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ABSTRACT 

 

 
The purpose of this paper is to examine the causality between DUST, CO2 and temperature 
for the Vostok ice core data series [Vostok Data Series], dating from 420 000 years ago, and 
the EPICA C Dome data going back 800 000 years. In addition, the time-varying volatility and 
coefficient of variation in the CO2, dust and temperature is examined, as well as their dynamic 
correlations and interactions. We find a clear link between atmospheric C02 levels, dust and 
temperature, together with a bi-directional causality effects when applying both Granger 
Causality Tests (1969) and multi-directional Non-Linear analogues, i.e. Generalized 
Correlation. We apply both parametric and non-parametric statistical measures and testing. 
Linear interpolation with 100 years and 1000 years is applied to the three variables, in order to 
solve the problem of data points mismatch among them. The visualizations and descriptive 
statistics of the interpolated variables (using the two periods) show robustness in the results. The 
data analysis points out that variables are volatile, but their respective rolling mean and standard 
deviation remain stable. Additionally, 1000 years interpolated data suggests positive correlation 
between temperature and CO2, while dust is negatively correlated with both temperature and 
CO2. 

The application of the non-parametric Generalized Measure of Correlation to our data sets, in 
a pairwise fashion suggested that CO2 better explains temperature than temperature does 
CO2, that temperature better explains dust than dust does temperature, and finally that 
CO2 better explains dust than vice -versa. The latter two pairs of relationships are negative. 

The summary of the paper presents some avenues for further research, as well as some 
policy relevant suggestions. 
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1. INTRODUCTION 

 

Dust and climate change is only recently drawing the attention of scientists. Our 

major contribution is applying non-linear causality tests to dust, CO2 and 

temperature, i.e. the General Correlation Method, that has never been 

implemented in climate research but better captures the interaction between 

parameters. The potential for global climate change has implications for the planet 
across all ecosystems. The authoritative consensus that humans are causing recent 
global warming is supported by 90-100% of publishing climate scientists [Cook et al, 
2016]. Whilst it is not an objective of this paper to wade into the wider debate on 
whether climate change is man-made or not, we attempt to make some assertions 
based on stylized facts distilled from the Ice Core datasets, to add to a limited body of 
literature on the influence of dust upon the relationship between CO2 and temperature. 

The major contribution of this paper is to apply non-linear causality tests on the Vostok 
Ice Core Dataset, as well as to examine the time varying nature of volatility of CO2 and 
temperature with regard to dust by using both parametric and non-parametric modelling 
techniques. 

 

The potential for climate change is a major issue facing the world today. The majority of 
climate scientists acknowledge that there is a strong link between CO2 levels in the 
atmosphere and temperature. Generally, as CO2 levels rise, then global temperature 
rises. It is also acknowledged that the oceans absorb excess carbon dioxide becoming 
acidified, with increasing evidence that this is responsible for coral bleaching on the 
Great Barrier Reef, accompanied by damage to marine ecology. Most governments 
around the globe have placed emphasis upon reducing CO2 emissions, particularly that 
emanating from fossil fuels to limit temperature increases. Global temperature increases 
have the potential to melt the ice caps and increase sea levels, raising the specter of 
floods, plagues and further environmental damage through further climate change. The 
relationship between C02 and temperature is complex and causality links are possibly 
bi-directional, because as global sea temperatures rise, CO2 that was absorbed in the 
ocean is released into the atmosphere, raising temperature. This can lead to a very 
damaging feedback loop. There is a limit to the amount of CO2 the oceans can hold. In 
other words, C02 raises temperature, but then temperature raises CO2 levels and so 
on, until a downward cycle persists then C02 and temperature drop in tandem, with dust 
being an intervening factor as well as ocean absorption. It is possible to hypothesize 
that the upward trends and downward trend in CO2, temperature and dust are non- 
linear or asymmetrical which can be supported by the outcome from the non-linear 
causality analysis. However, our analysis may provide hints on the direction of global 
C02 and temperature levels, within the context of current dust levels in the atmosphere. 

 

 
 

Scientists have stressed in recent times that the CO2-Temperature is complicated by 
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atmospheric dust levels. Indeed, they argue that the influence of dust on the Earth’s 
climate is largely ignored and that depending upon the nature of the dust in terms of its 
particle size and chemical composition can have different effects upon global 
temperatures. In other words, dust can reflect sunlight in the atmosphere and have a 
cooling effect but black soot can absorb sunlight, thus increasing temperature. Thus 
from a climate change perspective there is ‘good dust’ and ‘bad dust’. 

 

 

Given the growing importance that dust may play in future climate modeling, remote 
sensing including satellite technology are increasingly attempting to capture dust in their 
data collection processes. Whilst this will undoubtedly improve our understanding of the 
impact of dust on climate, particularly at a regional level, our approach is to take a 
longer time framework spanning 1 million years to investigate the complex relationship 
between Dust, CO2 and temperature using time-series data collected from the ice caps 
in conjunction with state-of-the-art modeling techniques. In addition we examine the 
dynamic or time-varying nature of correlations and volatilities of CO2, Temperature and 
Dust. 

 
 

This paper is organized as follows: 
 

 
 

Section 2. covers a literature review, examining recent literature between CO2 and 
Temperature and Dust. Section 3, describes the data and presents some descriptive 
statistics including means, correlations, variances (volatilities). Section 3, presents this 
information in tables as well graphs. In addition, Section 3 explores the dynamic time- 
series relationships between CO2, Temperature and Dust in terms of their correlations 
and volatilities. Section 4 describes the advanced time-series modeling and results. 
Section 5 summarizes and concludes our work, outlining directions for future research, 
as well as policy implications. Section 6. Records the references and other supporting 
sources for this paper. 

 
 

2. LITERATURE REVIEW 
 

 
 

Kodra, Chatterjee and Ganguly (2011) explored the Granger Causality between global 
average observed time series of carbon dioxide and temperature: 

 

 
 

Suppose X and Y form a bivariate time series given by the dynamic relationship: 
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(1) 
 
 
 
 
 
 

(2) 
 
 
 

 

If                          is not  the  zero vector              and                       is  the  zero  vector 
 

, then    is said to Granger cause    If    is not the zero vector and    is the 

zero vector, then    Granger causes    If neither     nor    is the zero vector, then there 

is dependence in both directions and thus feedback between     and    If both    and 

are the zero vectors, there is no Granger causality and represent intercepts for each 
equation. Kodra, Chatterjee and Ganguly (2011). 

 
 

 
A caveat is that if seems to cause but is simply correlated with , which lies 

outside the model and which actually causes , then it is possible to wrongly determine 

as the causal influence [Kodra et al, 2011]. In this regard, there are of course other 
major determinants of Earth’s climate changes such as precession, obliquity and 
eccentricity of the Earth’s orbit [Imbrie et al, 1993, Berger, 1978] that can be seen 
emerging in our visual charts that are not part of our formal time series analysis. Indeed, 
ocean dynamics play a major role in the interplay between atmospheric C02 levels and 
temperature. These factors are beyond the scope of our study. 

 

 
 

Possible sources of misleading test results, in relation to GC are: (1) not frequent 
enough or too frequent sampling, (2) nonlinear causal relationship, (3) time series non- 
stationarity and non-linearity [Mariusz, 2015]. We overcome less frequent data through 
linear interpolation of the existing data points in the Vostok Ice Core database, 
examining the time series for non-stationarity and applying non-causality tests. 
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As an improvement to the Granger Causality test conducted by Kang and Larsson 
[2014], we innovate by taking into account non-linearities. 

 

Kang and Larsson analyze whether there exists long-term causality between 
temperature and carbon dioxide concentration. The analysis is based on the Vostok 
Ice Core data from 400,000 to 6,000 years ago, extended by the EPICA Dome C data 
which go back to 800,000 years ago. They implement the Granger causality test and 
strongly reject the null hypothesis that carbon dioxide concentration does not Granger 
cause temperature as well as the reverse hypothesis that temperature does not 
Granger cause carbon dioxide concentration. 

 
Our study goes beyond that of Kang and Larsson by applying non-linear causality tests 
as well as considering the dynamic realized volatilities and realized correlation of C02 
and temperature. Our refined modelling approach by taking into account the time- 
varying nature of volatilities in CO2 and temperature is thus a major contribution of our 
paper to the climate literature. 

 
 

 
The data for this paper emanates from the Ice Core database that estimates both 
atmospheric CO2 and temperature between 420 000 and 6000 years ago. Whilst this 
database is extremely important in gauging global climate change a key issue relates to 
non-simultaneity. In order to overcome this problem, we use a linear interpolation 
method of lining up data points to 100 year intervals, so that both the C02 and 
temperature data are matched at equidistant intervals. In order to test for the robustness 
of our results we also interpolate the data for 1000 year intervals and find similar results. 
This database gives access to paleoclimate series that includes local temperature and 
precipitation rate, moisture source conditions, wind strength and aerosol fluxes of 
marine, volcanic, terrestrial, cosmogenic and anthropogenic origin [Petit et al 1999]. 

Our dataset used in analysis is extended by merging data from EPICA Dome C data 
which goes back to 800,000 years ago. 

 

 
 

Jokimäki [2010, updated 2016] reports a growing body of literature that examines the 
relationship between the correlation between CO2 and temperature, none of which 
looks at the influence of dust, but reach a consensus that CO2 concentrations lead 
temperature increases. The papers reported cover a more recent time span, ignore the 
influence of dust and use Granger Causality based statistical modeling, whereas we 
implement non-linear causality tests using the latest statistical time series technology 
emerging as Generalized Correlation. 
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Mineral dust aerosols in the atmosphere influence climate directly by absorbing and 
scattering incoming solar and outgoing infrared radiation [Tegen et al., 1996; Sokolik et 
al., 2001]. However, scientists have not been actively including dust in their climate 
models but should model even larger fragments [Cassella, 2018]. 

 

 
 

It is only a recent phenomenon that scientists have started to explore the role that dust 
plays in the planet’s climate from a more quantitative perspective, but Darwin [1846] 
documented the presence of dust aerosol in the atmosphere nearly two centuries ago. 
Dr Karen Kohfeld from Simon Fraser University is well recognized and a strong 
advocate of the impact that dust has on the climate and established a database 
DIRTMAP Dust Indicators and Records of Terrestrial and Paleo-environments to collect 
data to investigate global dust cycles [NSERC, 2010]. From this database it has been 
demonstrated that increases in winds and decreases in vegetation cover were important 
contributors to dustiness of the last ice age. Kohfeld stresses the importance that the 
dust cycle plays in the carbon cycle. 

 

Harrison, Kohfeld et al [2001] examine the complex interaction between natural mineral 
aerosol (dust) exchanges between the atmosphere, land surface and ocean and 
discover through simulations that man-made induced climate changes substantially 
reduce the extent and productivity of natural dust sources in reducing temperature and 
CO2. 

 

 

Maher et al [2010] find that palaeo dust records in sediments and ice cores demonstrate 
that wind borne mineral aerosol (dust) is strongly connected to climate state. Evan et al. 
[2014] cast doubt on the ability of current dust models to simulate current regional 
climate changes. 

“As droughts intensify and development expands, the amount of dust blowing around 
the earth is increasing, affecting everything from mountain snowmelt to the spread of 
disease. Scientists are just beginning to understand the complex dynamics of dust in a 
warming world”                                                                                 [Robbins, 2017]. 

The inter-play between dust and the global ecology is a new area for scientific 
exploration. Economic development has brought about a greater increase in 
deforestation, drought and emergence of deserts which has led to a great increase in 
dust circulating the globe. Dust in the atmosphere affects the radiative equilibrium of the 
atmosphere by reflecting or absorbing inward bound solar radiation. However, 
composition and transportation models of dust in the atmosphere are crude and thus 
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regionalized [Tegen, 2003]. Lambert et al (2008) find there is a significant correlation 
between dust flux and temperature records during glacial periods that is not present 
during interglacial periods. In particular, Lambert et al (2008) propose that the observed 
approximately twenty-five fold increase in glacial dust flux over all eight glacial periods 
can be attributed to a strengthening of South American dust sources. This effect is 
strengthened by a longer lifetime for atmospheric dust particles in the upper 
troposphere due to a reduced hydrological cycle during the ice ages. The differing 
production, transportation and deposition rates of dust and its effect upon climatic 
changes, across glacial-interglacial periods is supported by Martínez-Garcia et al 
(2011), over a 4 million years’ time period. 

Despite the bad publicity surrounding desert storm, dust generated by them eventually 
brings much needed micronutrients like iron, silicon, calcium, and aluminum to the 
oceans via the atmosphere [Argonne National Laboratory, 2019]. It is argued that dust 
in the atmosphere which is soot is short lived [Cowan 2008], i.e. lasts a few days and 
may have a warming effect upon the atmosphere by absorbing, rather than reflecting 
sunlight. Perhaps from a climate standpoint, we should distinguish between ‘good’ and 
‘bad’ dust. 

The world’s oceans also play a crucial role in the balance of C02 in the atmosphere, 
with many environmentalists and scientist claiming that this has led to an increased 
bleaching of the Great Barrier Reef off Australia through greater acidification of the 
seas. Ocean data is not analyzed in our study, however we recognize that the scientific 
evidence points towards the ocean temperature and the absorption rates of CO2 being 
related [Parliament of Australia, 2009]. In particular, the higher the temperature of the 
ocean the less CO2 it is able to hold, which raises the CO2 in the atmosphere and 
hence temperature, which is a vicious uptrend. The complex global dynamics of this 
relationship and its impact upon climate are the subject of much ongoing research. 
However, in our analysis we explore the relationship between glacial and interglacial 
time periods which per se gives a categorical classification of ‘cooler oceans’ and 
‘warmer ocean periods to see the impact upon the dynamic relationship between 
atmospheric CO2 and temperature. 

Barnett and Seth (2014) develop a multivariate Granger Causality tool kit for 
investigating time series. 

 
 

 
3. DATA DESCRPTION: DESCRIPTIVE STATISTICS AND GRAPHS 

In our study we use three datasets - CO2, temperature and dust. All three are retrieved 
from National Centers for Environmental Information (https://www.ncdc.noaa.gov/). The 
datasets have records at different ages. We identify a common period for all three 
datasets, which begins 798 500 years ago and end 200 years ago. 

https://www.ncdc.noaa.gov/
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In order to solve the problem of mismatching data points across the datasets, we apply 
linear interpolation with 100 year interval to each dataset. Graph 1. visualizes the time 
series following the interpolation. 

Graph 1. Linear Interpolation - 100Y 
 

 
 

 

Already from Graph 1., we can visually detect periods where temperature and CO2 
move in the same direction, whereas dust levels move at the opposite direction at the 
same periods. 

We test the robustness of the results by also interpolating the source data with 1000 
year interval. On Graph 2., we can observe the time series in 1000 year interval and 
conclude that they do indeed appear similar. Furthermore, in Table 1. is given the 
descriptive statistics for all three datasets based on source data, 100 year and 1000 
year interval interpolation. The statistics for the two different interpolation are quite close for 
each respective dataset. 
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Graph 2. Linear Interpolation - 1000Y 

 
 

Table 1. Descriptive Statistics 
 

 Temperature CO2 Dust 

Statistic 
Source 

Data 
Interpolation 

100 
Interpolation 

1000 
Source 

Data 
Interpolation 

100 
Interpolation 

1000 
Source 

Data 
Interpolation 

100 
Interpolatio 

n 1000 

Observations 5785 7983 799 1095 7983 799 1154 7983 799 

Mean -4.58022 -5.30057 -5.30318 230.79607 223.80119 223.77966 160.01358 191.95632 192.64896 

Median -5.2 -5.77609 -5.81173 231.4 222.23448 222.24452 51.5625 90.47195 91.02721 

Minimum -10.58 -10.40889 -10.11875 171.6 171.73222 171.73223 2.695 2.99991 3.84305 

Maximum 5.46 4.71 4.71 298.6 298.17592 289.24814 1525 1523.25000 1383.62771 

Std 3.44697 2.89982 2.89941 27.55501 25.41082 25.42266 241.99248 231.96672 231.12413 

CV -0.75251 -0.54708 -0.54639 0.11934 0.11353 0.11353 1.51167 1.20836 1.19897 

Skewness 0.48457 0.72965 0.74222 0.02766 0.36781 0.36544 2.47815 1.86602 1.79878 

Kurtosis -0.77432 -0.11004 -0.08085 -0.94476 -0.94476 -0.68907 6.90709 3.36745 2.94698 

5% quantile -9.14 -8.90586 -8.84613 188 188.76920 188.91059 7.711 13.96239 13.88243 

95% quantile 0.47600 0.38645 0.33549 275.88 271.88204 272.19485 714.04999 723.38278 723.58265 

Interquartile 
Range 

5.63 4.20570 4.28393 43.94999 38.72510 38.88301 174.469978 215.62111 218.95883 
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In the next three graphs (3., 4. and 5.), we again provide visualization of the three 
time series with 1000Y interpolation, however included are the rolling mean and 
standard deviation, where the rolling period is 100. Although the data is quite 
volatile, the rolling mean and standard deviation remain stable in most periods, with 
possible evidence of mean reversion.  

 

 
 

Graph 3. Rolling Statistics - Temperature 
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Graph 4. Rolling Statistics - CO2 

 
 

Graph 5. Rolling Statistics - Dust 
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Finally, we also explore the correlation between each pair of variables. On 
graphs 6., 7. and 8., we see the rolling correlation between temperature and 
CO2, temperature and dust, and CO2 and Dust. We use a 100 year window 
and on each graph the top shows the 100 years interpolation and the bottom 
the 1000 years interpolation. The 100 years interpolated data displays strong 
volatility in the correlation, but 1000 years interpolated data seems to imply 
that temperature and CO2 are positively correlated usually with 0.85-0.90 
correlation, whereas dust is negatively correlated with both temperature and 
CO2 with the correlation fluctuating between -0.6 and -0.8. 

Graph 6. Rolling Correlation - Temperature and CO2 
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Graph 7. Rolling Correlation - Temperature and Dust 

  
 

 

 

Graph 8. Rolling Correlation - CO2 and Dust 
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4. ADVANCED TIME SERIES MODELLING 

Zheng, Shi, and Zhang (2012) suggested that Pearson’s correlation, when used as a 
measure of explained variance, is well understood, but a major limitation is that it does 
not account for asymmetry. Zheng, Shi, and Zhang (2012) suggested a broadly 
applicable correlation measure, and considered a pair of generalized measures of 
correlation (GMC) that deal with asymmetry in the explained variance, and linear or 
nonlinear relations between random variables. 

Vinod (2017) used the GMC measure to analyze economic development in a study of 
198 countries, and also developed the R library package “generalCorr” (Vinod 2019). 
Allen and Hooper (2018) used the metric to analyze causal relations between the VIX, 
S&P500, and the realized volatility (RV) of the S&P500 sampled at 5-min intervals. Allen 
and McAleer (2020) explored the statistical antecedents of the metric. 

Zheng et al. (2012) draw attention to the computation of the coefficient of 

determination, R2 in a linear regression model, in which the total variation in the 
response variable is partitioned into two component sums of squares, that is, explained 
variation due to regression and unexplained variation. Zheng et al. (2012) introduce 
their GMC based on a well-known variance decomposition formula: 

 

 
 

var(x) var(E( X Y )) E(var( X Y )) 
 
 
 
 

whenever E(Y2 ) < ∞ and E(X2) < ∞. Note that var(E(X|Y )) is the variance of 

conditional mean of X given Y, and hence var(E(X|Y ))/var(X) can certainly be 

interpreted as the explained variance of X by Y. We have 

 
 
 
 

var(E( X Y )) E(var( X Y )) 
1 1E[{X E( X Y )}2 ] 

var( X ) var( X ) var( X ) 
 
 
 

Similarly, they define the explained variance of Y given X. They suggest that it is natural 

to introduce a pair of GMC as: 
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It is worth noting that in a regression model Y = g(X) + ε, the R2 is identical to 

GMC(Y|X) when g(X) is chosen to be E(Y|X). Other than this identity, the R2 has not 
been used in studying asymmetric explained variances between random variables. 

Because the main usage of R2 is in regression analysis, GMC seems a natural choice 
of measures of explained variances between random variables.  The GMC can depict 
the nonlinear or asymmetric relation between two variables. They are true measures for 
explained variances. A review of measures of antecedents of the GMC metric is 
provided by Allen and McAleer (2020). 

A pair of GMC measures the association between two random variables globally, and it 
deals with asymmetry, nonlinearity, and beyond. In our context, GMC(Y|X) > GMC(X|Y 

), GMC(Y|X) < GMC(X|Y ), and GMC(Y|X) = GMC(X|Y ) lead to more meaningful 
statistical inference. When GMC(Y|X) > GMC(X|Y ), X is more important than Y. 

 

We undertook a GMC analysis on pairs of variables, starting with Temp and 
CO2. This analysis was done with contemporaneous 1000 year spaced data. It can 
be seen below that the GMC correlation of Temp with CO2 is not quite as high as that 
with CO2 and temp, then respective values being 0.8959721 and 0.8968893. 

 

This suggests that CO2 better explains Temp than Temp does CO2. The third value 
below is the Pearson correlation coefficient. The fourth value is the probability which 
shows the relationship is highly significant. 

 
 
GMC Analysis of Temp and CO2 using data intervalled at 1000 years. 

 

 TEMP CO2 
GMC 0.8959721 0.8968893 
Pearson Correlation 0.8857599  

Probability 6.694055e-268  
 

 

We then ran a similar analysis of the relationship between Temp and Dust, and the 

results, shown below, suggest that Temp better explains Dust than vice-versa. It makes 

intuitive sense that there is a negative relationship between these two variables. 
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 TEMP Dust 
GMC -0.8986029 -0.8119205 
Pearson Correlation -0.6610334  

Probability 1.653772e-101  
 

 

Finally, we ran an analysis between CO2 and Dust and  it looks like C02 better explains 

Dust than vice versa. Once again the relationship is negative. 

 

 
 

 CO2 Dust 
GMC -0.8715874 -0.780536 
Pearson Correlation -0.6849441  

Probability 1.038898e-111  
 

 

5. SUMMARY AND CONCLUSION 
 

 

There is a growing interest in the research literature to examine the influence of dust 
upon climate, but has been largely ignored. In this regard, our study examines a time 
series of CO2, temperature and dust spanning 800 000 years, with particular emphasis 
upon the causality between these variables, as well as the dynamic nature of 
correlations and volatilities. A major innovation in our paper is the use of Generalized 

Correlation Method which should have wide reaching uses as a tool in climate 

research and improve methodology. 
 
The analysis shows that all three variables (temperature, dust and CO2) are volatile, 
however their rolling mean and standard deviation remain stable for most of the periods. It 
appears that the data of all three time series stay within a limited range, which is likely to 
be mean reverting. Additionally, the data analysis suggests positive correlation between 
temperature and CO2, while dust is negatively correlated with both temperature and CO2. 
 

The application of the non-parametric Generalized Measure of Correlation (GMC), to 
our 1000 year data sets, in a pairwise fashion, suggested that CO2 better explains 
temperature than temperature does CO2, that temperature better explains dust than 
dust does temperature, and finally that CO2 better explains dust than vice -versa. The 
results suggest that the latter two pairs of relationships are negative which makes 
intuitive sense. Man is not only ambitious to collect more data through remote 
sensing and satellite sensing in relation to dust, but also in their desire to control 
future global temperature levels through CO2 emissions but also to engage in global 
environmental engineering, perhaps through ‘seeding’ of the atmosphere with dust and 
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aerosols coupled with more effective land management. Our findings thus have very 
important global climate change policy implications as we find that dust can 
dramatically alter the relationship between CO2 and temperature, perhaps to the 
extent that the relationship between these two variables can enter a virtuous 
feedback loop by finding ways to reduce the likely acidification of the oceans and 
harnessing the power of ‘good dust’, benefiting all ecosystems on this planet. 
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Supplementary Appendix: Further Ordinary Least Squares and Time Series 
Analysis [with regard to Lead-Lags] 

 
OLS Regression Results                             

============================================================================== 

Dep. Variable:            Temperature   R-squared:                       0.436 

Model:                         OLS   Adj. R-squared:                    0.436 

Method:                 Least Squares  F-statistic:                        6170. 

Date:                Tue, 13 Oct 2020   Prob (F-statistic):                    0.00 

Time:                        20:13:33  Log-Likelihood:                   -17540. 

No. Observations:                7983   AIC:                         3.508e+04 

Df Residuals:                    7981   BIC:                         3.510e+04 

Df Model:                           1                                          

Covariance Type:            nonrobust                                          

============================================================================== 

                 coef    std err          t      P>|t|      [0.025      0.975] 

------------------------------------------------------------------------------ 

const         -3.7161      0.032   -117.448      0.000      -3.778      -3.654 

Dust          -0.0083      0.000    -78.548      0.000      -0.008      -0.008 

============================================================================== 

Omnibus:                      830.065   Durbin-Watson:                   0.037 

Prob(Omnibus):                  0.000   Jarque-Bera (JB):             1111.462 

Skew:                           0.871   Prob(JB):                    4.46e-242 

Kurtosis:                       3.552   Cond. No.                         391. 

============================================================================== 

 

Notes: 

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. 

""" 
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 OLS Regression Results                             

============================================================================== 

Dep. Variable:                   Dust   R-squared:                       0.436 

Model:                            OLS   Adj. R-squared:                  0.436 

Method:                 Least Squares   F-statistic:                     6170. 

Date:                Sat, 17 Oct 2020   Prob (F-statistic):               0.00 

Time:                        16:16:31   Log-Likelihood:                -52521. 

No. Observations:                7983   AIC:                         1.050e+05 

Df Residuals:                    7981   BIC:                         1.051e+05 

Df Model:                           1                                          

Covariance Type:            nonrobust                                          

=============================================================================== 

                  coef    std err          t      P>|t|      [0.025      0.975] 

------------------------------------------------------------------------------- 

const         -88.0188      4.063    -21.664      0.000     -95.983     -80.055 

Temperature   -52.8199      0.672    -78.548      0.000     -54.138     -51.502 

============================================================================== 

Omnibus:                     2681.524   Durbin-Watson:                   0.042 

Prob(Omnibus):                  0.000   Jarque-Bera (JB):             9047.319 

Skew:                           1.705   Prob(JB):                         0.00 

Kurtosis:                       6.947   Cond. No.                         12.9 

============================================================================== 

 

Notes: 

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. 

""" 
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Polynomial Fit 3rd degree - Temp to Dust 

R2 = 0.6947 

 
 



23  

 

 

 

 

 

 

 

ACF and PACF 

 
Temperature 100Y 

 
Temperature 1000Y 

 



24  

 

 

 

 

 

 

 

 

 

CO2 100Y 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25  

 

CO2 1000Y 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26  

Dust 100Y 

 
Dust 1000Y 

 

 


