3 and ǫ1x1+ǫ3x3 = ǫ2x2. Inequality (A-3) reduces to

ǫ1F−i(x1)+ǫ3F−i(x3) > ǫ2F−i(x2) (A-4)

There are now two possible scenarios:

(i) If Fi has positive mass at outcome x2, that is, there is a positive probability that i will

get exactly x2, then the contradiction follows immediately: setting ǫ2 to equal this mass,

inequality (A-4) implies that agent i would be better off redistributing ǫ2 to outcomes x1

and x3. The definitions of ǫ1 and ǫ3 ensure that i would be shifting mass in a way that

satisfies his budget constraint.

(ii) If Fi has no mass at outcome x2, we can still show that agent i has a profitable

deviation by gathering up mass in a neighborhood8 of x2 for which inequality (A-1) holds,

and redistributing this mass to outcomes x1 and x3 in a mean-preserving way. We now

show this formally. Define θ by

θ = (x2−x1)

(x3−x1)
F−i(x3)+

(x3−x2)

(x3−x1)
F−i(x1)−F−i(x2)

8By neighborhood of x2, we refer to a closed interval that contains x2 in its interior.
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θ > 0 by inequality (A-2). Continuity of F−i implies that for any ǫ > 0, there exists a ν > 0,

such that for |x−x2|< ν , |F−i(x)−F−i(x2)|< ǫ. Let

ǫ= θ
2

δ=min{1

2
ν,ǫ(x3−x1)} (A-5)

and

ψ= Fi(x2+δ)−Fi(x2−δ) (A-6)

Since x2 is in the support of Fi and δ> 0, Fi has positive mass over [x2−δ,x2+δ]. Thus,

ψ> 0. Define φ by

ψ(
(x3−x2)

(x3−x1)
+φ)x1+ψ(

(x2−x1)

(x3−x1)
−φ)x3 =

∫ x2+δ

x2−δ
xdFi(x) (A-7)

φ is the adjustment required in the coefficients of x1 and x3 (which correspond to ǫ1

and ǫ3) in order to ensure that the budget constraint is preserved after redistributing

mass from [x2−δ,x2+δ] to x1 and x3 (φ could be negative). By definition,

(
(x3−x2)

(x3−x1)
+φ)x1+ (

(x2−x1)

(x3−x1)
−φ)x3 ≥ x2−δ (A-8)

Furthermore,
x3−x2

x3−x1
x1+

x2−x1

x3−x1
x3 = x2 (A-9)

Combining (A-5)-(A-9) and using the definition of δ, we obtain

φ≤ δ

x3−x1
≤ ǫ (A-10)

Utilizing the above construction, we have that

ψ(
(x3−x2)

(x3−x1)
+φ)F−i(x1)+ψ(

(x2−x1)

(x3−x1)
−φ)F−i(x3)

=ψ(x3−x2)

(x3−x1)
F−i(x1)+ψ

(x2−x1)

(x3−x1)
F−i(x3)

−ψφ(F−i(x3)−F−i(x1))

≥ψF−i(x2+δ)

>

∫ x2+δ

x2−δ
F−i(x)dFi(x)

(A-11)

The first inequality follows from (A-10), the construction of δ and ǫ, and by continuity of

F−i at x2. In addition, we make use of the facts that F−i(x3)−F−i(x1)≤ 1 and ψ≤ 1. The

last inequality holds by the definition of ψ. Lastly, the budget constraint is preserved by

(A-7). Thus, the inequalities in (A-11) imply that agent i is better off redistributing mass

from [x2−δ,x2+δ] to outcomes x1 and x3, which contradicts Fi being i’s best-response

to F−i. The lemma follows.
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Proof of Lemma 2:

If x1 = x2 or x2 = x3, the lemma is trivial, so suppose without loss of generality that

x1 <x2 <x3. The proof proceeds by contradiction. Suppose on the contrary that

(x2−x1)F−i(x3)+ (x3−x2)F−i(x1) < (x3−x1)F−i(x2)

Then
(x2−x1)

(x3−x1)
F−i(x3)+

(x3−x2)

(x3−x1)
F−i(x1) < F−i(x2) (A-12)

For any ǫ2 > 0, we have that

ǫ2
(x2−x1)

(x3−x1)
F−i(x3)+ǫ2

(x3−x2)

(x3−x1)
F−i(x1) < ǫ2F−i(x2) (A-13)

Define ǫ1 by

ǫ1 = ǫ2
(x3−x2)

(x3−x1)
(A-14)

Similarly, define ǫ3 by

ǫ3 = ǫ2
(x2−x1)

(x3−x1)
(A-15)

By definition, ǫ2 = ǫ1+ǫ3 and ǫ1x1+ǫ3x3 = ǫ2x2. Inequality (A-13) reduces to

ǫ1F−i(x1)+ǫ3F−i(x3) < ǫ2F−i(x2) (A-16)

There are now four possible scenarios:

(i) If Fi has positive mass at outcomes x1 and x3, then the contradiction follows imme-

diately, as agent i would be better off shifting some mass to outcome x2 by (A-16). The

construction of ǫ1, ǫ2, and ǫ3 ensures that mass can be redistributed in a way that pre-

serves agent i’s budget constraint (e.g. if Fi has mass m1 at x1 and m3 at x3, then let

ǫ2 =min{x3−x1
x3−x2

m1,
x3−x1
x2−x1m3}. Define ǫ1 and ǫ3 as in (A-14) and (A-15). This ensures

that ǫ1 ≤m1 and ǫ3 ≤m3). The contradiction follows.

(ii) If Fi has no mass at both outcomes x1 and x3, we can still show that agent i has a

profitable deviation by gathering up mass in neighborhoods of x1 and x3 and reallocating

this mass to outcome x2. We now show this formally. Since x1 and x3 are in the support

of Fi, Fi has mass over neighborhoods of these outcomes. Define θ by

θ = F−i(x2)−
(x2−x1)

(x3−x1)
F−i(x3)−

(x3−x2)

(x3−x1)
F−i(x1)

θ > 0 by (A-12). Continuity of F−i implies that for any ǫ > 0, there exist δ1 > 0 and

δ3 > 0, such that for |x−x1|<δ1 and |y−x3|<δ3, |F−i(x)−F−i(x1)|< ǫ and |F−i(y)−
F−i(x3)|< ǫ. Let

ǫ= θ
3
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and

δ=min{1

2
δ1,

1

2
δ3,x3−x2,x2−x1,ǫ(x3−x1)}

Define M(Fi,x,ǫ) to be the distribution of outcomes in a neighborhood of x, derived

from F , that has total mass ǫ. (Technically, M(Fi,x,ǫ) would need to be normalized

by a factor of 1/ǫ in order to be a CDF.) By definition, the expectation of M(Fi,x,ǫ)

is continuous in ǫ. Denote this expectation by E[M(Fi,x,ǫ)] (This expectation is the

upward pressure placed on the budget constraint by M(Fi,x,ǫ)). Define m1(t) by

m1(t)= Fi(x1+
δ

2t
)−Fi(x1−

δ

2t
)

In words, m1 denotes mass taken in the δ/2t neighborhood of x1. Also, define ψ(t) by

ψ(t)=
∫ x1+ δ

2t

x1− δ

2t

xdFi(x)

ψ(t) denotes the upward pressure on the budget constraint added by probability mass

distributed over outcomes in this neighborhood. Since x1<x2<x3, continuity of E[M(Fi,x,ǫ)]

implies that for any t ≥ 0, there exists some mass m3(t) such that

ψ(t)+E[M(Fi,x3,m3(t))]= (m1(t)+m3(t))x2 (A-17)

We can now take t sufficiently high, so that M(Fi,x3,m3(t)) is distributed only over

outcomes in [x3−δ,x3+δ]. Denote such t by T . We know T exists because x3 >x2 and

because Fi has no mass at x1, so that for sufficiently high t, m1(t) becomes arbitrarily

small. From now on, we will refer to mj(T) by mj , j ∈ {1,3}, to ψ(T) by ψ, and to

M(Fi,x3,m3(T)) by M . By construction, we have that

|ψ/m1−x1|< δ (A-18)

and

|E[M]/m3−x3|< δ (A-19)

In order to perturb masses m1 and m3 so as to fit the setting of (A-16), define φ by

(m1+φ)x1+ (m3−φ)x3 = (m1+m3)x2 (A-20)

Note that φ can be negative. By (A-17)-(A-20), we have that

ψ−m1δ+φx1+E[M]−m3δ−φx3 ≤ (m1+m3)x2

Simplifying and rearranging, we obtain that

φ≥−δm1+m3

x3−x1
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By construction of δ (which further implies that m1+m3 ≤ 1), we have that

φ≥−ǫ (A-21)

We are now ready to derive a contradiction. By inequality (A-16) and the definitions of δ

and φ, we have that

(m1+m3)F−i(x2)

> (m1+φ)F−i(x1+δ)+ (m3−φ)F−i(x3+δ)

=m1F−i(x1+δ)+m3F−i(x3+δ)−φ(F−i(x3)−F−i(x1))

(A-22)

Furthermore, because F−i(x3)−F−i(x1) ≤ 1, by construction of ǫ, and by (A-21), (A-22)

implies that

(m1+m3)F−i(x2) >m1F−i(x1+δ)+m3F−i(x3+δ) (A-23)

Lastly, by definition of m1 and m3, it follows that

m1F−i(x1+δ)+m3F−i(x3+δ)

>

∫ x1+ δ

2T

x1− δ

2T

F−i(x)dFi(x)+
∫ x3+δ

x3−δ
F−i(y)dM(y)

(A-24)

Combining inequalities (A-23) and (A-24), we obtain

(m1+m3)F−i(x2) >

∫ x1+ δ

2T

x1− δ

2T

F−i(x)dFi(x)+
∫ x3+δ

x3−δ
F−i(y)dM(y) (A-25)

Therefore, agent i would find it profitable to redistribute mass from neighborhoods of

outcomes x1 and x3 to outcome x2 in a mean-preserving way, which contradicts the

premise that Fi constitutes a best response to F−i.

(iii and iv) In these scenarios, Fi has positive mass at either outcome x1 or x3 (but not

at both outcomes). In this case, we apply the same argument as in scenario (ii), with the

exception that we gather mass only around the outcome that has no mass. The lemma

follows.

An alternative method to derive Theorem 1:

In this section, we provide an alternative proof of Theorem 1 (the symmetric equilibrium

strategy and its uniqueness) using results from common-value all-pay auctions along

with some of the intermediate results that we proved before Theorem 1 (for a review of

the common-value all-pay auction literature, see Baye et al. [1996]).
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Consider a common-value all-pay auction whose prize is nb (this prize is chosen so

that the supports of the equilibrium strategies in the two games will coincide). We will

show that F is a symmetric equilibrium strategy of our game (with budget b for each

agent) if and only if it is a symmetric equilibrium strategy of this common-value all-pay

auction. It is known that the common-value all-pay auction has a unique symmetric

equilibrium [Baye et al., 1996], so Theorem 1 follows.

First, we prove the easier direction: if F is a symmetric equilibrium strategy in the

common-value all-pay auction, then it is a symmetric equilibrium strategy in our game.

The unique equilibrium strategy of the common-value all-pay auction is known to have

expectation b, so it is a valid strategy in our game. Moreover, if there were a beneficial

deviation from this strategy in our game, then it would also constitute a beneficial de-

viation in the common-value all-pay auction, because the player would obtain a higher

probability of winning with the same expected payment; but this is contrary to the as-

sumption that F is an equilibrium strategy of the common-value all-pay auction.

Now, we will prove the more difficult direction: if F is a symmetric equilibrium strat-

egy of our game, then it is a symmetric equilibrium strategy of the common-value all-pay

auction with prize nb. We will show this as follows. Suppose, for the sake of contradic-

tion, that G is a beneficial deviation (in the common-value all-pay auction setting) when

everyone plays F . We will derive a strategy H such that H is also a beneficial devia-

tion, but E(H) = E(F) = b. (Here, E[F] refers to the expectation of a random variable

distributed according to F .) Hence, H is a valid strategy in our game, and it will give

a higher probability of winning than F when everyone else plays F , contrary to the as-

sumption that F is a symmetric equilibrium strategy of our game. All that remains to do

is to show how to construct H.

Since E[F] = b, playing F in the common-value all-pay auction (when everyone else

does so as well) yields an expected utility of nb(1/n)−b = 0. By Corollary 1, we know

that F is continuous. Let W(x) denote the probability that i wins given that i realizes

outcome x, when all other agents use F . If G constitutes a beneficial deviation, then

there must exist an outcome x in the support of F such that

(nb)W(x)−x > 0

Because W(x)≤ 1, we have x <nb.

First, suppose that x ≥ b. Let H be the lottery that places mass b/x at x and 1−b/x
at 0; its expectation is b, so it is a valid strategy in our game. If an agent plays H in

our game when everyone else plays F , then the agent wins with probability bW(x)/x.
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But we know bW(x)/x > 1/n, so it constitutes a beneficial deviation, contrary to the

assumption that F is a symmetric equilibrium strategy.

Now, suppose x < b. Let U denote the least upper bound of the support of F , which

exists by Lemma 4. We have that U > b (since the degenerate distribution at b is never

a best response) and, by continuity, W(U) = 1. Let α and β satisfy αx+βU = b and

α+β= 1. Now, we let distribution H place mass α at x and β at U , so that E(H)= b and

thus H is a valid strategy for our game. An agent’s expected utility from playing H in the

common-value all-pay auction, given that all other agents play F , is given by

α(nbW(x)−x)+β(nb−U) (A-26)

We note that the term on the left in (A-26) is positive. Furthermore, when U ≤ nb, the

right term in (A-26) is non-negative, so that (A-26) is strictly positive. In this case, the

expectation of H is equal to the expectation of F (which is b), so it follows that the

probability of winning using H is greater than the probability of winning using F (when

everyone else uses F ). Since H is a valid strategy in our game, we obtain the desired

contradiction. All that remains to show is that U ≤nb, which we prove below in Lemma

9. This completes the proof.

Lemma 9. Let F denote a symmetric equilibrium of the equal-budget game and let U

denote the least upper bound of its support. Then U ≤nb.

Proof: Suppose on the contrary that U >nb. By Lemma 6, 0 is the greatest lower bound

of the support of F . It follows that F places positive probability mass on outcomes larger

than nb, and similarly, F places positive probability mass on outcomes in the neighbor-

hood of 0. Since F is a symmetric equilibrium strategy, the probability of winning (and

subsequent expected utility) from playing F is 1/n (when everyone else plays F ). We will

show that under the premise that U >nb, there exists a beneficial deviation strategy.

Consider a probability mass ǫnb spread over some region [nb+φ,nb+φ′] , where

0<φ<φ′ and nb+φ′<U . Continuity of F−i implies that for any ǫ>0, there exists a δ>

0 such that for |x−0|<δ, |F−i(x)−F−i(0)| = F−i(x)< ǫ. Set ǫ= (1/n)(1−F−i(nb+φ′)),
so that F−i(nb+φ′)= 1−nǫ, and consider a neighborhood of 0, [0,ψ], where 0<ψ<δ.

Denote the probability mass spread over [0,ψ] by ǫ0, so that

∫ψ

0
dF(x)= ǫ0

We note that
∫ψ

0
F−i(x)dF(x) < F−i(ψ)ǫ0
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and since ψ<δ,

F−i(ψ) < ǫ

The weighted expectation of the regions over which ǫ0 and ǫnb are spread is given by
∫ψ
0 xdF(x)+

∫nb+φ′
nb+φ xdF(x). Without loss of generality, we can assume that

∫ψ

0
xdF(x)+

∫ nb+φ′

nb+φ
xdF(x) > (ǫ0+ǫnb)b (A-27)

If that is not the case, we can choose a smaller ψ (and correspondingly, ǫ0) such that

(A-27) is indeed satisfied. For such ψ, as we increase φ, ǫnb shrinks. We shrink ǫnb until

ǫ0 becomes sufficiently large relative to ǫnb that

∫ψ

0
xdF(x)+

∫ nb+φ′

nb+φ
xdF(x)= (ǫ0+ǫnb)b (A-28)

We can then modify F into a distribution H that has the same expectation, as follows:

• Remove mass ǫnb from the region [nb+φ,nb+φ′],

• Remove mass ǫ0 from [0,ψ],

• Place the combined mass of ǫnb+ǫ0 on playing F again.

Since ǫnb is taken from outcomes larger than nb, in order for (A-28) to hold we must

have ǫnb < (1/n)(ǫ0+ ǫnb). Hence, such deviation would result in an increase in the

probability of winning for the deviating agent of at least

(1/n)(ǫnb+ǫ0)−ǫ0F−i(ψ)−ǫnbF−i(nb+φ′) >

(1/n)(ǫnb+ǫ0)−ǫǫ0−
ǫ0+ǫnb
n

(1−nǫ)= ǫǫnb > 0

It follows that F is not a best response, which is contrary to assumption.
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