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Abstract

Do Body-Worn Cameras improve police efficiency? This study answers
this question in the context of a sample of local police agencies in the US,
where the adoption of BWCs by police agencies has increased significantly in
recent years. To estimate the effects of BWCs on police efficiency, I exploited
the differences in the adoption of BWCs between agencies that acquired
them (”acquirers”) and agencies that deployed them (”deployers”). Using a
multiple stage approach, in the first stage I estimated the efficiency of local
police agencies using a robust order-m model. In the second stage, I
estimated the effects of BWCs using a range of matching estimators and an
instrumental variable model. The first stage results show that police agencies
could improve their efficiency by 35 percent from 0.76 to 1. The second stage
matching and IV estimates suggest that BWCs can help improve police
efficiency between eight and 21 percent. The effects are larger for those
agencies that fully deployed BWCs with their officers. Overall, this study’s
results support the argument that BWCs can help improve police efficiency.

Keywords: Police, Performance, Efficiency, Data Envelopment Analysis, Matching

Estimators, Instrumental Variables.

∗Faculty Fellow- Department of Justice, Law and Criminology, American University.

1



1 Introduction

The past five years have witnessed a rapid increase in the use of Body-Worn

Cameras (BWCs) across law enforcement agencies in the US. Small and large police

departments have acquired and deployed BWCs to improve their transparency,

accountability, and performance (Chapman, 2018). In parallel, research on the

impact of BWCs on a wide range of law enforcement outcomes has also burgeoned.

A growing body of empirical evidence provides support for the use of this

technology to improve various police outcomes, including accountability, reductions

of civilian complaints against police, police-citizen interactions, citizen behavior,

among others (Lum, Stoltz, Koper,& Scherer, 2019). Research on the effects of

BWCs on police efficiency, however, remains unexamined. This study tries to

address these questions by estimating the effects of BWCs on the efficiency of local

police agencies.

Figure 1 summarizes this study’s results. The scatterplot illustrates the correlation

between the number of BWCs and a standard police output measured by the

percentage of all crimes cleared (Alda, 2014; Barros, 2007). Figure 1 shows a

positive correlation between the number of BWCs and higher efficiency levels

because agencies with more BWCs appear to clear a higher percentage of crimes.

Figure 1: Bivariate plot of BWCs vs. Crimes Cleared

Notes: Dots represent the number of total crimes cleared by the
agency in 2016.

To answer this question, I first estimated police agencies’ efficiency using

2



well-known methods to measure efficiency in organizations such as Data

Envelopment Analysis (Charnes & Cooper, 1957). In particular, I employed a

robust approach–order-m– (Cazals & Florens, 2007) that corrects for known biases

in efficiency measurement, such as the presence of outliers and measurement error.

Secondly, I used a range of matching methods and instrumental variable regression

to assess the effect of BWCs on police efficiency between agencies. The use of

BWCs by police agencies varies widely. The data show that about 60%1 of agencies

acquired BWCs compared to those that did not. However, not all of the agencies

deployed BWCs with their officers. In fact, out of the 60% of agencies that acquired

BWCs, 84% implemented a partial or full deployment; and only 40% of the 84% of

agencies that deployed BWCs implemented a full deployment with their officers.

I exploited this difference between BWCs ”acquirers” and BWCs ”deployers” and

conceptualized the ”acquirers” as Intent to Treat (ITT) and the ”deployers” as

Treatment on the Treated (TOT). This difference in the adoption of BWCs allowed

me to match agencies on a set of organizational and environmental characteristics

and assess differences in efficiency levels between ”acquirers” and ”non-acquirers”.

Then, I used the ”acquirers” (ITT) measure as an instrumental variable to examine

differences in efficiency between ”deployers2” and ”acquirers” using LATE3

analyses.

The findings indicate that BWCs increase police efficiency between seven and 12

percent for the ITT analyses and between 10 and 21 percent for the LATE

estimates. These results provide support to arguments that this technology can

contribute to improving police efficiency, in addition to increasing transparency and

accountability in police organizations.

This study’s results contribute to the rapidly growing literature on the use of

BWCs in various ways. First, to my knowledge, this is the first study that

examines the effect of BWCs on police efficiency. The current scholarly and policy

literature on this topic focuses mainly on measuring the effects of BWCs on

1This percentage is based on the final sample used for the analyses, which was 615 local police
agencies. See the section on data for more information.

2These are the agencies that are assumed compliant and deploy the BWCs.
3LATE stands for Local Average Treatment Effects. It is the same as Treatment on the Treated

(TOT) effects.
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outcomes such as transparency, accountability, legitimacy, and on criminal

resolution, intelligence gathering, and criminal justice processes outcomes. Some

studies have examined outcomes like the speed of criminal resolution or criminal

justice processes outcomes. These outcomes approximate an efficiency measure

since criminal investigations, for example, are critical processes of a police

production function because they may lead to more crimes cleared (c.f. Morrow,

Katz, & Choate, 2016; Owens, Mann, & McKenna, 2014). However, none of these

studies use efficiency as their main focus of research, nor do they produce an actual

efficiency estimate. Hence, in addition to examining the effect that BWCs have on

police efficiency, I borrow from the literature on productive efficiency and provide

an estimate of the levels of police efficiency by using a range and inputs and how

their combination contributes to police output (Charnes, Cooper, & Rhodes, 1978).

Second, this study focuses on a sample of 615 police agencies instead of, for

example, a single agency or a subset of agencies within a police district where most

studies draw their experimental or quasi-experimental evidence from (Kim, 2019;

Ariel et al.,2016; Jennings et al.,2017; Harcourt & Ludwig,2006). Although the

strength and robustness of results from well-designed experiments is irrefutable, the

results of this study are useful in that they reveal effects across a larger number of

police agencies and, thus, help support the results found in experimental and

quasi-experimental evaluations.

Finally, this study’s results can offer useful operational insights for police agencies

in that the deployment of BWCs can assist them in having higher clearance rates

because of the faster availability of critical information to help them resolve crimes.

In turn, efficiency gains resulting from BWCs can help strengthen other important

areas of police operations.

The remainder of the study is structured as follows. Section 2 presents a review of

the literature on the use of BWCs, which has focused mainly on experimental

evidence assessing BWCs’s efficacy on a broad range of outcomes related to officer

and citizen behavior, police use of force, civilian complaints, and police

accountability, among others. Section 3 presents the data used in the analyses.

Section 4 presents and discusses the multiple stage empirical approach to first

estimate the efficiency scores and then examine the effects of BWCs using efficiency

as the primary outcome of interest. Section 5 presents the results of the preferred
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model and several robustness tests and sensitivity of the results to the presence of

hidden bias. Finally, Section 6 concludes and discusses the limitations.

2 Literature Review

The past five years have witnessed a rapid growth in the literature on the adoption

of this technological innovation in law enforcement and its impacts on a wide range

of outcomes (Lum, Koper, Merola, Scherer, & Reioux, 2015). Scholars have

categorized research on the impact of BWCs around six main areas of study,

including impacts on officer behavior and citizen behavior; officer attitudes about

BWCs; citizen and community attitudes about police or cameras; criminal

investigations; and police organizational structure (Lum, Stoltz, Koper, & Scherer,

2019).

The evidence around the impacts of BWCs police efficiency is still largely

understudied. Studies on the effects of BWCs on criminal investigations and crime

resolution are perhaps closest to efficiency measurement. Crime investigations are a

critical component of a police production function that is often used to measure

police organizations’ efficiency. For example, the time it takes to clear crimes and

the number of resources saved from using BWCs could be interpreted as a measure

of efficiency. In fact, previous research on police efficiency has used these variables

as outputs in an efficiency model (c.f. Alda, 2014; Alda & Dammert, 2019). Thus,

the literature review focuses on the strand of research that more closely

approximates the study of efficiency as an outcome, although no studies to date

have used a measure of police efficiency as their primary outcome of interest. For a

thorough review of available evaluations and research on BWCs, see Lum et al.

(2019).

The number of research studies focusing on this proxy of police efficiency, however,

is relatively small; it accounts for 6% of all the published research on BWCs to date

(Lum et al., 2019), and the results are mixed. Studies have examined the impact of

BWCs using the gold standard for evaluations (RCTs) or quasi-experimental

approaches, and ”before and after” approaches as well as qualitative analyses to

support their quantitative findings.
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Yokum, Ravishankar, and Coppock (2017) conducted an RCT with more than

2,000 police officers in DC’s MPD to examine the impact of BWCs on police

complaints, police use of force, policing activity, and judicial outcomes. The latter

approximates a measure of efficiency in that it captures the process whereby police

arrests are prosecuted in the justice system since the footage produced by BWCs

could lead to faster case resolution (Yokum et al., 2017). Overall, the study found

very small effects, none of which were statistically significant. One potential

explanation for the lack of results is that the researchers did not have access to the

full prosecutorial datasets but a dataset on the initial charges that was available to

the police department.

While the authors offer a range of thorough explanations for the lack of results, the

simpler and most likely explanation is that BWCs do not affect the outcomes

studied. In the case of the efficiency proxy, the camera footage did not affect

judicial outcomes. The study concludes by nuancing the message around the

expectations of BWCs as well as encouraging more research on the impact of

BWCs (Yokum et al., 2017).

Owens, Mann, and McKenna (2014) also conducted an RCT to measure the impact

of BWCs for a sample of 308 police officers in Essex, focusing on reducing bias in

the results of incidents attended by officers. The authors also interviewed officers in

the treatment group to better understand the operational challenges of BWC

deployment.

The findings suggest no differences in the number of incidents sanctioned between

officers who wore BWCs and those who did not. However, they suggest significant

differences in the type of detected sanction that resulted in criminal charges in the

treatment group compared to the control group–81% vs. 72%, respectively.

The qualitative part of the study showed that those officers who used BWCs

experienced more accountability and paid more attention to their behavior while

conducting policing activities. The study concludes with a hypothetical statement

that BWCs could be useful in increasing the proportion of detected offenses that

result in criminal charges, particularly around domestic abuse cases (Owens et al.,

2014).
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A recent study used the LEMAS survey to examine the causal impact of BWCs on

a range of performance and police use of force outcomes by exploiting the variation

in the adoption of BWCs adoption (Kim, 2019). By using the LEMAS BWCs

supplement, this study departs from previous research on BWCs in that it

examines the impact using a national survey of over 1,000 agencies instead of a

single agency or group of agencies within a district. The main finding suggests a

54% drop in citizen deaths resulting from police use of force. Furthermore, the

study argued that investing in BWCs could yield substantial benefits to police

agencies in reducing lawsuits resulting from use of force incidents (Kim, 2019).

Katz and colleagues (2014) and Morrow, Katz, and Choate (2016) use a reflexive

comparison4 approach to examine the impact of BWCs on complaints against the

police and the processing of domestic violence cases in a precinct of the Phoenix

Police Department. The latter outcome could also be considered an efficiency

measure. The post-test results for the officers using the camera indicate that cases

were more likely to be initiated by the prosecutor compared to pre-test data (40.9%

vs. 34.3%). The authors concluded that BWCs could also help improve officers’

productivity in addition to reducing civilian complaints.

Finally, Ellis and colleagues (2015) assessed the effects of BWCs in the Isle of Wight

in the UK on a range of crime offenses, changes in criminal justice processing,

complaints against officers, and officers’ views on the use of BWCs. Since all police

officers were issued BWCs, the results of the study also used a reflexive comparison

approach. The findings related to criminal justice processes on domestic abuse cases

suggest an increase in the number of cases from 3 to 21, and in 10 out the 21 cases,

there was recorded footage. Furthermore, seven of these 10 cases led to an arrest,

and four of the seven cases led to a criminal charge. The authors acknowledge that,

because all officers received BWCs, the evaluation did not lend itself to any type of

randomization within that police organization. Thus, in the absence of an RCT,

their objective was to assess the effectiveness of BWCs from an operational angle

for agencies that decide to have an agency-wide rollout of BWCs (Ellis et al., 2015).

Of the five studies discussed above, it is worth noting the differences in the

methodological approaches and related findings. Except for Kim’s study, the two

4Reflexive evaluation or comparison compares the outcomes of the same group before and after
program participation
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studies that used more robust evaluation approaches (i.e., RCTs) show null results

or limited results compared to those that rely on a reflexive comparison approach,

showing significant improvements related to the use of BWCs.

AAlthough informative, reflexive comparison studies have serious limitations in

their impact because these approaches attempt to examine program impacts by

comparing outcomes before the intervention and after the intervention. The

difference between these two periods in time is considered the program’s

impact.These approaches generally assume that program participants’ outcome

would have been the same as before the intervention. Research has shown that this

is not the case (Gertler, Martinez, Premand, Rawlings, & Vermeersch, 2016),

limiting the validity of their findings. It is worth noting that although these studies

are limited in their statistical validity and their impacts, they still offer lessons

learned around the implementation and operationalization of BWCs.

Despite the rapid growth in evaluations on the effect of BWCs on a wide range of

outcomes (Lum et al., 2019), research on the effects of BWCs on police efficiency is

still nascent. The strand of research presented above, which closely approximates

the analysis of efficiency, offers interesting insights on the potential impacts that

using BWCs could have in improving police performance. However, as noted above,

none of these studies estimate a proper measure of police performance by

considering how police inputs contribute to police output production. This study

aims to bridge this gap by studying how BWCs contribute, if anything, to

improving police performance related to an important police output–clearance

rates. The next section discusses the data and methods used in this research.

3 Data

I built a dataset for the year 2016 with information from local police agencies,

crime data, and socioeconomic and demographic indicators from a variety of

sources. Data on BWCs availability and use and police inputs come from the Law

Enforcement Management Survey (LEMAS) (BJS, 2016). The LEMAS survey

collects data from various law enforcement agencies in the US, including sheriff,

state, and local agencies. For this study’s purposes, I limited the sample to local
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police agencies because they are the law enforcement arm that is closest to the

citizen and where most interaction with law enforcement occurs. Thus, it was

important to limit the sample to local police agencies to obtain efficiency estimates

that more closely estimate their performance from an efficiency point of view.

Data on police outputs comes from Kaplan’s crime dataset (Kaplan, 2020), which

contains multi-year concatenated UCR data for state and local police agencies

across the US. The socioeconomic and demographic measures come from the

American Community Survey (ACS). For this study, I used the ACS 5-year average

data to capture changes in municipalities5

Before discussing the empirical approach, it is worth noting that non-parametric

efficiency models suffer from potential drawbacks, which require careful

consideration because it could lead to biased efficiency estimates. One potential

drawback is the presence of missing data. Because the police agency data come

from the LEMAS survey, and there is likely missing information if an agency did

not respond to a question or set of questions or did not have enough information.

Thus, to mitigate the effects of missing data on the efficiency estimates, I

eliminated from the sample those agencies that had missing information on police

inputs before merging it with the UCR and ACS datasets.

Another potential drawback is that non-parametric models require meeting the

positivity property; that is, that all values for inputs and outputs have to be

positive numbers (>0), or it could render the efficiency model infeasible and yield

invalid estimates because there is no possible solution to the linear programming

model that generates the efficiency frontier (Bowlin, 1998).

The literature identifies various ways to deal with this problem in DEA. One is to

eliminate those observations with zeroes, and the other one is to add a sufficiently

large constant, so the observation meets the positivity property. This approach,

while simple in theory, could lead to an additional problem known as translation

invariance. Translation invariance occurs when the addition of a constant alters the

efficiency frontier and yield biased estimates since not all DEA models are

5The level of disaggregation in the ACS survey collects information on socioeconomic and
demographic conditions that could affect police output production. Using a five-year average is
to account for any variation in socioeconomic and demographic factors since these measures may
suffer little variation from year to year.
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translation invariant (Lovell & Pastor, 1995). Ali and Seiford (1990) developed a

model that relaxes the positivity requirement by adding a constant, which causes

an affine displacement of the efficiency frontier but does not alter it. In other

words, adding a constant would simply be pushing the efficiency frontier further to

the right but would not alter the frontier and, thus, not biasing the efficiency

estimates. However, this condition would only work if a constant is added to the

outputs in variable returns to scale models and to the inputs and outputs in

additive models (Ali & Seiford, 1990; Lovell & Pastor, 1995).

As I show in the methodology section, the used of a variable returns to scale model,

allowed me to fulfill the positivity and translation invariance properties by deleting

those inputs with values =0 and adding a large enough constant to the outputs.

Thus, after pre-processing the data to correct the potential drawbacks described

above, the final study sample is comprised of 615 local police agencies.

To estimate the efficiency scores, I followed previous literature on police efficiency

and employed a model with four inputs and two outputs (Alda, 2014; Alda,

Giménez, & Prior, 2019; Barros, 2007; Garćıa-Sánchez, Rodŕıguez-Domı́nguez, &

Parra-Domı́nguez, 2013; Gorman & Ruggiero, 2008). The inputs include the

number of full-time sworn officers and non-sworn personnel, and the number of

marked and unmarked vehicles (see Table 1).

Defining police agencies’ output can be challenging as the ”bottom line” of policing

keeps on expanding and, as a result, its production technology6 (Moore and Braga,

2003). The challenge is then finding output measures that can capture–to the

greatest extent possible7–key functions of police agencies. One commonly used

measure used as an output in police efficiency studies is the clearance rate (see

Barros, 2007; Alda 2014; Alda et al., 2019) because it captures critical functions of

police operations, such as the effectiveness of patrols, speed of police response, and

police investigative capacities (Moore and Braga, 2003). Therefore, I approximated

police output production by using the total number of index violent and the

number of index property crimes8 cleared by each agency.

Index crimes are a collection of four violent and property crimes that the Federal

6This refers to what police agencies do.
7This challenge is compounded by limitations in data availability
8Efficiency models operate better when using units instead of rates.
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Bureau of Investigation (FBI) uses to produce their annual crime index. The

violent index crimes comprise murder, rape, robbery, and aggravated assault. The

property index crimes comprise burglary, theft, motor vehicle theft, and arson9.

Table 1 presents the summary statistics of the raw data on police inputs and

outputs. On average, agencies had 266 sworn officers and 71.3 civilians (non-sworn

officers); about 106 marked vehicles and 72 unmarked vehicles. The total number

of index property crimes cleared is about twice the total number of index violent

crimes cleared with 560.8 and 299, respectively.

Table 1: Descriptive Statistics-Input/Output Set

Variable Obs Mean Std. Dev. Min Max

Inputs

Number of Sworn Officers 615 266.15 763.64 5 12042
Number of Non-Sworn Officers 615 71.28 180.26 1 2871
Number of Marked Vehicles 615 105.80 218.71 2 3797
Number of Unmarked Vehicles 615 72.19 140.78 1 1624

Outputs

Total Index Violent Crime Cleared 615 299.99 795.74 1 12806
Total Index Property Crime Cleared 615 561.82 870.51 1 8291

Source: Own Analysis based on data from BJS(2015) and Kaplan (2020).

4 Methodological Approach

4.1 Conceptual Issues

As indicated above, modern policing has an ever-expanding ”bottom line”(Moore

and Braga, 2003). Therefore, it is challenging to capture the police production

function in a single model.

Production efficiency theory posits that a decision management unit–police agency

in this study–produces the same or higher output levels using the same or fewer

9For an explanation of these crimes, please visit the FBI. Jacob Kaplan offers useful guidance on
the advantages and disadvantages of using index crimes vis − á − vis using these crimes separately.
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inputs, it would be efficient relative to its peers with similar characteristics (Ray,

Kumbhakar, & Dua, 2015).

A key aspect of using BWCs is to enable officers to resolve cases faster and reduce

paperwork and, as a result, increase the number of crimes cleared (Chapman,

2018). In turn, a higher percentage of crimes cleared would lead to higher police

output production. At the same time, if police increase their output production

using fewer inputs (i.e., police officers) because BWCs yield more readily available

data and information in the investigative process, efficiency would then improve.

Furthermore, research has shown that using BWCs can also help officers increase

arrests, leading to a quicker resolution of cases (Katz et al., 2014).

While trying to pinpoint how BWCs contribute to improving police efficiency is

challenging, using an output measure, such as clearance rates, which encompasses

critical police operational activities, can shed light on this issue.

4.2 Analytical Strategy

In this section, I present and discuss the two-staged empirical approach I employed

to measure the effect of BWCs on police efficiency. In the first stage, I estimated

police efficiency scores using an output oriented model with variable returns to

scale. In the second stage, I used a range of matching estimators to assess the effect

of agencies that acquired BWCs (”acquirers”) and those agencies that did not

acquire BWCs on police efficiency.

Matching helps balance confounding (observable) characteristics between police

agencies. However, this approach assumes that the deployment of BWCs is

completely exogenous to police efficiency, given a set of observable characteristics.

If the exogeneity assumption holds, then the estimates are unbiased (Cavatassi,

González-Flores, Winters, Andrade-Piedra, Espinosa, & Thiele, 2011). However, as

noted earlier, it is virtually impossible to match police agencies on all the

characteristics that can drive the adoption of BWCs. Therefore, it is possible that

differences in unobservable characteristics between both groups of agencies exist

and could lead to biased estimates.
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To address this potential bias, I used instrumental variable regression to examine

the effect of BWCs ”deployers” compared to ”acquirers” on police efficiency and

reduce potential biases due to unobservable differences between each group. I

discuss this issue in more detail in section 4.4.3.

4.3 First Stage

4.3.1 Data Envelopment Analysis

In the first stage, I employed a well-known non-parametric efficiency measurement

approach, Data Envelopment Analysis (DEA), to estimate the technical efficiency

of local police agencies. DEA models are powerful in estimating organizational

efficiency and have distinct advantages compared to, for example, parametric

approaches like regression analysis.

First, these models are flexible in that they can accommodate multiple inputs and

multiple outputs in the same model, which permits obtaining a more accurate

measure of efficiency of complex public-sector organizations like the police. Second,

non-parametric techniques provide information on how DMUs can improve their

efficiency based on the distance from the best practice efficiency frontier. For

example, the results of an output oriented model can indicate to the researcher how

much output could an agency increase in order to improve efficiency relative to the

best performers while keeping the input set constant. Finally, these techniques do

not experience common statistical problems, like multicollinearity or

heteroskedasticity, do not require normality in their distribution (Charnes, Cooper,

Lewin, & Seiford, 2013), and do not require imposing an ’a priori’ functional form

as it is the case in regression-based models.

To estimate efficiency, DEA uses the linear combination of DMU’s10 that employ a

set of inputs that are under the control of police managers–officers, vehicles– and a

set of outputs that the agencies produce–clearance rates, crime prevented. This

linear programming combination generates a ”best practice” frontier, which

captures the firm/s production of maximum output/s given their set inputs relative

10The DMU (Decision Management Unit) is the unit of analysis. In the case of the current study
is local police agencies.
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to their peers in the sample (Charnes et al., 1978). Therefore, a DMU that is on

the ”best practice”11 frontier has a value of 1 and indicates that, relative to its

peers, it has produced more output using the same or fewer inputs and is,

therefore, more efficient.

When using frontier methodologies like DEA or similar linear programming models,

it is important to define the type of model orientation. There are two main types of

models–input and output orientation. An input-oriented model measures how much

a unit (police agency) could reduce its inputs while maintaining the same output

level. In contrast, an output oriented model measures how much a unit could

maximize its output production with the same number of inputs. Therefore, this

study employs a DEA output-oriented model with variable returns to scale (VRS).

The use of an output orientation is primarily a result of the type of output that

defines police agencies’ production technology. As discussed above, police agencies’

key objective is to call offenders to ”account”, which is measured by the clearance

rate (Moore & Braga, 2003 p.38). Therefore, from the point of view of police

production, the clearance rate is an output the police should maximize.

The choice of variable returns to scale is also straightforward since an additional

input would not result in a proportional change of the output, as with constant

returns to scale models, because police forces generally operate in a non-market

environment with imperfect competition and budgetary constraints (Jacobs, Smith

& Street, 2006; Giménez, Keith & Prior, 2019). This means that police agencies

often operate at an inefficient scale size. In order to support (or reject) the choice

of returns to scale, I conducted a non-parametric returns to scale test (Simar &

Wilson, 2002). The results rejected the null hypothesis (p<.01) that police agencies

operate at an efficient scale12, and thus, the choice of variable returns to scale

model is appropriate.

Equation 1 below presents the basic output-oriented DEA model with variable

returns to scale.

11This is the efficiency frontier.
12This would mean that a constant returns to scale model would be more appropriate to analyze

efficiency.
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Max θ

s.t.

∑
n
j=1 λjxij = xio i = 1, 2, ..., m;

∑
n
j=1 λjyrj = θyro r = 1, 2, ..., s;

∑
n
j=1 λj = 1 j = 1, 2, ..., n.

λj ⩾ 0 j = 1, 2, ..., n.

(1)

where DMUo represents a DMU under analysis, and xio and yro are the ith input

and rth output for DMUo.The value of θ ranges from 0 (inefficient) to 1 (efficient) .

Thus, in an output-oriented model, a value of 1-θ indicates the proportional radial

expansion in output that a DMU could achieve given their input set.

Despite their power and flexibility, non-parametric efficiency methods also suffer

from limitations. Because of their non-parametric nature, it renders them sensitive

to the presence of outliers and measurement error, which could lead to biased

estimates. As discussed, given that the data used in this study comes from a

survey, it is likely to suffer from measurement error. Furthermore, differences in the

size, location, and output produced by the agency will make some agencies

outliers13 compared to the rest of the sample because they perform significantly

better than their peers. Therefore, this group of outlier agencies could define the

”best practice” efficiency frontier and bias the efficiency scores downward because

no other agency can perform better than this group of outliers.

Partial frontier models, such as order-m help enhance efficiency analyses and

mitigate some of the statistical problems that are common in non-parametric

techniques like DEA (Cazals, Florens, & Simar, 2002; Simar & Wilson, 2008).

Partial frontier methods operate as follows. To estimate the efficiency score, the

order-m algorithm finds an m number of units (police agencies) with similar

characteristics in their input/output set so it can calculate how much an agency

could produce using the same or fewer inputs than its peers. Therefore, for this

particular methodological approach, the choice of m is relevant when estimating the

efficiency scores (Felder & Tauchmann, 2013). For example, choosing a value of m

13In efficiency analyses, outliers are also known as super-efficient or super-performers.
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that is too small would yield a large share of super-efficient observations and, as the

value of m increases (m →∞), the share of super-efficient observations decreases to

zero14. While there is not a recommended value of m, research suggests choosing a

value that would yield 10% of the observations being super-efficient (Bonaccorsi,

Daraio & Simar, 2006). For this study, I chose a value of m = 8015, which is

considered a large value. In multi-output studies like this, however, the values of m

tend to be larger than for single output studies (Felder & Tauchmann, 2013).

Furthermore, the choice of m enables the detection of outliers, which can explain

why they are outliers, and whether there are particular characteristics of these

agencies that make them outliers as compared to their peers (Daraio & Simar,

2007). Also, because the efficiency frontier is not bounded from above at 1,

outperforming agencies (outliers) can yield efficiency scores that are larger than 1

and will not bias efficiency estimates downward. Consequently, the resulting

efficiency estimates are closer to the ’true’ efficiency frontier compared to a DEA

model (Daraio & Simar, 2007). This last feature is potentially useful in studying

police forces because their inherent heterogeneity will be reflected in internal

organizations, practices, use of resources, and, ultimately, in the production process

itself. When performing efficiency analyses of police forces, outliers will emerge,

and this technique enables researchers to understand why those observations in the

sample perform significantly better than their peers.

4.4 Second Stage-Matching and Instrumental Variable

Regression

4.4.1 Matching

In the second stage of this study, I employed a range of matching estimators to

assess the effect of BWCs on police efficiency. Since this study is based on survey

and administrative data, there is no possible random assignment of agencies into a

treatment and a control group. Therefore, to be able to compare the effects of

14The maximum efficiency score would be 1.
15I conducted efficiency analyses for different values of m. They are not reported here but

available upon request.

16



agencies that acquired and deployed BWCs with those that did not, it is important

to create groups that are similar based on a set of observable characteristics.

Matching methods allow the researcher to generate a credible counterfactual–what

would the efficiency levels be in the absence of BWCs?–, by creating two

comparable groups based on observable characteristics. As a result, the results on

the efficiency scores could be attributed to the effect of having adopted BWCs into

their policing functions. In addition to being able to generate comparable groups,

matching methods reduce selection bias (Cavatassi et al., 2011; Guo Fraser, 2010).

I considered two ways of matching police agencies. The LEMAS survey contains

two questions:

• Has your agency acquired body-worn cameras?

• Have body-worn cameras been deployed to officers in your agency?

The first question allowed me to construct an Intent to Treat (ITT) variable

comprising all the agencies that acquired BWCs (”acquirers”) regardless of whether

or not they deployed them. The second question allowed me to construct a

Treatment on the Treated (TOT) measure that captures all agencies that had

acquired BWCs and deployed them with their officers (”deployers”). It was possible

to generate the latter measure because, according to the responses of the survey,

84% of agencies that acquired BWCs implemented a partial or full deployment.

Scholars argue that studies of BWCs often suffer from potential selection effects.

This is because agencies choose to adopt BWCs technology for various reasons,

including consent decree, the agency’s interest to improve their performance,

accountability and legitimacy, mandated by state law, or organizational

characteristics (Maskaly, Donner, Jennings, Ariel, & Sutherland, 2017). For

example, larger police agencies may have the budget to adopt and fully implement

this type of technology. Nowacki and Willits (2016), however, show that this might

not be the case. In their study of organizational drivers of adoption of BWCs, their

findings suggest that agencies that are prone to using technology in their

operational activity appear more likely to adopt innovative technology schemes

such as BWCs. Conversely, the size of the operational budget and the presence of

unions appear to hinder the adoption of this type of technology to prevent
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limitations in police discretion.

Matching methods can help reduce potential selection biases associated with the

adoption of BWCs as well as minimizing Type I errors (Guo & Fraser, 2014).

However, as discussed earlier, it requires a strong exogeneity assumption and that

there are no lurking unobservable variables that could bias the results. Because

police agencies are complex organizations (Maguire, 2003), it is virtually impossible

to match agencies on all the variables that can influence the adoption of BWCs. I

try to address this issue by first matching agencies on a set of exogenous factors

and internal organizational characteristics that may influence the adoption of

BWCs. Then, I conduct additional tests to check whether the results could be

affected by hidden bias due the influence of unobservable characteristics. In the

next sections, the study presents the data, the empirical strategy, and the findings.

Although matching algorithms can yield consistent and robust estimates on the

effects of BWCs on police efficiency, using only the ITT sample would yield

conservative results (Gupta, 2011). This is because the ITT sample includes those

agencies that only acquired BWCs and those agencies that deployed BWCs with

their officers. This would somewhat underestimate the effect of the actual

deployment of BWCs because agencies may acquire BWCs, but might be

non-compliant due to limited capacity and organizational management to

effectively deploy BWCs (Hyland, 2018; Nowacki & Willits, 2016). To address this

issue and obtain a more precise estimate of the effect of BWCs on efficiency from

those that deployed BWCs, I used an instrumental variable (IV) regression to

conduct the TOT analyses; that is, to examine the effect of BWCs ”deployers”

compared to ”non-deployers”.

The TOT analysis yields what is known as the Local Average Treatment Effects

(LATE) estimates. Imbens and Angrist (1994) argue that LATE estimates capture

the average treatment effect among those exposed to the treatment. In the case of

this study, it would capture the effects on the efficiency of those police agencies

that deployed BWCs.
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4.4.2 Matching Estimators

Matching can be accomplished in several ways. One of the most well-known

methods is propensity score matching (PSM). The propensity score defined as the

probability of receiving treatment conditional on a set of observable baseline

characteristics ei = Pr(Zi = 1∣Xi) (Rosenbaum & Rubin, 1983) (see 2 for the

variables used to match agencies).

To estimate the propensity, I used a probit regression model16 that predicts the

probability of being treated by an intervention. The propensity score allowed me to

create two groups17 that are similar based on a set of observable covariates, and

thus, any differences in the levels of efficiency between these groups can be

attributed to the adoption of BWCs.

To examine causal effects using observational data, Rosenbaum and Rubin(1983)

argued that two assumptions must be met. The first assumption is the

”unconfoundedness assumption”,which states that outcomes on the treatment and

control groups are independent of participation status conditional on a set of

observable covariates (X). This is illustrated with the following equation:

(Y (0), Y (1)) ⊥⊥D∣X

The second assumption that must be met in propensity score matching is the

”overlap assumption”, which states that observations with the same observable

values can be in the treatment or control group (Caliendo & Kopeinig, 2008). The

following equation illustrates the overlap condition:

0 < P (D = 1∣X) < 1

Figure 2 illustrates the density curves before and after matching using the

propensity score. After matching, the figure shows no significant differences

between the BWCs ”acquirers” and ”non-acquirers”.

16Probit and logistic regression models are the most common approaches to estimating the
propensity score, although researchers have examined other approaches.

17To remind the readers, the two groups I created are: ”Acquirers” and ”Non-Acquirers” (ITT)
and ”Deployers” and ”Non-Deployers” (LATE)
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Figure 2: Density Curves-Unmatched vs. Matched Samples

Recently, however, matching methods like PSM has sparked a debate about its

effectiveness in generating balanced samples to assess impact. For example, King

and Nielsen (2019) argue that PSM might achieve the opposite of a balanced

sample leading to inefficiency, model dependence, and biased estimates (King &

Nielsen, 2019 p.2; Iacus, King & Porro, 2012). To address these shortcomings, the

authors proposed a new approach–Coarsened Exact Matching (CEM). This

approach finds exact matches, one with that has adopted BWCs and one that has

not, instead of matching on a propensity score.

The CEM approach coarsens the exogenous covariates, and divides them into

different strata, and finally performs an exact matching within each stratum (King

& Nielsen, 2019). One of the major trade-offs of matching is that it requires the

researcher to choose which covariates to match agencies. This challenge is evident

when using CEM in that if the strata are too complex, there is a lower likelihood of

finding an exact match and, thus, not being able to conduct any estimation

(Vigneri & Lombardini, 2017). A recent study argues that it is possible to conduct

matching when using algorithms that do not throw away good matches18 (Jann,

2017). Thus, for this study, I used a wide range of matching algorithms, including

18Jann (2017) argues that the results presented by King and colleagues appear to be based on
the worst possible matching approach: one to one exact matching without replacement.
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CEM, to check the consistency of the results across various models.

4.4.3 Instrumental Variable Regression

While useful and informative, the ITT analyses may not provide an accurate

estimate of BWCs effects on police efficiency since matching methods rely on the

assumption that the adoption of BWCs is exogenous to the outcome given a set of

observable characteristics Xi as shown in equation (1) above. The main advantage

of using an IV approach, when a valid instrument can be found, is that it deals

with potential bias from observable and unobservable differences in BWCs adopters

and non-adopters. In addition, this method can be used to test the exogeneity

assumption used in propensity score matching (Ravallion, 2005). However, relaxing

the exogeneity assumption requires finding a valid instrument. A valid instrument

has to be strongly correlated with the adoption of BWCs but it cannot be

correlated with the error term. It is common in impact evaluation studies to use

ITT as an instrument since, in the case of this study, all police agencies that

acquired BWCs have the option to deploy them but not every agency does so. As

noted earlier, out of 84% of in the sample that deployed BWCs, only 40% deployed

them fully with their officers.

An IV approach requires two stages, and each stage is illustrated in the equations

below:

BWCsi = δZi +ϕXi + vi (First Stage)

θi = βXi + B̂WCsi + ǫi (Second Stage)

where the first stage captures the relationship between instrument Zi and the

adoption of BWCs, and ϕ captures the relationship between instrument Xi and the

adoption of BWCs. In the second stage of the 2SLS model, B̂WCsi captures the

predicted adoption of BWCs estimated in the first stage. The variables vi and ǫi are

the error terms of the first and second stage of the model (Cavataassi et al., 2011).

The first stage is estimated as a linear probability model. Angrist (2000) suggests

using this approach when the first stage is a limited dependent variable model and

argues that it is consistent and safer since using other models, such as probit/logit,

21



in the first stage is only consistent if the model is exactly correct.

I used two measures of BWCs deployment to conduct the IV analyses. The first

variable captures those agencies that implemented a partial deployment of BWCs

with their officers. The second variable captures those agencies that permanently

deployed BWCs with their officers. I expect the estimates on the full deployment to

be larger than the partial deployment because agencies that partially deployed

BWCs did it for testing or for a particular assignment and, thus, may not exploit

the benefits of this technology.

Table 2 presents the summary statistics of the set of observable characteristics used

to match police agencies and used as explanatory variables in the IV regressions.

Based on prior research and theoretical tenets in organizational theory, I used a set

of exogenous and organizational characteristics that could influence the adoption of

BWCs (Alda, 2017; Alda & Dammert, 2019; Alda, Giménez, & Prior, 2019; Barros,

2007; Gorman & Ruggiero, 2008). These include total population, population

density, the unemployment rate, the GINI coefficient of income inequality, the

poverty rate, the adoption of other technology, the number of prevented civilian

complaints against officers; and important organizational structure characteristics,

such as the size of the police agency, operational budget; and measures of

organizational complexity, such as functional and vertical differentiation. The first

of the variables of organizational complexity captures how a police agency assigns

tasks within its organization, and it is measured by the number of specialized units

in each agency (Nowacki & Willits, 2018; Maguire, 2003). Finally, the second

organizational complexity variable measures the hierarchy within an agency, and it

is measured by the midpoint salary difference between the highest and lowest rank

officer (Nowacki & Willits, 2018; Maguire 2003).

22



Table 2: Summary Statistics-Observable Characteristics

Variable Obs Mean Std. Dev. Min Max
Population Density 615 3738.05 4450.13 217.56 53766.98
Population Estimate (2012) 615 124195.46 259902.74 702 3857799
% Population with less than High School 615 13.46 7.68 0 55.17
Unemployment Rate 615 7.86 3.16 1 22.15
GINI Coefficient of Income Inequality 615 0.45 0.047 0.31 0.62
Poverty Rate 615 16.24 7.74 0.61 43.25
All crimes recorded 615 6645.55 14905.18 0 172294
Civilian Complaints (Reciprocal*) 495 0.17 0.262 0.001 1
Police Agency Size 615 2.62 0.53 1 3
Acquired Car Dashboard Cameras 600 0.71 0.454 0 1
Budget (Ln) 598 16.47 1.417 12.723 20.951
Functional Differentiation 602 4.652 6.690 0 137
Vertical Differentiation 581 69116.98 34697.86 1195 246771

Source: BJS (2015), Kaplan (2020).
* The reciprocal value approximates the total number of civilian complaints prevented by each
agency.
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5 Results

Table 3 presents the overall efficiency estimates and the estimates disaggregated by

police size. The mean efficiency score was 0.76, which indicates that, on average,

police agencies that are inefficient relative to the best performers could increase

their outputs (crimes cleared) by 24 percent. Larger and smaller police agencies

perform better with efficiency scores between 0.84 and 0.79, respectively. The

efficiency score for mid-size police agencies was 0.60, which suggests that they

performed worst relative to their larger and smaller peers.

Table 3: Order-m Efficiency Estimates

Mean Std. Dev. Min Max

Overall Efficiency Score 0.76 0.45 0.00 3.28
Police agency (1-10 Officers) 0.79 0.30 0.25 1.00
Police agency (11-100 Officers) 0.60 0.40 0.01 1.68
Police agency (¿100 Officers) 0.84 0.46 0.00 3.28

Source: Own Analyses using BJS (2015), Kaplan (2020).

Figure 3 illustrates the efficiency results by output. The figure reflects the

maximum level of output produced by municipal police forces given their inputs.

Police forces with values at or above 1 indicate that they performed better in their

output production than the number of m agencies used as comparators.

Figure 3: Order-m Scores

There is, however, significant variation in the levels of efficiency. Out of 615
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agencies, only 28 were efficient (θ = 1), which is less than 5% of the sample.These

efficient agencies were distributed between small and mid-size. It is worth noting

that agencies were very inefficient and others were super-efficient relative to their

peers, with efficiency scores as high as 3.3. To interpret this result, an agency with

an efficiency score of 3.3 means that it cleared as much as three times more output

than a similar m number of peers. Figure 4 in the Annex presents the same results

without outlier agencies–θ > 1– which shows more clearly the variation in police

performance.

Table 4 presents the estimates on the effects of BWCs on police efficiency using a

range of matching estimators and instrumental variable regression. The ITT results

that agencies that acquired BWCs have a positive, strong, and statistically

significant effect on police efficiency. The estimates are remarkably robust and

consistent across model specifications. Improvements in efficiency range from eight

to 12 percent, depending on the model. The regression adjustment model yielded

the smallest coefficient, whereas the mahalanobis distance estimator yielded the

largest coefficient. Regression adjusted models in matching estimators add an

additional layer of robustness because they reduce additional bias in the covariate

balance, ensuring consistency in the estimates, which might explain a slightly

smaller estimate in the analyses (Abadie & Imbens, 2011 p.1).

In regards to the IV estimates, the first stage criteria show that the ITT is a valid

instrument in the model. It is positive, strong, and statistically significant in the

first stage and the instrumented variable is also positive, strong, and highly

significant in the second stage. The F -statistic rejects the null hypothesis that the

instrument is weak with values well over the accepted ’rule of thumb’ threshold of

F > 1019 (Cuesta & Alda, 2012). Tests for over-identification and endogeneity

assumptions show that there are no over-identifying restrictions and the tests

accept the null hypothesis that the instrument can be treated as exogenous. The

latter supports the exogeneity assumption needed for the matching estimators

(Cavatassi et al., 2011).

As expected, the IV (LATE) estimates are larger in magnitude than the ITT

19New research questions the use of the F > 10 as the rule of thumb for first stage estimates. Lee
and colleagues (2020) suggest that F -statistic values should be larger than 104.7 in order to have
a true 5% t-ratio test. As Table 4 shows, the first stage F -statistic value is >104.7
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estimates. This is because the LATE estimates capture the effect of BWCs on

those agencies that deployed BWCs compared to those agencies that acquired

BWCs but did not deploy them. The results indicate that agencies that deployed

and permanently deployed BWCs improve their efficiency between 12 percent and

21 percent, respectively. This suggests that controlling for both observable and

unobservable characteristics, agencies that deployed BWCs experienced a greater

efficiency gains, which supports the argument that the use of BWCs can help

improve police efficiency.
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Table 4: Regression Results

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.124*** 0.100** 0.103** 0.112** 0.105** 0.079** 0.086** 0.109** 0.125*** 0.209***
(0.033) (0.042) (0.040) (0.044) (0.044) (0.038) (0.037) (0.040) (0.043) (0.072)

Constant 0.669*** -0.427 -0.687
(0.0314) (0.503) (0.522)

Observations 446 446 446 446 446 446 446 415 446 446
R2 0.02 0.30 0.30

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.

9 2SLS Instrumental Variable Regression. First stage F-statistic, 301.3, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 268.11, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

Notes:
All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%
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Table 5 presents the predicted efficiency scores for each matching algorithm and the

IV models for each group of police agencies; that is, ”acquirers” vs. ”non-acquirers”

and ”acquirers” vs. ”deployers”20. The predicted efficiency scores are significantly

higher, about ten percentage points in the ITT analyses and 20 percentage points

larger between ”acquirers” and ”deployers” in the LATE results.

Table 5: Predicted Efficiency Scores

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.678 0.802
PS 0.694 0.795
RM 0.693 0.796
NN-3 0.706 0.818
NN-5 0.712 0.817
RA 0.712 0.798
DWPS 0.718 0.798
CEM 0.667 0.783
IV 0.667 0.859
IV-2 0.667 0.860

Avg. 0.695 0.797 0.667 0.859

* Partial Deployment. ** Full Deployment.

5.1 Robustness Checks

Although the results are consistent across matching and IV specifications, the

presence of outliers could drive the second stage estimates, given that the

proportion of super-efficient agencies is somewhat large. Therefore, to check

whether these outliers drive the second stage results, I dropped from the sample

those agencies with efficiency scores larger than one and re-estimated the matching

and IV models. Table 6 in the Annex presents the result and show, on average,

slightly smaller effects, although the LATE estimates are slightly larger than those

of the preferred models in Table 4.

As an additional robustness test, I re-estimated the efficiency scores using the

reduced sample; that is, the resulting sample after eliminating the observations

20Predicted efficiency scores for deployers include those agencies that partially deployed BWCs
and agencies that implemented a full deployment of BWCs.
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that had efficiency scores > 121. Table 6 in the Annex presents the estimates. The

results are still strong and statistically significant across matching estimators and

the IV regressions, and do not substantially alter the results of the preferred model

specifications (see Table 4). The average of all the effects are slightly larger in the

preferred model specifications–0.115 percent vs. 0.109–, which is driven by the ITT

estimates.

The reduced sample of the original order-m scores to ⩽ 1 shows that BWCs improve

efficiency between eight and 11 percent for the ITT estimates and 13 to 23 percent

for the LATE estimates. Conversely, the results on the re-estimated efficiency

scores on the reduced sample (see Table 7 in Annex) also show positive, strong,

statistically significant effects of BWCs on police efficiency. The magnitude of the

coefficients ranges from 13 to 16 percent for the ITT estimates and from 20 to 34

percent for the LATE estimates. The coefficients are larger likely as a result of the

sample being reduced by 166 agencies. Also, the efficiency estimates have changed

because the number and type of comparators (agencies) in the sample differ from

the base sample and that will invariably influence the generation of the efficiency

frontier.

I also conducted the matching and IV analyses on the group of super-efficient

police agencies (θ > 1) (see Table 8 in the Annex). These results indicate no effects

of BWCs on efficiency among the super-performing agencies22.

A concern with efficiency estimation is the potential imbalance in the data because

of differing magnitudes in inputs and outputs. One way to address this issue in

DEA and DEA-based analyses is to mean-normalize the data to ensure similarity in

inputs and outputs across units (Sarkis, 2007). I proceeded to mean-normalize the

inputs and outputs, estimate the efficiency scores, and use them as the outcome in

the matching and IV analyses.

The results indicate that the mean efficiency scores were slightly lower than the

preferred model–0.68 compared to 0.76 (see Table 10 in Annex). This reduction in

the efficiency scores is likely a result of mean-normalizing the data, which may

21The reader should note that even after dropping outlier observations, the analyses will still
yield super-efficient observations.

22It is worth noting that the N for these analyses is substantially smaller–166– and will likely
affect the results.
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lessen the influence of outlier agencies in the model. The matching and IV results

are smaller in magnitude compared to the preferred models, but are still positive

and statistically significant (see Table 9 in Annex). For the ITT analyses, the

effects of BWCs on police efficiency range from six to ten percent, and for the IV

models, effects range from 11 to 18 percent.

Finally, Table 12 presents the estimates of a basic DEA model using an

output-oriented and variable returns to scale model. As discussed above it is

plausible that super-efficient agencies may drive the efficiency scores.Therefore, an

order-m model would prevent these agencies from setting the efficiency frontier–at

= 1 and introduce bias by pushing the rest of the units downward and causing a

higher percentage of agencies to become inefficient (Epstein & Henderson, 1989).

The results show a significant drop in efficiency scores to an average score of 0.46

compared to the average of 0.76 in the order-m model. These results help validate

the use of an order-m model to obtain more accurate efficiency estimates.

Table 10 presents the matching and IV estimates. Similar to the preferred models,

the ITT results indicate that acquiring BWCs has a positive and statistically

significant effect on police efficiency. The ITT estimates range from four to seven

percent23. Similarly, the IV estimates are positive and statistically significant, and

the size of the coefficients indicate effects ranging from five to 10 percent.

5.2 Hidden Bias

I further checked the sensitivity of the results to the presence of hidden bias driven

by unobservable factors that could influence the adoption of BWCs. As noted

earlier, several internal and external organizational factors and operational factors

can influence decision-making in the adoption of BWCs. Therefore, the results

should not rule out the possibility of the presence of hidden bias. Gangl and

DiPrete (2004) argue that although propensity score matching24 removes most of

the bias due to observable characteristics, it is not a consistent estimator in the

23The regression adjustment estimates are positive but no longer statistically significant at
conventional levels (p < .05).

24Note that propensity score matching is one of several matching algorithms I used in the analyses.
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presence of hidden bias (DiPrete and Gangl, 2004, p.272).

5.2.1 Rosenbaum Bounds

First, I used the Rosenbaum bounds test to examine how the results would be

affected in the presence of hidden bias from an unobserved confounding variable. It

is worth noting that the presence of hidden bias does not mean the results are

invalid; rather, they convey important information on how large the effect of an

unobserved variable has to be in order to change the conclusions we infer from the

original estimates (DiPrete & Gangl, 2004).

To conduct the analysis, I set the maximum value for Γ, at 1 with increments of

0.1, which are considered appropriate for these type of data (Keele, 2010). Γ values

start at 1 and indicate no presence of unobserved confounders, and the p-value

should hold if there is no hidden bias. The results suggest that the critical value Γ

at which the p-value is no longer statistically significant at conventional values is

equal to 1.7 (see Table 15 in the Annex). Thus, in order to question the study’s

results, an unobserved variable would have to affect the log odds of adoption of

BWCs by a factor of 1.7.

5.2.2 Simulated Confounder

Second, I used the simulated confounder approach proposed by Ichino, Mealli, and

Nannicini (2008). It assumes that a binary variable ⋃ can be simulated and used as

another observable characteristic in the matching analysis. This approach’s

primary underlying assumption is that the both the observable characteristics and

the simulated confounder can influence the adoption of BWCs.

The results show the extent to which the baseline estimates are robust to the

failure of the conditional independence assumption. I employed two variables to

conduct the simulated confounder analyses on the original outcome variable–police

efficiency. The first variable is the size of the police25, and the second variable is the

25Generating the simulated confounder requires a binary variable. Thus, I generated one where
large police agencies take a value of 1 and 0 otherwise.
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use of dashboard computers. Both variables are likely associated with the adoption

of BWCs. Using a nearest neighbor and kernel matching. Table 16 in the Annex

presents the results and show positive and statistically significant effects of both the

baseline and the simulated confounder model. The coefficient of 0.11 (11 percent)

suggest negligible differences between the baseline and the simulated confounder

estimates. Furthermore, as recommended in Ichino et al. (2008), both the outcome

and selection effects are positive (>1). Like the Rosenbaum bounding approach,

these results confirm the robustness of the estimates in the preferred models.

5.2.3 Relative Correlation Restrictions

Finally, I used the relative correlation restrictions (RCR) methodology proposed by

Krauth (2016) to construct informative bounds on the effects of BWCs on police

efficiency and assess how these estimates behave to deviations from the exogeneity

assumptions (Krauth, 2016, p. 2). This methodology assumes a correlation

between the adoption of BWCs and the unobserved variables relative to the

correlation between the variable of interest and the observed exogenous

characteristics. I examined the potential effect of a correlation between the

adoption of BWCs and unobservable characteristics that is 0.25, 0.5, 0.75, 1, and

twice the correlation size between the adoption of BWCs and the observable

characteristics I employed for the matching and IV analyses (Desai & Joshi, 2013).

Table 17 presents the results. The first row shows the OLS regression point

estimates in the absence of hidden bias (λ=0), while the remaining rows present

the point estimates for up to twice the correlation between the adoption of BWCs

and observable characteristics. The RCR results suggest that the point estimates

are robust to a weak correlation–0 and 10 percent– between the adoption of BWCs

and observable characteristics. However, although the bounds on the effect are

narrow and close to the OLS estimate, these are not statistically significant at

conventional levels. Furthermore, the RCR bounds show no effect at moderate or

large correlations (0 ≤ λ ≤ 1) as the bounds include 0. Thus, the RCR results may

raise concern on the influence of unobserved confounding variables on the matching

estimates.

Overall, the signs and magnitudes of the effects of BWCs on police efficiency are
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robust to different matching estimators and potential hidden bias.

6 Conclusions and Limitations

In this study I examined the effect of BWCs on police efficiency on a sample of

local police agencies in the U.S. in 2016. I conceptualized the adoption of BWCs

across local police agencies as those agencies that acquired BWCs and those that

deployed them, either partially or fully, with their officers. This differentiation

allowed creating an Intent to Treat (ITT) group for all the agencies that acquired

BWCs, and a Treatment on the Treated (TOT) group for those agencies that

deployed them. To examine the effects of BWCs on police efficiency, I employed a

two-stage analytical approach.

In the first stage, I estimated the levels of police efficiency using an efficiency model

that is robust to the presence of outliers and measurement error inherent to

administrative and survey data. I specifically used an output-oriented and variable

returns to scale model because organizations like the police should maximize the

output produced (clearance rates) using the same or fewer inputs.

In regards to efficiency, the estimates suggest that police agencies have room for

improvement. The efficiency scores range from 0.60 to 0.84, depending on the

police agency’s size, with an overall mean of 0.76. In other words, on average,

police agencies could improve their performance by increasing 24 percentage points

of their output production–clearance rates– using the same or fewer inputs.

Furthermore, the results showed that over 100 agencies were deemed super-efficient.

This means that these agencies produced output between more than 1 (efficiency

score >1), and as much as three times more output than similar peers using the

same number of inputs.

In the second stage of the analyses, I employed a range o matching estimators and

instrumental variable analyses using the efficiency scores as the outcome of interest.

The results indicated a positive, strong, and statistically significant across all

matching and IV models. The ITT estimates suggest an improvement in efficiency

between seven and 12 percent, and the LATE estimates suggest an improvement in
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efficiency ranging from ten to about 21 percent. The effects on efficiency gains

substantial. For example, if police can increase efficiency by an average of 11

percent26, the number of crimes cleared would increase from an average of 430

violent and property crimes cleared to 480. While it seems like a small number, it

amounts to an average of 50 more crimes cleared annually through the deployment

of BWCs.

I also conducted robustness tests and examined the sensitivity of the results to the

presence of hidden bias. The robustness tests suggested that, after re-analyzing the

models, the presence of outliers does not affect the estimates’ strength and

robustness, and, if anything, the magnitude of the effects increases from an average

of 11 percent to 12 percent. The sensitivity analyses suggest that the models are

robustness to the presence of hidden bias except for the relative correlation

restrictions approach. The RCR results showed mild robustness to the presence of

unobserved factors that could question the robustness of the estimates in the

preferred models. Altogether, the findings of this study provide strong support to

the argument that the adoption of BWCs can contribute to improving police

efficiency, among other aspects of policing.

There are several important caveats to keep in mind with this study. First, the

study sample is limited to only local police agencies. The LEMAS survey collects

data on a much larger sample of law enforcement agencies and includes the sheriff,

county, and state police, among others. Hence, any inferences based on these

results should be attributed to local police agencies and not as effects that can be

generalized across law enforcement agencies. Furthermore, due to data limitations

and missing data for a number of agencies, the data required pre-processing and, as

a result, ended up limiting the sample size to 615 local police agencies.

Second, there are limitations in the number and types of police inputs. The

LEMAS survey does not contain data on key inputs in a police production

function, such as computers, phones, and GPS, among others. The use of

technology, paired with adequate organizational and management changes, is

important in improving efficiency (Garicano & Heaton, 2010; Milgrom & Roberts,

1990). For this study’s purposes, I was able to use two key police inputs, which are

the number of police officers and civilian personnel.

26This is the average of all the regression coefficients in Table 2
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Third, I could not capture in the analyses the variation in the adoption of BWCs.

The data indicate that some agencies had acquired BWCs 10-15 years ago, and

some as recently as 2016, the year the BWCs survey was implemented. Since 2012

the number of police agencies that have adopted BWCs increased by more than

500% from 19 in 2013 to 121 in 201527 (see Figure 4 in the Annex). Therefore, it is

possible that the early adoption of BWCs may have influenced the efficiency results

since they have had more time to use this technology. One possible way to address

this issue is to conduct temporal analysis and estimate yearly efficiency levels since

the shape of the efficiency frontier, and the units that generate it may change from

year to year.

Finally, although the study deliberately focused on local police agencies, they still

face variation in their technology sets due to differences in organizational structure,

financial and human resources, and the operating environment. For example, the

efficiency results indicate that the number of super-efficient agencies is somewhat

large and driven by mid-size and large agencies. While the methods used in the

first and second stages helped address differences between agencies to a great

extent28, there still exists variation in agencies’ technology sets, which ultimately

affects the generation of the efficiency frontier (O’Donnell, Rao, & Battese, 2008).

Thus, modeling the production frontier to account for differences in technology sets

would yield efficiency estimates that compared the performance of agencies with

peers that have similar technology sets. Unfortunately, sample size limitations did

not allow me to model police production function under different technology sets.

Considering these caveats, the findings nevertheless raise a question on the

mechanisms through which the use of BWCs improve police efficiency. This is

important from an operational point of view. It is challenging to shed light a priori

on how BWCs cameras could improve police efficiency, given limitations in data

that would allow researchers to model the complexity of a police agency’s

production function. However, this study offers some potential channels.

Research shows that using BWCs generally contributes to reducing the time needed

to clear a crime and send it to the next phase within the criminal justice system

(c.f. Morrow et al., 2016). Furthermore, historical research on clearance rates

27This is based on this study’s sample.
28Note that eliminating the super-efficient observations did not substantially alter the estimates.
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appears to provide support to this argument. Scott and colleagues (2019) suggest

average historical trends, despite showing significant stability, there was substantial

variation among agencies in their clearance rate performance. Organizational

changes and other factors were the primary drivers of variation (Scott, Wellford,

Lum & Vovak, 2019). However, it is not

Another potential channel is the compounding effect that BWCs can have on

improved performance through faster police response times. For example, recent

evidence suggests that faster police response times can improve crime clearance

rates by as much as 4.7% (Vidal & Kirchmeier, 2018). If faster response times

alone can lead to higher clearance rates, the enhanced data and information that

BWCs can collect could be a key factor in improving clearance rates.

Of course, organizational factors and external factors beyond police managers’

control invariably influence an agency’s performance (Alda & Dammert, 2019). As

Scott and colleagues(2019) suggested, differences in organizational characteristics

could explain variation in clearance rate performance. Hence, having adequate

organizational factors conducive to a full deployment of BWCs, and training on

proper use of BWCs and other available technology, can positively impact efficiency

(Milgrom & Roberts, 1990). Ultimately, however, officers must be compliant in

using and exploiting this technology’s capabilities to improve law enforcement

practices, particularly around maximizing output production while using the same

or fewer resources.

Improving police organizations’ efficiency can significantly impact budgetary

allocations in local government and police organizations to ensure proper allocation

of resources to maximize service delivery. Taken together, the results of this study

shed light on the effects that this technology has on police efficiency. It will be

important to expand on this strand of research within the growing body of

literature on the use of BWCs by law enforcement agencies.
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Analysis of the Polićıa Nacional Civil in Guatemala.” Policing: An International
Journal of Police Strategies and Management 37(1): 87-107.

Alda, E. & Dammert, L. (2019). ”Weathering the Storm!. The Effects of the
External Environment on Police Performance in Perú”. Policing: An International
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Annex-Supplementary Figures and Tables

Figure 4: Yearly Adoption of BWCs

Notes: Source: Own Analyses using BJS (2015), Kaplan (2020).

Figure 5: Order-m Scores

Notes: Order-m efficiency scores without outlier agencies.
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Figure 6: Efficiency by Agency Size

Notes: Order-m efficiency scores by agency size.

Figure 7: Bivariate Plot: Efficiency Scores vs. Efficiency Scores-Mean Normalized
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Table 6: Results-Sample with Efficiency Scores ⩽ 1

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.111∗∗∗ 0.094∗∗ 0.093∗∗ 0.0790∗ 0.090∗∗ 0.0827∗ 0.096∗∗∗ 0.0850∗∗∗ 0.133∗∗∗ 0.230∗∗∗

(0.0339) (0.0377) (0.0379) (0.0413) (0.0397) (0.0424) (0.0367) (0.0327) (0.0390) (0.0675)
Constant 0.517∗∗∗ 0.823 0.447

(0.0252) (0.557) (0.582)
Observations 320 320 320 320 320 320 320 316 320 320
R2 0.02 0.13 0.12

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 760.27 (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates.

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 162.20, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates.

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 7: Results - Re-Analyses of Efficiency Scores and BWCs Effects

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.167∗∗∗ 0.151∗∗∗ 0.153∗∗∗ 0.110∗∗∗ 0.048∗∗∗ 0.032∗∗∗ 0.049∗∗∗ 0.0.050∗∗ 0.196∗∗∗ 0.338∗∗∗

(0.0462) (0.0442) (0.0456) (0.0512) (0.0262) (0.0263) (0.0262) (0.0259) (0.0496) (0.0870)
Constant 0.360∗∗∗ 0.302 -0.252

(0.0204) (0.641) (0.677)
Observations 320 320 320 320 446 446 446 416 320 320
R2 0.01 0.23 0.20

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 760.27, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 162.20, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 8: Results - Robustness Analyses-Outlier Agencies

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.0661 0.0208 0.0145 0.0391 0.0355 0.0273 -0.0147 0.000814 0.0501 0.0764
(0.0548) (0.0529) (0.0575) (0.0517) (0.0507) (0.117) (0.0521) (0.0851) (0.0463) (0.0713)

Constant 1.302∗∗∗ -0.933 -1.029
(0.0721) (0.711) (0.738)

Observations 126 126 126 126 126 126 126 71 126 126
R2 0.00 0.44 0.42

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 742.95, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 117.03, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 9: Results - Robustness Analyses-Normalized Input/Output Set

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.103*** 0.0892** 0.0919** 0.0969** 0.0916** 0.0684** 0.0763** 0.0940*** 0.110*** 0.184***
(0.0355) (0.0374) (0.0383) (0.0376) (0.0364) (0.0343) (0.0379) (0.0344) (0.0379) (0.0632)

Constant 0.608*** 0.0471 0.182
(0.0270) (0.432) (0.446)

Observations 446 446 446 446 446 446 446 416 446 446
R2 0.02 0.24 0.24

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 1271.66, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for maximum
bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 246.22, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for maximum
bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 10: Order-m Efficiency Estimates- Mean Normalized

Mean Std. Dev. Min Max

Overall Efficiency Score 0.68 0.27 0.0003 2.40
Police agency (1-10 Officers) 0.78 0.30 0.25 1.00
Police agency (11-100 Officers) 0.57 0.38 0.006 1.16
Police agency (>100 Officers) 0.73 0.36 0.0003 2.40

Source: Own Analyses using BJS (2015), Kaplan (2020).

Table 11: Predicted Efficiency Scores- Mean Normalized

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.618 0.721
PS 0.625 0.714
RM 0.623 0.715
NN-3 0.636 0.733
NN-5 0.641 0.732
RA 0.646 0.714
DWPS 0.63 0.706
CEM 0.607 0.701
IV 0.607 0.7619
IV-2 0.607 0.771

Avg. 0.62825 0.717 0.607 0.76645

Source: Own Analyses using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
* Partial Deployment. ** Full Deployment.
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Table 12: Results - Robustness Analyses using a DEA model

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.0732*** 0.0524** 0.0557** 0.0542** 0.0484* 0.0322 0.0481* 0.0501* 0.0584** 0.0975**
(0.0251) (0.0266) (0.0271) (0.0264) (0.0262) (0.0263) (0.0260) (0.0259) (0.0283) (0.0473)

Constant 0.360*** 0.383 0.262
(0.0203) (0.338) (0.348)

Observations 446 446 446 446 446 446 446 415 446 446
R2 0.01 0.19 0.19

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 1271.66, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 246.22, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 13: DEA Efficiency Estimates

Mean Std. Dev. Min Max

Overall Efficiency Score 0.41 0.27 0.0001 1.00
Police agency (1-10 Officers) 0.65 0.37 0.05 1.00
Police agency (11-100 Officers) 0.36 0.30 0.002 1.00
Police agency (>100 Officers) 0.41 0.24 0.0001 1.00

Source: Own Analyses using BJS (2015), Kaplan (2020).

Table 14: Predicted Efficiency Scores-DEA Model

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.361 0.434
PS 0.368 0.420
RM 0.366 0.422
NN-3 0.372 0.426
NN-5 0.377 0.425
RA 0.389 0.421
DWPS 0.374 0.422
CEM 0.359 0.409
IV 0.358 0.446
IV-2 0.358 0.447

Avg. 0.370 0.422 0.358 0.446

Source: Own Analyses using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
* Partial Deployment. ** Full Deployment.
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Table 15: Rosenbaum Bounds

Γ sig+ sig- t-hat+ t-hat- CI+ CI-

1.0 0.0000 0.0000 0.1490 0.1490 0.0796 0.2120
1.1 0.0002 0.0000 0.1310 0.1664 0.0595 0.2295
1.2 0.0009 0.0000 0.1133 0.1822 0.0439 0.2451
1.3 0.0037 0.0000 0.0971 0.1961 0.0277 0.2595
1.4 0.0114 0.0000 0.0815 0.2106 0.0127 0.2724
1.5 0.0286 0.0000 0.0667 0.2221 -0.0017 0.2850
1.6 0.0602 0.0000 0.0557 0.2346 -0.0137 0.2956
1.7 0.1099 0.0000 0.0445 0.2445 -0.0252 0.3063
1.8 0.1785 0.0000 0.0342 0.2536 -0.0371 0.3147
1.9 0.2636 0.0000 0.0233 0.2631 -0.0477 0.3247
2.0 0.3599 0.0000 0.0138 0.2713 -0.0583 0.3335

Γ- Log odds of differential assignment due to unobserved factors.
sig+-Upper bound significance level.
sig--Lower bound significance level.
t-hat+-Upper bound Hodges-Lehmann point estimate.
t-hat--Lower bound Hodges-Lehmann point estimate.
CI+-Upper bound confidence interval (a= .95).
CI--Lower bound confidence interval (a= .95).
Source: Own analysis using BJS (2015), Kaplan (2020), and US
Census Bureau (2017).

Table 16: Simulated Confounder

Police Size Baseline Estimate Simulated Estimate Outcome Effect Selection Effect
Kernel Matching 0.114*** 0.112*** 1.44 1.525
Nearest Neighbor 0.057 0.106 1.576 1.538
Dashboard Cameras
Kernel Matching 0.114*** 0.114*** 1.081 1.833
Nearest Neighbor 0.056 0.11 1.045 1.829

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 17: Relative Correlation Restrictiions

ITT TOT
OLS point estimate ( λ = 0) 0.106*** 0.110***
(95% CI) (0.03,0.178) (0.04,0.183)
Bounds, 0 ⩽ λ ⩽ 0.1 [0.112,0.260] [0.29,0.444]
(95% CI) (0.09,0.106) (0.10,0.112)
Bounds, 0 ⩽ λ ⩽ 0.25 [-0.212,0.260] [-0.409, 0.444]
(95% CI) (0.065,0.106) (0.082,0.112)
Bounds, 0 ⩽ λ ⩽ 0.5 [-0.405,0.260] [-0.611,0.444]
(95% CI) (0.206,0.106) (0.050,0.112)
Bounds, 0 ⩽ λ ⩽ 1 [-0.920,0.260] [-1.00,0.444]
(95% CI) (-0.081,0.106) (-0202,0.112)
Bounds, 0 ⩽ λ ⩽ 2 [-3.10,0.260] [-1.883,0.444]
(95% CI) (-0.390,0.106) (-0.204,0.112)
λ∞ 2.82 3.34
λ(0) 0.61 2.94
Minimum λ for which bounds include zero 0.61 2.94

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau
(2017).
Notes: λ is the assumed correlation between the treatment and the observed
variables. Bounds reflect the estimates of the adoption of BWCs (ITT and TOT)
on police efficiency. Intervals in brackets are the estimated rcr bounds and the
intervals in parenthesis are 95% asymptotic confidence intervals.
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