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Abstract

The emergence of high frequency trading has resulted in ‘bursts’ of orders arriving

at an exchange (nearly) simultaneously, yet most electronic financial exchanges im-

plement the continuous limit order book which requires processing of orders serially.

Contrary to an assumption that appears throughout the economics literature, the tech-

nology that performs serialization provides only constrained random serial dictatorship

(RSD) in the sense that not all priority orderings of agents are possible. We provide

necessary and sufficient conditions for fairness under different market conditions on

orders for constrained RSD mechanisms. Our results show that exchanges relying on

the current serialization technology cannot ensure fairness, including exchanges using

‘speed bumps.’ We find that specific forms of constrained RSD ensure fairness under

certain assumptions about the content of those orders but that the general case nev-

ertheless requires unconstrained RSD. Our results have implications for the design of

trading exchanges.
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1 Introduction

In recent years there has been no shortage of controversy about the fairness of electronic

financial markets in the presence of high frequency trading (HFT). At the root of the problem

are market designs such as the continuous limit order book trading (CLOB) that operate

on a first-come, first-served (FCFS) basis.1 Since FCFS rewards speed, fast traders are

advantaged over slower market participants such as long-term investors, and this is sufficient

for authors like Lewis (2014) to conclude that electronic financial markets are not fair.

While controversy remains about whether fairness requires that no group of market par-

ticipants be able to obtain speed advantages over another (see e.g., Angel and McCabe

(2013)), what is entirely uncontroversial is that under the CLOB equally fast traders ought

to be treated equally. What this means is that when equally fast traders compete for a

resource in the CLOB they all ought to have the same probability of being allocated it. The

way that this uncontroversial form of fairness has been conveyed in the economics literature

is that absent any consideration about the content of traders’ orders, the CLOB is akin to

a random serial dictatorship (RSD) mechanism, that is, concurrent orders are randomly or-

dered before being processed. Budish et al. (2015) for instance, having astutely observed that

computers operate in discrete time, assume that under the CLOB what happens is “random

serial processing of orders that reach the exchange at the exact same discrete time.”2

While the fairness provided by RSD—owing to the fact it ensures all possible permuta-

tions occur with equal probability—makes it a desirable assumption for tie-breaking among

orders received simultaneously by an exchange implementing a CLOB, the reality of tie-

breaking on real exchanges is a different story. When an exchange is designed to process

orders as quickly as possible (as most are) its implementation of the CLOB is better described

as constrained RSD because only a small subset of all possible permutations of orders can

be generated.3

1A very short primer on CLOB trading and its terminology is offered in Section 2.1.
2Li et al. (2019) too suggest the assumption of RSD: “when multiple HFT order messages (limit orders,

market orders, or cancellations) reach the exchange at the same time, they are processed serially in a random

order.” See also for Baldauf and Mollner (2020) for a similar assumption.
3As to the motivation for exchanges seeking to process orders as quickly as possible: Angel et al. (2011),

and MacKenzie and Pablo Pardo-Guerra (2014) have noted that historically exchanges were able to increase

their market share by processing orders more quickly than their competitors. More recently both Menkveld

and Zoican (2017), and Wang (2018) note that exchanges continue to compete on the basis of how fast they

can process participants’ orders. Further supporting this, improvements exchanges have made in their order
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It is the dichotomy between the CLOB, which specifies the processing of orders serially,

and the large inflows of (nearly) simultaneous orders submitted by fast traders that motivates

our work. On exchanges that have been designed to be ‘fast’ (i.e., to minimize the time

taken to process participants’ orders) it is a general purpose computer networking device

known as a network switch that is responsible for imposing an ordering on its output port

on messages it receives simultaneously on its input ports (i.e., traders’ orders).4 If the

exchange is designed to be as fast as possible the priority ordering imposed by the switch

is that in which the participants’ orders are presented to the CLOB (Melton, 2018; Lohr

and Neusüß, 2019). It follows then that the only possible orderings are those the switch is

capable of providing, and those orderings are surprisingly constrained. As Sivaraman et al.

(2016) have noted, “today’s fastest switches, also known as line-rate switches, provide a

small menu of scheduling algorithms: typically, a combination of Deficit Round Robin, strict

priority scheduling, and traffic shaping. A network operator can change parameters in these

algorithms, but cannot change the core logic in an existing algorithm, or program a new one,

without building new switch hardware.” In practice, this means for a switch that has n ports

there are only n distinct possible orderings, and not n! as in RSD. Although switches used

by the industry have deterministic algorithms—given one ordering we can unambiguously

determine the next—the ordering produced by the switch is independent of the signals that

cause traders to submit orders to the exchange (and the content of those orders), so we may

reasonably characterize it as random, and ultimately as a constrained RSD mechanism.

The first message of this paper is that when an exchange is designed to process orders

as quickly as possible its implementation of the CLOB cannot provide fairness. To see this,

consider the simple example of an exchange whose switch has only four ports, and there

are four traders who are submitting simultaneously an order. Trader i is assigned to port

♯i, i = 1, . . . , 4. In this case the switch can only generate four different queues of those

traders, depicted in Table 1. Fairness breaks down because among those four queues trader

i1 is ranked before i2 three times, while i2 is above i1 only once. In other words, whenever

traders’ orders arrive simultaneously there is a systematic bias towards some traders, i.e.,

serialization of orders cannot be fair.

processing speeds feature prominently in their recent marketing materials (CME Group, 2020; Eurex, 2016;

CBOE, 2020; NYSE, 2020).
4On a switch, ports the sockets into which network cables are plugged, onto which messages are sent and

received.
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q1 q2 q3 q4

i1 i2 i3 i4

i2 i3 i4 i1

i3 i4 i1 i2

i4 i1 i2 i3

Table 1: Possible queues for a switch with four ports

The main contribution of this paper is to characterize fairness in constrained RSD mech-

anisms. As a by-product, we show that under current technology when an exchange is

designed to process orders as quickly as possible its implementation of the CLOB cannot

provide fairness.

Our results are obtained by considering a model built upon the standard setup for object

allocation using RSD, which consists of a set of agents and a set of objects where each agent

is endowed with a preference relation over the objects. In the RSD mechanism a queue of

agents is randomly generated (among all possible orderings), and each agent is asked, one at

a time, to pick an object among the objects not chosen by the agents ranked before him in

the queue. Our model departs from this standard description in two aspects. First, unlike

RSD where all possible queues are equally likely we assume that only queues from a set Q,

called a technology, can be realized. It is in this sense that our mechanism is a constrained

RSD. Second, instead of having agents’ preferences over objects we assume right away that

agents derive a payoff from each realized queues in the allocation mechanism. This modeling

approach does not affect our results but it permits us to directly relate fairness to the queuing

technology.

Fairness in the social choice or mechanism design literature is often interpreted as a

synonym of equal treatment of equals regarding agents’ outcomes (Moulin, 2004). In this

paper we follow this principle but consider two different ways to define agents’ outcomes.

One of the rationales for doing so is that electronic trading can be seen as the concatenation

of two mechanisms: a queuing mechanism (the network switch), and a market mechanism

(where traders’ orders are executed). Here the queuing mechanism is meant to allocate

access to the market. We thus consider two notions of fairness: access fairness, which

focuses exclusively on the queuing mechanism, and outcome fairness, which applies to the

complete queuing+market mechanism.
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As its name suggests, access fairness, in line with most current regulations, is based on the

desire that among equally fast traders no trader should be advantaged over any other in the

allocation of resource he or she receives, with the resource to be understood as participating

to the market mechanism. That is, equally fast traders should have the same probability

to be ranked first, second, third, . . . .5 Outcome fairness on the other hand is the standard

notion of equal treatment of equals, which simply requires that two equally fast traders

submitting identical orders should obtain the same expected outcomes. In a classic object

allocation problem an agent’s outcome is the object he receives, and in a trading context the

outcome is the price and quantity at which the trader sold or bought the asset (or whether

his order has been successfully canceled).

We show in this paper that access fairness and outcome fairness differ substantially in

terms of their market design implications. A brief summary of our results is the following.

We show that a technology Q guarantees access fairness if, and only if, the set of possible

queues satisfies a condition we call strong symmetry (Proposition 2). This condition is

a generalization of the symmetry in found for instance in the Condorcet cycle, where for

any rank k in a queue, each trader is ranked k-th as many time as any other trader is

also ranked k-th across all possible queues. Strong symmetry goes further by requiring

that this symmetry condition also holds when the set of queues is restricted to any subset

of traders. A crucial assumption behind this result is that the same queuing mechanism

(i.e., the same switch) is used to rank orders for different instruments or assets, a standard

feature in electronic markets. In an object allocation problem this translates as having

the (constrained) RSD mechanism to generate a unique queue for independent allocation

problems (i.e., with different sets of agents and objects).

For our characterization of outcome fairness we do not require our previous assump-

tion that agents trading different instruments are ordered together by the same technology.

Our model thus fits the ‘standard’ object allocation. Also, we highlight a crucial difference

5A prominent and recent case of market access (un)fairness appears in a disciplinary order by the Securities

and Exchanges Board of India (2019). In this case participants who were otherwise equally fast were not

treated as such by an exchange—some were able to obtain ‘head-starts’ when racing against others by

connecting to faster market data distributors, and similarly some were able to ‘race shorter tracks’ by

connecting to faster order gateways at the exchange than others. The review of this and many other cases of

market access unfairness provided by Mavroudis and Melton (2019) would seem to indicate that the principle

of fair access is ubiquitous across many jurisdictions and asset classes, and that it is of increasing concern

to operators of financial exchanges.
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between object allocation and trading problems when a running a (constrained) RSD mech-

anism. In object allocation problems, for any given queue, the outcome of an agent only

depends on the preferences of the agents ranked before him. Once an agent is allocated

an object the mechanism ends for him and what happens after that has no impact on his

allocation. That is not the case in trading, for the success of a trader’s order may depend

not only on the orders of the traders ranked after him in the queue but also on how those

agents are ranked. Accordingly, we characterize outcome fairness for both the object al-

location and the trading environments. For the former, outcome fairness is guaranteed if,

and only if the queuing technology is strongly balanced (Proposition 3), a condition that

roughly requires that for any two traders the collection of subqueues of traders ranked above

them are identical, up to a permutation of these two traders. This condition is stronger

that strong symmetry. For trading problems we show that outcome fairness is guaranteed if,

and only if the technology is fully balanced, which is a generalization of the strong balanced-

ness condition considering now the entire queues. We later show in the paper that the only

strongly balanced technology is the one made by all possible queues, like in unconstrained

RSD (Theorem 2), and the same holds for fully balanced technologies. In other words, as

long outcome fairness is a concern, RSD cannot be constrained.

Regarding outcome fairness we also investigate the special (and frequent) case when

concurrent orders are made only by liquidity providers.6 This case differ from the general case

(characterized with strongly balancedness) in that traders’ outcomes depend on which traders

are queue before (and thus after) them but not how those traders are ranked. Outcome

fairness is guaranteed in this case if, and only if the technology is weakly balanced. This

property is similar in spirit to balancedness but only requires that for any two traders the

set of traders ranked above them are identical across all possible queues. We show that in

fact weak balancedness is equivalent to strong symmetry (Theorem 1).

The rest of the paper is organized as follows. In Section 2 we offer a quick description of

the continuous limit order book protocol and an outline of the typical network architecture

of electronic financial markets. Our model is introduced in Section 3. In section 4 we explain

6This case is a bit unusual and perhaps less interesting for the object allocation literature. It roughly

consist of the following situation. The set of agents and objects can both be partitioned into different

subsets, {N1, N2, . . . , Nk} and {X1, X2, . . . , Xk}, respectively (with both partitions having the same number

of elements). For each h, agents in Xh have the same preferences over the objects in Xh, and all objects in

Xh′ , h′ 6= h are deemed unacceptable.
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how trading fits the allocation model presented in Section 3, discussing the assumptions that

traders’ order are simultaneous, the switch technology and traders’ payoffs (whether liquidity

providers or takers). Access fairness is characterized in Section 5 and Outcome fairness in

Section 6. We conclude this paper In Section 8 by discussing several alternative market

design that aim at improving fairness with CLOB trading protocols.

2 Electronic trading

2.1 Continuous limit order book

We offer here a quick overview of the continuous time limit order book trading protocol.

Readers familiar with it and the accompanying vocabulary can skip this section.

The CLOB protocol is simply a double auction that runs in continuous time. Buyers

and sellers submit buying and selling orders, respectively, which are simple demand and

supply functions consisting of a limit price and a maximum quantity. Prices submitted by

buyers and sellers are traditionally called bids and asks, respectively. That is, a bid is the

maximum price the buyer is willing to pay, and similarly an ask is the lowest price a seller

will accept to sell the asset. The quantity bought or sold by a trader cannot exceed the

quantity set in his order. There are many types of orders that can be submitted by traders,

but the two most common ones are limit orders and market orders. Market orders only

consist of a quantity, the buyer or seller submitting the price will accept any price that is

given by the market. So a market order submitted by a buyer is equivalent to a limit order

with an infinite price (and a price equal to −∞ in the case of a seller).

Orders submitted by traders are not necessarily filled, i.e., the trader may not be able to

buy or sell all the quantity specified in his order. For a buyer, an order is filled if the buyer’s

bid is at least as high as the lowest ask submitted by the sellers, and similarly for the sellers.

Orders that cannot be filled (or that are only partially filled) are stored in the book.7

The standard design for CLOB uses a price-time priority. An incoming buying limit

order that can be filled will be processed first using the lowest ask in the book. If all

the orders corresponding to that lowest ask do not sum up to the quantity asked by the

buyer additional transactions will be made using the next lowest ask, and so on until either

7In certain markets, particularly equities, at the opening of the market books may already contain some

orders, comprising unfilled orders from the pre-opening auction.
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the buyer has bought all the unit he asked or the next lowest ask is higher than his bid.

In this latter case the order is only partially filled and a new order is placed in the book

corresponding to the buyer’s bid and the quantity is his initial submitted quantity minus the

quantity he purchased. Sellers’ orders are processed similarly starting with the highest bid.

The difference between the lowest ask and the highest bid in the book is called the bid-ask

spread.

Traditionally traders are not distinguished between buyers and sellers but between providers

and takers.8 A provider is any trader whose order ends up in the book (in which case we

refer to his order as a active order). A taker is any trader whose order ‘crosses the spread,’

that is, a buyer whose bid is above or equal to the lowest ask in the book, or a seller whose

ask is lower or equal to the highest bid in the book.9

2.2 Exchange architecture

For reasons of risk, cost and interoperability electronic financial exchanges—like most dis-

tributed computer systems designed to perform business-related functions—incorporate var-

ious commercial off-the-shelf (COTS) components into their implementations.10 While in-

clusion of these COTS components is a practical necessity is also not without drawbacks.

Since the computer industry competes largely on the speed at which components operate,

vendors tend to prioritize the pursuit of speed as a design goal over other goals that might

inhibit speed. In the case of fast, ‘line-rate’ network switches—those that are required to

handle the volume and rate at which orders are received on a modern financial exchange—it

is a deliberate design decision made by vendors along exactly these lines to provide only a

handful of simple but fast scheduling algorithms for serializing messages the switch simulta-

neously receives; more sophisticated scheduling algorithms would inhibit the switch’s speed

(Shreedhar and Varghese, 1995; McKeown, 1997; Sivaraman et al., 2016).

To understand the centrality of a network switch to our work in this paper on fairness

8Providers are also called market makers. See Gould et al. (2013) for a nomenclature.
9A taker whose order is only partially filled is then first a taker and then a provider.

10To elaborate: the inclusion of these COTS components: (i) reduces risk because they have been proven

in the field through their wide-usage in many other distributed systems, (ii) reduces costs because although

the specific components used in integration tend to serve a generic purpose they also tend to be difficult

and expensive to design, build and test, and (iii) improves interoperability because standardization of the

interfaces they implement enable straightforward integration with other COTS components, including those

of the market participant’s computer systems that must be able to achieve connectivity to the exchange.
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Figure 1: Architectural view of a modern electronic financial exchange

consider the architectural view in Figure 1 of a modern financial exchange.11 In this figure

market participants are simultaneously sending messages to the network switch component

of the exchange, and that switch is imposing an ordering on those messages as it forwards

them to the matching engine component which hosts limit order books for the instruments

that trade on the exchange.12 Abstracting from jitter, the ordering generated by the switch

is that in which messages are processed in the CLOB.13

11From a software engineering perspective the architectural view provided in this figure is, at an appropriate

level of abstraction, consistent with the published architectures of many real exchanges (CME Group, 2014;

Eurex, 2016; Kluber, 2017; Melton, 2018)
12Switch designers use the term output port contention to describe the situation shown in the figure where

several messages received simultaneously must all be forwarded to the same physical link (Rojas-Cessa,

2016); it is the switch’s scheduling algorithm that performs this ordering function.
13 Melton (2020) provides a discussion of the meaning, nature and causes of jitter in electronic financial

exchanges, but to summarize: jitter in a computer system is the variability in the time taken to perform a

given operation. It is caused by features deeply embedded in both hardware and software that exploit the

spatial and temporal locality in a computer program’s data and instructions that has long been observed to
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3 The model

The usual playground for the random serial dictatorship mechanism (RSD) is the classic

assignment model consisting of a set of objects and a set N of agents (both finite), with each

individual being endowed with a preference relation over the objects. In this mechanism

a queue of agents is randomly generated and each agent chooses, one at a time, an object

among the objects that haven’t been choosen yet.

We make two departures from this description. The first and main departure is that

we assume that not all queues have a positive probability. We assume that there is a set

Q of possible queues, called a technology. Like for RSD, all queues in Q have the same

probability to be realized. We denote by |Q| the number of queues in Q.

Given two queues q = (t1, t2, . . . , tk) and q′ = (t′1, t
′
2, . . . , t

′
ℓ), we say that q is a subqueue

of q′ if k ≤ ℓ and ti = t′i for i = 1, . . . , k. The rank of a trader t in a queue q is denoted

rt(q). For a queue q, the truncation of a queue q at trader t, denoted q|t. For example, if

q = t1, t2, . . . , th−1, th, th+1, . . . , tm then q|th = t1, t2, . . . , th−1.

The second departure we make is that we abstract from the description of set of objects

(and agents’ preferences over objects) by assuming instead that agents have preferences

over queues. This is without loss of generality because each realized queue yields a unique

assignment and agents’ preferences are independent of the assignment of the other agents.

To sum up, a problem is given by a set N of agents, a technology Q, and for each agent

i ∈ N , a payoff function ui : Q → R. Given a technology and payoff profile (ui)i∈N , the

expected outcome of an agent i ∈ N is

EQ(ui) =
1

|Q|

∑

q∈Q

ui(q). (1)

Most of our results essentially rely on a simple identification argument. We will thus

make the assumption that the possible payoff profiles are sufficiently rich so that for any

trader there exists a payoff profile such that for any two distinct queues the trader obtains

different payoffs. We will make this assumption more precise depending on the case we

consider.

exist in its execution so as to make it run more quickly. See also Baldauf and Mollner (2020) for an analysis

of the impact of jitter on market performance.
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4 A trading model

The model we outlined in the previous section is fairly general, with a description more

adapted for the Social Choice literature. We discuss in this section how it can also fit a

trading problem.

4.1 Remark on the simultaneity assumption

There is both empirical evidence and explanatory theory to suggest this phenomenon is

widespread.14 In terms of empirical evidence, Brolley and Zoican (2019) estimate that around

10% of the time a typical exchange is processing ‘bursts’ of orders received substantially

simultaneously. On specific exchanges: We observe that on Refinitiv Matching, of all the

millisecond timestamps in which orders were received in 2014-2015, approximately 7% of

those timestamps contained a plurality of orders15; Lohr and Neusüß (2019) observe on Eurex

that there are many millions of instances of a plurality of orders being received within a few

nanoseconds of one another; Aquilina et al. (2020) observe on the London Stock Exchange

that 20% of trading volume involves a plurality of orders received with 5-10 microseconds of

one another; and Menkveld (2018) observes on NASDAQ that around 20% of trades involve

a plurality of orders received within a sub-millisecond window.

14In terms of the explanatory theory of why exchanges receive bursts of orders from fast traders, there are

two that are relevant to our work: one involves the submission of orders that are competing for the same

resource, and the other involves the submission of non-competing orders. Farmer and Skouras (2012) note

that responsive to a publicly observable signal a plurality of fast participants may submit competing orders

to (i) remove liquidity (e.g., because of mispriced bid or offer in the CLOB), or (ii) to obtain a favorable

queue position in the CLOB when providing liquidity by submitting a bid or offer at the same price-level in

it. R. Roth (2019) notes that a burst of orders may result from a liquidity provider updating their bids and

offers on an option chain responsive to a change in the chain’s underlying cash instrument—in this case the

orders are not competing with one another, and the explanation naturally generalizes to any instruments

with correlated pricing. The two explanatory theories, of course, are not incompatible and as is further

noted by R. Roth (2019), a burst of orders may contain a mix of competing and non-competing orders from

a plurality of participants.
15Source: author’s own analysis of Refinitiv Matching in his capacity as a Refinitiv employee.
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4.2 Queuing technologies

Since orders are processed serially, one at a time, orders arriving simultaneously at the

exchange must be ordered into a queue.16 Those queues are generated by a switch, a device

containing several ports to which traders are assigned and that receive traders’ orders, and

one additional port through which orders will be sent to the matching engine.17 In very

simplified terms switches operate as follows. Upon their arrival to a switch’s port orders are

buffered at the port level until they are forwarded to the matching engine. Switches visit

ports one at a time (with each visit consisting of flushing the corresponding buffer) following

a sequence determined by the switch’s design. Importantly, trading events and the switch

status (i.e., which port is currently visited by the switch) are independent. So, from the

perspective of traders’ at any moment each port has equal probability to be the first one to

be open at the time the traders’ orders arrive at the exchange.

Example 1 (circular switch) Of the switch scheduling algorithms the only one that ‘at-

tempts’ to provide equal treatment of messages received simultaneously is the deficit Round-

robin.18 Ignoring the deficit aspect of the algorithm its Round-robin aspect is simply a circular

shift on the switch’s ports.19 What this means is that if we label those ports 1 through n

the priority in which simultaneously received messages will be processed can be expressed

in terms of the following n permutations of those port numbers: [1,2,3,. . . ,n], [2,3,. . . ,n,1],

. . . , [n− 1, n,1,2, . . . , n− 2], and [n,1,2, . . . , n− 2, n− 1].

As an illustration, asssume that there are as many ports as traders, with trader i assigned

to port ♯i, i = 1, . . . n.20 A circular switch will visit port ♯1 through port ♯n, and then start

16The natural terminology would be to refer to orderings of traders’ orders. To avoid any confusion with

the financial terminology ‘orders’ will always refer to traders’ buy/cancel messages and ‘queues’ to linear

orderings of those orders manifested as messages.
17The matching engine in a an electronic trading exchange is the processor where traders’ orders will be

executed.
18To abstract away from the notion of a switch we subsequently refer to these scheduling algorithms as

queuing technologies, and the orderings they produce as queues.
19For the interested reader, the deficit aspect of the algorithm seeks to rectify unfairness in network

bandwidth allocation by the switch that would otherwise occur in the round robin aspect when the size of

messages received by the switch vary by sender (Shreedhar and Varghese, 1995). Throughout this work it

is our implicit and optimistic assumption that messages are of equal size and that each is an order sent to

the exchange by a trader. Under these assumptions deficit round robin in the switch implies plain old round

robin on orders in the CLOB.
20In practice many traders may be assigned to a same port, or the a single trader may occupy multiple
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over at port ♯1. If, for instance, at the time traders’ orders arrive the switch is currently

visiting, say, port ♯k, then trader ik’s order will be the first to be forwarded to the matching

engine, followed by trader ik+1’s order (who arrived at port ♯k + 1), . . . trader in’s order,

trader i1’s order, . . . and trader ik−1’s order will be the last order received by the matching

engine.

Hence, depending on which port is currently being visited at the time traders’ orders

arrive at the switch, we have then n possible queues, depicted in Table 2. Readers familiar

with the Social Choice literature will recognize this collection of queues as a Condorcet cycle.

q1 q2 q3 . . . qm−1 qm

i1 i2 i3 · · · im−1 im

i2 i3 i4 · · · im i1

i3 i4 i5 · · · i1 i2
...

...
...

. . .
...

...

im i1 i2 · · · im−2 im−1

Table 2: Queues in circular switch

Upon the arrival of traders’ orders each port has equal probability to be the port currently

visited by the switch, so each queue in the Condorcet cycle occurs with probability 1
m
.

Example 1 illustrates the difference between the ‘standard’ RSD, where there are n!

possible queues of traders, each with probability 1
n!
, and the RSD implemented by high

speed switch, where the number of possible queues is vastly reduced.

4.3 Traders’ outcomes

When considering trading the payoff function u(·) may take different forms, depending on

whether t is a taker or a provider, although for both takers and providers it will depend on

the book at the time their order is being processed, i.e., on how the book has been updated

with the execution (or not) of the orders of the traders that were ranked before.

For clarity we outline now possible forms that the function ut(·) may take, depending

on whether the trader t is a taker or a provider. For simplicity we will consider the case of

liquidity takers buying security X and providers canceling their active (selling) orders. We

ports. We leave aside such complications.
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abstract from quantities in traders’ orders, focusing only on the bids and asks.21 To this end,

denote by B the CLOB at the time traders submit their orders and a0 the lowest ask in B.

Since we focus on the case of traders sending buying orders or canceling selling orders a LOB

is simply a distribution fB over [a0,∞) that indicates, for each price level, how many selling

limit orders where submitted at that price. The execution of traders’ orders will modify the

book. For a sequence q = (i1, i2, . . . , ik) of traders’ orders we denote by B(q) the book after

the orders i1, i2, . . . , ik have been processed. The lowest ask is B(q) is denoted a(B(q)).

4.3.1 Providers’ outcomes

Providers’ do not necessarily have the same active orders. Hence, whether they manage to

cancel their orders depend on how the value of the lowest ask in the book when their order

is processed and the price they ask. To this end, let p be a provider and let ap the ask in

provider p’s active order. Providers’ payoffs are normalized to 1 if they managed to cancel

their order and to 0 otherwise (i.e., a taker bought the instrument from them). So for any

provider p, up(q) is given by

up(q) =




0 if a(B(q|p)) > at

1 if a(B(q|p)) ≤ at
(2)

Note that the payoff description in Eq. (2) takes some liberty with the standard CLOB

trading protocol that uses a price-time priority rule. In the standard CLOB design if two

providers posted the same ask it is the oldest provider who will be matched with the taker.

To see this consider a queue q = (t1, t2, . . . , tk−1, tk, t) such that tk is a taker and p is a

provider and

a(B(t1, t2, . . . , tk−1)) = at

a(B(t1, t2, . . . , tk−1, tk)) = at.

This implies that there are at least two providers who asked the price at who haven’t cancelled

yet when tk’s order was processed. By setting ut(q) = 1 we implicitly assume that provider

t’s order is necessarily the most recent among all the providers who ask for a price equal

to at.

21Not taking into account quantities in traders’ orders has no impact here. Also, note that in practice for

most securities orders are usually of the same size.
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4.3.2 Takers’ outcomes

Each taker t ∈ T submits a limit order with bid bt. A taker arriving just after trader tk will

thus buy the instrument only if a(B(q)) ≤ bt. Note that for any two queues q, q′ such that

q ⊂ q′, we have a(B(q)) ≤ a(B(q′)).

Similarly to providers, takers’ outcomes depend on the the book at the time their order is

processed, which in turns depends on the set of takers and providers that are ranked before

them. Hence,

q|t is a subqueue of q′|t ⇒ ut(q) ≥ ut(q
′). (3)

This definition of takers’ outcomes encompasses different metrics. A first natural metric is

the price at which a trader will be served. For instance, if each taker only buys one unit of

the instrument a taker’s payoff takes the following form,

ut(q) =




v(a(B(q|t))) if a(B(q|t)) ≤ bt

C if a(B(q|t)) > bt
(4)

where C is a constant with C > at and vt is strictly decreasing. If a taker t arrives too

late, then his order will not be succesful. Setting that the price is get is equal to some

large constant C is without loss of generality as long as we are interested in having takers

obtaining, in expectation, the same price. Otherwise one needs for modify Eq. (1) by taking

the expectation conditional on being served.

Another metric is simply looking at whether a taker is served (still assuming that the

taker only buys one unit of the instrument),

u(q) = 1a(B(q|t)≤at (5)

Note that the specification given by Eq. (4) guarantees that if two traders obtain the same

expected “price” then their expectation of being served is also the same. This would not be

the case if we would look at the expected price conditional on being served.

5 Access fairness

The simplest form of fairness boils down to whether traders have equal chances to be ranked

first, second, . . . in the realized queue. This notion fairness can be generalized at no cost by
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assuming that traders’ payoffs only depend on their positions in the queue. Thus, we assume

that for each trader there is a payoff v : Q :→ R such that for any two queues q, q′ ∈ Q,

ri(q) = ri(q
′) ⇒ vi(q) = vi(q

′).

Since vi(q) only depends on ri(q) for all q and all traders i ∈ N , abusing notation we will

sometime write vi(k) to denote vi(q) for ri(q) = k.

Given a queue q ∈ Q, and two traders i, j ∈ N , let qi↔j denote the queue q where i and

j’s positions are interchanged, that is, qi↔j is such that

rh(q
i↔j) =





ri(q) if h = j

rj(q) if h = i

rh(q) if h 6= i, j

(6)

and denote by Qi↔j = ∪q∈Qq
i↔j. We say that two traders i, j ∈ N are symmetric if

vi(q) = vj(q
i↔j) for all q ∈ Q.

For this section we make the following assumption. Among the n traders who simulta-

neously submit an order to an exchange of particular interest is the subset of the traders

who submit orders for the same financial instrument, say, X. The other traders have orders

for a different instrument (but that is traded at the same exchange). This assumption is in

line with the current practice in electronic exchanges where various instruments are traded

on the same matching engine (i.e., the same processor). Hence, traders buying and selling

different instruments are ordered in the same queues by the same switch. We call traders

trading instrument X essential traders. The presence of essential traders implies that

their payoffs for a given queue q only depends on the subqueue q restricted to the essential

traders.

Given a technology Q, where Q = {q1, q2, . . . , qk} and a set S ⊆ N of traders we denote

by QS the collection of queues {qS1 , q
S
2 , . . . , q

S
k } such that for each qSh , h = 1, . . . , k, qSh is a

restriction of qh to the set S, i.e., for each pair of traders t, t′ ∈ S, rt(q
S
h ) < rt′(q

S
h ) if, and

only if rt(qh) < rt′(qh).

Definition 1 A set S ⊆ N of traders is essential if for any trader i and queue q ∈ Q,

vi(q) = vi(q
S).
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Definition 2 A technology guarantess access fairness if for any payoff profile (vi)i∈N , and

any two symmetric traders i, j ∈ N ,

EQ(vi) = EQ(vj). (7)

5.1 Trading considerations

From a trading perspective access fairness can also capture the situation where all the traders

competing for the instruments are liquidity takers who submit the same order.22 This is for

instance the case analyzed by Budish et al. (2015), where takers are high frequency traders

and provider traditional (slower) investors.

The next lemmata formalize this. They are immediate consequences from the fact that

takers are all symmetric, so their proofs are omitted.

Lemma 1 Let Q be a technology, and assume that T 6= ∅ and P = ∅. For any t ∈ T such

that rt(q) = rt(q
′) for q, q′ ∈ QT , then for any book B and traders’ orders a(q|t) = a(q′|t).

Lemma 2 Let Q be a technology, and assume that T 6= ∅ and P = ∅. For any t, t′ ∈ T and

q, q′ ∈ QT such that rt(q) = rt′(q
′), rt(q

′) > rt′(q
′) and rt′(q) > rt(q), we have, for any book

B, ā, a(q|t) = a(q′|t′).

More generally, in the case where fast takers are ‘sniping’, i.e., competing against similarly

fast providers who are seeking to cancel their active bids or offers, one can view a provider

seeking to cancel her own order to be equivalent to that provider sending a marketable order

to match against her own bid or offer. While much of the literature makes a distinction

between a provider’s cancellation and takers’ marketable orders (see e.g., Budish et al. (2015)

and Baldauf and Mollner (2019)) both have the same effect of removing liquidity from the

book, that is, causing a previously active order to become inactive —as in Wuyts (2012)

or Mounjid et al. (2019). Crucially though, as both Farmer and Skouras (2012) and Li

et al. (2019) have independently observed, the economic consequences for a provider are

equivalent: if one views the provider’s cancel as just that their loss is zero; if one views the

22This case is more interesting than the providers-only case because traders’ outcomes worsen as their

position in the queue gets lower; if there were only providers canceling their orders any technology that

consists of always ranking all providers would be trivially fair.We will consider the case where there are only

providers (with non-cancelling orders) in Section 6.3.
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provider’s cancel instead as a taker order then their loss is also zero because their profit on

the taker order is exactly equal to their loss on their provider order.23

5.2 Characterizing fair access technologies

Access fairness intuitively requires that all traders have the same rank distribution over the

queues in Q, that is, there are as many queues ranking a trader t in position k as there are

queues ranking any other trader t′ in position k, for k = 1, . . . , n. The next example shows

that this is not enough. Fairness breaks down in a constrained serial dictatorship mechanism

as soon as the set of essential traders is a strict subset of the set of traders.

Example 2 There are four traders, i1, i2, i3 and i4. Traders i1 and i2 are essential traders,

while i3 and i4 trade another instrument (so i3 and i4’s orders do not affect the book for

instrument X and thus i1 and i2’s payoff).

The technology we consider is the Condorcet cycle, which corresponds to the Round-

robin switch we described in Example 1. There are four ports, g1, g2, g3 and g4, and traders

i1, i2, i3 and i4 are assigned to ports g1, g2, g3 and g4, respectively. The technology Q is made

of the four queues depicted in Table 3.

q1 q2 q3 q4

i1 i2 i3 i4

i2 i3 i4 i1

i3 i4 i1 i2

i4 i1 i2 i3

Table 3: Circular switch with four traders

Note that trader i1 is ranked first among the essential traders three times out of four.

23One might argue that the consequences are not equivalent because in one case there is a transfer of

profit from one group of participants (providers) to another (takers) when a cancel does not succeed. In

reality however, the roles of provider and taker are not fixed and a participant alternate roles dynamically.

Empirically Dahlström (2019) finds that high-speed ‘makers’ are actually net beneficiaries of latency arbitrage

because besides canceling their own quotes, they also simultaneously act as takers by sending marketable

orders on others’ stale quotes.
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For instance vi1(q4) = vi1(q
{i1,i2}
4 ) = vi1(1). So traders i1 and i2’s expected outcomes are

EQ(ui1) =
1

4
(3v(1) + v(2)) and EQ(ui2) =

1

4
(v(1) + 3v(2)) ,

which implies that this technology cannot be fair.

The technology of Example 2 fails to be fair for a lack of symmetry in the queues regarding

traders i1 and i2. To see this, notice that the case in the example is equivalent to the one

where there are only takers t1 and t2, but with the technology Q′ = (q′1, q
′
2, q

′
3, q

′
4),

q′1 q′2 q′3 q′4

i1 i2 i1 i1

i2 i1 i2 i2

While Q treats each trader equally (they have equal probability to be ranked at any

position), it fails to do so when we consider only traders i1 and i2. Since the technology

must work for any set of takers one needs a symmetry property that holds for any set S of

essential traders, which we introduce now.

Definition 3 A technology Q is symmetric if for any pair of traders i, j ∈ N

|{q ∈ Q : ri(q) = k}| = |{q ∈ Q : rj(q) = k}| for all k = 1, . . . , n, (8)

and a technology Q is strongly symmetric if for any set S ⊆ N of traders the technology

QS is symmetric.

Our definition of symmetry compares traders, for each rank, but does not compare how

many times traders are ranked for different ranks. It turns out that this if a technology Q

is symmetric then each trader is ranked the same number of times for each rank.

Proposition 1 If a technology Q is symmetric then for any traders i ∈ N ,

|{q ∈ Q : ri(q) = k}| = |{q ∈ Q : ri(q) = k′}| for all k, k′ = 1, . . . , n. (9)

Proof. There is necessarily a queue q ∈ Q and a trader i ∈ N such that ri(q) = 1. Let

z = |{q ∈ Q : ri(q) = 1}|. Since Q is symmetric then |{q ∈ Q : rj(q) = k}| = z, for

all j ∈ N , and thus there are z|N | queues in Q. Without loss of generality suppose that

for some rank h and trader i ∈ S we have |{q ∈ Q : ri(q) = h}| = z′ < z. Since Q is
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symmetric |{q ∈ Q : rj(q) = h}| = z′, for all j ∈ N . So there are z′|N | < z|N | queues in

Q, a contradiction. The case if z′ > z is similar. �

Our richness assumption regarding access fairness is the following.

Assumption 1 (rich payoffs) For any trader i ∈ N , there exists a payoff profile (vj)j∈N

such that for any two queues q, q′ ∈ Q with ri(q) 6= ri(q
′), vi(q) 6= vi(q

′).

We are now ready to characterize fair market access technologies.

Proposition 2 A technology Q guarantees access fairness if, and only if Q is strongly

symmetric.

Proof. That a strongly symmetric technology guarantees access fairness is straightfor-

ward. We only show the converse. Let S ⊆ N be a set of essential traders, and let Q be a

technology that guaranteess access fairness. So, for any two symmetric traders i, j ∈ S,

1

|Q|

∑

q∈Q

vi(q) =
1

|Q|

∑

q∈Q

vj(q) (10)

⇔
k=n∑

k=1

∑

q∈Q
ri(q)=k

vi(q) =
k=n∑

k=1

∑

q∈Q
rj(q)=k

vj(q) . (11)

Since i and j are symmetric we have vi(k) = vj(k) for all k. Also, S being a set of essential

traders i and j’s outcomes only depend on the queues restricted to S. So Eq. (11) is

equivalent to

k=n∑

k=1

∑

q∈QS

ri(q)=k

v(k) =
k=n∑

k=1

∑

q∈QS

rj(q)=k

v(k) (12)

⇔
k=n∑

k=1

π(i, k)v(k) =
k=n∑

k=1

π(j, k)v(k) , (13)

where

π(i, k) =
∣∣{q ∈ QS : ri(q) = k}

∣∣ .

Since Eq. (13) must holds for any profile (vi)i∈N , by identification we obtain

π(t, k) = π(t′, k), for k = 1, . . . , n.

That is, QS must be symmetric and thus Q is strongly symmetric. �
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6 Outcome fairness

When considering agents’ outcome there is a crucial difference between the standard object

allocation and trading. In the context of object allocation with (constrained) RSD as the

allocation mechanism, for any realized queue an agent’s outcome only depends on the sub-

queue up to that agent. The relative ranking of the agents that are ranked below him has

no impact on his payoff.24 This property does not hold for electronic trading, however, for a

trader’s outcome may also depend on the relative ranking of traders that are ranked below

him. The following example illustrates this point.

Example 3 There are two sellers, s1 and s2 and two buyers, b1 and b2. All buyers and

sellers submit an order for the same quantity. The prices proposed by s1, s2, b1 and b2 are

$14, $11, $12, and $13, respectively. Consider the following two queues,

q = s1, b1, s2, b2 and q′ = s1, b1, b2, s2 .

For b1 the subqueues obtained from q and q′ by only considering the traders above him are

identical. So in an object allocation problem b1 should receive the same outcome for both q

and q′. That is not the case in a trading context. Under both q and q′ trader b1 is a provider,

i.e., his order cannot be executed and is thus stored in the book. Under q trader s2 is a

liquidity taker. His order will cross the spread thus b1 will buy the instrument (for a price

equal to his bid, $12). Under q′ trader b2 is a liquity provider and thus his order is stored in

the book. Then comes s2 who will sell to b2 at a price of $13. Hence, b1 will not manage to

buy the instrument under q′.

In object allocation problems two agents are said to be symmetric if they have the same

preferences over the objects. In the context of trading two traders i and j are symmetric

if they submitted the same order.25 Since we are working here with payoffs depending on

queues this translates as two traders having the same payoff function over queues. Note that

since a queue is an ordering of all agents, for any queue two supposedly symmetric agents

will have different position on that queue, and thus their outcomes may not be equal. The

following defines agents’ symmetry when payoffs are defined over queues.

Definition 4 Two traders i, j ∈ N are symmetric if ui(q) = uj(q
i↔j) for all q ∈ Q.

24see for instance Abdulkadiroğlu and Sönmez (1998).
25So a taker and a provider cannot be identical in our setup.
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Note that uj(q
i↔j) denotes the payoff that j would obtain if he had taken i’s position in

the queue q (and i took j’s position). If i and j have the same preferences over objects or i

and j are traders who submitted the same order then j would obtain under qi↔j the same

outcome as i would get under q.

Definition 5 A technologyQ guarantees outcome fairness if, for any payoff profile (ui)i∈N ,

and any two symmetric traders i, j ∈ N

EQ(ui) = EQ(uj). (14)

6.1 Outcome fairness for object allocation

We consider here the standard setup for object allocation, which means that for any agent

and any realized queue his outcome only depends on the subqueue up to him. Formally, we

assume here that for any trader i ∈ N and queues q, q′ ∈ Q, if q|i = q′|i then ui(q) = ui(q
′|i).

In this context our richness assumption is the following.

Assumption 2 (rich payoffs) For any trader i ∈ N , there exists a payoff profile (uj)j∈N

such that for any two queues q, q′ ∈ Q with q|i 6= q′|i, ui(q|i) 6= ui(q
′|i).

For any two traders i and j, we denote by q|i↔j
j the queue q that is first truncated at j

and then i and j are swapped. That is, q|i↔j
i = q|i if j /∈ q|i, and otherwise q|i↔j

i is such that

j /∈ q|i↔j
i and

rh(q|
i↔j
i ) =




rh(q|i) if h 6= i ,

rj(q|i) if h = i .26

Definition 6 A technologyQ is balanced if for any pair i, j of traders, {q|i}q∈Q = {q|i↔j
j }q∈Q .

In other words, a technology is balanced if any queue q truncated at i can be mapped

uniquely to a queue truncated at j that is identical, up to a permutation of i and j.

We are now ready to characterize outcome fairness.

Proposition 3 A technology Q guarantees outcome fairness if, and only if Q is balanced.

Proof. Showing that a balanced technology guarantees outcome fairness is straightforward

and is left to the reader. We prove the converse. Let Q be a technology that guarantees
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outcome fairness. So, for any two symmetric traders i, j ∈ N ,

1

n

∑

q∈Q

ui(q) =
1

n

∑

q∈Q

uj(q) (15)

⇔
∑

q∈Q
j /∈q|i

ui(q|i) +
∑

q∈Q
j∈q|i

ui(q|i) =
∑

q∈Q
i/∈q|j

uj(q|j) +
∑

q∈Q
i∈q|j

uj(q|j) (16)

Note that for q ∈ Q, if i /∈ q|j then q|j = q|i↔j
j , and since i and j are symmetric, uj(q|j) =

ui(q|
i↔j
j ). Similarly, if i ∈ q|j then i and j’s symmetry implies uj(q|j) = ui(q|

i↔j
j ). Hence,

Eq. (16) is equivalent to

∑

q∈Q
j /∈q|i

ui(q|i) +
∑

q∈Q
j∈q|i

ui(q|i) =
∑

q∈Q
i/∈q|j

ui(q|
i↔j
j ) +

∑

q∈Q
i∈q|j

ui(q|
i↔j
j ) . (17)

Note that for the first sums of the left-hand side and right-hand side i’s payoff is calculated

for similar types of subqueues, i.e., subqueues of the form h1, h2, . . . , hk, with j 6= hk for

ℓ = 1, . . . , k.27 Similarly, the second sums of both sides are over subqueues of the form

h1, h2, . . . , hk, with j = hℓ for some ℓ = 1, . . . , k. Hence, Assumption 2 implies using an

identification argument that {q|i}q∈Q —from the left-hand side of Eq. (17)— is the same

as {q|i↔j
j }. That is, Q is balanced. �

Proposition 3 is relatively intuitive. If i and j are symmetric traders, then for any q ∈ Q

we must have ui(q|i) = uj(q|
i↔j
i ). Symmetry is thus guaranteed if for any subqueue q|i in Q,

the subqueue q|i↔j
i is also in Q, which is ensured by balancedness.

6.2 Outcome fairness for trading

We now consider the more general case when a trader’s payoffs may not only depend on the

relative ordering of the traders ranked above him but also on the relative ordering of the

agents ranked below him. The richness assumption then becomes the following.

Assumption 3 (rich payoffs) For any trader i ∈ N , there exists a payoff profile (uj)j∈N

is such that for any two distinct queues q, q′ ∈ Q, ui(q) 6= ui(q
′).

27The first sum of the left-hand side is for queues q ∈ Q such that i is ranked below j, i.e., i /∈ q|j . For

those queues the sum calculate ui(q|
i↔j
j , but it is easy to see that j /∈ q|i↔j

j .
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The concept of balancedness can easily be extended to this case, except that now we

consider the entire queues in Q.

Definition 7 A technology Q is fully balanced if for any i, j ∈ N and q ∈ Q, {q}q∈Q =

{qi↔j}q∈Q.

We then easily obtain an analog of Proposition 3.

Proposition 4 A technology Q guarantees outcome fairness if, and only if Q is fully bal-

anced.

The proof is similar to that of Proposition 3. The main difference is relative to the

trader’s payoffs: If i and j are symmetric then we have

1

n

∑

q∈Q

ui(q) =
1

n

∑

q∈Q

uj(q) (18)

⇔
∑

q∈Q
j /∈q|i

ui(q) +
∑

q∈Q
j∈q|i

ui(q) =
∑

q∈Q
i/∈q|j

ui(q
i↔j) +

∑

q∈Q
i∈q|j

ui(q
i↔j) . (19)

Then from Assumption 3 and by identification we obtain that Q must be fully balanced.

In appareance fully balancedness looks like being more demanding than balancedness.

We show in Section 7.2 that these two concepts are actually equivalent.

6.3 Competing providers

A special case of the situation analyzed in the previous section is when the burst of orders

received by the exchange consist of non-competing orders, that is, when none of the orders

submitted by the traders cross the spread and thus they are all providers (who are not

necessarily canceling their orders).

This case is not as hypothetical as it may seem; it is in fact relatively common for an

exchange to receive burst of non-crossing orders (i.e., a batch of orders with a least one bid

and one ask such that the ask is at least as high as the bid). For instance, for 2014 and

2015 there are 41,981,349 and 66,163,815 instances where Refinitiv received burst of orders

within a millisecond timestamp. Out of those, only 44,938 and 52,687 (for 2014 and 2015,

respectively) contained crossing orders, i.e., less than 0.1% of the time.

We generalize the problem by assuming that traders’ orders may differ and orders are

not necessarily from the same side of the market, i.e., some may be buying orders and others
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selling orders. In this case providers’ outcomes depart from the definition outlined in Section

4.3.1 because a provider’s outcome ultimately depends on the orders received before and after

him.28 Note, however, that the relative ranking of the orders above his, as well as the relative

ranking of the offers ranked below his, do not have any impact on the providers’ outcome.

Hence, a sufficient statistic to capture a provider’s outcome is the set of orders ranked above

his.

To this end, given a technology Q and a queue q ∈ Q, denote by Ui(q) the upper-contour

set of trader i in q, Ui(q) = {j ∈ N : rj(q) < rj(q)}, and let Ui(Q) = ∪q∈QUi(q). When all

traders are providers we have

Ui(q) = Ui(q
′) ⇒ ui(q) = ui(q

′) . (20)

The richness assumption in the case where there are only providers is the following,

Assumption 4 (rich payoffs) For any trader i ∈ N , there exists a payoff profile (uj)j∈N

such that for any two queues q, q′ such that Ui(q) 6= Ui(q
′), ui(q) 6= ui(q

′).

For a set S ⊆ N , let Si↔j be the set where i and j are swapped. That is,

Si↔j =





S if i, j /∈ S

S ∪ {j}\{i} if i ∈ S, j /∈ S

S ∪ {i}\{j} if i /∈ S, j ∈ S

S if i, j ∈ S

We denote by Ui↔j
i (Q) = ∪q∈Q(Ui(Q))i↔j.

Definition 8 A technology Q is weakly balanced if for any i, j ∈ N ,

Ui(Q) = Ui↔j
j (Q) (21)

In short, in a weakly balanced technology the upper-contour sets across all queues of any

two traders must coincide, up to a permutation of these two traders.

Proposition 5 Let the set of traders be only composed of liquidity providers. A technology

Q guarantees outcome fairness if, and only if, Q is weakly balanced.

28A providers’ outcome may depend from the orders received after a his if at a later date the provider

seeks to cancel. The more orders with a lower ask (if it is a selling order, or a higher bid if it is a buying

order) will give higher chances to the provider to cancel before being sniped by takers.
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Proof. The if part is straightforward. We show the only if part. Let Q be a fair

technology and let i, j be two symmetric providers. Since Q is fair we have

1

n

∑

q∈Q

ui(q) =
1

n

∑

q∈Q

uj(q) (22)

⇔
∑

q∈Q
j /∈q|i

ui(q) +
∑

q∈Q
j∈q|i

ui(q) =
∑

q∈Q
i/∈q|j

uj(q) +
∑

q∈Q
i∈q|j

uj(q) . (23)

Define the function w : 2N → R as wi(Ui(q)) = ui(q). So using Eq. (20), Eq. (23) is

equivalent to,

∑

S∈Ui(Q)
j /∈S

wp(S) +
∑

S∈Ui(Q)
j∈S

wp(S) =
∑

S∈Uj(Q)
i/∈S

wj(S) +
∑

S∈Uj(Q)
i∈S

wj(S) . (24)

Note that for q ∈ Q such that i /∈ Uj(q), since i and j are symmetric, wj(Uj(q)) =

wi(Uj(q)). If q is such that i ∈ Uj(q), then, again from i and j being symmetric, wj(Uj(q)) =

wp(Uj(q) ∪ {j}\{i}). Hence, (24) is equivalent to

∑

S∈Ui(Q)
j /∈S

wi(S) +
∑

S∈Ui(Q)
j∈S

wi(S) =
∑

S∈Uj(Q)
i/∈S

wi(S) +
∑

S∈Uj(Q)
i∈S

wi(S ∪ {j}\{i}) . (25)

Observe that the firs sums of the left-hand side and right-hand side are over similar sets,

i.e., sets S such that j /∈ S, and similarly for the second sums of each side (i.e., sets S such

that j ∈ S). So from Assumption 4 and using an identification argument the first (resp.

second) sums of both sides of Eq. (25) are over the same sets, which implies that Q is weakly

balanced. �

7 Comparing technologies

7.1 Strong symmetry and weak balancedness

Balancedness is obviously a more stringent requirement than weak balancedness. The follow-

ing example shows that when both providers and takers are competing weak balancedness

is not enough to ensure fairness.

26



Example 4 There four traders, p1, p2, t3 and t4, each selling or buying one unit of instrument

X. Providers p1 and p2 have an order in the book with an ask equal to $1 and $2, respectively.

There are two additional asks in the book at $3 and $4. Takers t3 and t4 submit a limit

order with a bid equal to $4.

Table 4 represents a strongly symmetric technology with four traders. The last two rows

give the price at which takers t3 and t4 will buy the instrument for each possible queue,

respectively.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

p1 p2 t3 t4 p1 p2 t3 t4 p1 p2 t3 t4

t3 p1 p1 p1 t4 t4 p2 p2 p2 t3 t4 t3

t4 t3 p2 t3 p2 p1 t4 t3 t4 p1 p1 p2

p2 t4 t4 p2 t3 t3 p1 p1 t3 t4 p2 p1

t3 2 3 1 2 3 3 1 3 4 1 1 2

t4 3 4 3 1 2 1 3 1 3 3 2 1

Table 4: strongly symmetric technology for n = 4.

Taking the average we obtain that takers t3 and t4 will pay an expected price of 26
12

and
27
12
, respectively. So Q is not fair.

The cases considered in this secction and Sections 5 differ in an important respect. In

the fomer a trader’s outcome only depend on the rank of his order in the queue, whereas in

the latter it depends on which orders are ranked above. Surprisingly, the techologies that

ensure fairness in both cases are identical.

Theorem 1 A technology Q is strongly symmetric if, and only if it is weakly balanced.

Proof. See the Appendix. �

7.2 Constrained v. unconstrained RSD

A balanced technology must then consist of more queues than an strongly symmetric (or

weakly balanced) technology. The question is then how many more? We address now this

question.
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Denote by QRSD the technology corresponding to the standard (i.e., unconstrained) Ran-

dom Serial Dictatorship mechanism. That is, QRSD contains n! pairwise different queues.

For any technology Q, denote by Q the smallest technology (i.e., the technology with the

fewest number of queues) such there is exists some integer ℓ such that

|{q′ ∈ Q : q′ = q}| = ℓ× |{q′ ∈ Q : q′ = q}| for all q ∈ Q. (26)

For instance, if Q = {(i1, i2), (i1, i2), (i2, i1), (i2, i1)} then Q = {(i1, i2), (i2, i1)}. We then

have the following result.

Theorem 2 A technology Q is balanced if, and only if Q = Q
RSD

.

Proof. The only if part trivial. To prove the if part, let Q be a balanced technology and

for simplicity set Q = Q. Let q ∈ Q and assume without loss of generality that

q = i1, i2, . . . , in−2, in−1, in.

SinceQ is balanced, there exists q′ ∈ Q such that q′|in = q|in−1
. So q′ = i1, i2, . . . , in−2, in, in−1.

Assume now that there is some k such that for any h > k it holds that for any queue q̂ such

that q̂|ih = q|ih then q̂ ∈ Q. That is, any queue of the form

i1, i2, . . . , ih−1, ih, j1, j2, . . . , jn−h, with j1, . . . , jn−h ∈ {ih, . . . , in}

belongs to Q. Consider now qik↔ik+1 |ik = i1, i2, . . . , ik−1, ik+1. So we have

qik↔ik+1 = i1, i2, . . . , ik−1, ik+1, ik, j1, . . . , jn−h (27)

with j1, . . . , jn−h ∈ {ik+2, . . . , in}. Note that so far we do not know how ik+2, . . . , in are

ranked in qik↔ik+1 . However, since Q is balanced, there is q̂ ∈ Q such that q̂|ik = qik↔ik+1 |ik .

So, from the induction hypothesis, for any ℓ ∈ {k, k + 2, . . . , n} if q̂ is such that q̂|iℓ =

qik↔ik+1 |iℓ , then q̂ ∈ Q. SinceQ is balanced, for any such queue q̂ and any ℓ ∈ {k, k+2, . . . , n},

there is q̃ ∈ Q such that q̃|ik+1
= q̂ iℓ↔ik+1 |iℓ. That is, q̃ is of the form

i1, i2, . . . , ik−1, iℓ, j1, j2, . . . , jn−k+1 with j1, j2, . . . , jn−k+1 ∈ {ik, ik+2, . . . , in}\{iℓ}.

From the induction hypothesis any such q̃ (i.e., however traders in {ik, ik+2, . . . , in}\{iℓ}

are ranked) belongs to Q. Hence, for any ℓ ∈ {k, k + 1, k + 2, . . . , n} and any q̂ such that

q|ik = q̂|iℓ we have q̂ ∈ Q, the desired result. �

A direct corollary of Theorem 2 is the following.
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Corollary 1 A technology Q is balanced if, and only if it is fully balanced.

Proof. Clearly, if Q is fully balanced then it is balanced. Conversely, if Q is balanced

then Q̄ = Q̄RSD. Since Q̄RSD is obviously fully balanced then so is Q. �

Corollary 2 Outcome fairness implies access fairness, that is, if Q is (fully) balanced then

Q is strongly symmetric.

Proof. Immediate from Theorem 2 because Q̄RSD is obviously strongly symmetric. �

8 Market design implications

Our results provide an unambiguous message regarding the standard design of centralized fi-

nancial exchanges: hardware constraints imposed by the switch technology cannot guarantee

fairness.

Regarding access fairness our result crucially depends on the assumption that agents

trading different securities are queued together by the same switch. One may thus deduce

that access fairness could be restored if each instrument or asset would have its own switch

(and thus its own matching engine). This solution would make sense from a theoretical

perspective, but not in practice: it would amount to have one exchange per instrument.

In recent years several modifications to the CLOB have been proposed and/or imple-

mented. A first proposal is the random-delay scheme by Harris (2013). In this scheme, upon

its receipt by the exchange, a random delay of (nominally) 0-10 milliseconds is added to

each order before it is presented to the CLOB. This random delay of course has the effect

of reordering messages received by the exchange. Since the draws from the random delay

distribution are independent, the ordering produced by the scheme is equivalent to RSD.

What this means, notwithstanding strategic behavior where a trader sends the same order

in duplicate, is that if the interval from which the delays are drawn is large enough relative

to the systemic differences in jitter among participants then the scheme can restore a notion

of equal treatment of equally fast participants on an exchange.29

29To illustrate what we mean by a buffer ‘long enough’ relative to systemic differences in an exchange’s

jitter across participants consider the following example adapted from Melton (2020). Imagine a scenario

where there are two traders that are otherwise equally fast but where one is subject to a persistent additional

29



Consider next the essence of the designs proposed by Tresser and Sturman (2002), and

subsequently by Schwartz and Wu (2013) and Budish et al. (2015), which treat time not as a

continuous variable but as one that constitutes a discrete, fixed size interval. Orders received

in the same such interval are deemed by the exchange to have been received ‘at the same

time’. If these orders were to be processed serially against the CLOB then our results tell us

that, absent any consideration of each order’s content and the prevailing best bid and offer,

RSD is necessary and sufficient. The same reasoning above about the length of the interval

relative to the size of systemic differences in exchange jitter among otherwise equally fast

participants applies here, too.

Consider finally the scheme proposed by Melton (2014b, 2017) implemented on Refinitiv

Matching for the spot foreign exchange instruments that trade on it.30 In this scheme

queues are generated only over orders that are actually competing. There is an independent

buffer and associated timer for each such group of competing orders that were received at

substantially the same time. To illustrate: if the offer on an instrument is $1.00 and two

buy orders are received for $1.01 those are both put into the ‘buy as taker’ buffer for that

instrument; but if also substantially simultaneously three bids were received with limit prices

of $0.96 those would be put into a ‘buy as maker at $0.96’ buffer for that instrument; if also

simultaneously further bids were received with limit prices of $0.98 those would go into the

‘buy as maker at $0.98’ buffer for the instrument. After each buffer’s timer has run for 3

milliseconds—the receipt of the first order in a buffer is what starts its timer—the orders

that are in it are shuffled according to a particular procedure and drained from the buffer

so as to be presented to the CLOB.

What our model tells us about queues of only competing orders is that strong symmetry

is necessary and sufficient. In practice, to defend against an advantage that otherwise might

be obtained by sending the same order in duplicate, the ‘first’ order each trader sent is

subject to RSD, then if there exist duplicates the second such orders are subject to RSD

and so on. What this means is that despite at the time the scheme was designed not having

delay by the exchange of 1 millisecond. Imagine then the interval from which the random delays are drawn

from is 0-4 milliseconds. In the resultant orderings we want each to have an equal chance of being first and

second but the persistent delay faced by one reduces his chance of being first to 3

4
× 3

4
× 1

2
= 0.28125. If

however the random delays are drawn from a longer interval, say 0-100ms, then his chance of being first is
99

100
× 99

100
× 1

2
= 0.49005 ≈ 0.5.

30Refinitiv Matching was formerly known as Thomson Reuters Matching, and prior to that as Reuters

Matching. The name changes reflect ownership changes of the company.
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a formal model of fairness like the one in this paper the queues produced by the mechanism

deployed on Refinitiv Matching nevertheless exhibit fairness. As for the case in our model

where providers are canceling simultaneously with takers ‘sniping’, a policy decision was

made prior to the scheme’s implementation not to buffer cancel messages, and instead to

process them in real-time, i.e., forward them to the CLOB immediately upon their receipt.

What this means is that the RSD requirement for cancels mixing with taker orders is not

relevant to this particular scheme, though it is to the CLOB generally.

Many other ‘speed bumps’ deployed real financial exchanges, however, do not restore

fairness because they continue to rely on the network switch to perform serialization of at

least some simultaneously received orders. Many such schemes impose a fixed-length delay

on taker orders (but not cancels) to reduce ‘sniping’ but they will not ensure fairness among

equally fast taker and/or providers. Even those schemes that impose variable delays on taker

orders will not restore fairness among providers. An inventory of these speed bumps and

timeline showing their date of first introduction on real financial exchanges is provided by

Osipovich (2019).

Finally, our results also tell us about necessary and sufficient properties for queues pro-

duced for market data distribution transmitted under a unicast scheme, i.e., when market

data is specific to each trader.31 Since market data updates, which are just a contempo-

raneous snapshot of the CLOB, are a trading signal or ‘trigger’ for races among market

participants it is the queue on those updates that causes the queue at time of sending for

the orders it triggers among equally fast market participants. The process of generating a

market data update of the CLOB by first removing counterparties a participant cannot trade

with is often called credit-screening or credit-filtering (Silverman and Hoffman, 1999; Melton,

2014a; Gould et al., 2017). Unicast is thus often used in markets that tend to operate on

bilateral credit like the spot foreign exchange market. The difference between multicast and

unicast transmission schemes is illustrated in Figure 2.

Market data messages being sent from the exchange to market participants as shown in

Figure 2. These market data messages contain a point-in-time snapshot of the CLOB and

many participants have trading strategies that send order messages responsive the content

in these snapshots. Consequently, if one participants receives a snapshot before another it

31The alternative system is multicast, where the same market data is sent to all participants. This the

standard system for markets that are centrally-cleared like equity markets, because everyone can trade with

everyone else in the CLOB.
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Figure 2: Unicast vs. multicast market data distribution on an electronic financial exchange.

is as if s/he has received a ‘head-start’ over the other even if the participants are otherwise

equally fast. Since we cannot know what if any orders will be triggered by a given market

data update our results tell us that a unicast market data update scheme, to result in equal-

treatment-of-equally fast participants, must exhibit RSD (unless the differences from the

first participant receiving an update to the last participant receiving it are ‘small’ relative

to the response-time jitter of the participants, see Melton (2020)).
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A Proof of Theorem 1

Proof of Theorem 1 Observe that if |N | = 2 then strong symmetry is trivially equivalent

to balancedness.32 So henceforth we assume |N | ≥ 3.

(Only if) Let Q be a weakly balanced technology. So, for any i, j ∈ N we have

|{S ∈ Ui(Q) : |S| = k}| = |{S ∈ Uj(Q) : |S| = k}| , for k = 0, 1, . . . n− 1. (28)

Since |Ui(q)| = k implies ri(q) = k + 1, Eq. (28) is equivalent to

|{q ∈ Q : ri(q) = k + 1}| = |{q ∈ Q : rj(q) = k + 1}| , for k = 0, 1, . . . n− 1. (29)

So, Q is symmetric. We now show that QS is symmetric for any non-empty S ⊂ N . Note

that for any i ∈ S, Ui(Q
S) = {Ŝ ∩ S}Ŝ∈Ui(Q). Let i and j be any two traders in S, and

let Ŝ ∈ Ui(Q). If j /∈ Ŝ, then Ŝ ∈ Uj(Q) and thus (Ŝ ∩ S) ∈ Uj(Q
S). If j ∈ Ŝ, then

(Ŝ∪{i}\{j}) ∈ Uj(Q). Hence, ((Ŝ∪{i}\{j})∩S) ∈ Uj(Q
S). Clearly, |(Ŝ∪{i}\{j})∩S| =

|Ŝ ∩ S|. Therefore,

∣∣∣{Ŝ ∈ Ui(Q
S) : |Ŝ| = k}

∣∣∣ =
∣∣∣{Ŝ ∈ Uj(Q

S) : |Ŝ| = k}
∣∣∣ , for k = 0, 1, . . . n− 1,

which implies that QS is symmetric. �

(If) Suppose now that Q is strongly symmetric. For any trader i ∈ N and set S ⊆ N\{i},

let

Qi,S = {q ∈ Q : Ui(q) = S}. (30)

Technology Q is weakly balanced if for any two traders i, j ∈ N , and any set S ⊆ N ,

S ∈ Ui(Q) implies S ∈ Uj(Q) whenever j /∈ S, and S ∪ {i}\{j} ∈ Uj(Q) if j ∈ S. Hence,

Q is weakly balanced if

|Qi,S| =




|Qj,S| if j /∈ S

|Qj,S∪{i}\{j}| if j ∈ S.
(31)

We show that Eq. (31) holds for any set S by induction.

To begin, note that for any i ∈ N , Qi,{∅} = {q ∈ Q : ri(q) = 1}. From strong symmetry,

|{q ∈ Q : rj(q) = 1}| = |{q ∈ Q : ri(q) = 1}|. So, |Qi,{∅}| = |Qj,{∅}|. It is convenient to

distinguish between two cases, depending on whether j ∈ S.

32In this case we have for any i ∈ N and q ∈ Q, Ui(q) = {∅} or Ui(q) = N\{i}.
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Case 1: j /∈ S

For each subset R ⊆ S, q ∈ Qi,R implies qN\S ∈ Q
N\S
i,∅ . Also, for R * S, q ∈ Qi,R implies

qN\S /∈ Q
N\S
i,∅ . Hence,

|Q
N\S
i,∅ | =

∑

R⊆S

|Qi,R|. (32)

Let S = {k}, with k 6= i, j. We claim that |Qi,{k}| = |Qj,{k}|. From Eq. (32), |Q
N\{k}
i,∅ | =

|Qi,∅|+|Qi,{k}| and |Q
N\{k}
j,∅ | = |Qj,∅|+|Qj,{k}|. Since Q and QN\{k} are symmetric, |Q

N\{k}
i,∅ | =

|Q
N\{k}
j,∅ | and |Qi,∅| = |Qj,∅|. So |Qi,{k}| = |Qj,{k}|, which proves the claim.

Suppose now that for all sets R ⊂ N such that |R| < k and i, j /∈ R, |Qi,R| = |Qj,R|. Let

S such that |S| = k. Since QN\S is symmetric |Q
N\S
i,∅ | = |Q

N\S
j,∅ | and thus from Eq. (32) we

have ∑

R⊂S

|Qi,R|+ |Qi,S| =
∑

R⊂S

|Qj,R|+ |Qj,S| (33)

The induction hypothesis thus implies |Qi,S| = |Qj,S|, the desired result.

Case 2: j ∈ S

Suppose first that S = {j}. We need to show that |Qj,{i}| = |Qi,{j}|. SinceQ is symmetric,

|Qh,∅| = |Qh′,∅|, for all h, h
′ ∈ N . Define r = |Qh,∅|.

Also, any k ∈ N , since QN\{k} is symmetric, |Q
N\{k}
h,∅ | = |Q

N\{k}
h′,∅ |, for any h, h′ ∈ N\{k}.

Eq. (32) thus implies |Qh,{k}| = |Qh′,{k}|, for any h, h′ ∈ N\{k}. Note that
∑

h 6=k |Qh,{k}| =

|Qk,∅| = r. Hence,

|Qh,{k}| =
r

n− 1
for any h, k ∈ N. (34)

Therefore, |Qi,{j}| = |Qj,{i}|.

Claim If R,R′ ⊂ N such that |R| = |R′| then

|Q
N\R
h,∅ | = |Q

N\R′

h′,∅ | for any h ∈ N\R and h′ ∈ N\R′ . (35)

Proof of the Claim. Let k1, k
′
1 ∈ N , and let h ∈ N\{k1} and h′ ∈ N\{k′

1}. From Eq. (32),

|Q
N\{k1}
h,∅ | = |Qh,∅|+ |Qh,{k1}| and |Q

N\{k′
1
}

h′,∅ | = |Qh′,∅|+ |Qh′,{k′
1
}| . (36)

Since Q is symmetric, |Qh,∅| = |Qh′,∅|. Also, from Eq. (34), |Qh,{k1}| =
r

n−1
= |Qh′,{k′

1
}|.

Hence, |Q
N\{k1}
h,∅ | = |Q

N\{k′
1
}

h′,∅ |.

Define N1 = N\{k1, k
′
1} and Q′ = QN1 . Since Q is strongly symmetric, Q′ is symmetric.

Let k2, k
′
2 ∈ N , and let h ∈ N\{k2} and h′ ∈ N\{k′

2}. We can use the previous argument and
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deduce that |Q
′N1\{k2}
h,∅ | = |Q

′N1\{k′2}

h′,∅ |. Since Q′N1\{k2} = QN\{k1,k2} and Q′N1\{k′2} = QN\{k′
1
,k′

2
}

we have |Q
′N\{k1,k2}
h,∅ | = |Q

′N\{k′
1
,k′

2
}

h′,∅ |. Continuing this way with {k3, k
′
3}, {k4, k

′
4}, . . . yields

|Q
N\{S}
h,∅ | = |Q

N\S′

h′,∅ | for any S, S ′ such that |S| = |S ′|, which proves the claim. �

Suppose now that S = {j, k}. Let S ′ = S ∪ {i}\{j}. Thus, from Eq. (32) and Eq. (35),

we have

|Qi,∅|︸ ︷︷ ︸
=r

+ |Qi,{k}|︸ ︷︷ ︸
= r

n−1

+ |Qi,{j}|︸ ︷︷ ︸
= r

n−1

+|Qi,{jk}| = |Qj,∅|︸ ︷︷ ︸
=r

+ |Qj,{k}|︸ ︷︷ ︸
= r

n−1

+ |Qj,{i}|︸ ︷︷ ︸
= r

n−1

+|Qj,{ik}| (37)

⇔ |Qi,{jk}| = |Qj,{ik}| . (38)

We can now show that |Qi,S| = |Qj,S∪{j}\{i} for any set S ⊆ N\{i} such that j ∈ S.

Assume that this equality holds for any set R such that |R| < k, and let S such that |S| = k.

Let S ′ = S ∪ {j}\{i}. Since |Q
N\S
i,∅ | = |Q

N\S′

j,∅ | we have from Eq. (32)
∑

R⊂S
j /∈R

|Qi,R|+
∑

R⊂S
j∈R

|Qi,R|+ |Qi,S| =
∑

R⊂S′

i/∈R

|Qi,R|+
∑

R⊂S′

i∈R

|Qi,R|+ |Qj,S′ | . (39)

The induction hypothesis thus implies |Qi,S| = |Qj,S|, the desired result. From Case 1 we

have
∑

R⊂S
j /∈R

|Qi,R| =
∑

R⊂S′

i/∈R
|Qi,R|, and from the induction hypothesis we have

∑
R⊂S
j∈R

|Qi,R| =
∑

R⊂S′

i∈R
|Qi,R|. So we obtain |Qi,S| = |Qj,S′ |, the desired result. �
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