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Abstract

This paper theoretically and experimentally investigates the behavior of asymmetric play-

ers in guessing games. The asymmetry is created by introducing k > 1 replicas of one of

the players. Two-player and restricted N-player cases are examined in detail. Based on the

model parameters, the equilibrium is either unique in which all players choose zero or mixed

in which the weak player (k = 1) imitates the strong player (k > 1). A series of experiments

involving two and three-player repeated guessing games with unique equilibrium is conducted.

We find that equilibrium behavior is observed less frequently and overall choices are farther

from the equilibrium in two-player asymmetric games in contrast to symmetric games, but

this is not the case in three-player games. Convergence towards equilibrium exists in all cases

but asymmetry slows down the speed of convergence to the equilibrium in two, but not in

three-player games. Furthermore, the strong players have a slight earning advantage over the

weak players, and asymmetry increases discrepancy in choices (defined as the squared distance

of choices from the winning number) in both games.

Keywords: Guessing game, asymmetry, convergence, game theory, experimental economics

JEL Classification: C72, C92

1 Introduction

Any investment situation that can be considered as a complex game with its potentially high

number of players and strategies, requires both deep reasoning and strategic thinking due to
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the mutual determination of the resulting outcomes. This insight regarding the behavior of

investors especially in financial markets can be captured by the “guessing” or “p-beauty contest”

games (inspired by Keynes, 1936). In the standard N-player guessing game (N ≥ 3), players

simultaneously choose a number from a closed interval, generally [0, 100], and the player whose

number is closest to a given fraction (p) of the average of all of the chosen numbers is the winner.

The game is dominance solvable and iterated elimination of weakly dominated strategies leads

to the unique Nash equilibrium in which all players choose zero. However, experimental findings

are not found to be aligned with this theoretical prediction: in general, participants apply the

iterated dominance process up to three rounds and choose dominated strategies, especially in

the first periods of play, although convergence is achieved as the game is played out repeatedly.1

Grosskopf and Nagel (2008) introduce an even simpler version of this game with N = 2 in

which iterative reasoning is unnecessary since choosing zero is the weakly dominant strategy (it is

isomorphic to the game: “whoever chooses the smaller number wins”).2 In two-player games, the

same pattern of findings persists except in the cases that involve professional participants, who

tend to adopt the equilibrium strategy relatively more often.

In the literature, players in guessing games are typically treated symmetrically in terms of

their influence on the formation of the target number. However, in very few markets are players

actually identical in regards to their market power (e.g., budget). For example, in stock markets,

“stronger” investors have the financial power to influence prices more than “weaker” investors.

Due to these asymmetries, players may hold different beliefs (e.g., overconfidence) and behave

differently. Moreover, their influence on the determination of the realized prices is potentially

different.

In this paper, we introduce asymmetric players that better reflect real-life situations where

market players are not identical. We model this asymmetry by introducing replicas of the players

that essentially render some players relatively more powerful in influencing the target number. In

two-player games, this comes down to multiplying the chosen numbers of strong and weak players

by ks ≥ kw ≥ 1, respectively. Integer coefficients ks and kw can be considered as the strengths

of the players. The target number is some fraction of the “weighted” average of the two choices.

This implies that the strong player has more power to influence the target number in comparison

1The first experiments on guessing game were conducted by Nagel (1995). After this paper, a fruitful literature

has emerged to study iterative reasoning, bounded rationality, and learning. See Duffy and Nagel (1997), Ho et al.

(1998), Nagel (1995), and Stahl (1996) for early applications of iterated best reply and learning models. For more

recent reviews, see Akin and Urhan (2011), Camerer (2003), Crawford et al. (2013), Nagel (2008) and Nagel et al.

(2017). Most recently, Mauersberger and Nagel (2018) use the beauty contest game as a generative framework that

embeds many different games and present an extensive review.
2See Burchardi and Penczynski (2014), Costa-Gomes and Crawford (2006), Chou et al. (2009), Fragiadakis et

al. (2013) and Nagel et al. (2017) for other examples of two-player guessing games. Grosskopf and Nagel (2009)

use feedback structure as the treatment variable in repeated two-player guessing games and find that learning is

weakened with less information and bounded rationality argument is supported.
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to the weak player.

There are few papers in the literature involving asymmetry, but they do not focus on the

relative influence of players on the target. To characterize which decision rules players employ,

Costa-Gomes and Crawford (2006) create asymmetry in one-shot two-player continuous payoff

guessing games through having different p values in the target calculations and support (the set

of alternatives that can be chosen). Similarly, Güth et al. (2002) introduce heterogeneity with

different p values in guessing games with continuous payoff and interior equilibrium and find that

heterogeneity slows down convergence and reduces earnings.3 The focus and structure of the

asymmetry in the aforementioned papers are different than in ours. In our model, there is only

one target and the power of players to influence the target is different, whereas different players

have different targets in the models mentioned above.4

Another type of asymmetry introduced within groups is based on experience and sophisti-

cation. Slonim (2005) examines the effect of experience and finds that experienced players who

have a better grasp of how the game is actually played, tend to shift their choices away from the

equilibrium as inexperienced players are added to the population, and they are observed to earn

more. With a similar design, Liu (2016) systematically varies the proportion of players who know

how the game should be played by informing them of the game theoretic solution and finds that

choices tend to decrease as the proportion of informed players increases, but exclusively when this

proportion is large. Agranov et al. (2012) also change the composition of players by varying the

proportion of random-choosing computers and graduate students and find that as the proportion

of graduate students increases, players tend to systematically lower their choices. In these pa-

pers, there is informational asymmetry among players, but they are symmetric in terms of their

ability to influence the target. This type of asymmetry influences the reasoning process of players

regarding what the target can be according to the composition of the population. By contrast,

in our design, heterogeneity is driven solely by the differing strengths of players to influence the

target without any informational asymmetry.

Kopányi et al. (2019) investigate how price dynamics in a learning to forecast (LtF) asset

pricing experiment are influenced by financial advisors who attract more investors by forecasting

more accurately and are able to influence market prices asymmetrically. They motivate their

model with the observations that the effects of market participants on market prices may partially

depend on past successes. Successful financial advisors attract more money and therefore they

3Kovac et al. (2008) replicate Güth et al. (2002) and find conversely that heterogeneous players guess closer

and converge faster to the equilibrium.
4Note that with the continuous payoff structure used by these two papers, both players choosing zero is still the

unique equilibrium. However, zero is the only rationalizable strategy obtained through an iterated elimination of

strictly dominated strategies. Moreover, we can also talk about (Pareto) efficiency of choices and zero is also the

unique Pareto optimal equilibrium. Nagel et al. (2017) examine both two and N > 2 player games with fixed and

continuous payoff and find that behavior is not affected by the payoff structure, is boundedly rational and can be

described by the level k model.
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have a greater impact on market prices. They show that the asymmetry driven by the competitive

market forces may reduce price volatility and mispricing unless the competition is not fierce. This

paper is closely related to ours in terms of both the types of markets it models and the asymmetric

impact of the players on the outcome. Our model can also be motivated by the fact that in financial

markets, there are investment advisors who manage different account sizes and their impact on

the markets differ accordingly. Kopányi et al. (2019) use experimental LtF asset markets in which

the impact of players and prices are endogenously determined. We use guessing games to model

these markets where the impact of each player is taken as fixed.

The theoretical solution of our model depends on the relative strength of the players and the

value of p. We first characterize the equilibrium for two-player case and then extend our theoretical

analysis to N-players. Our theoretical analyses show that for any given kw and ks values, if p

is small enough ( p < kw+ks
2ks

), the equilibrium is the same as with the standard guessing game.

On the other hand, if p is high enough ( p > kw+ks
2ks

), the payoff structure of the game changes

and there is at least one mixed strategy (no pure strategy) Nash Equilibrium. In this case, the

weak player is disadvantaged in the sense that her winning strategy is imitating the strong player.

She can only win if she chooses a smaller (but not too small) number than the number of the

strong player. Moreover, for any given kw and ks values, there is a high enough threshold p∗

such that for all p > p∗, the strong player always wins the game unless there is a tie (there is

a unique completely mixed uniform strategy Nash equilibrium). However, as relative strength k

( ks
kw

) increases, the range in which the strong player wins gets larger only up to a threshold value

of k∗ after which payoffs do not change. For general N-player cases where each player i has a

potentially different ki ≥ 1, we characterize a sufficient condition for choosing zero for all players

to be the unique pure strategy Nash equilibrium. This condition implies that if the strongest

player is strong enough with a sufficiently small p, or if the asymmetry among players is not high,

then choosing zero for all players is the unique Nash Equilibrium.

We then report the results of an experiment we conducted that adopts commonly used design

features in the literature, excluding the asymmetric influence of players on the target. We form

two and three-player groups (In many studies, N ≥ 3. At one extreme, Bosch-Rosa and Meissner

(2020) examine one-player guessing games and in the other, Bosch-Domenech et al. (2002) conduct

a newspaper experiment with N = 7900). To keep the game as simple as possible, we conduct

the experiment by using p = 1/2 such that in all games, there is a unique equilibrium in which

all players choose zero as in the standard game (Duffy and Nagel (1997) also used only p = 1/2.

Costa-Gomes and Crawford (2006), Güth et al. (2002) and Nagel (1995) use p as a treatment

variable including this value but most frequently, p = 2/3 is observed to be used in the literature).

In our design with two players, the control is the standard two-player guessing game where

ks = kw = 1. In the treatment, the players are asymmetric, kw = 1 and ks = 9. In three-player

games, we have one strong and two weak players. In the control, we have kw1 = kw2 = ks = 1,
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whereas we set the k values as kw1 = kw2 = 1 and ks = 8 in the treatment.5 We use (weighted)

mean as the order statistics in the calculation of the target (The treatment variable in Duffy

and Nagel (1997) is the order statistics -mean, median or maximum of the chosen numbers). We

use the common bounded and fixed support for guesses [0, 100] (In Costa-Gomes and Crawford

(2006), the support is a treatment variable. Benhabib et al. (2019) have an unbounded guessing

interval). We have a tournament structure and there is only one winner unless there is a tie (See

Costa-Gomes and Crawford (2006), Güth et al. (2002), Kocher and Sutter (2006) and Nagel et

al. (2017) for continuous payoff structure where each player is paid according to their distance to

the target).

Regarding the formation of the groups, participants are randomly matched, and they have no

knowledge regarding their partners. In the asymmetric games, the roles are randomly assigned.

Participants play the game individually against each other (see Kocher and Sutter (2005), Kocher

et al. (2006) and Sutter (2005) for guessing games played by teams) and there is no communication

(See Baethge (2016), Burchardi and Penczynski (2014) and Penczynski (2016) for the effect of

communication). Participants play the game for ten rounds in a fixed pair setting that allows us

to observe convergence and behavioral dynamics (There are a few papers that involve repeated

play in the two-player guessing games. Burchardi and Penczynski (2014) has three rounds but

did not report the results. Fragiadakis et al. (2013) have two phases and ask subjects to recall

their choices or play against their own previous choices from memory in phase II. Ours is similar

to Grosskopf and Nagel (2009)). Finally, at the end of each round, we give full feedback to all

players in the group including all the chosen numbers in the group, the calculated target, and the

winner (See Grosskopf and Nagel (2009), Kocher et al. (2014), Sbriglia (2008), and Weber (2003)

for the effect of feedback).

Our main research questions are: i) How do the first period behavior and overall choices differ

between the symmetric and the asymmetric cases? ii) Do the choices in each of the symmetric and

asymmetric cases converge to the equilibrium over time? iii) If there is convergence, are there any

differences in terms of the speed of convergence between the symmetric and asymmetric cases?

Our results imply that non-equilibrium behavior is more common and overall choices are farther

from the equilibrium in two-player asymmetric games than in symmetric games. In all cases,

there is convergence towards equilibrium. Introducing asymmetry slows down the convergence

to the equilibrium in two, but not in three-player games. Finally, strong players earn more than

weak players and asymmetry increases discrepancy in choices (defined as the squared distance of

choices from the winning number) in both games.

The rest of the paper is organized as follows. Section 2 introduces the model and characteriza-

tion of the equilibrium. Section 3 describes the experimental design in detail. Section 4 presents

5Together with p = 1/2, we choose these k values to make the target easy to calculate. The denominator in the

target is 20 in all asymmetric games. See the instructions for details.
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the experimental results. Finally, section 5 concludes with a discussion of the results.

2 The Model and the Equilibrium Analysis

Before introducing the asymmetric case, we briefly explain the standard guessing game. In the

standard N-player guessing game (N ≥ 3), players simultaneously choose an integer number from

a closed interval [0, z] where z ∈ Z
+ (generally z = 100). The player whose number is the closest

to the target number (T ) wins the game. The target number is calculated as follows:

T =

(

1

N

N∑

i=1

gi

)

p

where gi is the player i’s guess, 0 < p < 1, and p is common knowledge. When N = 2, the target

simply becomes

T =

(
g1 + g2

2

)

p.

We have a tournament structure where the winner of the game receives a pre-determined fixed

prize, and the other players receive nothing. If there is a tie, the prize is equally divided among

the winners. The standard N-player guessing game is dominance-solvable under rationality and

common knowledge of rationality assumptions. It is straightforward to see that all choosing zero

is the only rationalizable strategy combination that survives the infinitely repeated simultaneous

elimination of weakly dominated strategies. Hence, given 0 < p < 1, all players choosing zero

is the unique pure strategy Nash equilibrium of the game. In two-player guessing games with

tournament payoff, iterative reasoning is unnecessary since choosing zero is the weakly dominant

strategy (the lower number always wins).

2.1 Two-player Asymmetric Guessing Games

We now introduce the two-player guessing game with asymmetric players. This is achieved by

introducing replicas of the players (the one who has more replicas is called the strong player

and she has more power to determine the target number). To do this, guesses of the players are

multiplied by ks and kw (s stands for strong, w stands for weak) in the target number calculation.

The parameters ks ≥ kw ≥ 1 are positive integers6 and represent the power level of the strong and

weak players. We define a parameter called relative strength k = ks
kw

to simplify the exposition

throughout the paper (the standard two-player guessing game is represented by ks = kw ≥ 1 or

k = 1). The target is calculated as follows:

T =

(
gw + kgs
k + 1

)

p

6k≥ 1 values can be assumed to be real numbers and the results still hold.
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where 0 < p < 1 and gw, gs are the guesses of weak and strong players, respectively. Parameters p

and k are common knowledge. As in the standard game, players simultaneously choose an integer

from the closed interval [0, 100].7 The player with the closest guess to the target number wins the

game, and in the event of a tie, the prize is equally divided between the players. Mathematically,

|gw − T | − |gs − T | < 0 ⇒ the weak player wins.

|gw − T | − |gs − T | > 0 ⇒ the strong player wins.

|gw − T | − |gs − T | = 0 ⇒ there is a tie.

In contrast to the standard guessing game, the equilibrium in the asymmetric case is not unique

for all p < 1. The following lemmas characterize the equilibrium in detail. All proofs are in the

Appendix A1.

Lemma 1 Let k > 1. If p < k+1
2k < 1, then the player whose number is smaller wins the game.

This implies that (gs, gw) = (0, 0) is the unique Nash Equilibrium in weakly dominant strategies.

Lemma 1 states that although we have an asymmetry with k > 1, two-player asymmetric

guessing games are indistinguishable from the standard two-player guessing games if p is small

enough (p < k+1
2k < 1), and the player with a smaller number wins the game.

Lemma 2 Let k > 1. If k+1
2k < p < 1, then

i) the weak player can win only by imitating the strong player, ags < gw < gs where a =
2pk−k−1
k+1−2p < 1;

ii) there is at least one mixed strategy Nash Equilibrium that involves the weak player imitating

the strong player.

Lemma 2− i is about the payoff structure of the game in case which k+1
2k < p < 1, and implies

that choosing a smaller number guarantees a win for the strong player, but she may also win

by choosing a larger number than the weak player. However, the weak player cannot win by

choosing a larger number and choosing a smaller number is not enough for her to win. She must

also choose a number that is greater than some proportion of the number of the strong player.

That is, the weak player can win only if she imitates the strong player. This lemma also implies

that as either p or relative strength k or both increase, the weak player must follow the strong

player more closely to be able to win. The reason is as follows: since da
dk

> 0 and da
dp

> 0, an

increase in k or p implies a higher a value. This further implies that ags gets closer to gs (for the

7Lopez (2001) states that when calculating the target number, the experimenter must use decimal approximation.

For this reason, he calls the game as a“beauty contest decimal game”. He proves that the beauty contest decimal

game is equivalent to the beauty contest integer game. Thus, he concludes that any experimental guessing game is

equivalent to its integer restricted version.
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extreme case of this, see proposition 5). This shrinks the range of guesses that enables the weak

player to win. Thus, the weak player must follow the strong player more closely to win.

Lemma 2 − ii characterizes the equilibrium in this case, and states that if p is large enough,

then the equilibrium is no longer pure. It is essentially mixed and may not be unique. More

importantly, imitation emerges as an equilibrium behavior.8 The strong player randomizes over

her action space, but the weak player randomizes over her actions such that the maximum number

she assigns positive probability is always less than or equal to the maximum number the strong

player assigns positive probability. Furthermore, the equilibrium does not involve the weak player

always choosing small numbers. Thus, in any equilibrium, the weak player randomizes to imitate

the strong player. By calculating mixed equilibria for some two-player games with a narrower

action space such as [0, 10], we provide examples of this phenomena. The strong player randomizes

over small and some large numbers, but the weak player only randomizes over numbers that are

less than the largest number the strong player assigns positive probability (see Appendix A2 for

these examples).

Lemma 3 Let k > 1. If p = k+1
2k ,

i) and gw = 0, there will be a tie regardless of the value of gs;

ii) and gw 6= 0, the player whose number is smaller wins the game;

iii) in any equilibrium, gw = 0. Pure strategy Nash equilibria are (gs, gw) = (0, 0) and (gs, gw) =

(1, 0). There are infinitely many mixed strategy Nash equilibria including randomization

between gs1 = 0 and 2 ≤ gs2 ≤ z equally and any randomization between gs1 = 0 and

gs2 = 1.

Lemma 3− i and 3− ii are about the payoff structure of the game in case which p = k+1
2k , and

state that there will be a tie for any choice of the strong player if the weak player chooses zero,

but that the player who chooses a smaller number wins if the weak player does not choose zero.

Lemma 3 − iii characterizes the equilibrium in this case, and indicates that there are only

two pure strategy and infinitely many mixed strategy Nash equilibria with randomization by the

8The imitation behavior in our case is completely different from the well-known strategic non-equilibrium be-

havior of the players in standard N-player guessing games who are rational but believe that others are boundedly

rational. Initially, since actions of the subjects are strategic complements (See Hanaki et al. (2019) for the

strategic environment effect in guessing games), experienced/sophisticated players try to imitate the less experi-

enced/sophisticated players and guess higher numbers than zero to win the game, which amplifies deviations from

the equilibrium. As the game is played repeatedly, guesses converge to the unique equilibrium. It is also different

from the adaptive behavior of less sophisticated players who learn to play equilibrium by imitating the winners.

Here, imitation emerges as an equilibrium phenomena. Our usage of the term imitation may also suggest the

pooling equilibrium in signaling games where one (low) type imitates the other (high) type. In our case, there is

neither asymmetric information nor signaling. The weak player needs to follow the strong player to win, and in

equilibrium she does not have to follow the same strategy as the strong player.
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strong player that always include gs1 = 0.9 Moreover, the weak player always chooses zero and

there will be a tie in all equilibria.10 For some example games and their solutions related to lemma

1, 2, and 3, see Appendix A2.11

The payoff matrix is influenced by the values of p and k. Figure 1, proposition 4 and propo-

sition 5 investigate this influence. Since the strategy space for each player is the set of integers

in [0, 100], we have a 101× 101 finite game that has a payoff matrix of 1012 = 10201 cells. Thus,

given p and k, it is easy to figure out the number of cells (in percentage) at which the strong

player wins. Figure 1 shows this winning percentage of the strong player as a function of p and

k. For example, if k = 7 and p = 0.74, then the winning percentage is % 67.91. This means that

with these parameter values, the strong player is the winner in approximately % 68 of all cells in

the payoff matrix. Figure 1a and 1b are identical except that they are captured from different

angles.

Notice that there are mainly two regions in the Figure 1: the flat region and the sloped

region. The two regions are separated by a white curve which corresponds to the points satisfying

p = k+1
2k . The flat region below the white curve corresponds to the points satisfying p < k+1

2k , and

the steeper region above the white curve corresponds to the points satisfying p > k+1
2k .

Remember that if p < k+1
2k , the player with the smaller number wins the game (See Lemma 1).

Then, once p < k+1
2k is satisfied, the structure of the payoff matrix does not change. This is the

reason why the surface below the white curve is flat. In this flat region, the winning percentage

(about 49%) of the strong player does not change in accordance with changes in p and k.

However, if p > k+1
2k , we know that for the weak player to win, gw should satisfy ags < gw < gs

where a = 2pk−k−1
k+1−2p (See Lemma 2). Since the parameter a is a function of p and k, the structure

of the payoff matrix changes in accordance with the changes in p and k. Therefore, we have a

non-flat region above the white curve.

One observation about the steeper region of the Figure 1 is that for any fixed p > k+1
2k and

9There is evidence that in games with strict strategic complementarities, mixed Nash equilibria are unstable

(Echeniquea and Edlin (2004); Heinemann et al. (2009)). Since ours is also a game of strategic complementarity

and there are mixed strategy equilibria (if p is not small enough), it can be expected that these equilibria would

also be unstable.
10If players are allowed to choose real numbers instead of integers, (this does not matter practically as behavior in

experiments does not change, but has theoretical importance) we conjecture the following about the equilibria: 1.

The mixed strategy equilibrium involving imitation behavior in Lemma 2 still holds; 2. In Lemma 3, (gs, gw) = (0, 0)

is the unique pure strategy Nash equilibrium. The pure strategy (gs, gw) = (1, 0) and the set of mixed strategies

including gw = 0 and any randomization between gs1 = 0 and gs2 = 1 are no longer equilibria. Furthermore, the

set of mixed strategy Nash equilibria includes gw = 0 and equal randomization between gs1 = 0 and 0 < gs2 ≤ z.
11If the payoff scheme is continuous (for example, with payoff functions πi = 100−(gi−p gw+k.gs

k+1
)2 where i = w, s,

as in Nagel et al. (2017)), then out of equilibrium, it is optimal to play gw = p.k

k+1−p
gs and gs = k

k+1−k.p
gw. Zero

is the only rationalizable strategy obtained by iterated elimination of strictly dominated strategies for all 1 > p > 0

and k ≥ 1. Moreover, since p.k

k+1−p
> k

k+1−k.p
for all k > 1, in asymmetric games, iteration steps converge to zero

faster for the strong player.
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Figure 1: Winning Percentage of the Strong Player as a Function of p and k
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lower values of k, as k increases, the surface firstly becomes steeper and then its slope becomes

constant in the direction of k axis. This implies that for any fixed p > k+1
2k , increasing the power

level causes the winning percentage of the strong player to rise, but only to an extent. The

following proposition formalizes this observation.

Proposition 4 Consider a guessing game with p > k+1
2k . There exists k∗ > 1 such that for all

k < k∗, as k increases, the range in which the strong player wins gets larger and for no k > k∗,

the game structure changes.

Proposition 4 implies that in asymmetric guessing games, there is a limit to the strength of

the strong player in the sense that for any given p, there is a certain threshold level of strength

(k) after which becoming stronger does not bring any more advantage.

Another observation is that for any fixed k > 1 with p > k+1
2k , as p increases, the winning

percentage of the strong player rises gradually and reaches its maximum (100(z−1)
z

%) that can be

formalized as follows:

Proposition 5 Consider a guessing game with p > k+1
2k . For any k > 1, there exists p∗ < 1 such

that for all p > p∗ the strong player wins the game if gw 6= gs. This payoff structure implies that

there is a unique completely mixed uniform strategy Nash equilibrium.

In the standard guessing game, the game turns into a pure coordination game when p = 1

although it is still a constant sum game. Proposition 5 generalizes this result into asymmetric

games. For any given k value, if p is close enough to one, then the asymmetric game turns into a

pure coordination game where the strong player wins whenever players choose a different number.

This is the extreme case of lemma 2 that implies that the weak player should imitate the strong

player more and more closely to win the game as p increases. This proposition states that if p is

very high, then the weak player cannot win and can get a draw only if she imitates the strong

player perfectly (gw = gs).

Figure 2 summarizes how the equilibrium changes depending on the value of k and p. In the

region below the curve (solid line), there is a unique pure strategy Nash Equilibrium which is

choosing zero for both players. In this region, whoever chooses the smaller number wins (Lemma

1). On the curve that converges to 0.5 as k goes to infinity, there are infinitely many mixed

strategy Nash Equilibria where gw = 0 (Lemma 3). Above the curve, there is at least one mixed

strategy Nash Equilibrium and there is imitation behavior such that the weak player can only

win if she imitates the strong player (Lemma 2). Finally, above the dashed curve that converges

to p = 1− 1
2z (in the current game, z = 100), the game turns into a coordination game and there

is a unique mixed strategy Nash Equilibrium that involves uniform randomization on full support

and the strong player always wins unless there is a tie (Proposition 5).
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Figure 2: Equilibrium Characterization Based on the Value of k and p.

2.2 N-player Asymmetric Guessing Games

We now introduce the asymmetric N-player case. Players simultaneously choose a number from

a closed interval, e.g. [0, 100]. Let {g1, g2, g3, ..., gN} be the numbers chosen by the players.

Asymmetry among the players comes from the fact that each player has a potentially different k

value, namely ki ≥ 1, i = 1, 2, .., N ; implying that player i has ki replicas. This means that the

guess of player i will be multiplied by ki. The target number is given by:

T =

N∑

i=1
ki.gi

N∑

i=1
ki

.p

The player whose number is the closest to the target number wins the game and the others

receive nothing. If there is a tie among the players, they share the prize. The following lemma

characterizes the sufficient condition for (0, 0, ..., 0) strategy profile to be the unique pure strategy

Nash equilibrium in this game.

Lemma 6 Let there be N ≥ 2 asymmetric players playing the asymmetric guessing game de-

scribed above. (0, 0, ..., 0) strategy profile is the unique pure strategy Nash equilibrium achieved by
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the iterated elimination of weakly dominated strategies if

p < min{

N∑

i=1
ki

2k∗
, 1}, where k∗ = max{k1, k2, k3, ..., kN}

This result implies that if the strongest player is not stronger than the sum of all of the other

players (1 6

N∑

i=1

ki

2k∗ ), then strategy profile (0, 0, ..., 0) is the unique Nash equilibrium of this game

since the above condition is satisfied by definition (0 < p < 1). But even in the highly asymmetric

case (the strongest player is stronger than the sum of all other players), (0, 0, ..., 0) is still the

unique Nash equilibrium if p is small enough. Lemma 1 is a special case of this lemma where

N = 2, k1 = 1 and k2 = k. The classical symmetric N-player guessing game is also a special case

of this lemma where ki = 1 for all i.

3 Experimental Design and Procedures

The experiment was conducted at the experimental laboratory of a university in one of the big

cities of Turkey. We collected data from 313 subjects who were mostly undergraduate students.

A session lasted approximately 45-50 minutes. Computers in the experimental laboratory were

isolated so that the subjects could not see other screens. Subjects were also not allowed to com-

municate during the sessions. The experimental code was programmed with z-Tree (Fischbacher,

2007).

Both two-player and three-player games were played. In addition to control groups (symmetric

games) in which standard (two-player and three-player) guessing games were played, there were

treatment groups in which players have different types (asymmetric games). In the two-player

asymmetric games, players in each pair had different k values: kw = 1 and ks = 9. In the

three-player asymmetric games, two of the players had kw1 = kw2 = 1 and the other had ks = 8.

Table 1 summarizes the design of the experiment. For brevity, we use the following abbreviations:

S2 for two-player symmetric games; AS2 for two-player asymmetric games, S3 for three-player

symmetric games, and AS3 for three-player asymmetric games.

In all the games, the strategy space for each player was the set of integers in [0, 100]. We
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set p = 1/2 in all sessions so that the unique pure strategy Nash equilibrium for both two and

three-player asymmetric games is choosing zero for everyone (See Lemma 6).

The experiment was announced via e-mail and participants were registered to one of the

experimental sessions online. We screened subjects so that any subject could participate in only

one session. When subjects arrived at the laboratory, they were placed randomly to separate

computer stations (In cases where more participants than needed showed up, the participant

arriving last was dismissed with a 10 Turkish Lira (TL) show-up fee). Then, all subjects were

given an instructions sheet in which the general rules and the rules of the game were written

(See Appendix B1 for the instructions). Instructions were read aloud, and questions related to

the instructions were answered. Then, subjects were given a multiple-choice quiz in a computer

environment. The quiz consisted of five questions related to the calculation of the target number

and the payment scheme. After the quiz, any remaining questions of the subjects were answered.

Then, the software randomly formed two and three-player groups that did not change throughout

a given session and randomly assigned player types to the subjects. Except for the controls, in

each session, there was one weak player and one strong player in two-player games. In three-

player games, there were two weak players and one strong player. Before starting the first period,

subjects were informed about their types on the computer screen for 15 seconds. Instructions

were framed neutrally and terms such as “weak” or “strong” were avoided. Instead, participants

were given the following information on the screen “You are Player A (B) and your number will

be multiplied by 1 (9)” or “You are Player A (B or C) and your number will be multiplied by 1

(1 or 8)” depending on the subject’s type in the two and three-player games, respectively. They

were also informed that their types and groups were assigned randomly by the software, and other

player(s) in the group will not change throughout the whole session.

After informing players about their types, they played the game for 10 periods. During each

period, the formula of the target number and the type of the player were displayed on the screen.

Subjects were given 45 seconds for each period to decide on and submit their numbers. At the end

of each period, full feedback was provided for 15 seconds. That is, after all subjects submitted

their numbers, they were provided feedback about their own number, the number(s) the other

player(s) chose in the group, the calculated target number and the winner. At the end of the

last period, they were asked to fill out a short survey including some demographic questions.

They were also provided a space to describe their strategies in their own words. After subjects

completed the survey, the software randomly chose 3 of the 10 periods and calculated the earnings

in those periods. For each chosen period, the winner in each group earned 10 TL and 15 TL and

the other player(s) earned nothing in two and three-player games, respectively. In case of a tie,

winning subjects split the fixed amount among themselves. This payment scheme information

was also explained in detail in the instructions. Each subject was paid 10 TL show up fee plus

what they earned from the selected 3 periods. On average, participants earned 30 TL in total
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(approximately $11 at the time). At the end of each session, subjects received their payments

individually.

4 Experimental Results

Since there is strong experimental evidence that initial behavior is quite different than the equi-

librium predictions, we first examine the behavior in the first period. Then, we will examine the

data in the later periods.

4.1 The First Period Behavior

We now investigate whether the chosen numbers in the first period differ across treatments. We

first compare proportion of zero choices, and then compare all choices in the first period.

4.1.1 Comparison of Proportions of Zero Choices in the First Period

There is no particular reason to not expect rational players to play equilibrium in their first

encounter with games. However, there is substantial experimental evidence showing systematic

deviations from equilibrium in initial responses (Costa-Gomes and Crawford (2006)). This is also

the case in two-player guessing games that do not require iterated reasoning (Grosskopf and Nagel

(2008, 2009)). We first examine the initial equilibrium behavior in our experiment.

Result 1: The equilibrium choices in the first round are significantly higher in two-player

symmetric games than in asymmetric games, but there is no difference in three-player games.

Table 2 presents the proportion of the subjects who choose zero in the first period for both

two and three-player games. In two-player games, 27% percent (45/166) of all subjects chose

zero. Almost half of the subjects in S2 played the equilibrium strategy (46%) whereas only 14%

of two-player asymmetric game players chose zero. We compared proportions of zero choices by
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using the two-sided Fisher’s Exact Test. Apparently, proportions of zero choices in symmetric and

asymmetric games are significantly different (46% vs. 14%, p < 0.001).12 When we further analyze

asymmetric games by taking into account the roles of the players, we find that the behavior of

the weak players and their strong counterparts are virtually the same (16% vs. 12%, p = 0.77).

For three-player games, when we compare the proportions of zero choices in the first period of

S3 and AS3, we find no difference (33% vs. 32%, p = 0.5). Furthermore, we could not reject the

hypothesis that the behavior of players with different roles are the same (29% vs. 37%, p = 0.4).

Finally, we compare the observed behavior in two-player and three-player games. The fre-

quency of equilibrium play in S2 as compared to S3 is relatively higher but not significantly so

(46% vs. 33%, p = 0.17). However, when we compare AS2 with AS3, we find significant differ-

ences for both all players and strong players (14% vs. 32%, p = 0.002; 16% vs. 29%, p = 0.13;

12% vs. 37%, p = 0.01).

Our baseline treatment (S2) is very similar to the two-player guessing game in Nagel et al.

(2008) who use p = 2/3. They observed that only 9.85% of students chose zero in the first period

while we observed 45.6%. In the standard two-player game, iterative reasoning is unnecessary

since zero is the weakly dominant strategy. For this reason, the two-player guessing game is much

simpler than its N-player versions. We further simplify the game by choosing p = 1/2 instead

of p = 2/3. Thus, one possible reason for this high proportion is that the game in our baseline

treatment is the simplest in the literature.13

To sum up, regarding the first period equilibrium choices, there is a significant difference

between symmetric and asymmetric two-player games but introducing asymmetry seems to have

essentially no effect in three-player games.

4.1.2 Comparison of All Choices in the First Period

In addition to the initial equilibrium behavior, examining the distribution of choices and how

close players get to the equilibrium in the first period is also informative.

Result 2: The distributions of first round choices in the two-player symmetric and asymmetric

games are significantly different from each other, but there is no significant difference in three-

player games.

12We set the level of significance as α = 0.05 and consider all p values greater than 0.05 as insignificant.
13Another reason may be the backgrounds of the subjects. 58% of all subjects are from engineering and 67% of

people who choose zero are from engineering. These figures are 65% and 71% in the S2 treatment and they may

have recognized the game form better than others (as in Chou et al. (2009) comparing Caltech vs. community

college subjects). For the subjects who choose less than or equal to five as in Chou et al. (2009), these figures

are 58% and 63% for all subjects and 65% and 70% for S2. However, none of these proportions are significantly

different (two-sided Fisher’s Exact Test).
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Table 3 presents means and medians of the first period choices. When all data is considered,

S2 has the lowest mean and median values and AS2 has the highest values.

We used two sample Kolmogorov-Smirnov (KS) test to identify whether chosen numbers in

the first period of symmetric and asymmetric games are drawn from the same distribution. Figure

3 shows the cumulative frequencies of chosen numbers in S2, AS2, S3 and AS3 in the first period.

It is clear from Figure 3 that the cumulative distribution function of first period choices in S2 lies

above the cumulative distribution function of first period choices in AS2. Thus, we reject the null

hypothesis that these two samples come from the same distribution (two-sided KS: p < 0.001).

However, we cannot reject this null hypothesis for S2 - S3 and S3 - AS3 (two-sided KS: p = 0.84

and p = 0.78, respectively). Moreover, there is a significant difference between the choices of

players in AS2 and AS3 in the first period (p = 0.042).

Figure 4 demonstrates the cumulative frequency of the first period choices of weak and strong

players in AS2 and AS3 treatments. We find no significant differences between the choices of weak

players and the choices of strong players neither within AS2 nor within AS3 (two-sided KS test;

AS2 weak vs. AS2 strong, p = 0.62; AS3 weak vs. AS3 strong, p = 0.99). Moreover, while there

are no significant differences between weak players in AS2 and AS3, choices of strong players seem

to come from different distributions (two-sided KS test; AS2 weak vs. AS3 weak, p = 0.66; AS2

strong vs. AS3 strong, p = 0.047).14

In brief, choice behavior in the first period in both two and three-player games support our

result in the previous subsection that introducing asymmetry causes the first period choices to

differ in two-player games, but not in three-player games.

14We also test whether the choices in the treatments are drawn from the same distribution with the Kruskal-Wallis

test. For all the treatments (S2, AS2, S3, and AS3), we reject this hypothesis (p = 0.048).
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Figure 3: Cumulative Frequency of All Chosen Numbers in the First Round

Figure 4: Cumulative Frequency of Weak and Strong players in the First Round
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4.2 The Behavior in Later Periods

Table 4 reports the mean and median choices over all subjects for each game over time (for

asymmetric games, choices are indicated for both all players and for weak and strong players

separately). Note that in two-player games, the median choices for all subgroups monotonically

decrease (not strictly) and become at most 1 after period 4 and 0 after period 6 (mean choices

also decrease with some exceptions, but since there are few subjects who choose high numbers

even in the last periods, median is a more reliable measure to summarize behavioral tendencies).

Moreover, the median choices seem to be higher in two-player asymmetric games especially in

the first 4-5 periods. Figure 5 clearly shows the difference in median choices over time between

two-player symmetric and asymmetric games.

Result 3: The respective significant and insignificant distributional differences between symmet-

ric and asymmetric games in the two and three-player cases, observed in the first round choices,

continue to hold for later periods.

For three-player games, the median choices exhibit similar patterns, but subgroups contain

irregularities. Median choices of weak and strong players decrease but not monotonically and

become zero at the last period for strong players, and do not become zero for the weak players.

Moreover, as can be seen from Figure 6, the median choices do not seem to differ between the

symmetric and asymmetric games in any of the periods which support our findings about the first

period behavior and they can be generalized into later periods.

To check whether the aforementioned observations are statistically valid, we conducted period-

wise comparisons of subgroups by using the Kolmogorov–Smirnov test. Table 5 shows p-values

for all those comparisons. For two-player games, choices in the symmetric and the asymmetric

case are significantly different for all periods except the last period (Table 5, row 1). There is no

difference between the weak and strong player (Table 5, row 2). For three-player games, neither

choices in symmetric and asymmetric games nor choices of different types in asymmetric games

are found to be stochastically different from one another (Table 5, row 3 and 4).
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Figure 5: Median Choices for Two-player Games

Figure 6: Median Choices for Three-player Games
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When we make cross comparisons of choices between two-player and three-player games, we

find that the choices are significantly lower in two-player symmetric games in the mid-periods

relative to the choices in three-player symmetric games. This observation together with the fact

that the choices tend to decrease (Table 4) implies that choices are closer to the equilibrium

in two-player games than the choices in three-player games in the mid periods (Table 5, row 5).

Finally, there is essentially no difference, except in the first period, between choices in asymmetric

two-player games and three-player games (Table 5, last row).

These results show that introducing asymmetry has a lasting effect on the choices especially in

two-player games but not a significant effect in three-player games. Moreover, all median choices

tend to converge in time to the equilibrium choice, which will be examined in the next section in

more detail.

4.2.1 Existence and Extent of Convergence

As mentioned in the previous section, it is evident that all the median choices and almost all the

mean choices monotonically decrease over time and converge to zero, although not fully (Table

4, Figure 5 and 6). This monotonically increasing trend in the proportion of zero choices can be

seen clearly in Table 6.

Result 4: Choices unravel to the equilibrium in all games due to both lower choices and the

increasing percentage of zero choices over time.

We compared the proportions of zero choices pair by pair by using the “Fisher’s Exact Test”

for the first period in section 4.1.1. We now extend this comparison to all periods. These results

are presented in Table 7. In two-player games, the frequency of the equilibrium play is significantly

higher in symmetric games than in asymmetric games (Table 7, row 1).

In three-player games, we found no difference in equilibrium play frequencies between sym-

metric and asymmetric games in the first period. Table 6 shows that this trend continues for the

first four periods but convergence seems to slow down in asymmetric cases, especially after period

four (speed of convergence will be examined in the next section in more detail). Only in the last

two periods are equilibrium choices significantly more frequent in three-player symmetric games
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than in asymmetric games (Table 7, row 2).

When we make cross comparisons between two and three-player games, we find that in sym-

metric games, there is convergence but the frequencies of equilibrium play in three-player games

are significantly lower than in two-player games after the first two periods (Table 7, row 3). In

asymmetric games, equilibrium play frequencies are also significantly lower in three-player games

in comparison to two-player games, especially in the last four periods (Table 7, last row). These

findings suggest that the extent of convergence in three-player games is lower than in two-player

games for both symmetric and asymmetric cases. If we focus on the last period, we observe

that there is a significant difference in proportions between two and three-player symmetric and

asymmetric games (S2 vs. AS2, S3 vs. AS3, and AS2 vs. AS3).

Thus, we conclude that subjects in all games revise their choices towards the equilibrium

but introducing asymmetry and the number of players seem to affect the extent of convergence

negatively, measured as the proportion of equilibrium choices.
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4.2.2 The Speed of Convergence

A clear convergence to the equilibrium is observed in choices, as shown in the previous section.

How fast this unraveling process occurs is also of importance.

Result 5: Introducing asymmetry slows down the convergence to the equilibrium in two (S2 vs.

AS2), but not in three-player games (S3 vs. AS3). Convergence is somewhat faster in symmetric

two-player games than in symmetric three-player games (S2 vs. S3), but this is not valid in

asymmetric games (AS2 vs AS3).

Table 8 presents the medians of chosen numbers at each period for all treatments and the rates

of decrease in medians (defined by Nagel (1995)). The rate of decrease is calculated by using the

following formula:

wmedian
1−t =

medianperiod=1 −medianperiod=t

medianperiod=1

where wmedian
1−t denotes the rate of decrease from period 1 to period t. The above definition implies

that the larger the wmedian
1−t value is, the faster the convergence tends to be. Specifically, if there

is full convergence from period 1 to period N , wmedian
1−t value is one and if the median choice does

not change from period 1 to period t, wmedian
1−t value is zero.

In two-player games, there is immediate convergence in symmetric cases. That is, in the second

period, median choice becomes zero. In all two-player games, convergence happens in period 7.

In three-player games, zero median is observed in period 7 in symmetric games, and in the very

last period in asymmetric games. We calculated the rates of decrease for t = 2, 3, 4, 5 and the

average of these rates, since the median is already zero in period 5 for most treatments. It seems

that rates in symmetric games are higher than in asymmetric games.

Since we have individual data, we are able to make a more detailed analysis based on individual

choices over periods. We define the rate of decrease in the “choice” for each player as follows:

wchoice
1−t =

choiceperiod=1 − choiceperiod=t

max{choiceperiod=1, choiceperiod=t}
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where wchoice
1−t denotes the rate of decrease of choices from period 1 to period N. Notice that the

formula of the rate of decrease in “choice” is different from the formula of the rate of decrease in

median. We now divide the difference by the maximum of the choice in period 1 and the choice

in period N instead of the choice in period 1. By doing this, we prevent the rate of decrease

of some subjects to be undefined (i.e. the subjects who choose zero but increase their choice

later) and the rate of decrease to take extreme negative values (i.e. the subjects who choose a

small number but increase their choice later). All wchoice
1−t values are between -1 and +1. We

observe that most of the subjects who choose zero in the first period also continue to choose

zero later. The rates of decrease are not defined for those subjects. But since these subjects

chose the equilibrium choice directly, we assign rates of decrease of these subjects as +1. We

calculated wchoice
1−t values for each subject for all periods, and to see whether there are differences

in speed of convergence, we compared these values across treatments. Table 9 shows the p values

of two-sample Kolmogorov-Smirnov tests of the equality of distributions.

Results show that the distributions of rates of decrease are significantly different between two-

player symmetric and asymmetric games. The former has a higher speed of convergence (Table 9,

row 1). In three-player games, there is no difference in speed of convergence between symmetric

and asymmetric cases (Table 9, row 2).

Cross comparison between two and three-player symmetric games shows that the speed of

convergence in the former is generally higher than in the latter, but the differences are significant

only in the mid periods (Table 9, row 3).15 There is no difference in the speed of convergence

between asymmetric two-player games and three-player games (Table 9, last row).

When we compare the rates of decrease in median from period 1 to 5 and from period 1 to 10

with a rank order test, the rates are significantly higher in symmetric games than in asymmetric

games for two-player games (higher but not significantly so for three-player games).16

Furthermore, in order to test whether having a weak or a strong opponent influences the

speed of convergence, we compared the behavior of weak players in asymmetric cases and all the

15This is expected due to the equilibrium structure. In two-player games, there is a weakly dominant strategy,

which does not hold in three-player games.
16wmedian

1−5 and wmedian
1−10 in two-player games p = 0.001 and p = 0.029; in three-player games p = 0.36 and p = 0.06.
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players in symmetric cases (weak players in AS2 vs. all players in S2). In two-player games, the

KS tests (also Wilcoxon rank-sum tests) show that the speed of convergence for the players in

symmetric cases is significantly higher than the weak players in asymmetric cases until period

eight (p < 0.01). The same comparison implies no distributional differences in three-player cases

(weak players in AS3 vs. all players in S3). We also compared the behavior of strong players

in two and three-player asymmetric games (strong players in AS2 vs. strong players in AS3) to

see whether having one or two weak opponents influences the speed of convergence but found no

significant difference in their behavior. As a robustness check, we ran the same tests by excluding

the players who always chose zero in all periods (we assigned rates of decrease of these subjects

as +1). The results still mostly hold, although we lost significance in a few cases.

4.3 Earnings and Discrepancy in Choices

In this section, we report two more measures to detect the possible effects of introducing asym-

metry in guessing games. We first compare the earnings of strong and weak players. Then, we

define discrepancy in choices and compare symmetric/asymmetric games and strong/weak players

in asymmetric games in terms of discrepancy in choices.17

4.3.1 Earnings

In this paper, we examine discrete (tournament) payment version of guessing games in which the

player with the closest number to the target wins and gets the full prize while others get zero (in

case of a tie, winners share the total prize). This discreteness makes a player a winner, regardless

of how much closer she is to the target than the other player(s). Although previous analyses

about the number choices of different types is very informative, this discreteness in determining

the winner makes analyses of the average earnings of different types18 important.

Result 6: The strong players have an earning advantage over the weak players in both two and

three-player games, more prominently in the latter.

Figure 7A and 7B, respectively, show the average earnings of strong and weak types in asym-

metric two-player and asymmetric three-player games over periods 1-10. The winner earned 10

TL and 15 TL in each period in two and three-player games, respectively. In case of a tie, the

winners share these amounts which makes the average earnings 5 TL. If all players were to play

the equilibrium strategy (or choose the same number), the earnings for all would be on the gray

line at 5 TL in each figure. However, we observe that the average earnings deviate from this

17These two measures would be very closely related if we used a continuous payment scheme since choices directly

affect the level of earnings in continuous payment games where all players are paid depending on their distance to

the target.
18We can also compare winning percentages of different types, but this complicates aggregation in three-player

game because there are different combinations of ties.
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equilibrium earning in both two and three-player games. In two-player games (Figure 7A), strong

players earn strictly more than weak players in all except two periods but these differences are

only observed to be significant in periods 6 and 9. In three-player games (Figure 7B), strong

players earn more in all but one period and the earnings converge to 5 TL over time. In this

case, these differences are only significant in periods 1, 3, and 6. When we compare the overall

earnings for the whole game, we find that for both games, strong players earn significantly more

than weak players (5.31 vs 4.69 TL, p = 0.016 in AS2 and 5.98 vs. 4.51 TL, p < 0.001 in AS3).

These findings suggest that strong players in asymmetric games overall seem to have an earning

advantage over weak players especially in three-player games, but this advantage is not observed

to be consistent across periods and is significant only in 2-3 periods.19

19Wilcoxon rank-sum test is used, and significance level is set to be 0.05. When we repeat the same analysis

with the KS test, the difference loses its significance for two-player games, but it is still significant for three-player

games.
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4.3.2 Discrepancy in Choices

We define discrepancy in choices (shortly, discrepancy) as the squared distance of the chosen num-

bers to the winning number. It is calculated in each period for every player and then the average

is found for different games and player types. Since all choices must be equal in equilibrium,

this measure should always be zero. It can also be considered as a metric for performance. It

shows how losing players choose their numbers differently in comparison to their winning rivals

and how unsuccessful they are in anticipating the behavior of other player(s). Higher values of

this measure imply that losers tend to lose with a higher margin and are more unsuccessful.

Result 7: Introducing asymmetry increases discrepancy in choices in both two and three-player

games, more prominently in the former.

Figure 8 shows the comparison of symmetric and asymmetric games and weak and strong

players in terms of average discrepancy. Firstly, discrepancy is reduced over time as all the lines

have negative slopes.20 Secondly, discrepancy is higher in asymmetric games in comparison to

symmetric ones, especially for two-player games (First column, Figure 8A and 8C) since the

20Interestingly, in almost all cases, the value increases in the last period. This can also be seen from Table 4.

Some players, at least, might have chosen higher numbers in period 10 due to boredom and fatigue and they may

have wanted to do something different by experimenting with some extreme values (Portfolio effect and/or wealth

effect might have played a role as well). In period 10, the number of people who choose more than 50 are 2 (out of

68), 4 (out of 98), 0 (out of 33) and 4 (out of 114) in S2, AS2, S3 and AS3, respectively.
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dashed curve is above the solid curve with a few exceptions. Finally, we see that discrepancy for

the weak players is less than the strong players in later periods (Second column, Figure 8B and

8D).

Thus, these findings suggest that introducing asymmetry increases discrepancy and strong

players seem to be more susceptible to this asymmetry (e.g., strong losers lose with a higher

margin than weak losers).21 When we consider the combined evidence regarding earnings and

discrepancy, we can say that size, to some extent, does matter more prominently in two-player

games. One reason for this seems to be the asymmetry driven perceptions of weak and strong

players about their relative ability to win the game that can be inferred from the debriefing

part at the end of the experiment (See Appendix B2). This might be considered as a self-

fulfilling prophecy of players. Since some, if not most, strong (weak) players think that they are

(dis)advantageous and that they are more (less) likely to win, they play according to these beliefs.

As a result, the earnings of strong players are somewhat higher than weak players but (due to this

overconfidence, some strong players are more careless in choosing their numbers and) this leads

to strong players losing with a higher margin when they do, and more discrepancy in asymmetric

games.

5 Discussion and Conclusion

In this paper, we have examined the behavior in guessing games with asymmetric players. This

asymmetry is introduced by creating replicas of the players that influence their relative strength

in determining the target number. We characterized the equilibria of this class of guessing games

and demonstrated the cases in which these games are observed to be indistinguishable from

standard guessing games that have a unique pure strategy Nash equilibrium. In all other cases,

the equilibrium is mixed, may not be unique, and involves the weak player imitating the strong

player.

In our experimental design with two and three-player repeated guessing games with full feed-

back, we chose the parameters such that all versions of the game have the same equilibrium pre-

diction that all players choose zero. Hence, the observed differences in behavior can be attributed

to the perceived effect of created asymmetry.22 We find that in the first period, equilibrium be-

21In the pooled data, there is a clear difference in discrepancy between symmetric and asymmetric games (first

column in Figure 8, t-test, p < 0.01). Moreover, if we look at the pooled data of the ones who lose in asymmetric

games, we see that the average difference between the choices of losers and winners is significantly different for

weak and strong losers in AS3 (15.91 vs. 23.87, t-test, p < 0.001). We also see that the average choice for weak

and strong losers is significantly different in AS3 (19.04 vs. 27.7, t-test, p < 0.001).
22One can argue that since the situation is more complicated in the asymmetric treatments, the difference in

behavior can be caused by this increased complexity. Firstly, to keep the game as simple as possible, the p value

(p = 1/2) and k values (k = 9 and k = 8 in two and three-player games, respectively) are intentionally chosen to

make the target fairly easy to calculate. Second, it is difficult to say whether the observed change in the behavior is
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havior is observed significantly more frequently, and overall choices are closer to the equilibrium

in two-player symmetric games in contrast to two-player asymmetric games. But behavior in

three-player symmetric and asymmetric games is similar with respect to first period choices. We

also find support for these observations in the later periods. We conclude that although equilib-

rium is the same in all games, introducing asymmetry moves players away from the equilibrium

in two-player games.

There is clear convergence to equilibrium in all games but there are some differences across

treatments. Equilibrium frequencies (the extent of convergence) in asymmetric games and three-

player games are significantly less than symmetric and two-player games, respectively. Conver-

gence speed measures (rate of decrease in median and choices) are significantly higher in sym-

metric games than in asymmetric games for two-player games (higher but not significantly so for

three-player games).

When we examine the earnings of different types in asymmetric games, we find that the strong

players seem to have a slight earning advantage over the weak players. When we finally compare

the treatments in terms of discrepancy of choices (defined as the squared distance of choices from

the winning number), we find that asymmetry increases discrepancy in both two and three-player

games, and strong players are influenced more negatively from the asymmetry in comparison to

the weak players.

Two-player guessing games are partly studied to address the challenge of distinguishing be-

tween two sources of non-equilibrium behavior, self-bounded rationality and believing others are

boundedly rational. Grosskopf and Nagel (2009) deal with this problem and conclude that the

former dominates the latter. Our design does not allow us to make this distinction, but based on

explanations of subjects at the end of the experiment, we can say that both sources are in play.

We observe that there are many subjects who mention that they start choosing smaller numbers

after seeing their rival’s small numbers (learning to best respond/bounded rationality). We also

observe that there are a considerable number of subjects who do not choose zero at the beginning

in order to not “awaken” their opponent (the belief that others are boundedly rational). Thus,

our already high proportion of equilibrium behavior in the first period may be an underestimate

of the actual ratio of rational players (This is reinforced by the fact that there are some subjects

who mention choosing the lowest number “1”, they were under the belief that one -not zero- was

the smallest number that can be chosen). One twist that would help isolate these two sources of

non-equilibrium behavior is to make the matching process random in each round. To the best of

our knowledge, there is no study employing random matching in the context of repeated guessing

games. This may eliminate the second consideration by way of limiting learning opportunities

about the opponent.

due to the new structure or increased complexity of the game because we do not have a good measure of complexity

in the literature. Nevertheless, some extensions can be made in future studies to address this issue such as having

a within subject design or to correlate behavior with some measure of cognitive capacity.
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As an extension related to the role assignments, entitlement effects may be investigated. The

right to be a specific player can be allocated to the player who performs better in an unrelated

task (e.g., general knowledge questions as in Hoffman et al. (1994)). This perceived entitlement

may generate false impressions such as overconfidence and influence behavior in guessing games.23

In our design, we restrict the parameter values, (especially p = 1/2) such that the equilibrium

is easy to calculate, and we think that this was effective in obtaining relatively quick convergence

in both two and three-player games. But even in this simple case, introducing asymmetry in the

relative strength of players leads to asymmetry in the convergence to equilibrium and its speed

(in two-player games). We think that this result is important because it shows how fragile the

rational reasoning process is (e.g., adding a small twist without changing the equilibrium distorts

rational reasoning by triggering other considerations). In future studies, higher p and appropriate

k values without changing the equilibrium might be used to observe whether the results still hold.

We think that it is also worthwhile to investigate N = 3 case further and N > 3 cases. Moreover,

Proposition 4 also has a testable implication of whether increasing the k value without changing

the payoff structure affects behavior.24

Finally, one goal of guessing game experiments like experimental asset markets and expectation

feedback experiments is to better understand behavior in financial markets. In the latter two

models, non-convergence to the fundamental value in the form of mispricing is an established

finding (Heemeijer et al., 2009; Hommes et al., 2005, 2008; Kirchler, 2009; Noussair et al., 2001;

Smith et al., 1988). However, in guessing games literature, especially the fast convergence result

is surprising because financial markets are volatile (Sonnemans and Tuinstra (2010) argue that

these models correspond to different markets, e.g., speculative vs. dividend yield markets). With a

simple modeling twist, we observe a significant difference between symmetric and asymmetric cases

in two-player games in terms of convergence and its speed (although not in three-player games).

Hence, we think that our framework has the potential to capture this phenomenon regarding

non-convergence and instability by means of different parametrization that allows both pure and

mixed strategy Nash Equilibria25 (for example, p = 2/3 and k ≥ 4 result in mixed equilibria.

Even with a much smaller strategy space such as [0, 10], one would easily get cases where there

23We run an extra two-player treatment with an auction stage where the roles are assigned based on bids that

participants submit in a pre-game second price auction. This addresses the question of whether players are willing

to pay for any role and bidding for roles affects behavior. Since in this paper we are directly interested in the effects

of asymmetry on behavior, we do not discuss the results of this treatment.
24In another pilot session that we did not report here, we run the two-player game with k = 2 and get virtually

the same results as the symmetric game. However, we think that it is worthwhile to run treatments with higher k

values to see its effects on behavior.
25As an extension, our static model where the strengths of players are fixed can be made dynamic as in Kopányi

et al. (2019). The strengths of players that are given at the beginning can be adjusted positively depending on

their performance throughout the game in a continuous payoff setting (by fixing the equilibrium of the game). This

extra competitiveness may have an effect on the dynamics and speed of convergence.
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are many mixed equilibria. See Appendix A2 for some examples). Our findings regarding the

mixed strategy equilibrium involving imitation is related to this point as well, because imitative

behavior that is generally considered to be a decision making heuristic in complex environments

emerges as an equilibrium phenomena. Imitation is indeed used as an adaptive strategy by players,

especially when they do not recognize the game form. It is also observed in guessing games where

players learn to play the equilibrium strategy, not through a self-initiated rationality process,

but through the imitation of the winning players. Our model implies that imitation does not

always have to emerge as a heuristic but may also emerge as a part of equilibrium behavior. Since

imitation is also a crucial concept in financial markets, we believe that this is an endeavor that is

worth further investigation because it has the potential to better represent the observed empirical

regularities.
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beauty-contest game. Mathematical Social Sciences, 90, 191–207.

[40] Noussair, C., Robin, S., and Ruffieux, B. (2001). Price bubbles in laboratory asset markets with constant

fundamental values. Experimental Economics, 4(1), 87-105.

[41] Penczynski, S. P. (2016). Persuasion: An experimental study of team decision making. Journal of Economic

Psychology , 56, 244-261.

[42] Sbriglia, Patrizia. (2008). Revealing the depth of reasoning in p-beauty contest games. Experimental Eco-

nomics, Vol. 11, No.2, 107-121.

[43] Slonim, R. L. (2005). Competing Against Experienced and Inexperienced Players. Experimental Economics,

Vol. 8, 55-75.

[44] Smith, V. L., Suchanek, G. L., and Williams, A. W. (1988). Bubbles, crashes, and endogenous expectations

in experimental spot asset markets. Econometrica, 1119-1151.

[45] Sonnemans, J. and Tuinstra, J. (2010). Positive expectations feedback experiments and number guessing

games as models of financial markets. Journal of Economic Psychology , 31(6), 964-984.

[46] Stahl, Dale O. (1996). Boundedly rational rule learning in a guessing game. Games and Economic Behavior ,

Vol. 16, 303-330.

[47] Sutter, M. (2005). Are four heads better than two? An experimental beauty-contest game with teams of

different size. Economics Letters, Vol. 88 (1), 41-46.

33



[48] Weber, Roberto A. (2003). Learning with no feedback in a competitive guessing game. Games and Economic

Behavior , Vol. 44, 131-144.

Appendix A1 - Proofs

Proof of Lemma 1. Assume p < k+1
2k < 1 for any k > 1. Suppose gw < gs. Remember that

the target number is the weighted average of the two numbers multiplied by p (T = (gw+kgs
k+1 )p).

Therefore, it can never be greater than or equal to gs. Then, we have two possible cases: 1)

T ≤ gw < gs and 2) gw ≤ T < gs. If T ≤ gw < gs, clearly the weak player wins. If gw ≤ T < gs,

the weak player is the winner again, since

|gw − T | − |gs − T | = 2T − gw − gs = (
2p

k + 1
− 1)

︸ ︷︷ ︸

<0

gw + (
2pk

k + 1
− 1)

︸ ︷︷ ︸

<0

gs < 0.

Now suppose that gs < gw. If T 6 gs < gw, clearly the strong player wins. If gs 6 T < gw, the

strong player is the winner again, since

|gs − T | − |gw − T | = 2T − gs − gw = (
2pk

k + 1
− 1)

︸ ︷︷ ︸

<0

gs + (
2p

k + 1
− 1)

︸ ︷︷ ︸

<0

gw < 0.

Thus, this implies that if p < k+1
2k , the player who chooses a smaller number wins the game.

This further implies that choosing zero is the weakly dominant strategy for each player because

choosing zero guarantees a win or at least a draw. Thus, (0,0) is the unique Nash Equilibrium in

weakly dominant strategies.

Proof of Lemma 2. Assume 1 > p > k+1
2k .

i) Suppose gw > gs. Since T = (gw+kgs
k+1 )p, the weighted average is already closer to gs than

gw. It is easy to see that if the weighted average is multiplied by p < 1, the resulting number,

(T ), will be even more closer to gs than gw. Thus, for all p < 1 and k > 1, playing gw < gs is

necessary for the weak player to win.

Now, suppose gw < gs. Then, we have two possible cases: 1) T ≤ gw < gs and 2) gw ≤ T < gs. If

T ≤ gw < gs, clearly the weak player wins. If gw ≤ T < gs, the required condition for the weak

player to win is:

|gw − T | − |gs − T | < 0 ⇒ 2T − gw − gs < 0

⇒ (
2p

k + 1
− 1)gw + (

2pk

k + 1
− 1)gs < 0

⇒ (
2pk − k − 1

k + 1− 2p
)gs < gw

⇒ ags < gw (0 < a =
2pk − k − 1

k + 1− 2p
< 1)
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Hence, for the weak player to win she should choose a number such that ags < gw < gs. In

all other cases except gw = gs that leads to a tie, strong player wins.26

ii) Suppose for a contradiction that (gs, gw) is a pure strategy Nash Equilibrium (PSNE).

a) If a winner exists at (gs, gw), the other player always has an incentive to deviate because

she always has the chance to share the prize by choosing her opponent’s strategy at (gs, gw).

Hence, if one of the players is the winner at (gs, gw), this point cannot be PSNE.

b) If there is a tie at (gs, gw) with gw 6= 0, the strong player has an incentive to deviate

because she can win by choosing a gs <gw. Hence, such a point cannot be a PSNE.

c) In the case where (gs, gw) = (0, 0), the strong player has an incentive to deviate because,

given p > k+1
2k , choosing any gs > 0 guarantees winning. Thus, (0,0) cannot be a PSNE, either.

Hence, the game has no PSNE. Since the game is finite, we have at least one mixed strategy

Nash Equilibrium.

Now we show that the weak player imitates the strong player in equilibrium. Suppose that

the strong player randomizes between gsi where i = 1, ..., ls and ls ≤ z. Without loss of generality,

we order pure strategies of the strong player such that 0 ≤ gs1 < gs2 < ... < gsls . By part i, we

know that the weak player cannot win by choosing a pure strategy gw > max{gs1, gs2, ..., gsls}.
27

In other words, all pure strategies that satisfy gw > max{gs1, gs2, ..., gsls} are weakly domi-

nated. Now suppose that the weak player randomizes between gwi where i = 1, ..., lw and

lw ≤ z and max{gw1, gw2, ..., gwlw} > max{gs1, gs2, ..., gsls}. In this case, the weak player

can always increase her expected payoff by reducing the numbers over which she randomizes

such that max{gw1, gw2, ..., gwlw} ≤ max{gs1, gs2, ..., gsls}. The reason is that for no gw >

max{gs1, gs2, ..., gsl} that is assigned positive probability does the weak player have a chance

of winning the game. Alternatively, she has a chance to win or attain a draw by playing

smaller than or equal to the highest value of the mixed strategy of the strong player. Thus, no

gw > max{gs1, gs2, ..., gsl} can be a part of a mixed strategy for the weak player in equilibrium. In

other words, any mixed strategy that assigns positive probability to a gw > max{gs1, gs2, ..., gsls}

is weakly dominated (See Appendix A2 for simple examples). This implies that in any equilib-

rium, the weak player should randomize between her strategies gwi where i = 1, ..., lw and lw < z

such that max{gw1, gw2, ..., gwlw} ≤ max{gs1, gs2, ..., gsls}.

Furthermore, given any p and k such that 1 > p > k+1
2k , if a gsi satisfies a.gsi > gsi − 1 where

a = 2pk−k−1
k+1−2p , then for all pure strategies less than or equal to gsi, the strong player wins unless

there is a tie. This implies that the strong player randomizes over 0, 1, ..., gsi equally, and possibly

26From the first case mentioned above, a stronger imitation condition arises such that bgs < gw < gs where

b = pk

k+1−p
< 1 and b > a. Since this is a more restrictive condition and we have tournament payoff structure, we

continue using ags < gw < gs to represent the imitation behavior of the weak player.
27We assume 1 > p∗ > p > k+1

2k
such that the weak player wins for some strategy pairs. For the cases where

1 > p ≥ p∗ > k+1

2k
, the weak player can never win, and may attain a draw only if she perfectly imitates the strong

player (See proposition 5 for the definition of p∗ and other details).
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some other pure strategies in equilibrium. As a best response to this mixed strategy, the weak

player must randomize over 0, 1, ..., gwj = gsi equally, and also some other pure strategies such

that max{gw1, gw2, ..., gwlw} ≤ max{gs1, gs2, ..., gsls} based on the above argument. Note that the

weak player does not randomize only over 0, 1, ..., gwj = gsi in equilibrium, because if she does

then the strong player has an incentive to deviate (e.g., the strong player can win by choosing

gs = z).

We showed that the weak player never plays greater than the highest value of the mixed

strategy of the strong player and that the equilibrium does not involve the weak player always

choosing small numbers. These two arguments together prove that the weak player imitates the

strong player in equilibrium.

Proof of Lemma 3. Suppose k > 1 and p = k+1
2k .

i) Assume gw = 0. Then, T = gs
2 . Thus, |gw − T | − |gs − T | = 0 for any gs.

ii) If gw 6= 0 and gs < gw, the strong player will be the winner because for all p < 1 and k > 1,

the necessary condition for the weak player to win is gw < gs by Lemma 2. If gw 6= 0 and gw < gs,

the weak player will be the winner, since |gw − T | − |gs − T | = 2T − gw − gs = ( 1
k
− 1)gw < 0.

iii) Firstly, we show that in any equilibrium, gw = 0. Suppose a pure strategy by the weak

player where gw 6= 0. Then, the strong player can always win the game by choosing 0 ≤ gs < gw.

Now suppose that the weak player randomizes between gwi where i = 1, ..., l and l < z. Again,

the strong player can always win or guarantee a draw by choosing 0 ≤ gs ≤ min{gw1, gw2, ..., gwl}.

Thus, there cannot be an equilibrium that includes a pure or mixed strategy by the weak player

with gw 6= 0 and in any equilibrium, gw = 0.

Secondly, it is easy to show that (gs, gw) = (0, 0) and (gs, gw) = (1, 0) are pure strategy Nash

Equilibria because neither player has an incentive to deviate, given the other player’s strategy

(the strong player is actually indifferent between choosing zero and one and in both cases, there

is a tie). Moreover, by Lemma 2 − ii a and b, there cannot be any other pure strategy Nash

equilibria.

Finally, we show that there are infinitely many mixed strategy Nash Equilibria including

randomization between gs1 = 0 and 2 ≤ gs2 ≤ z equally and any randomization between gs1 = 0

and gs2 = 1. Note that if gw = 0, any pure strategy gs (part i) or any mixed strategy of the

strong player will result in a tie. However, gw = 0 is the best response of the weak player only for

the mentioned mixed strategies. The second part is trivial: any (infinitely many) randomization

between gs1 = 0 and gs2 = 1 will provide the same expected payoff since all payoffs are the same

in both pure strategy Nash Equilibria ((gs, gw) = (0, 0) and (gs, gw) = (1, 0)). We now show the

first part that gw = 0 and randomization between gs1 = 0 and 2 ≤ gs2 ≤ z equally are the best

responses to each other. Given the randomization between gs1 = 0 and 2 ≤ gs2 ≤ z equally, any

0 ≤ gw < gs2 will give the same expected payoff (no gw ≥ gs2 or no randomization by the weak

player can provide a higher expected payoff) to the weak player. So, gw = 0 is a best response to
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the equal randomization between gs1 = 0 and 2 ≤ gs2 ≤ z. Given gw = 0, randomizing equally

between gs1 = 0 and 2 ≤ gs2 ≤ z will provide the exact same expected payoff to the strong player

as any other pure or mixed strategy. So this set of mixed strategies are best responses to gw = 0.

Moreover, for any other mixed strategy of the strong player that does not include zero, the weak

player can strictly increase her expected payoff by deviating from gw = 0 and choosing less than

or equal to the minimum of actions the strong player assigns positive probability. More precisely,

suppose that the strong player randomizes between gsi 6= 0 where i = 1, ..., l and l < z. However,

gw = 0 cannot be a best response to this mixed strategy because the weak player can strictly

increase her expected payoff by choosing any 1 ≤ gw ≤ min{gs1, gs2, ..., gsl} (she even wins for

sure if 1 ≤ gw < min{gs1, gs2, ..., gsl} 6= 1).

Proof of Proposition 4. Suppose 1 > p > k+1
2k . Remember that a = 2pk−k−1

k+1−2p . Then, for all gs ∈

{0, 1, .., z}, lim
k→∞

ags = lim
k→∞

2pk−k−1
k+1−2p gs = (2p−1)gs. Thus, for each gs ∈ {0, 1, .., z}, there exists k∗i >

1, i ∈ {0, 1, .., z}, such that

2pk∗i − k∗i − 1

k∗i + 1− 2p
gs = a∗i gs = ⌈(2p− 1)gs − 1⌉.

Since da
dk

> 0, for all k > k∗i , ags ∈ (a∗i gs, (2p− 1)gs), which means that for each gs, there exists

k∗i > 1 such that for all k > k∗i the range in which the weak player wins does not change. Now,

if we set k∗ = max{k∗0, k
∗

1, .., k
∗

z}, then for all gs ∈ {0, 1, .., z}, there exists k∗ > 1 such that for

all k > k∗ the game structure does not change. Since da
dk

> 0, it is clear that for k < k∗, as k

increases the range in which the strong player wins gets larger.

Proof of Proposition 5. Suppose k > 1, p > k+1
2k and gw 6= gs. Remember that if p > k+1

2k ,

for the weak player to win, she must choose her action (gw) such that ags < gw < gs where

a = 2pk−k−1
k+1−2p . Since gw, gs ∈ {0, 1, .., z}, if we have ags > gs − 1 for all gs, the weak player can

never win the game. To prove the result, it is sufficient to find p∗ < 1 such that for all p > p∗,

ags > gs − 1 for all gs. Moreover, note that finding p∗ satisfying az = z − 1 is sufficient, since

ags = gs − 1 ⇒ ags − 1 = gs − 2

⇒ ags − a > gs − 2 (since 0 < a < 1)

⇒ a(gs − 1) > gs − 2.

Then,

az = z − 1 ⇒ (
2p∗k − k − 1

k + 1− 2p∗
)z = z − 1

⇒ p∗ = 1−
1

2
(

k − 1

kz + z − 1
) < 1.

Since da
dp

> 0, given any k > 1, for all p > p∗ = 1− 1
2(

k−1
kz+z−1), ags > gs− 1 is satisfied for all gs.
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Proof of Lemma 6. Assume p < min{

N∑

i=1

ki

2k∗ , 1} where k∗ = max{k1, k2, k3, ..., kN} for any

given set of k values, {ki}|
N
i=1, ki ≥ 1 for all i. There are two cases: Case 1: p <

N∑

i=1

ki

2k∗ ≤ 1

and case 2: p < 1 <

N∑

i=1

ki

2k∗ . Without loss of generality, we can order the players such that

1 ≤ k1 ≤ k2 ≤ ... ≤ kN−1 ≤ kN , implying that k∗ = kN = max{k1, k2, ..., kN−1, kN}.

Case 1: Suppose p <

N∑

i=1

ki

2k∗ ≤ 1. Note that this case implies a sufficiently high asymmetry.

Specifically, the strongest player is assumed to be stronger than or equal to the sum of the

strengths of all of the other players (2k∗ ≥
N∑

i=1
ki or k∗ ≥

N−1∑

i=1
ki). To to show that the strategy

profile (0, 0, ..., 0) is the unique Nash equilibrium, we need to show that the strongest player cannot

win the game by choosing the largest number among the players. In other words, for any given

distribution of guesses of the other N − 1 players, the strongest player does not have an incentive

to guess a larger number than the maximum of the rest of the players. Moreover, it is trivial to

show that if the strongest player does not have an incentive to guess the largest number, no other

player does. If this is the case, then all players have an incentive to guess smaller numbers to

win the game. Then, by iterated elimination of weakly dominated strategies, the strategy profile

(0, 0, ..., 0) is obtained as the unique pure strategy Nash equilibrium. Now, we show that the

strongest player cannot win the game by choosing the largest number among the players.

Let g∗ = max{g1, g2, g3, ..., gN} be the maximum of the guesses of N players. To prove our

claim, we suppose that g∗ = gN and show that the strongest player N cannot win by guessing g∗.

Let ĝ = max{g1, g2, g3, ..., gN−1} and k̂ be the coefficient of the player who guesses ĝ. Given that

T =

N∑

i=1

ki.gi

N∑

i=1

ki

.p and p <

N∑

i=1

ki

2k∗ ≤ 1, we can write

T <

N∑

i=1
ki.gi

N∑

i=1
ki

∗

N∑

i=1
ki

2k∗
=⇒ 2T <

N∑

i=1
ki.gi

k∗
=

N−1∑

i=1
ki.gi

k∗
+ g∗.

If T ≤ ĝ < g∗, then the strongest player cannot win anyways. If ĝ < T < g∗, then g∗ − T >

T − ĝ =⇒ ĝ + g∗ > 2T is sufficient to show that the strongest player N cannot win by guessing

g∗. Note that if we can show ĝ + g∗ ≥

N−1∑

i=1

ki.gi

k∗
+ g∗, this automatically implies ĝ + g∗ > 2T .

ĝ + g∗ ≥

N−1∑

i=1
ki.gi

k∗
+ g∗ =⇒ k∗ĝ ≥

N−1∑

i=1

ki.gi
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The condition we supposed at the beginning, p <

N∑

i=1

ki

2k∗ ≤ 1, implies k∗ ≥
N−1∑

i=1
ki or k∗ĝ ≥

N−1∑

i=1
ki.ĝ. But since ĝ = max{g1, g2, g3, ..., gN−1}, k

∗ĝ ≥
N−1∑

i=1
ki.ĝ ≥

N−1∑

i=1
ki.gi (The second inequality

is not strict to include the extreme case where ĝ = g1 = g2 = g3 = ... = gN−1). Thus, the above

condition is satisfied.

Case 2: Suppose p < 1 <

N∑

i=1

ki

2k∗ . This implies k∗ <
N−1∑

i=1
ki. First, suppose the extreme case

where ĝ = g1 = g2 = g3 = ... = gN−1. Then, T =
ĝ.

N−1∑

i=1

ki+g∗.k∗

N∑

i=1

ki

.p. But since k∗ <
N−1∑

i=1
ki, the

weighted average
ĝ.

N−1∑

i=1

ki+g∗.k∗

N∑

i=1

ki

will be closer to ĝ than g∗even without multiplying it with p < 1.

But since ĝ = max{g1, g2, g3, ..., gN−1}, the weighted average

N−1∑

i=1

ki.gi+g∗.k∗

N∑

i=1

ki

will be even smaller

and will be farther away from g∗. Thus g∗−T > T − ĝ is satisfied, which proves that the strongest

player N cannot win by guessing g∗.

Thus, p < min{

N∑

i=1

ki

2k∗ , 1} is a sufficient condition for all players choosing zero to be the unique

pure strategy Nash equilibrium of this game.
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Appendix A2 - Some Example Games and Their Solutions
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Appendix B1 - Instructions

(Translated from Turkish) Thank you for coming. You are participating in an experiment on

decision making. You can earn substantial amounts of money in this experiment. Understanding

the instructions correctly will help you in making better decisions to increase your earnings.

You will also take a quiz about the instructions before proceeding to the actual experiment.

Please follow the instructions carefully. From now on you are not allowed to talk with any other

participant in the experiment. Whenever you have a question, raise your hand and wait for the

experimenter.

The experiment will take approximately one hour. At the end of the experiment, you will

be paid in cash whatever amount you have earned and an additional 10 Turkish Lira (TL) as a

show-up fee. All the decisions you make during the experiment will be kept anonymous. They

will be used for research purposes only and will not be shared with anyone.

Groups and Roles: At the beginning, we will randomly assign you into a 2-person (3-person)

group. Each group member will be randomly assigned to either “Role A” or “Role B” (or “Role

C”) and these assignments will stay constant over all 10 rounds of the experiment, but none of

you will know with whom you are paired. You will play the game for 10 rounds.

Game: In each round, each participant must choose an integer number between 0 and 100

(including these boundaries). The winner of each group will be the person who selects the number

that is closest to 1/2 of the mean of the numbers chosen in that group. In other words, there will

be a target number and the participant who selects a closer number to this target will win the

game in that round. The target number is calculated as follows:

H = (gA+gB)
2 ∗ 1

2 for S2 where gi is the number chosen by Player i.

(H = (gA+9.gB)
10 ∗ 1

2 , H = (gA+gB+gC)
3 ∗ 1

2 , and H = (gA+gB+8.gC)
10 ∗ 1

2 for AS2, S3, and AS3,

respectively.)

After each round, we will inform you about the number you have chosen, the number chosen

by the other member(s) of the group, the target number, and the winning player.

Payment: The winner of each group receives 10 (15) TL for 3 randomly chosen rounds out

of 10 rounds. In the case of a tie, this is divided between the winners (i.e., each winner gets 5

TL). The one(s) who loses receives nothing (zero).

In the decision screen, you will see the current round of the game and the remaining time to

enter your number in that round. If the time has expired and you have not made your decision,

a warning will be displayed in the upper right corner. The allotted time (45 seconds) is sufficient

for you to choose your number. The game will not proceed to the next round unless the players in

all groups enter their numbers and press the "OK" button. Please manage your time accordingly.

Please do not enter a number outside of the determined range, from 0 to 100 (including 0 and

100).
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In each decision screen, you will see the target number (H) formula and your role, that will

not change during the game. At the end of 10 rounds, you will be asked to answer a few short

questions and complete a questionnaire. The last screen will show how much you will be paid in

total.

To summarize, the experiment will proceed as follows:

• First, you will be asked to answer the multiple choice quiz regarding the rules of the game

you will play and how you will be paid. The correct answer will appear on the screen after each

question.

• You will see your randomly selected player role on the screen, then the first round of the

game will start.

• In each round, after you choose your number and click the “OK” button, you will be given

feedback on that round. This feedback will remain on the screen for 15 seconds and the next

round will start.

• After 10 rounds are completed, you will be asked a few questions and asked to complete a

questionnaire.

• Finally, the 3 rounds that have been randomly selected from 10, and your earnings in these

rounds will be shown on screen. By adding the participation fee to your earnings, your total

earnings will be determined. When you see this screen, remain seated. We will call and pay

everyone individually. After the payment, the experiment will end.

Any questions?
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Appendix B2 - Examples of Subject Responses

Reports of some weak players are as follows:

“Although I had a lower chance, I tried to predict the other player’s choices from his/her

previous choices,”

“I think I was disadvantaged, the other player was often the one who determined the target,”

“I was disadvantaged so I tried to mimic the other player,”

“I thought that my number was ineffective since it was multiplied by 1,”

“I was disadvantaged because my number was multiplied by 1,”

“Since player C (strong player) was decisive, I focused on her choices,”

“I wish I was player C (strong player) because (s)he had the advantage,”

“I especially focused on player C’s choices,”

“I tried to choose lower numbers to eliminate the advantage of player C,”

“Player C had the advantage by all means,”

“I was not able to affect the target since I was player A (weak player),”

“I chose based on Player C’s choices,”

“The outcome was mostly up to player C,”

“Player C was obviously favored,”

“Since I was disadvantaged I followed player C’s strategies.”

Reports of some strong players are as follows:

“I thought that whatever I chose, the target would be closer to me,”

“I thought that I could win since I was player B (strong player),”

“I had the highest impact on the target,”

“Since I was player B (strong player), I thought if I chose a big number, target would be closer

to me”

“I had the advantage so I chose zero to get target closer to the smaller number,”

“Since I was player B (strong player), I thought I could get closer to the target by choosing a

number as big as possible,”

“I had the advantage, so I chose small numbers,”

“I thought that the target would be closer to me since I was player B,”

“I thought that I had the advantage, and I could win by choosing big numbers”

“Since my number was multiplied by 8, I had the advantage,”

“I governed the game for the first couple periods since I was player C,”

“I tried to use my advantage but I failed,”

“I was player C and I thought I could govern the game,”

“Since my coefficient was higher, I thought I had the advantage,”

“Player B (strong player) had the advantage by all means,”

“I had the coefficient advantage.”
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