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Abstract

gensys’ non-minimality is shown analytically and necessary and sufficient conditions for vector

autoregression representations of states in outputs are presented.
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1. Introduction

Sims’ [7] Matlab solution algorithm to linear rational expectation models is called gensys. Does it
deliver minimal linear time invariant state space representations? Namely, is gensys sufficient for minimal
linear time invariant state space representations? The example produced by Komunjer and Ng [4] shows
that the answer is negative: G 6−→MR, since ∃x ∈ U such that Gx∧¬MRx, in which G ≡ gensys, MR ≡
Minimal representation, x ≡ counterexample and U ≡ universe (i.e. domain of discourse). This note shows
such analytically, presenting necessary and sufficient conditions for vector autoregression representations of
states in outputs.

2. gensys state space, minimality and VAR

gensys gives rise to the unique and stable solution [x1t x2t]
⊤

= [(A11 0) (0 0)]
⊤

[x1t−1 x2t−1]
⊤

+

[B11 B21]
⊤

ut, ∀t ∈ Z, x1t ∈ R
nx1 , x2t ∈ R

nx2 , ut ∈ R
nu , A11 ∈ R

nx1
×nx1 , B11 ∈ R

nx1
×nu and

B21 ∈ R
nx2

×nu ; x1t is a vector of non-expectational variables, x2t is a vector of expectational variables and
ut is a vector of inputs (i.e. shocks). Such solution is the transition equation of a linear time invariant state

space representation in discrete time: [x1t x2t]
⊤

= [(A11 0) (0 0)]
⊤

[x1t−1 x2t−1]
⊤

+[B11 B21]
⊤

ut ←→ xt =
Axt−1 + But, ∀xt ∈ R

nx , A ∈ R
nx×nx and B ∈ R

nx×nu ; xt is a vector states such that nx = nx1
+ nx2

.

Let M ∈ R
ny×nx give rise to Mxt = MAxt−1 +MBut ←→ yt = Cxt−1 +Dut, ∀yt ∈ R

ny , C ∈ R
ny×nx

and D ∈ R
ny×nu . It is the measurement equation of a linear time invariant state space representation in

discrete time, in which yt is a vector of outputs; M is called measurement matrix.
Linear time invariant state space representations are minimal if and only if rank rC = rO = nx for

controllability matrix C =
[

· · · Anx−1B
]

and observability matrix O =
[

· · · CAnx−1
]⊤

. Non-minimal
representations can be reduced to minimal ones by the Kalman decomposition: the economic interpretation
is invariant (see Franchi [2]). Assume that the representation be minimal: xmt = Amxmt−1 + Bmut and
yt = Cmxmt−1 + Dut.

Assume that D be non-singular and thus square: ny = nu. Solve the measurement equation for ut and
plug it into the transition equation: xmt =

(

Am −BmD−1Cm

)

xmt−1 + BmD−1yt = Fmxmt−1 + BmD−1yt;
notice that Fm ≡ Am −BmD−1Cm. Solve it backwards, satisfying causality: xmt =

∑∞

j=0 F j
mBmD−1yt−j

if and only if Fm is stable, namely, Fm’s characteristic polynomial eigenvalues are less than one in
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modulus, |λFm(λ)| < 1 for Fm (λ) = Fm − λI in det [Fm (λ)] = 0. Plug this into the measurement equation:
yt =

∑∞

j=0 F j
mBmD−1yt−j−1 + Dut.

Thus: there exists a vector autoregression of infinite order V AR (∞) if and only if Fm is stable; there
exists a vector autoregression of finite order V AR (k) for k < ∞ if and only if Fm is nilpotent, namely,
Fm’s characteristic polynomial eigenvalues are zero, λFm(λ) = 0. See Franchi [2], Franchi and Paruolo [3],
Fernández-Villaverde et al. [1], Ravenna [6] and Franchi and Vidotto [4] for further detail.

3. Symmetric case

Let x1t be symmetrically semi-measurable, namely, let half of its rows be measurable: xt =
[xM1t xN1t x2t]

⊤
such that nxM1

= nxN1
, A = [(A1111

A1112
0) (A1121

A1122
0) (0 0 0)]

⊤
, B =

[B1111
B1121

B21]
⊤

, M = [1 0 0] , yt = xm1t, C = [A1111
A1112

0] and D = B1111
. Record rC for C

and rO for O : nx = rC = 3 > rO = 2, thus, the representation is controllable, non-observable and
therefrom non-minimal.

Reduce the representation to minimality by the Kalman decomposition: construct similarity trans-
formation matrix T = [OrO

vnx−rO
]
⊤

such that x̄coōt = T −1xt, Ācoō = T −1AT , B̄coō = T −1B, C̄coō =
CT , C̄coō = T −1C and Ōcoō = OT ; select the first rO = 2 states such that x̄cot = x̄mt, Āco = Ām, B̄co =
B̄m, C̄co = C̄m, C̄co = C̄m and Ōco = Ōm.

Computing Fm, Fm (λ) and |λFm(λ)|, Fm first eigenvalue matrix Λ1 ≡ λ1F m(λ) =

− [A1112
B1121

−A1122
B1111

] B−1
1111

and Fm second eigenvalue matrix Λ2 ≡ λ2F m(λ) = 0; notice that
A1112

∈ R
nxM1

×nxN1 , B1121
∈ R

nxN1
×nu , A1122

∈ R
nxN1

×nxN1 , B1111
∈ R

nxM1
×nu . Thus, there exists

a V AR (k) , ∀k ≤ ∞, of xt in yt if and only if |λΛ1(λ)| ∈ [0, 1) for Λ1 (λ) = Λ1 − λI in det [Λ1 (λ)] = 0.

Such gensys condition is necessary and sufficient for a vector autoregression representation of the
states in the outputs in the symmetric case, furthering |λFm(λ)| ∈ [0, 1) and acting as the analytical
counterexample to the syntactic implication ‘Minimal linear time invariant state space representations if

gensys’.

4. Complete and asymmetric case

Let x1t be fully measurable, namely, let all of its rows be measurable: M = [1 0] , yt = x1t, C = [A11 0]
and D = B11. Record rC for C and rO for O : nx = rC = 2 > rO = 1, thus, the representation is controllable,
non-observable and therefrom non-minimal.

Reduce the representation to minimality by the Kalman decomposition: construct T = [OrO
vnx−rO

]
⊤

=

[(A11 0) (0 1)]
⊤

and proceed as before, selecting the first rO = 1 states, so that [xmt yt]
⊤

=

[Am Cm]
⊤

xmt−1 + [Bm D]
⊤

ut ←→
[

A−1
11 x1t x1t

]⊤
=

[

A11 A2
11

]⊤
A−1

11 x1t−1 +
[

A−1
11 B11 B11

]⊤
ut.

Computing Fm, Fm (λ) and |λFm(λ)|, λFm(λ) = Fm = A11 −A−1
11 B11B−1

11 A2
11 = 0. Thus, there exists a

V AR (k) , ∀k <∞, of xt in yt.

The scenario of x1t asymmetric semi-measurability, namely, nxM1
6= nxN1

, is best studied case by case.

5. Conclusion

This note’s conclusion prescribes the reduction of gensys’ representation to minimality as hereby shown.
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Appendix

Matlab commands for symmetric case.

1 % gensys state space (symmetric case)

2 syms a1111 a1112 a1121 a1122 b1111 b1121 b21

3 A=[a1111 a1112 0; a1121 a1122 0; zeros(1,3)];

4 B=[b1111; b1121; b21];

5 M=[1 0 0]; C=M*A; D=M*B;

6

7 % Controllability and observability

8 Con=[B A*B A*A*B];

9 fprintf('Controllability matrix rank')

10 rc=rank(Con)

11 Obs=[C; C*A; C*A*A];

12 fprintf('Observability matrix rank')

13 ro=rank(Obs)

14

15 % Similarity transformation

16 v=[0 0 1];

17 T=[Obs(1:2, 1:3); v];

18 invT=inv(T);

19

20 % Canonical and minimal decomposition

21 Ad = invT*A*T;

22 Bd = invT*B;

23 Cd = C*T;

24 Am = [Ad(1:2, 1:2)];

25 Bm = [Bd(1:2, 1:1)];

26 Cm = Cd(1:1, 1:2);

27

28 % Minimal controllability and observability

29 Conm=[Bm Am*Bm];

30 fprintf('Minimal controllability matrix rank')

31 rcm=rank(Conm)

32 Obsm=[Cm; Cm*Am];

33 fprintf('Minimal observability matrix rank')

34 rom=rank(Obsm)

35

36 % Minimal VAR representation

37 Fm=Am−Bm*inv(D)*Cm;

38 fprintf('Minimal VAR representation condition eigenvalues')

39 lambdas_Fm=eig(Fm)
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