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Abstract

We show that both real indeterminacy and asset price bubble may appear
in an infinite-horizon exchange economy with infinitely lived agents and an im-
perfect financial market. We clarify how the asset structure and heterogeneity
(in terms of preferences and endowments) affect the existence and the dynamics
of asset price bubbles as well as the equilibrium indeterminacy. Moreover, this
paper bridges the literature on bubbles in models with infinitely lived agents
and that in overlapping generations models (Tirole, 1985).
Keywords: asset price bubble, real indeterminacy, borrowing constraint, in-
tertemporal equilibrium, infinite-horizon.
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1 Introduction

The existence and dynamics of asset price bubbles are one of the fundamental ques-
tions in economics and finance. According to the classical paper by Santos and
Woodford (1997), conditions under which bubbles exist are relatively fragile. After
the global financial crisis of 2007- 2009, this topic has regained momentum and dif-
ferent new mechanisms of bubbles have been proposed.1 To date, the literature on
rational asset price bubbles has focused on two frameworks: (1) overlapping genera-
tions models (OLG) and (2) infinite-horizon general equilibrium models with infinitely
lived agents. Note that since the influential paper of Tirole (1985), numerous studies

∗EPEE, Université Paris-Saclay. Email: stefano.bosi@universite-paris-saclay.fr
†IPAG, CNRS, PSE, and TIMAS. Email: Cuong.Le-Van@univ-paris1.fr
‡EM Normandie Business School, Métis Lab. Email: npham@em-normandie.com
1See Farhi and Tirole (2012), Martin and Ventura (2012), Gali (2014, 2018), Hirano and Yanagawa

(2017), Miao and Wang (2012, 2018), Barbie and Hillebrand (2018) among others. The reader can
also find excellent surveys in Brunnermeier and Oehmke (2012), Miao (2014) and Martin and Ventura
(2018).
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have privileged OLG models to study the existence of bubbles and their macroeco-
nomic implications. Although it is also important to study infinite-horizon models
of bubbles,2 this type of framework has received relatively less attention.3 As rec-
ognized by Kocherlakota (2008), Miao (2014) and Martin and Ventura (2018), our
understanding of bubbles in infinite-horizon models is far from complete.

The present paper aims to address basic and open questions about rational asset
price bubbles in intertemporal competitive equilibrium: Why do asset price bubbles
exist in equilibrium? What is the connection between the existence of bubbles on the
one hand and the economic agents’ consumption and trade on the other? How do
the existence and dynamics of the asset price bubble depend on asset structure and
economic fundamentals such as endowments?

To answer these questions, we consider an infinite-horizon general equilibrium
model with a finite number of agents, where there are one consumption good and one
financial asset as Lucas’ tree (Lucas, 1978). Our model has two key ingredients: first,
agents are heterogeneous in terms of endowments and preferences; and second, there
exist financial frictions in the form of short-sale constraints, i.e., the asset quantity
that each agent can buy does not exceed an exogenous limit. As in Tirole (1982),
Kocherlakota (1992), Santos and Woodford (1997), given an equilibrium, we say that
there exists a bubble in this equilibrium if the equilibrium asset price exceeds the
fundamental value of the asset, defined as the present value of dividend streams. An
equilibrium with (resp., without) bubble is said to be bubbly (resp., bubbleless).

Our contribution is three-fold.
First, we provide new conditions under which bubbles are ruled out. The literature

on bubbles in infinite-horizon models shows several conditions ruling out asset price
bubbles. Kocherlakota (1992) questioned the relationship between the existence of
bubbles and borrowing constraints. He pointed out that, in the presence of bubbles,
the limit infimum of the differences between asset holding and borrowing limit equals
zero. We go further by proving that in any equilibrium with bubbles, there exist at
least two agents whose borrowing constraints bind (i.e., asset holding equals borrowing
limit) at infinitely many dates, and there exist at least two agents (not necessarily
the same agents just mentioned) whose assets holdings fluctuate over time.

Another famous no-bubble condition in Theorem 3 in Santos andWoodford (1997),
which states that, under mild conditions, bubbles are ruled out if the present value
of aggregate endowments is finite. This condition still holds in a model with debt
constraints (Werner, 2014) and in a model with land and collateral constraints (Bosi
et al., 2018b). In our model with short-sale constraints, we also obtain this no-bubble
condition (see Corollary 2).

Motivated by the fact that most of the no-bubble conditions are based on en-
dogenous variables, we contribute to the literature by providing conditions based on

2Miao (2014) explains why we need to study infinite-horizon models of bubbles.
3In such models, it is difficult to characterize or compute the equilibrium. It is also not easy to

provide non-trivial examples of equilibrium.
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fundamentals. The first condition (see Corollary 1) shows the role of the borrow-
ing limits: there is no equilibrium with bubbles if borrowing limits are high enough.
The second condition (see Proposition 3) shows the role of impatience: under the
assumption of uniform impatience, there is no bubble if agents strongly prefer the
present. The intuition is simple: if agents strongly prefer the present, they do not
buy the asset in the long run, ruling out bubbles. In particular, this is the situation
in finite-horizon models in which no one buys the asset in the last period eliminating
the possibility of bubbles.

The second avenue of our contribution concerns the construction of models with
bubbles where we can explicitly characterize the existence and the dynamics of bub-
bles by using fundamentals such as agents’ endowments, borrowing limits, asset div-
idends, and asset supply.

The above no-bubble conditions suggest us to focus on a two-agent model and
characterize the equilibrium in which borrowing constraints of both agents bind in-
finitely many dates (more precisely, the first agent’s borrowing constraint will bind,
for instance, at even dates and that of the second agent at odd dates). We find
that such an equilibrium exists only if (1) the borrowing limits are low and (2) the
benchmark economy (i.e., the economy without asset) experiences the so-called seesaw
property. An economy verifies the seesaw property whenever one agent’s subjective
interest rate is higher than that of another agent at infinitely many dates while be-
ing lower at infinitely many other dates. Focusing on such equilibrium, we find that
bubbles are ruled out if the value of endowments (discounted by using the interest
rates of the benchmark economy) of the agent who buys asset vanishes in the infinity
(see Proposition 4). As a consequence, there cannot exist a bubble if the benchmark
interest rates are high. The basic idea is that asset buyers’ income must be high
enough so that they are willing to buy the asset, even when the asset price exceeds
the fundamental value.

Notice that this condition concerning the benchmark interest rates is based on fun-
damentals and cannot be obtained from the famous condition in Santos and Woodford
(1997), which is based on endogenous variables. Our finding can be viewed as an ex-
tension of the no-bubble condition of Tirole (1985) in an OLG model4 to our general
equilibrium model with infinitely lived agents. In this sense, our paper is the first to
create the connection between the no-bubble conditions in Tirole (1985) and those
in infinite-horizon general equilibrium models. Recall that Tirole (1985), Farhi and
Tirole (2012) need the convergence of interest rates of the economy without asset
while we do not require such convergence.

In the existing literature, there are some examples of bubbles in general equilib-
rium models with infinitely lived agents.5 Concerning the asset having zero dividends

4It states that there is no bubble if the steady-state interest rate of the economy without bubble
asset is higher than the population growth rate

5Brunnermeier and Oehmke (2012), Miao (2014), and Martin and Ventura (2018) provide excel-
lent surveys on bubbles. Here, we focus on bubbles in general equilibrium models with infinitely
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and positive supply (i.e., fiat money), Bewley (1980) (Section 13), Townsend (1980),
Kocherlakota (1992) (Example 1) and Scheinkman and Weiss (1986) show that, when
borrowing is not allowed, fiat money may have positive value in infinite-horizon
general equilibrium models. Santos and Woodford (1997) present several examples of
this kind of bubbles: their examples 4.1, 4.2 study fiat money in deterministic models
while their example 4.4 investigates fiat money in a stochastic model. Hirano and
Yanagawa (2017) also give sufficient conditions for the existence of stochastic bubbles
of an asset without dividend. There are a few examples of bubbles of assets with posi-
tive dividends. In a deterministic set-up, Example 4.3 in Santos and Woodford (1997)
studies bubbles of an asset with positive dividends but with zero net supply. Like us,
Example 4.5 in Santos and Woodford (1997) also investigates bubbles of the Lucas’
tree, although they use a stochastic model with a single representative household.6

Recently, Le Van and Pham (2016), Bosi et al. (2017a), Bosi et al. (2018b) show that
bubbles of assets with positive dividends and positive net supply may appear even in
deterministic models. Bloise and Citanna (2019) provide a sufficient condition based
on trade and punishment for default for the existence of the bubble of an asset with
vanishing dividends of an equilibrium whose sequence of allocations converges.

To date, no example shows how the existence and the dynamics of asset price
bubbles depend on fundamentals such as endowments and the asset structure (divi-
dends, asset supply, and borrowing limits). Our main contribution is to fill this gap.
More precisely, Section 4.3 of the present paper provides several models (without any
restriction on fundamentals) where bubbles exist. Notice that studying these models
is not easy because we have to work with a dynamical system that is non-stationary
and has infinitely many parameters (which are our model’s fundamentals). We prove
that: when the benchmark economy has low interest rates and verifies the seesaw
property, bubbles are more likely to exist in equilibrium if (1) asset supply is low,
(2) borrowing limits of agents are low, (3) the level of heterogeneity (proxied by the
differences between agents’ fundamentals such as endowments, initial asset holdings,
rates of time preferences) is high, and (4) asset dividends are low with respect to
agents’ endowments. Consequently, our results suggest that bubbles may appear if
(i) the agents’ endowments grow asymmetrically, and (ii) there is a shortage of finan-
cial assets (i.e., there is a low supply and assets provide low dividends).7 We also
prove that bubbles may not exist if one of these four conditions is not satisfied.

The basic mechanism of asset price bubbles in our model is the following: the
agents’ heterogeneity and the seesaw property ensure that, at any period, at least
one agent needs to save as much as possible by buying the asset. When the asset

lived agents.
6In this example, they introduce a sequence of non-stationary stochastic discount factors and

show that bubbles may exist under a state-price process but not under another state-price process.
7In our model, the intertemporal utility function is time-separable. Araujo et al. (2011) consider

the utility function
∑

t≥0 ζi,tu(ci,t) + ǫi inft≥0 ui(ci,t) and show that the parameter ǫi plays a key
role on the existence of bubbles.
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supply and borrowing limits are low, the asset price would be high (even higher than
its fundamental value) because it is the only way to smooth consumption.8

To the best of our knowledge, we are the first to show that there is a continuum
of bubbly equilibria in models with infinitely lived agents. With additional specifi-
cations, we can further provide a complete characterization of the set of equilibria
with bubbles, and compute the bubble component as a function of fundamentals. In
our models of bubbles, the asset price may converge to any value in [0,∞] or may
fluctuate over time, depending on the fundamentals’ properties. Furthermore, here
the existence of bubbles does not violate individual transversality conditions (TVC,
henceforth). Notice that individual TVC ensures the optimality of agents’ choices
and always holds in equilibrium while bubbles can exist or be ruled out.

Our third contribution is to clarify the relationship between the existence of bub-
ble, equilibrium indeterminacy and (individual) welfare.

The equilibrium indeterminacy in our model is global, and no local approximation
is invoked to prove this indeterminacy. Our proof relies on the fact that asset prices,
in some cases, can be recursively computed. Hence the sequence of prices can be
computed as a function of the initial price. Therefore, at the initial date, any value
can be an equilibrium price if it is low enough so that the price and the bubble
component will be not too high in the future, ensuring that agents can buy them. As
a result, there may be a continuum of asset prices and a continuum of equilibrium
trajectories. Notice that we require neither the convergence of these trajectories nor
the existence of a steady-state. So, the indeterminacy in our model is quite different
from the concept of dynamic indeterminacy in macroeconomics (see Benhabib and
Farmer (1999), Farmer (2019) for surveys on this issue). Our result on indeterminacy
complements the findings in Kehoe and Levine (1985), Kehoe et al. (1990) who show
that in a general equilibrium model with a finite number of infinitely lived consumers
and with complete financial markets, equilibria are generically determinate.9 Unlike
them, we introduce financial frictions and prove that equilibria may be generically
indeterminate. Moreover, the real indeterminacy in our model is associated with the
existence of bubbles.

Our paper also contributes to understanding the relationship between financial
assets, the existence of bubbles, and welfare. First, we prove that the equilibrium al-
location in a model with bubble strictly Pareto dominates the autarkic one. The basic
intuition is that the financial asset, even it contains a bubble component, provides
two ways to smooth consumption: saving and borrowing. Thanks to this, agents can
transfer their wealth from dates with high endowments to dates with low endowments.
Second and more importantly, we show in Proposition 9 that, in our models where
there are multiple equilibria, the allocation of any bubbly equilibrium strictly Pareto

8We can prove that, if we introduce a new asset with which agents can borrow without limit,
there will be no bubble in equilibrium.

9More precisely, under conditions in Proposition 2 in Kehoe et al. (1990), there is a finite (odd)
number of equilibria.
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dominates that of the bubbleless equilibrium (notice that the bubbleless equilibrium
is not necessarily the autarkic one). The idea is that both the asset prices and the
bubble component increase with the initial price. Consequently, the initial asset price
of the bubbleless equilibrium is lower than that of any bubbly equilibrium. When the
price increases, it helps to reduce the marginal rate of substitution of agents, which
in turn allows agents to smooth their consumption. Therefore, individual welfare
generated by any bubbly equilibrium is higher than that generated by the bubbleless
one. This point is consistent with Proposition 9 of Hirano and Yanagawa (2017). The
difference is that we work under general utility functions while they only focus on the
logarithmic utility function.

The rest of the paper is organized as follows. Section 2 presents the framework and
provides the fundamental properties of equilibrium. Sections 3 provides no-bubble
conditions. A number of models with bubbles and real indeterminacy are presented in
Section 4. Finally, Section 5 concludes and mentions future works. Technical proofs
are gathered in the appendices.

2 An exchange economy with short-sale constraints

Consider an infinite-horizon discrete-time model with short-sale as in Kocherlakota
(1992). There are a finite number m of agents, a single consumption good and an
asset. The asset structure is similar to Lucas’ tree (Lucas, 1978) with exogenous
dividend stream (dt)t. Denote ci,t, bi,t the consumption and asset holding of agent i
at date t while qt is the asset price at date t. Agent i maximizes her intertemporal
utility

∑+∞

t=0 βi,tui(ci,t) subject to the following constraints:
(1) Physical constraints: ci,t ≥ 0 ∀t, ∀i.
(2) Budget constraint: ci,t + qtbi,t ≤ ei,t +(qt + dt)bi,t−1 ∀t, ∀i, where ei,t > 0 is the

exogenous endowment of agent i at date t and bi,−1 is endogenously given.
(3) Borrowing constraint (or short-sale constraint): bi,t ≥ −b∗i ∀t, ∀i where b∗i ≥ 0

is an exogenous borrowing limit.
An equilibrium is a list of prices and allocations (qt, (ci,t, bi,t)i)t≥0 satisfying three

conditions: (1) given price, for any i, the allocation (ci,t, bi,t)i is a solution of the

optimization problem of agent i (i.e.,
∑+∞

t=0 βi,tui(ci,t) ≥ lim supT→∞

∑T

t=0 βi,tui(c
′
i,t)

for any sequence (c′i, b
′
i) satisfying physical, budget and borrowing constraints), and

(2) market clearing conditions:
∑

i bi,t = L and
∑

i ci,t =
∑

i ei,t + Ldt ∀t ≥ 0, and
(3) qt > 0 ∀t.

Denote Wt ≡
∑

i ei,t + Ldt the aggregate resource at date t. We require standard
assumptions in the rest of the paper.

Assumption 1. Assume that ui is concave, strictly increasing, and continuously
differentiable for any i. We also assume that βi,t > 0, ei,t > 0, bi,−1 ≥ −b∗i , dt ≥ 0,
∑

t βi,tui(Wt) < ∞ ∀i, t, and the net asset supply is positive (L > 0).
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Assumption 2. There exists an increasing function v(c) such that u′
i(c)c ≤ v(c) ∀c

and
∑

t βi,tv(Wt) < ∞ ∀i.

Notice that when
∑

t βi,t < ∞ ∀i, and ui(c) = ln(c) ∀c, ∀i or ui(0) is finite for any
i, Assumption 2 is a direct consequence of Assumption 1.

We start our exposition with the following result which plays a fundamental role
in understanding bubbles.

Proposition 1. Let Assumption 1 be satisfied.
(1) If (q, (ci, bi)i) is an equilibrium, we have first-order conditions (FOC):

βi,tu
′
i(ci,t) = λi,t (1a)

λi,tqt = λi,t+1(qt+1 + dt+1) + ηi,t, ηi,t(bi,t + b∗i ) = 0, ηi,t ≥ 0. (1b)

for any i, t. In addition, if Assumption 2 holds, then limt→∞ λi,tqt(bi,t + b∗i ) = 0.

(2) If the sequences (q, (ci, bi)i) and (λi, ηi) satisfy

(a) ci,t, bi,t, λi,t, ηi,t,≥ 0, qt ≥ 0, bi,t ≥ −b∗i , ci,t + qtbi,t = ei,t + (qt + dt)bi,t−1 ∀i, t;

(b) First-order conditions (1a-1b), and market clearing conditions;

(c) Transversality conditions (TVC): limt→∞ λi,tqt(bi,t + b∗i ) = 0 ∀i;

(d) For any i, the series
∑∞

t=0 βi,tui(ci,t) converges.

then (q, (ci, bi)i) is an equilibrium.

Proof. See Appendix A.

Proposition 1 provides necessary and sufficient conditions under which a list of
prices and allocation constitutes an equilibrium.10 Kocherlakota (1992) considers
a particular function

∑

t β
t
iui(ci,t) and states a similar result but he requires that

ui(c) ≤ 0 ∀c or ui(c) ≥ 0 ∀c (to ensure that the sum
∑

t β
t
iui(ci,t) always converges).

Of course, his condition is not satisfied if ui(c) = ln(c). Our result is more general
and also applies to unbounded utility functions, including ui(c) = ln(c). Our result
is related to Proposition 1 in Bosi et al. (2018b). The difference is that we impose
exogenous borrowing limits while Bosi et al. (2018b) consider collateral constraints
and the borrowing limits depends on prices of assets in the future.

Our proof of TVC is quite different from that of Kamihigashi (2002). We cannot
directly apply the result in Kamihigashi (2002) because he only considers positive
allocations while bi,t may be negative in our model. It is interesting to notice that
when ui(0) ≥ 0 ∀i, the second statement of Proposition 1 still holds if we replace
limt→∞ λi,tqt(bi,t + b∗i ) = 0 ∀i by lim inft→∞ λi,tqt(bi,t + b∗i ) = 0 ∀i.11

Following the standard literature (Tirole, 1982, 1985; Kocherlakota, 1992; Santos
and Woodford, 1997), we introduce the notion of rational asset price bubbles.

10For the existence of equilibrium, see, among others, Bosi et al. (2018b) and references therein.
11See Remark 8 in Appendix A for a proof.
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Definition 1. Consider an equilibrium. We define discount factors (Rt)t by Rt+1qt =
qt+1 + dt+1. The fundamental value of the asset is FV0 ≡

∑∞

t=1 Qtdt where Qt ≡
1

R1···Rt
. We say that there is a bubble in this equilibrium if q0 > FV0. In this case,

this equilibrium is called bubbly. Otherwise, it is called bubbleless.

Remark 1. One can prove that 1 = Rt+1 maxi
βi,t+1u

′

i(ci,t+1)

βi,tu
′

i(ci,t)
∀t ≥ 0.12

In our deterministic framework, the sequence of discount factors (Rt) is uniquely
determined. The reader is referred to Santos and Woodford (1997), Araujo et al.
(2011), Pascoa et al. (2011), Bosi et al. (2018b) among others for the notion of
bubbles in stochastic economies where discount factors (and state price processes)
are not necessarily uniquely determined.13

According to the asset pricing equation qt = (qt+1 + dt+1)/Rt+1, we have

q0 =
t

∑

s=1

Qsds +Qtqt ∀t ≥ 1. (2)

So, there is a bubble iff limt→ Qtqt > 0, i.e., the discounted value of 1 unit of the asset
does not vanish in the infinity. In a particular case where dt = 0 ∀t, the fundamental
value equals zero; in this case, there is a bubble iff the asset price is strictly positive
(this is the notion of bubble in Tirole (1985)).

Our main goal is to understand conditions under which rational asset price bub-
bles may exist (or be ruled out) in equilibrium as well as the implications of this
phenomenon.

3 No-bubble conditions

This section aims to study necessary conditions for the existence of bubbles and find
out new conditions under which bubbles cannot appear.

3.1 The role of borrowing constraints

The relationship between the existence of bubble and borrowing constraints is ques-
tioned by Kocherlakota (1992). However, he did not investigate whether borrowing
constraints are binding or not in equilibrium with bubbles. The following result ex-
plores such a relationship and shows our contribution with respect to Kocherlakota
(1992) as well as the connection between the existence of bubble and the trading on
the asset market.

12Indeed, let t ≥ 0 arbitrary, then FOCs imply that qt ≥ (qt+1 + dt+1)maxi
βi,t+1u

′

i(ci,t+1)
βi,tu

′

i
(ci,t)

. Since
∑

i bi,t = L > 0, there is an agent it such that bit,t > 0. Hence, ηi,t = 0. By consequence,

qt = (qt+1 + dt+1)
βit,t+1u

′

it
(cit,t+1)

βit,t
u′

it
(cit,t)

. Therefore, we obtain our result.
13See Miao and Wang (2012, 2018) for the notion of bubble on the value of firm and Becker et al.

(2015), Bosi et al. (2017a) for the notion of bubble on physical capital.
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Proposition 2 (bubble existence and borrowing constraint). Let Assumption 1, 2 be
satisfied. If there is a bubble in equilibrium, then we have:

1. (Kocherlakota, 1992) lim inft→∞(bi,t + b∗i ) = 0 ∀i.

2. There exist at least 2 agents whose borrowing constraints bind infinitely often.
Formally, there exist at least 2 agents, say i, j, and 2 infinite increase sequences
(in)n, (jn)n such that bi,in + b∗i = 0 and bj,jn + b∗j = 0 for all n.

3. There exist at least 2 agents i and j such that the sequences (bi,t)t and (bj,t)t do
not converge.

Proof. See Appendix A.

Points 2 and 3, which complement the result in Kocherlakota (1992), show that
the existence of bubbles implies the fluctuations of asset trading of at least 2 agents.
Let us provide a sketch and intuition of our proof. When the borrowing constraint of
any agent i is not binding from some date, say t0, then ηi,t = 0 ∀t ≥ t0, ∀i, and hence
λi,t+1

λi,t
= qt

qt+1+dt+1
= 1

Rt+1
and Qt = λi,t

Qt0

λi,t0
∀t ≥ t0, ∀i. It means that the discount

factor of any agent is proportional to that of the economy. So, the TVC which ensures
the optimality of agent i’s allocation implies that limt→∞ Qtqt(bi,t + b∗i ) = 0. When
bubbles exist (i.e., limt→∞ Qtqt > 0), this equality cannot hold for all i because the
asset is in positive net supply

∑

i bi,t = L > 0 ∀t.
Proposition 2’s point 2 leads to the following result showing the role of borrowing

limits (b∗i ) on the existence of bubbles.

Corollary 1. Let Assumption 1, 2 be satisfied. If there is a date T such that b∗i dt > ei,t
∀i, ∀t ≥ T , then there is no equilibrium with bubble.14

Notice that this result still applies for the case where borrowing limits are not
stationary, i.e., when the borrowing constraint of agent i at date t is bi,t + b∗i,t ≥ 0
where b∗i,t ≥ 0 is exogenous.

3.2 Interest rates, impatience and bubble

A famous result in Santos and Woodford (1997) states that, under the assumption
of uniform impatience (see infra), bubbles are ruled out if the present value of total
future resources is finite (this condition was named ”high implied interest rates” by
Alvarez and Jermann (2000)).15 In our model with short-sale constraints, we can also
prove a similar result.

14Indeed, suppose that there is an equilibrium with bubble. According to point 2 of Proposition
2, there is an agent i and an infinite sequence (in)n such that bi,in + b∗i = 0 ∀n. Let n be such
that in > T . We have ci,in+1 = ei,in+1 − din+1b

∗
i − qin+1(b

∗
i + bi,in) ≤ ei,in+1 − din+1b

∗
i < 0, a

contradiction.
15Theorem 6.1 in Huang and Werner (2000) provides a version of Santos and Woodford (1997)’s

Theorem 3 in a model with debt constraints. Proposition 12 in Bosi et al. (2018b) shows a related
result concerning the bubbles of land.
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Corollary 2. Let Assumption 1, 2 be satisfied. There is no bubble if

∑

t≥0

Qt

(

∑

i

ei,t
)

< ∞. (3)

Consequently, there is no bubble if lim inft→∞
dt∑
i ei,t

> 0.

Proof. See Appendix A.

Although Santos and Woodford (1997) work in a stochastic model with multiple
assets, their main results require the uniform impatience. By contrast, we do not
require the uniform impatience. Instead, we use transversality conditions in Propo-
sition 1. We provide here a sketch of proof. Condition (3) is used to prove that, for
any agent i, the discounted value of asset holding Qtqtbi,t converges when t tends to
infinity. If there is a bubble (i.e., limt→∞ Qtqt > 0), then the sequence (bi,t) converges
for any i. By market clearing condition, there is at least one agent, say j, whose
asset holding bj,t converges to a strictly positive value. So, this agent’s borrowing
constraint is not binding from some date on. By consequence, the TVC implies that
limt→∞ Qtqt(bj,t + b∗j) = 0 which is a contradiction.

Corollary 2 also indicates bubbles can exist only if there is an infinite sub-sequence
of times (tn)n≥0 such that the ratio dtn∑

i ei,tn
converges to zero, i.e., the dividend will

be very low with respect to the aggregate endowment. This condition is consistent
with those in Le Van and Pham (2016), Bosi et al. (2018b).

Our goal in this subsection is to find out other conditions (based on fundamentals)
under which bubbles cannot appear. To do so, we borrow the concept ”uniform
impatience” in the existing literature (Magill and Quinzii, 1994, 1996; Levine and
Zame, 1996). Given a consumption plan c = (ct)t≥0, a date t, a vector (γ, δ) ∈
(0, 1) × R+, we define another consumption plan, called z = z(c, t, γ, δ), by zs =
cs ∀s < t, zt = ct + δ, zs = γcs ∀s > t. We also denote UT

i (c) =
∑T

t=0 βi,tui(ci,t) and
Ui(c) ≡ lim supT→∞ UT

i (c).

Assumption 3 (Uniform impatience). There exists γ ∈ (0, 1) such that for any
consumption plan c = (ct) with 0 ≤ ct ≤ Wt ∀t, we have

Ui

(

z(c, t, γ′,Wt)
)

> Ui(c) ∀i, ∀t, ∀γ
′ ∈ [γ, 1).

Proposition 1 in Pascoa et al. (2011) provides sufficient conditions for the uniform
impatience. Notice that they only consider the case where ui(c) ≥ 0 ∀c, ∀i. If ui(c) =
c1−σ

1−σ
∀i, where σ > 0, and there exists γ ∈ (0, 1) such that βi,t

21−σ−1
1−σ

W 1−σ
t + (γ1−σ −

1)
∑∞

s=t+1 βi,s
W 1−σ

s

1−σ
> 0 ∀t, then the uniform impatience holds. We can also consider

logarithmic utility functions: If ui(c) = ln(c) ∀c, ∀i and there exists γ ∈ (0, 1) such

that βi,t > − ln(γ)
ln(2)

∑∞

s=t+1 βi,s ∀t, then the uniform impatience holds.16

16For a proof, see Lemma 1 in our working paper version Bosi et al. (2019).
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Our main contribution in this subsection can be stated as follows.

Proposition 3. Assume that Assumptions 1, 2, 3 hold and ei,t − dtb
∗
i > 0 ∀i, ∀t.

There is no bubble if

lim
T→∞

WT

T−1
∏

t=0

max
i

βi,t+1u
′
i(ei,t+1 − dt+1b

∗
i )

βi,tu′
i(
∑

i ei,t + Ldt)
= 0. (4)

This leads to two consequences.

1. When ui(c) = ln(c), βi,t = βt ∀i, ∀t, and 1−β

β
> − ln(γ)

ln(2)
with γ ∈ (0, 1), there is

no bubble if

lim
T→∞

βTWT · · ·W1W0

T−1
∏

t=0

max
i

1

ei,t+1 − dt+1b∗i
= 0. (5)

2. When ui(c) =
c1−σ

1−σ
where σ > 0, and there exists γ ∈ (0, 1) such that 21−σ−1

1−σ
W 1−σ

t +

(γ1−σ − 1)
∑∞

s=t+1 β
s−t W

1−σ
s

1−σ
> 0 ∀t, there is no bubble if

lim
T→∞

βTWT

T−1
∏

t=0

max
i

W σ
t

(ei,t+1 − dt+1b∗i )
σ
= 0. (6)

Proof. See Appendix A.

Proposition 3 and Corollary 1 contribute to the literature by providing conditions
(based on fundamentals) under which bubbles are ruled out. The basic intuition is
that the value of bubble limt→

qt
R1···Rt

must be zero if the discount factors (Rt)t are high
enough. There are two key points helping us to get (4). First, we use the uniform
impatience to find an upper bound of asset price qt: qt ≤ mWt

L(1−γ)
∀t. Second, and

more importantly, by deriving an upper bound on the intertemporal marginal rate of
substitution of asset holders, we can find an upper bound of 1/Rt:

1

Rt+1

≤ max
i

βi,t+1u
′
i(ei,t+1 − dt+1b

∗
i )

βi,tu′
i(
∑

i ei,t + Ldt)
∀t ≥ 0. (7)

and so an upper bound of the discount factor Qt. By consequence, we obtain (4).
When borrowing limits (b∗i ) and dividends (dt) are high (in the sense that ei,t < dtb

∗
i

∀i, ∀t), Corollary 1 shows that bubbles do not exist. When borrowing limits (b∗i ) are
low (in the sense that ei,t > dtb

∗
i ∀i, ∀t), Proposition 3 indicates that bubbles do

not exist if the agents prefer strongly the present (formally, βi,t+1/βi,t is low). In a
particular case, where βi,t = βt with β is low enough, there is no bubble. Notice that,
when there is T such that βi,t = 0 ∀i, ∀t > T , we recover a T-horizon model where

we have q0 =
∑T

s=1 Qsds and qs = 0 ∀s > T , and therefore, there is no bubble.
In the case of zero dividends (dt = 0 ∀t), conditions (4-6) do not depend on

borrowing limits b∗i . So, bubbles may be ruled out even borrowing limits are too low.
This in turn suggests that financial frictions are only necessary conditions for asset
price bubbles.
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4 Models with bubbles

We are now interested in constructing model economies in which bubbles exist. Propo-
sition 2 shows that such models must contain at least 2 heterogeneous agents. So, we
should focus on a model with two types of agents, say 1 and 2.17 Suggesting by points
2 and 3 of Proposition 2, we should look at equilibria in which borrowing constraints
of agent 1 (agent 2) bind at any even (odd) date because this is the simplest model
under which bubbles may exist. Formally, we aim to find economies where there is
an equilibrium such that

b1,2t = −b∗1, b2,2t = L+ b∗1, b1,2t+1 = L+ b∗2, b2,2t+1 = −b∗2. (8)

With these asset holdings, we have that

c1,0 = e1,0 + (q0 + d0)b1,−1 + q0b
∗
1, c2,0 = e2,0 + (q0 + d0)b2,−1 − q0(L+ b∗1) (9a)

c1,2t−1 = e1,2t−1 − b∗1d2t−1 − q2t−1H, c2,2t−1 = e2,2t−1 + d2t−1(L+ b∗1) + q2t−1H (9b)

c1,2t = e1,2t + d2t(L+ b∗2) + q2tH, c2,2t = e2,2t − d2tb
∗
2 − q2tH (9c)

where H ≡ L + b∗1 + b∗2 and b1,−1, b2,−1 are given. Observe that such equilibrium
exists only if e1,2t−1 − b∗1d2t−1 > 0 and e2,2t − d2tb

∗
2 > 0 ∀t (we can interpret that the

borrowing limits b∗1, b
∗
2 are low).

Denote γ1,t ≡
β1,t+1

β1,t
, γ2,t ≡

β2,t+1

β2,t
∀t ≥ 0. According to FOCs in Proposition 1, we

have that, for any t ≥ 1,



















1 = γ1,2t−1

u′
1

(

e1,2t + d2t(L+ b∗2) + q2tH
)

u′
1

(

e1,2t−1 − b∗1d2t−1 − q2t−1H
)

q2t + d2t
q2t−1

1 = γ2,2t
u′
2

(

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H
)

u′
2

(

e2,2t − b∗2d2t − q2tH
)

q2t+1 + d2t+1

q2t

(10)

and














γ1,2t−1
u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

≥ γ2,2t−1
u′
2(e2,2t − d2tb

∗
2 − q2tH)

u′
2(e2,2t−1 + d2t−1(L+ b∗1) + q2t−1H)

γ2,2t
u′
2(e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H)

u′
2(e2,2t − d2tb∗2 − q2tH)

≥ γ1,2t
u′
1(e1,2t+1 − b∗1d2t+1 − q2t+1H)

u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

17Our results below can be extended to a model with n types of agents and asset allocation is
given by

b1,nt = −b∗1, b1,nt+1 = −b∗1, . . . b1,nt+n−1 = Hn − b∗1

b2,nt = Hn − b∗2, b2,nt+1 = −b∗2, . . . b2,nt+n−1 = −b∗2

bn,nt = −b∗n, . . . bn,nt+n−2 = Hn − b∗n, bn,nt+n−1 = −b∗n

where Hn ≡ L+
∑n

i=1 b
∗
i .
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4.1 The role of the benchmark economy

In this subsection, we find out new necessary conditions (based on fundamentals) of
the existence of bubbles. Our key idea is to look at the benchmark economy, i.e., the
economy without asset. In such economy, we have ci,t = ei,t ∀i, t.

We now define the exogenous sequences (R∗
1,t), (R

∗
2,t), (R

∗
t ) by

1 =
γ1,t−1u

′
1(e1,t)

u′
1(e1,t−1)

R∗
1,t, 1 =

γ2,t−1u
′
2(e2,t)

u′
2(e2,t−1)

R∗
2,t, and R∗

t ≡ min(R∗
1,t, R

∗
2,t). (11)

We interpret R∗
1,t (resp., R∗

2,t) as the subjective real interest rate of agent 1
(resp., 2) and R∗

t as the real interest rate between dates t− 1 and t in the benchmark
economy.

Since the dividends and asset prices are non-negative, the FOCs imply that

R∗
2t = R∗

1,2t ≤ R∗
2,2t, R

∗
2t+1 = R∗

2,2t+1 ≤ R∗
1,2t+1 ∀t ≥ 1.

This condition can be interpreted as follows: the benchmark economy has a so-called
seesaw property.

We also see that Rt+1 ≡ qt+1+dt+1

qt
≥ R∗

t+1 ∀t ≥ 2 meaning that the interest rate
of the benchmark economy is lower than that of our economy with asset. The value
of asset price bubble is b0 = q0 − FV0 = limt→∞

qt
R1···Rt

. Since the function u′
i is

decreasing, we have

qt
R1 · · ·Rt

≤
qt

R∗
1 · · ·R

∗
t

u′
2(c2,1)

u′
2(c2,0)

u′
2(e2,0)

u′
2(e2,1)

∀t ≥ 2.

The positivity of the consumptions implies that Hqt ≤ et, where we denote e2t ≡ e2,2t
and e2t+1 ≡ e1,2t+1. So, there is no bubble if limt→∞

et
R∗

1 ···R
∗

t
= 0.

By summing up the above arguments, we obtain the following result showing the
role of interest rates of the economy without asset.

Proposition 4 (the role of interest rates of the benchmark economy). Consider a
model with two agents. Assume that the sequence (qt), asset holdings are given by (8)
and agents’ consumptions given by (9a-9c) constitute an equilibrium. We have

Rt ≥ R∗
t ∀t ≥ 2 (12)

R∗
2,2t ≥ R∗

1,2t = R∗
2t, R∗

1,2t+1 ≥ R∗
2,2t+1 = R∗

2t+1 ∀t ≥ 1 (seesaw property). (13)

Moreover, there is no bubble if

lim
t→∞

et
R∗

1 · · ·R
∗
t

= 0. (14)

In a particular case where et = e and R∗
t = R∗ ∀t, there is no bubble if R∗ > 1.
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The term et
R∗

1 ···R
∗

t
represents the value (discounted by using the interest rates of

the benchmark economy) of endowment of the agent who buys asset in the economy
with asset. Proposition 4 implies that, if there is bubble, the sequence of these
discounted values either diverges or converges to a strictly positive value. In the case
of convergence, the existence of bubble requires that limt→∞

et
R∗

1 ···R
∗

t
> 0. The basic

idea behind is that the income of asset buyers must be high enough so that these
agents are willing to buy the asset even the asset price exceeds its fundamental value.

Condition (14) is new with respect to the literature of rational bubbles in infinite-
horizon general equilibrium models. Notice that it is not implied by the well-known
no-bubble condition

∑

t Qt(
∑

i ei,t) < ∞ (see Santos and Woodford (1997), Werner
(2014), Bosi et al. (2018b)) because Rt ≥ R∗

t∀t. The novelty of condition (14) is to
show the importance of interest rates of the economy without asset (these interest
rates are exogenous) on the existence of bubbles in the economy with assets.

Condition (14) allows us to establish the connection between the literature of
bubbles in OLG models and that in infinite-horizon models. Indeed, let us compare
it with the main result in the influential paper of Tirole (1985) who studies a pure
bubble asset (i.e., asset pays no dividend) in an OLG model. He provides a no-bubble
condition based on fundamentals: there is no bubble if the steady state interest
rates of the economy without bubble asset is higher than the population growth
rate. Condition (14), also based on exogenous variables, can be interpreted as a high
interest rates condition (indeed, it becomes R∗ > 1 in the stationary case, i.e., et = e,
R∗

t = R∗ ∀t). So, our result is consistent with that in Tirole (1985). The difference is
that we do not require the convergence of interest rates R∗

t as in Tirole (1985) or in
Farhi and Tirole (2012).

Remark 2. Condition (14) is violated in a number of examples of bubbles in the
literature. Indeed, in Example 1 in Kocherlakota (1992) and Example 4.2 in Santos
and Woodford (1997) of fiat money, we can verify that limt→∞

et
R∗

1 ···R
∗

t
= ∞, i.e.,

condition (14) is violated. Moreover, in examples of bubbles in Bosi et al. (2018b),
we have R∗

t = 0, and hence condition (14) is also violated.
Condition (14) helps us to understand better why bubbles may exist in their models.

For example, Santos and Woodford (1997) claimed in page 41 that fiat money has
positive value because for each household the borrowing limits effectively bind infinitely
often. We go further by showing conditions (based on fundamentals) under which
borrowing constraints bind.

Remark 3 (interest rates in the economy with adjusted endowments). Assume that
borrowing limits are low enough so that e1,t − dtb

∗
1, e2,t − dtb

∗
2 are strictly positive. By

using the same argument in Proposition 4, we can prove that there is no bubble if

lim
t→∞

et
Rd

1 · · ·R
d
t

= 0. (15)
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where Rd
t is defined by

1 =
γ1,2t−1u

′
1

(

e1,2t − d2tb
∗
1

)

u′
1

(

e1,2t−1 − b∗1d2t−1

) Rd
2t, 1 =

γ2,2tu
′
2

(

e2,2t+1 − d2t+1b
∗
2

)

u′
2

(

e2,2t − b∗2d2t
) Rd

2t+1 (16)

which can be interpreted as the interest rate of the economy with adjusted endowments.
When there is no dividend (dt = 0 ∀t) or agents are prevented from borrowing (b∗1 =
b∗2 = 0), then Rd

t = R∗
t .

4.2 The set of (bubbly) equilibria

We observe that, for x > 0, the sequence (qt)t≥0, defined by q0 = x and the system
(10), is unique. So, we denote this sequence by (qt(x))t. Denote S0 the set of initial
prices, i.e., the set of all values x > 0 such that the sequence (qt(x)) is a sequence of
prices of an equilibrium whose allocations are given by (8) and (9a-9c).

The following result shows interesting properties of the set S0.

Proposition 5. Let Assumption 1, 2 be satisfied. Assume that for i = 1, 2, the
function cu′

i(c) is increasing in c, and that e1,t − dtb
∗
1 > 0, e2,t − dtb

∗
2 > 0 ∀t.

The set S0 is bounded and connected (in the sense that, if x, y ∈ S0 and x < y,
then (x, y) ⊂ S0). So, if the set S0 is non-empty, either it contains a unique element
or it is an interval. By consequence, we have that:

1. There is at most one bubbleless equilibrium.

2. If S0 contains at least 2 elements, there is a continuum of bubbly equilibria.

Proof. See Appendix B.

The key point of this result is that qt and Rt are strictly increasing in q0 while the
fundamental value FV0 ≡

∑

t≥1 Qtdt is strictly decreasing in q0. Although Proposition
5 shows important characteristics of the set of (bubbly) equilibrium, it remains to find
conditions under which this set contains at least 2 elements. We will do so in the
next subsection.

4.3 New examples of bubbles

In this section, we will provide new examples of bubbles. We will work under loga-
rithmic utility functions, i.e., ui(c) = ln(c) ∀i = 1, 2. In this case, the FOCs give



























e2,1 − b∗2d1
q1 + d1

= γ2,0
e2,0 + d0b2,−1

q0
− γ2,0(L+ b∗1 − b2,−1)−H

e1,2t − d2tb
∗
1

q2t + d2t
=

γ1,2t−1(e1,2t−1 − b∗1d2t−1)

q2t−1

−H(γ1,2t−1 + 1)

e2,2t+1 − d2t+1b
∗
2

q2t+1 + d2t+1

=
γ2,2t(e2,2t − b∗2d2t)

q2t
−H(γ2,2t + 1).

(17)
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where recall that H ≡ L+ b∗1 + b∗2.
It is not easy to study this system because it is non-stationary and there are

infinitely many parameters. We begin our exposition by studying a specific case and
then present our results in the general case.

Example 1. Assume that βi,t = βt where β ∈ (0, 1) (which implies that γi,t = β ∀t,
and ∀i = 1, 2) and there is no dividend (dt = 0 ∀t). Assume also that b1,−1 = L+ b∗2,
b2,−1 = −b∗2, and endowments are periodic

(e1,t)t≥0 = (w, e, w, e, . . .), (e2,t)t≥0 = (e, w, e, w, . . .) (18a)

where e, w > 0 (so et = e > 0, wt = w > 0 ∀t).

1. If βe

w
≤ 1 (i.e., R∗ ≥ 1), there is no bubble.

2. If βe

w
> 1 (i.e., R∗ < 1: low interest rate condition), then the initial price of

any equilibrium with bubble must satisfy condition q0 ≤
1
H

βe−w

1+β
. Conversely, we

have:

(a) There is a unique equilibrium with initial price q0 = 1
H

βe−w

1+β
. Moreover,

this equilibrium is stationary in the sense that qt =
1
H

βe−w

1+β
> 0 ∀t.

(b) (Continuum of equilibria with bubble) For any value x in the interval
[0, 1

H

βe−w

1+β
), the sequence (qt) determined by q0 = x and 1

Hqt+1
= βe

w
1

Hqt
− 1+β

w

∀t ≥ 0,18 is a system of price of an equilibrium with bubble. Moreover, (1)
qt is decreasing in t and converges to zero, (2) the interest rate Rt ≡ qt/qt−1

is decreasing in t and converges to R∗ = w
βe

< 1.

Proof. See Appendix B.1.

Notice that in the case of bubbles in Example 1, the seesaw property (13) holds
and low interest rate condition (14) is violated (because et = e and R∗ < 1)

Example 1 is related to existing models of bubbles in general equilibrium, for
instance, Example 4.1 in Santos and Woodford (1997), Townsend (1980), Chapter 27
in Ljungqvist and Sargent (2012) (their model corresponds to the case e = 1, w = 0 in
our model), Section 2 in Bloise and Citanna (2019). Example 1 can also be viewed as
a version of the main result in Tirole (1985) (Proposition 1) for an exchange general
equilibrium model with infinitely lived agents and short-sale constraints. With our
specification, we explicitly compute the maximum level of initial price bubble (which
equals 1

H

βe−w

1+β
) while it is implicit in more general models.

A value added of Example 1 is that it completely characterize the set of multiple
equilibria. By the way, it is more general than Example 4.1 in Santos and Woodford
(1997), which only examines two particular cases q0 = 0 or q0 =

1
H

βe−w

1+β
.

18By convention, if q0 = 0, we determine qt = 0 ∀t ≥ 1.
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However, Example 1 and those in the existing literature do not clearly show us
how the existence of bubbles depends on the dynamics of economic fundamentals and
on the asset structure (dividends and borrowing limits). In the next subsections, we
will work in more general setups in order to investigate this issue.

4.3.1 Asset without dividends

We focus on the case of fiat money or pure bubble asset (i.e., dt = 0 ∀t). To simplify
our exposition, we introduce some notations.

γ2t ≡ γ2,2t =
β2,2t+1

β2,2t

, γ2t−1 ≡ γ1,2t−1 =
β1,2t

β1,2t−1

(19a)

e2t ≡ e2,2t, e2t−1 ≡ e1,2t−1, w2t ≡ e1,2t, w2t−1 ≡ e2,2t−1 (19b)

One can verify that γt−1et−1

wt
= 1

R∗

t
. We then denote

Γt ≡
γt−1et−1

wt

· · ·
γ0e0
w1

=
1

R∗
1 · · ·R

∗
t

(20a)

Dt ≡
1 + γt−1

wt

+
1

R∗
t

1 + γt−2

wt−1

+ · · ·+
1

R∗
t · · ·R

∗
2

1 + γ0
L+b∗1−b2,−1

L+b∗1+b∗2

w1

(20b)

Note that Γt is exogenous and Γt ≥ Qt =
1

R1···Rt
∀t ≥ 2 because Rt ≥ R∗

t ∀t ≥ 2.
The following result provides necessary and sufficient conditions under which bub-

bles exist in equilibrium.

Proposition 6 (continuum of equilibria with bubble). Assume that dt = 0 ∀t and
ui(c) = ln(c) ∀i = 1, 2.

1. (Necessary condition) If the sequence (qt)t≥0, asset holdings given by (8) and
agents’ consumptions given by (9a-9c) constitute an equilibrium with bubble,
then we have

1

Hqt
=

1

Hq0
Γt −Dt ∀t (21)

By consequence, we have q0 ≤
Γt

HDt
∀t and therefore

sup
t

(HDt

Γt

)

< ∞ and
∞
∑

t=1

R∗
1 · · ·R

∗
t

et
< ∞ (22)

2. (Sufficient condition to have a continuum of equilibria with bubbles) Assume,
in addition, that γ1,2t+1 ≥ γ2,2t+1, γ2,2t ≥ γ1,2t, et > wt (i.e., e2,2t > e1,2t,
e1,2t+1 > e2,2t+1) ∀t.
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If

sup
t

H
(

Dt +
2

et−wt

)

Γt

< ∞ (23)

then any sequence (qt)t≥0 determined by

q0 ∈ (0, q̄),
1

Hqt
=

1

Hq0
Γt −Dt ∀t ≥ 1 (24a)

where q̄ ≡ min
{

inf
t≥1

( Γt

H
(

Dt +
2

et−wt

)

)

,
e2,0 − e1,0

L+ 2b∗1 + b1,−1 − b2,−1

}

> 0 (24b)

is a system of prices of an equilibrium at which asset holdings are given by (8)
and agents’ consumptions are given by (9a-9c). Moreover, all such equilibria
are bubbly.

Proof. See Appendix B.1.

According to condition (22), interest rates of the economy without asset must be
low. Notice that condition (22) also implies that limt→∞

et
R∗

1 ···R
∗

t
= ∞, i.e., the present

value of endowment of the autarkic economy is infinite. It means that the no-bubble
condition (14) in Proposition 4 is violated.

Condition (23) is a key in Proposition 6. We can compute that

H
(

Dt +
2

et−wt

)

Γt

=
Hw1 · · ·wt−1

e0 · · · et−1

1 + γt−1

γ0 · · · γt−1

+
Hw1 · · ·wt−2

e0 · · · et−2

1 + γt−2

γ0 · · · γt−2

+ (25)

+ · · ·+
H

e0
(
1

γ0
+

L+ b∗1 − b2,−1

L+ b∗1 + b∗2
) +

2Hw1 · · ·wt

e0 · · · et−1(et − wt)

1

γ0 · · · γt−1

.

So, (23) can be satisfied for a large class of parameters (for example, γt = γ ∈ (0, 1)
and wt = etx where x ∈ (0, γ)).

Thanks to condition (23), the value q̄ defined by (24b) is strictly positive. Propo-
sition 6 suggests that when the economy without assets has low interest rates (in the
sense that condition (23) holds), an equilibrium with binding borrowing constraints
has bubbles if the initial price q0 is low enough in the sense that q0 ≤ q̄. It is useful
to understand how the upper bound q̄ depends on fundamentals. According to (25),
we observe that q̄ is decreasing in the asset supply L, borrowing limits b∗1, b

∗
2, the

endowment ratio wt

et
, the initial asset holding b1,−1 of agent 1, and q̄ is increasing in

the rate of time preference γt, the initial asset holding b2,−1 of agent 2.
To sum up, the existence of bubble requires low interest rates and seesaw prop-

erty of the economy without asset. Moreover, when these necessary conditions hold,
bubbles are more likely to exist if

1. Asset supply L is low. (Asset shortage.)
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2. Borrowing limits b∗1 and b∗2 are low. (Financial frictions matter.)

3. The initial asset b2,−1 is high and/or the initial asset b1,−1 is low. (Heterogeneity
matters.)

4. The endowment ratios e2,2t
e1,2t

and e1,2t+1

e2,2t+1
are high. (Heterogeneity and seesaw

property.)

5. The rates of time preference β2,2t+1

β2,2t
and β1,2t

β1,2t−1
are high (heterogeneity and seesaw

property).

When βi,t = βt ∀i, t, the existence of bubbles requires that β must be high
enough (this is consistent with the finding in Proposition 3).

Equilibrium indeterminacy and bubbles. Proposition 6 and Example 1 show
that, not only asset price bubbles but also real indeterminacy exist. Indeed, in equi-
librium, the agent 2 buys asset at date 2t (b2,2t = L+ b∗1) and the agent 1 buys asset
at date 2t+ 1 (b1,2t+1 = L+ b∗2). Consumptions are given by

c1,0 = e1,0 + q0(b1,−1 + b∗a), c2,0 = e2,0 + q0(b2,−1 − L− b∗a)

c1,2t = e1,2t + q2tH, c2,2t = e2,2t − q2tH

c1,2t+1 = e1,2t+1 − q2t+1H, c2,2t+1 = e2,2t+1 + q2t+1H.

where the sequence of prices (qt) is determined by (24a) and (24b). Since there is
a continuum of equilibrium price systems, there is real indeterminacy. This point is
interesting because our model contains only one consumption good and a single asset.
Our framework indicates that financial frictions and heterogeneity may generate real
indeterminacy.

Recall that qt is increasing in qt−1 and hence in the initial price q0. So, for any t ≥
1, we observe that (1) the consumptions c1,2t is increasing in q0 but c1,2t−1 decreasing
in q0 and (2) c2,2t is decreasing in q0 but c2,2t−1 is increasing in q0.

We also observe that the presence of multiple asset prices may affect the consump-
tion inequality. Indeed, we have c1,2t

c2,2t
is increasing in q2t and so is in q0. By contrast,

the ratio c1,2t+1

c2,2t+1
is decreasing in q2t+1 and so is in q0.

The number of agents matters. Assume that there are n1 agents of type A
and n2 agents of type 2. For the sake of simplicity, we assume that n1 = n2 = n (
there are m = 2n agents in the economy). In this case, the asset holding of agents is

b1,2t = −b∗1, b2,2t =
L+ nb∗1

n
=

L

n
+ b∗1, b1,2t+1 =

L

n
+ b∗2, b2,2t+1 = −b∗2

Ln ≡
L

n
, Hn ≡ Ln + b∗1 + b∗2
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With these asset holdings, we have that

c1,0 = e1,0 + (q0 + d0)b1,−1 + q0b
∗
1, c2,0 = e2,0 + (q0 + d0)b2,−1 − q0(Ln + b∗1)

c1,2t−1 = e1,2t−1 − b∗1d2t−1 − q2t−1Hn, c2,2t−1 = e2,2t−1 + d2t−1(Ln + b∗1) + q2t−1Hn

c1,2t = e1,2t + d2t(Ln + b∗2) + q2tHn, c2,2t = e2,2t − d2tb
∗
2 − q2tHn

By applying our above results, bubbles are more likely to exist when Ln = L/n is low
(i.e., the number of agents is high).

4.3.2 Assets with positive dividends

In this subsection, we study the existence and dynamics of bubbles of assets having
positive dividends (i.e., dt > 0 ∀t ≥ 0). Note that there are very few papers providing
examples of this kind of bubble.19

Consider a general model, according to the asset pricing equation qt =
qt+1+dt+1

Rt+1
,

we have qtQt = qt+1Qt+1(1+
dt+1

qt+1
). By iterating, we get that q0 = qTQT

∏T

t=1(1+
dt
qt
).

Bubbles exist (i.e., limt→ Qtqt > 0) if and only if limt→∞

∏T

t=1(1 + dt
qt
) < ∞, or

equivalently

∑

t

dt
qt

< ∞. (27)

This means that there is a bubble if the price qt goes faster than the dividend dt.
20

By consequence, we obtain the following result.

Corollary 3. Consider an equilibrium whose allocations given by (8) and (9a-9c).
The existence of bubble implies that

∑

t

d2t
e2,2t − b∗2d2t

< ∞ and
∑

t

d2t−1

e1,2t−1 − b∗1d2t−1

< ∞. (28a)

This means that the existence of bubbles in equilibrium requires a low level of
dividends with respect to the agents’ endowment in the future.21 The intuition behind
is that, the existence of bubble requires that the asset price goes faster than the
dividend. Since trading takes place at every date, the income of asset buyers and
hence their endowments must go faster than the dividends.

19See Le Van and Pham (2016) Bosi et al. (2017a, 2018b), Bloise and Citanna (2019).
20This condition was also proved in Montrucchio (2004), Bosi et al. (2018b).
21This condition is consistent with but stronger than no-bubble condition lim inft

dt∑
i
ei,t

> 0 in

Corollary 2.
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Before providing conditions under which there is a continuum of bubbly equilibria,
we introduce some notations.














a1 ≡
γ2,0(e2,0+d0b2,−1)

e2,1−b∗2d1

a2t ≡
γ1,2t−1(e1,2t−1−b∗1d2t−1)

e1,2t−b∗1d2t

a2t+1 ≡
γ2,2t(e2,2t−b∗2d2t)

e2,2t+1−b∗2d2t+1















H1 ≡
γ2,0(L+b∗1−b2,−1)+H

e2,1−b∗2d1

H2t ≡
H(1+γ1,2t−1)

e1,2t−b∗1d2t

H2t+1 ≡
H(1+γ2,2t)

e2,2t+1−b∗2d2t+1











q̄0 ≡
e2,0−e1,0−d0(b1,−1−b2,−1)

L+2b∗1+b1,−1−b2,−1

q̄2t−1 ≡
e1,2t−1−e2,2t−1−(L+2b∗1)d2t−1

2H

q̄2t ≡
e2,2t−e1,2t−(L+2b∗2)d2t

2H
.

(29)

Recall that (Rd
t )–the interest rates of the economy with adjusted endowments– de-

fined by (16) satisfies 1 = atR
d
t .

The FOCs (17) can be rewritten as

1

qt + dt
=

at
qt−1

−Ht ∀t ≥ 1, or equivalently qt =
qt−1

at −Htqt−1

− dt ∀t ≥ 1 (30)

If (qt) is a sequence of price, we must have

atdt
1 + dtHt

< qt−1 <
at
Ht

∀t ≥ 1. (31)

So, the equilibrium price at each date must be bounded by exogenous values.

We now state the main result in this section, which shows that bubbles may exist
under strong heterogeneity and low dividends.

Proposition 7 (multiple equilibria with bubbles). Let ui(c) = ln(c) ∀i = 1, 2. As-
sume that Ht > 0, at+1/Ht+1 < q̄t ∀t and there are sequences (αt)t≥1, (σt)t≥1 such

0 < αt < 1 < σt (32a)

Strong heterogeneity and seesaw property: at+1 >
Ht+1

Ht

αt

αt+1(1− αt)
(32b)

Low dividend condition:











dt
dt+1

> σt+1

σt−1
at+1

1− (σt − 1)dtHt > 0

and σ1a1d1
1+d1H1

< α1a1
H1

(32c)

Then, there is a continuum of bubbly equilibria. More precisely, any sequence (qt)t≥0

determined by
{

q0 ∈ ( σ1a1d1
1+d1H1

, α1a1
H1

)

and the system (17)

is a system of prices of an equilibrium in which asset holdings are given by (8) and
agents’ consumptions are given by (9a-9c). Moreover for such equilibrium, we have

σtatdt
1 + dtHt

< qt−1 <
αtat
Ht

∀t ≥ 1. (33)
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Proof. See Appendix B.2.

Remark 4 (heterogeneity, seesaw property and low interest rate condition). We
interpret condition (32b) as a strong heterogeneity and a seesaw property because we
observe that

a2t+1H2t

H2t+1

=
γ2,2t(1 + γ1,2t−1)

1 + γ2,2t

e2,2t − b∗2d2t
e1,2t − b∗1d2t

a2tH2t−1

H2t

=
γ1,2t−1(1 + γ2,2t−2)

1 + γ1,2t−1

e1,2t−1 − b∗1d2t−1

e2,2t−1 − b∗2d2t−1

.

Since the interest rates of the economy with adjusted endowments are Rd
t = 1/at ∀t,

condition (32b) can also be interpreted as a ”low interest rate condition”.

Proposition 7 is a generalization of Proposition 6. To the best of our knowledge,
Proposition 7 is the first result showing the existence of multiple equilibria with bub-
bles of assets with positive dividends in deterministic general equilibrium models.22

Note that dividends and endowments are not necessarily stationary.
It is important to mention that there exist exogenous parameters satisfying all

conditions in Proposition 7. Indeed, we can choose parameters as follows.

1. Choose αt = α, σt = σ ∀t.

2. Choose γi,t = β ∈ (0, 1) ∀i, ∀t. In this case, we have

a1
H1

=
β(e2,0 + d0b2,−1)

β(L+ b∗1 − b2,−1) +H
,
a2t
H2t

=
β(e1,2t−1 − b∗1d2t−1)

(1 + β)H
,
a2t+1

H2t+1

=
β(e2,2t − b∗2d2t)

(1 + β)H

So, condition at+1

Ht+1
< q̄t is equivalent to

β(e2,0 + d0b2,−1)

β(L+ b∗1 − b2,−1) +H
<

e2,0 − e1,0 − d0(b1,−1 − b2,−1)

L+ 2b∗1 + b1,−1 − b2,−1

(34a)

β(e1,2t−1 − b∗1d2t−1)

(1 + β)H
<

e1,2t−1 − e2,2t−1 − (L+ 2b∗1)d2t−1

2H
(34b)

β(e2,2t − b∗2d2t)

(1 + β)H
<

e2,2t − e1,2t − (L+ 2b∗2)d2t
2H

. (34c)

3. Choose e2,2t+1, e1,2t such that Ht = h > 0 ∀t. Hence, Ht+1

Ht
= 1.

22Le Van and Pham (2016) (Section 6.1) and Bosi et al. (2017a) provide examples of bubbles of the
Lucas’ tree, where the asset price may be multiple (due to the portfolio effect) but the consumption
is not affected by the existence of bubbles. Our added-value is that the equilibrium indeterminacy
in our model is real (in the sense that different equilibria have different consumption allocations)
and the asset price affects agents’ consumptions.
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4. Given that (dt) is low, we can choose e2,2t, e1,2t+1 sufficiently high so that (1−
α)at+1 > 1 and (34a-34c) hold. (This is a low interest rates condition.)

5. Choose (dt) and
dt+1

dt
low enough such that (32b), (32c) are satisfied and σa1d1

1+d1H1
<

αa1
H1

. (This is a low dividend condition.)

Although Proposition 7 provides a general sufficient condition under which there
is a continuum of equilibria with bubbles, it would be useful to give examples with
explicit mechanisms. We firstly focus on parameters satisfying the following assump-
tion.

Assumption 4. Assume that γi,t = β ∈ (0, 1) (i.e., βi,t = βt) and endowments are

e1,2t−1 = b∗1d2t−1 + e, e1,2t = b∗1d2t + w, e2,2t−1 = b∗2d2t−1 + w, e2,2t = b∗2d2t + e

where e, w > 0.

Under this specification, (at), (Ht) defined by (29) become at = a = βe

w
, Ht = h ≡

H(β+1)
w

∀t, and the system of price (qt) satisfies

1

qt + dt
=

a

qt−1

− h ∀t ≥ 1, or equivalently qt =
qt−1

a− hqt−1

− dt ∀t ≥ 1 (36)

In this case, we have the following result which helps us to identify all possible
outcomes of equilibrium.

Proposition 8. Let ui(c) = ln(c) ∀i = 1, 2 and Assumption 4 be satisfied. Assume
that (qt) is the price of an equilibrium in which asset holdings are given by (8) and
agents’ consumptions are given by (9a-9c).

1. If βe

w
< 1 (i.e., R∗ > 1: the interest rate of the benchmark economy is high),

then there is no bubble.

2. If βe

w
> 1 (i.e., R∗ < 1: the interest rate of the benchmark economy is low),

then there are only three cases:

(a) There is no bubble.

(b) The equilibrium is bubbly and qt converges to zero.

(c) The equilibrium is bubbly, qt >
βe

w
−1

H(β+1)
w

∀t, and qt converges to
βe

w
−1

H(β+1)
w

.

Moreover, when βe

w
> 1, there is almost one equilibrium satisfying conditions

(8), (9a-9c) and qt >
βe

w
−1

H(β+1)
w

∀t.

Proof. See Appendix B.2.
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According to Proposition 8, in equilibrium with bubbles, the asset price qt con-

verges either to zero or to
βe

w
−1

H(β+1)
w

.23

We now complement the general results of Proposition 8 by providing examples of
bubbles for each case. We start by the case where qt converges to zero or to a positive
value.

Example 2 (continuum of equilibria with bubble and qt → 0). Let ui(c) = ln(c)
∀i = 1, 2 and Assumption 4 be satisfied. Assume that there exists σ such that 1 < σ
and

Low interest rate condition:
βe

w
> 1 (37a)

Low dividend condition:



























σ−1
σ

dt
dt+1

> βe

w

dt <
w

(σ−1)(β+1)H

dt <
1−β

1+β
e−w

H
σad1

1+d1
H(β+1)

w

< βe−w

H(β+1)

(37b)

and
β(e2,0 + d0b2,−1)

β(L+ b∗1 − b2,−1) +H
<

e2,0 − e1,0 − d0(b1,−1 − b2,−1)

L+ 2b∗1 + b1,−1 − b2,−1

(37c)

Then, any sequence (qt)t≥0 determined by the system (30) and

q0 ∈
( σad1
1 + d1h

,
a− 1

h

]

is a system of prices of an equilibrium at which asset holdings are given by (8) and
agents’ consumptions are given by (9a-9c). Moreover, Proposition 5 implies that there
is a continuum of bubbly equilibria. For any equilibrium with q0 ≤ a−1

h
(including

bubbly equilibrium), the asset price qt decreasingly converges to zero when t tends to
infinity.

Example 3 (an equilibrium with bubble and qt → q > 0). Let ui(c) = ln(c) ∀i = 1, 2
and Assumption 4 be satisfied. Assume also that a > 1. Let x > 0 such that
x+1
x

> a > 1 and define the sequence (dt) by

1

dt
=

(x+ 1

xa

)t( 1

d0
−

hx(x+ 1)

1− (a− 1)x

)

+
hx(x+ 1)

1− (a− 1)x
(38a)

0 < d0 <
1− (a− 1)x

hx(x+ 1)
, d0 <

1−β

1+β
e− w

H
(38b)

23This result is related to Propositions 2 and 3 in Bosi et al. (2018a). The difference is that Bosi et
al. (2018a) consider an OLG model with descending altruism while we study a general equilibrium
model with infinitely lived agents.
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Observe that 0 < hxdt < 1 ∀t and xdt + dt =
axdt−1

1−hxdt−1
. Moreover,

∑

t dt < ∞.

Define the sequence (qt) by qt =
a−1
h

+ xdt ∀t ≥ 0. Then (qt) is a system of prices
of an equilibrium at which asset holdings are given by (8) and agents’ consumptions
are given by (9a-9c). Moreover, qt decreasingly converges to (a− 1)/h.

In this equilibrium, we have
∑

t(dt/qt) =
∑

t(
dt

a−1
h

+xdt
) <

∑

t dt
h

a−1
< ∞. So, this

equilibrium experiences a bubble.

Proof. See Appendix B.2.

Let us explain the basic intuition of our Examples 2, 3. By definition (29) of at,
condition a = βe/w > 1 (i.e., the interest rate R∗ of the benchmark economy is low)
is equivalent to

β(e1,2t−1 − b∗1d2t−1)

e1,2t − b∗1d2t
> 1 and

β(e2,2t − b∗2d2t)

e2,2t+1 − b∗2d2t+1

> 1 ∀t (39)

We can interpret that agent 1 is richer than agent 2 at date 2t − 1 but agent 2 is
richer than agent 1 at date 2t; note that this is consistent with the seesaw property
(13). Hence, agent 1 (resp., agent 2) may accept to buy the financial asset at date
2t− 1 (resp., date 2t) even the asset price is higher than the fundamental value (i.e.,
there is a bubble). In both Examples 2, 3, we design that the sequence of dividends
is low enough in order to ensure that, for any i, t, the asset value qtbi,t is lower than
the resource of agent i at date t so that agent i can buy the financial asset.

In Example 2, there is a continuum of equilibrium prices but any sequence of price
converges to zero. In Example 3, we have q0 = (a− 1)/h and the sequence of prices
converges to (a−1)/h > 0 (notice that, according to Proposition 8, this is the unique
bubbly equilibrium such that qt converges to a strictly positive value.)

In Examples 2 and 3, the aggregate endowment is uniformly bounded and the
sequence of dividends converges to zero. The following result shows that, in an
economy with unbounded and asymmetric growth, bubbles may exist and the asset
price may go to infinity.

Example 4 (asymmetric growth and multiple equilibria with qt → ∞). Let ui(c) =
ln(c) ∀i = 1, 2, γi,t = β ∈ (0, 1) (i.e., βi,t = βt). Assume that dt = d > 0 ∀t and
endowments are

e1,2t−1 = b∗1d2t−1 + e2t−1, e1,2t = b∗1d2t + w2t

e2,2t−1 = b∗2d2t−1 + w2t−1, e2,2t = b∗2d2t + e2t
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Let α and σ be such that 0 < α < 1 < σ. Assume that, for any t,

e2,0 − e1,0 − d0(b1,−1 − b2,−1)

L+ 2b∗1 + b1,−1 − b2,−1

>
β(e2,0 + d0b2,−1)

β(L+ b∗1 − b2,−1) +H

1− β

1 + β
et − wt > Hd

wt+1 >
σ

σ − 1
βet, et >

1

β(1− α)
wt,

wt > (σ − 1)H(β + 1)d.

Notice that the two first conditions ensure that at+1

Ht+1
< q̄t ∀t.

According to Proposition 7, any sequence (qt)t≥0 determined by the system (30)
and q0 ∈ ( σa1d1

1+d1H1
, αa1
H1

), is a system of prices of an equilibrium in which asset holdings
are given by (8) and agents’ consumptions are given by (9a-9c). By consequence,
Proposition 5 implies that there is a continuum of bubbly equilibria.

In this example, endowments of both agents go to infinity. However, there is an
asymmetric growth: et

wt
> 1

β(1−α)
> 1, or equivalently

e1,2t−1−b∗1d2t−1

e2,2t−1−b∗2d2t−1
> 1

β(1−α)
and

e2,2t−b∗2d2t
e1,2t−b∗1d2t

> 1
β(1−α)

∀t. The basic intuition of bubble in this example is consistent with

that in Examples 2 and 3. Indeed, agent 1 is richer than agent 2 at date 2t − 1 but
agent 2 is richer than agent 1 at date 2t. Hence, agent 1 (resp., agent 2) accepts to
buy the financial asset at date 2t − 1 (resp., date 2t) even the asset price contains
a bubble. Moreover, the price qt goes to infinity when t tends to infinity because
endowments of both agents grow without bound.

Example 5 (an equilibrium with bubbles and qt may fluctuate over time). Consider
a particular case where βi,t = βt ∀i, ∀t where β ∈ (0, 1), b∗1 = b∗2 = 0 (no short-sales)
and e2,2t+1 = e1,2t = 0. In this case, γ2,2t = γ1,2t−1 = β, H = L and there is a unique
equilibrium satisfying condition (8)

q2t =
β

(1 + β)L
e2,2t and q2t−1 =

β

(1 + β)L
e1,2t−1. (42)

In other words, the set S0 contains a unique element. This equilibrium experiences a
bubble iff

∑

t dt/qt < ∞ which now becomes
∑

t
d2t
e2,2t

+
∑

t
d2t−1

e1,2t−1
< ∞. So, we recover

(28a).24

It is interesting to notice that, in our example there is no causal connection be-
tween the monotonicity of the sequence of price (qt) and the existence of bubble. The
fact that the price qt increases or decreases in time does not depend on the existence
of bubble but depends on the dynamics of endowments.

24This corresponds to the key condition for bubbles in Section 5.1.1 in Bosi et al. (2018b)
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We now look at the consumption in our example.

c1,0 = e1,0 + (q0 + d0)b1,−1, c2,0 = e2,0 + (q0 + d0)b2,−1 − q0L (43a)

c1,2t−1 = e1,2t−1 − q2t−1L, c2,2t−1 = e2,2t−1 + d2t−1L+ q2t−1L (43b)

c1,2t = e1,2t + d2tL+ q2tL, c2,2t = e2,2t − q2tL (43c)

Since Lq2t = β

1+β
e2,2t and Lq2t−1 = β

1+β
e1,2t−1, we see that c1,2t−1 and c2,2t do not

depend on (dt)t but c1,2t (resp., c2,2t−1) is strictly increasing in d2t (resp., d2t−1).
So, when dividends decrease, bubbles will be more likely to exist but the individual
welfares will be lower.

4.4 Welfare analysis

It would be important to compare the individual welfares generated by different equi-
libria. The following result allows us to do so.

Proposition 9. Consider equilibria satisfying conditions (8) and (9a-9c). Since equi-
librium outcomes can be uniquely computed from the initial price q0, the individual
welfare of agent i is a function of q0, and so denoted by Wi(q0).

Assume that the utility function ui is differentiable and strictly concave (u′′
i < 0)

for any i = 1, 2. Then, we have that:

1. For any i = 1, 2, the individual welfare Wi(q0) is strictly increasing in the initial
price q0.

2. By consequence, in the case of multiple equilibria (for example, in Proposition
6, Proposition 7, Examples 1-4), the allocation of a bubbly equilibrium strictly
Pareto dominates that of the bubbleless equilibrium.

Proof. See Appendix B.3.

Let us provide a sketch of our proof. Recall that the agent i’s welfare is
∑

t≥0 βi,tui(ci,t).
By using the FOCs and the concavity of utility functions, we can show that, for any t,
β1,2t−1u1(c1,2t−1)+β1,2tu1(c1,2t) and β2,2tu2(c2,2t)+β2,2t+1u2(c2,2t+1) are strictly positive

and strictly increasing in q0. By consequence, we can prove that
∑T

t=0 βi,t

(

ui(ci,t) −
ui(c

′
i,t)

)

converge to a positive number when T tends to infinity, for any two equilibria
(qt, (ci,t)i) and (q′t, (c

′
i,t)i) with q0 > q′0.

To understand the intuition behind our result, let us look at, for example β1,2t−1u1(c1,2t−1)+
β1,2tu1(c1,2t) which equals to

β1,2t−1u1(e1,2t−1 − b∗1d2t−1 − q2t−1H) + β1,2tu1(e1,2t + d2t(L+ b∗2) + q2tH) (44)

Recall that the rate of substitution
β1,2tu

′

1(e1,2t)

β1,2t−1u
′

1(e1,2t−1)
is high (see conditions (13) and

(14)) which implies that e1,2t−1 is relatively high with respect to e1,2t. When q0
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increases, both q2t and q2t−1 increase. This implies that c1,2t−1 decreases and c1,2t
increases, and then helps agent 1 to better smooth her consumption. So, increasing
q0 is welfare-improving.

Remark 5. Our welfare analysis is consistent with that in Proposition 9 of Hirano
and Yanagawa (2017). The different is that we work with general utility functions
while they only focus on the logarithmic utility function.

Remark 6. Notice that increasing q0 is not necessarily strictly welfare-improving
if the utility function ui of some agent i is linear. Indeed, assume that ui(c) =
uic ∀c where ui > 0. We can check that Wi(q0) = Wi(q

′
0) for any two equilibria

satisfying conditions (8) and (9a-9c) (because β1,2t−1u1(c1,2t−1) + β1,2tu1(c1,2t) and
β2,2tu2(c2,2t) + β2,2t+1u2(c2,2t+1) do not depend on the initial equilibrium price q0).
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Remark 7. In a particular case when assets have no dividend, the consumption
allocation of the bubbleless equilibrium coincides with that of the autarkic equilibrium.
Since the utility function is strictly concave, we can easily prove that Ui(ci) > Ui(ei)
∀i. So, its allocation is strictly Pareto dominated by that of bubbly equilibrium. This
argument has been used in many papers in the literature. However, it can no longer
be applied for the case of positive dividend because the consumption allocation of the
bubbleless equilibrium is different from that of the autarkic equilibrium. By the way,
our proof of Proposition 9 is new and so part of our contribution.

5 Conclusion and discussion

In general equilibrium models with infinitely lived agents, we have provided new
conditions (based on fundamentals) under which assets (with or without dividend)
do not generate price bubbles. In general, the existence of bubbles is associated with
the fluctuations of individual asset trading. However, the existence of bubbles is not
a matter of a single factor but the result of an interaction between heterogeneous
agents in an imperfect market.

We have provided several mechanisms where bubbles and real indeterminacy exist
in equilibrium in a model economy with two kinds of agents. Our analyses suggest
that bubbles are more likely to exist if (1) heterogeneity of agents takes place at any
period, (2) borrowing limits are tight, (3) the interest rates of the benchmark economy
are low so that agents are willing to buy assets even at a high price, (4) there is an asset
shortage (the asset supply is low or asset dividends are low to agents’ endowments).
We have also proved that bubbles may not exist if one of these conditions is violated.

We end our paper by mentioning some avenues of research in the future. First, it
would be interesting to understand how our results would be extended in a stochastic
economy. Although the existing literature has shown many conditions ruling out bub-
bles in stochastic general equilibrium models, there are very few examples of bubbles

25See (B.29) and (B.30) in Appendix.
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in such models. To address this question, it is important to understand how agents’
decision depends on the economy’s fundamentals and the degree of incompleteness of
the financial market. Second, are bubbles always welfare-improving? It is true under
conditions in Proposition 9. However, since we have not yet found the whole set of
equilibria in the general setup, our results are not enough to conclude that bubbles
are always welfare-improving. An open question is to investigate whether in a general
model any bubbly equilibrium dominates any bubbleless equilibrium.
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A Equilibrium properties and no-bubble conditions

Proof of Proposition 1. Part 1. To prove the FOCs, it suffices to prove that:
qtβi,tu

′
i(ci,t) ≥ βi,t+1u

′
i(ci,t+1)(qt+1+dt+1) and we have equality if bi,t+ b∗i > 0. We can

do so by using the standard argument in the dynamic programming (see our working
paper Bosi et al. (2019) for instance).

We now prove the TVCs. The FOCs imply that the sequence (λi,tqt)t is
decreasing in t. Moreover, we have

λi,tqtbi,t =
(

λi,t+1(qt+1 + dt+1) + ηi,t

)

bi,t = λi,t+1(qt+1 + dt+1)bi,t − ηi,tb
∗
i

We rewrite the budget constraint of agent i at date t as follows

λi,t(ci,t − ei,t) = λi,t(qt + dt)bi,t−1 − λi,tqtbi,t

By taking the sum of this constraint from t = 0 until T and using (1b), we get

T
∑

t=0

λi,t(ci,t − ei,t) =
T
∑

t=0

(

λi,t(qt + dt)bi,t−1 − λi,tqtbi,t

)

= λi,0(q0 + d0)bi,−1 − λi,T qT bi,T +
T
∑

t=1

ηi,tb
∗
i

and hence λi,0(q0 + d0)bi,−1 +
∑T

t=0 λi,tei,t +
∑T

t=1 ηi,tb
∗
i = λi,T qT bi,T +

∑T

t=0 λi,tci,t.
We will prove that limT→+∞ λi,T qT (bi,T+b∗) exists in R

+. Recall that the sequence
(λi,tqt)t is positive and decreasing in t. So, limt→+∞ λi,tqt exists and is in R

+. We
have −b∗i ≤ bi,t = L−

∑

j 6=i bj,t ≤ L+
∑

i b
∗
i∀t, and hence

−∞ < lim inf
T→+∞

λi,T qT bi,T ≤ lim sup
T→+∞

λi,T qT bi,T < ∞.

29



Under our assumptions, we have
∑

t λi,tci,t < ∞ ∀i. Indeed, we have
∑

t λi,tci,t =
∑

t βi,tu
′
i(ci,t)ci,t ≤

∑

t βi,tv(ci,t) ≤
∑

t βi,tv(
∑

i ei,t + Ldt) < ∞. Thus, we obtain that
∑

t λi,tci,t < ∞ ∀i.
Since

∑

t λi,tci,t < ∞, both series
∑

t λi,tei,t and
∑

t ηi,tb
∗
i converge. By conse-

quence, limT→+∞ λi,T qT bi,T exists in R. Therefore λi,T qT (bi,T + b∗) converges and

lim
T→+∞

λi,T qT (bi,T + b∗) = lim
T→+∞

λi,T qT bi,T + lim
T→+∞

λi,T qT b
∗
i ∈ R

There are two cases:

• Case (a): If lim inft→+∞(bi,t + b∗i ) = 0, then limt→+∞ λi,tqt(bi,t + b∗) = 0 because
λi,tqt ≤ λi,0q0 ∀t.

• Case (b): If lim inft→+∞(bi,t + b∗i ) > 0, then there exist α > 0 and T such
that bi,t + b∗i > α ∀t ≥ T . In this case ηi,t = 0∀t ≥ T . For simplic-
ity of the proof, assume T = 0. We know that limt→+∞ λi,tqt exists. Let
ζ ≡ limt→+∞ λi,tqt. We claim that ζ = 0. Assume the contrary: ζ > 0. In this
case ζ = limτ→+∞ λi,T+τ+1qT+τ+1 ≤ λi,T qT ∀T. Construct a sequence (c′i,t, b

′
i,t)

as follows:

c′i,0 = ci,0 +
ζα

λi,0

, c′i,t = ci,t, ∀t ≥ 1, b′i,t = bi,t −
ζα

qtλi,t

, ∀t ≥ 0

Since b′i,t ≥ −b∗i +α− ζα

qtλi,t
= −b∗i +α(1− ζ

qtλi,t
) ≥ −b∗i , ∀t, the sequence (c

′
i,t, b

′
i,t)

satisfies physical, budget and borrowing constraints. However
∑+∞

t=0 βi,tui(c
′
i,t) >

∑+∞

t=0 βi,tui(ci,t) which is a contradiction. Hence ζ = 0, i.e. limt→∞ qtλi,t = 0.
Since bi,t + b∗i = L−

∑

j 6=i bj,t + b∗i ≤ L+
∑

i b
∗
i∀t, we get

λi,tqt(L+
∑

i

b∗i ) ≥ λi,tqt(bi,t + b∗t ) ≥ λi,tqtα.

This implies that limt→∞ λi,tqt(bi,t + b∗t ) = 0.

By combining the two cases (a) and (b), we obtain that limt→∞ λi,tqt(bi,t + b∗t ) = 0.
Part 2 (sufficient condition). It suffices to prove the optimality of the allocation

(ci, bi). Consider another sequence (c′i, b
′
i) satisfying physical, budget and borrowing
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constraints. We have, for any T ,

T
∑

t=0

λi,t(ci,t − c′i,t) ≥
T
∑

t=0

λi,t

(

ei,t + (qt + dt)bi,t−1 − qtbi,t − ei,t − (qt + dt)b
′
i,t−1 + qtb

′
i,t

)

=
T−1
∑

t=0

λi,t+1(qt+1 + dt+1)(bi,t − b′i,t)−
T−1
∑

t=0

λi,tqt(bi,t − b′i,t)− qTλi,T (bi,T − b′i,T )

= −qTλi,T (bi,T − b′i,T ) +
T−1
∑

t=0

(

λi,t+1(qt+1 + dt+1)− λi,tqt

)

(bi,t − b′i,t)

= −qTλi,T (bi,T − b′i,T ) +
T−1
∑

t=0

ηi,t(b
′
i,t − bi,t)

= −qTλi,T (bi,T + b∗i − (b′i,T + b∗i )) +
T−1
∑

t=0

ηi,t(b
′
i,t + b∗i − (bi,t + b∗i ))

≥ −qTλi,T (bi,T + b∗i ) +
T−1
∑

t=0

ηi,t(b
′
i,t + b∗i ) ≥ −qTλi,T (bi,T + b∗i ).

Therefore, we have

T
∑

t=0

(

βi,tu(ci,t)− βi,tu(c
′
i,t)

)

≥

T
∑

t=0

λi,t(ci,t − c′i,t) ≥ −qTλi,T (bi,T + b∗T ).

Denote UT ≡
∑T

t=0 βi,tu(ci,t) and U ′
T ≡

∑T

t=0 βi,tu(c
′
i,t). Observe that the sequence

UT converges when T tends to infinity.
If limT→∞ qTλi,T (bi,T + b∗T ) = 0, then lim supT→∞ U ′

T ≤ limT→∞ UT ; we have fin-
ished our proof.

Remark 8. If ui(0) ≥ 0, then the series
∑∞

t=0 λi,tui(ci,t) always converges. By conse-
quence, conditions UT ≥ U ′

T−qTλi,T (bi,T+b∗T ) ∀T and lim infT→∞ qTλi,T (bi,T+b∗T ) = 0
imply that limT→∞ UT ≥ limT→∞ U ′

T = lim supT→∞ U ′
T .

Proof of Proposition 2. We mainly use Proposition 1.
1. Suppose that there exists i such that lim inft→∞(bi,t + b∗i ) > 0. In this case,

there exists T such that bi,t + b∗i > 0 ∀t ≥ T . So,
λi,t+1

λi,t
= qt

qt+1+dt+1
= 1

Rt+1
∀t ≥ T .

This implies that Qt = QT
λi,t

λi,T
∀t ≥ T . By combining with the TVC, we get that

limt→∞ Qtqt(bi,t + b∗i ) = 0 ∀i. This is impossible because lim inft→∞(bi,t + b∗i ) > 0 and
lim→∞ Qtqt > 0.

2. We firstly prove that: there exist an agent, say agent i, and an infinite, in-
creasing sequence (in)n such that bi,in + b∗i = 0 for all n = 0, 1, . . .. Indeed, assume,
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by contradiction, that for any agent i, there exists T such that bi,t > −b∗i ∀t ≥ T . As
discussed above, we obtain that limt→∞ Qtqt(bi,t + b∗i ) = 0 ∀i. Taking the sum over i
and using market clearing conditions, we get that limt→∞ Qtqt = 0, i.e., there is no
bubble, a contradiction.

We now consider other agents j ∈ {2, · · · ,m}. Suppose that for any j ≥ 2, there

is Tj such that bj,t + b∗j > 0 ∀t ≥ Tj. So,
λj,t+1

λj,t
= qt

qt+1+dt+1
= 1

Rt+1
∀j ≥ 2, ∀t ≥

T ≡ maxj≥2 Tj, which implies that Qt = QT
λj,t

λj,T
∀j ≥ 2, t ≥ T . By combining

with the TVC, we get that limt→∞ Qtqt(bj,t + b∗j) = 0. Since bubbles exist, we have
limt→∞ Qtqt > 0. We then get that limt→∞(bj,t + b∗j) = 0. Market clearing conditions
imply that limt→∞ b1,t + b∗1 = L− limt→∞

∑

j≥2 bj,t + b∗1 = L+
∑m

i=1 b
∗
i > 0. So, there

exists T1 such that b1,t + b∗1 > 0 ∀t ≥ T1, which is a contradiction. By consequence,
there exist an agent, say agent 2, and an increasing sequence (jn)n such that bj,jn+b∗j =
0 for all n = 0, 1, . . ..

3. Suppose that there exist m− 1 agents such that their asset holding converges.
By market clearing conditions, the asset holding of all agents converges. So, there
exists an agent i such that limt→∞ bi,t > 0. According to point 1, this is impossible.

Proof of Corollary 2. Suppose that
∑

t≥0 Qtei,t < ∞ ∀i. Budget constraint of
agent i implies that Qtci,t + Qtqtbi,t = Qtei,t + Qt(qt + dt)bi,t−1. By summing this
equation over t and noticing that Qtqt = Qt+1(qt+1 + dt+1), we have

T
∑

t=0

Qtci,t +QT qT bi,T =
T
∑

t=0

Qtei,t + (q0 + d0)bi,−1 ∀t.

Since
∑

t≥0 Qtei,t < ∞ and (QT qT bi,T ) is bounded (because bi,T andQT qT are bounded),
the series

∑

t≥0 Qtci,t converges, and so does the sequence (QT qT bi,T )T . If there is a
bubble, we have limt→∞ Qtqt > 0. By consequence, (bi,t) converges for any i. Market
clearing conditions imply that there is an agent i such that bi ≡ limt→∞ bi,t > 0.
So, borrowing constraints of agent i do not bind from some date on, say T . Hence,
λi,t+1

λi,t
= qt

qt+1+dt+1
= 1

Rt+1
∀t ≥ T . This implies that Qt = QT

λi,t

λi,T
∀t ≥ T . By com-

bining with the TVC, we get that limt→∞ Qtqt(bi,t + b∗i ) = 0 ∀i. This is impossible
because limt→∞(bi,t + b∗i ) > 0 and limt Qtqt > 0.

If lim inft
dt∑
i ei,t

> 0, there exist a date t0 ≥ 1 and a positive constant x such that

xdt ≥
∑

i ei,t ∀t ≥ t0. Therefore, we have

∑

t≥0

Qt

(

∑

i

ei,t
)

=

t0−1
∑

t=0

Qt

(

∑

i

ei,t
)

+
∑

t≥t0

Qt

(

∑

i

ei,t
)

≤

t0−1
∑

t=0

Qt

(

∑

i

ei,t
)

+ x
∑

t≥t0

Qtdt ≤

t0−1
∑

t=0

Qt

(

∑

i

ei,t
)

+ xq0 < ∞.

Hence
∑

t≥0 Qt

(
∑

i ei,t
)

< ∞, and so there does not exist bubble.
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Proof of Proposition 3. We need intermediate results (Lemmas 1, 2, 3).

Lemma 1. At each date t, there exists i such that bi,t ≥ bi,t+1 and borrowing constraint
is not binding (i.e., bi,t + b∗i > 0).

Proof. Define i0 such that bi0,t − bi0,t+1 = max
i

{bi,t − bi,t+1}. Then, we have bi0,t −

bi0,t+1 ≥ 0. We consider two cases.
Case 1: If bi0,t − bi0,t+1 > 0, then bi0,t + b∗i > bi0,t+1 + b∗i ≥ 0.
Case 2: If bi0,t − bi0,t+1 = 0, then bi,t − bi,t+1 ≤ 0 ∀i. Since

∑

i

(bi,t − bi,t+1) = 0,

we get that bi,t − bi,t+1 = 0 for every i. Since
∑

i bi,t > 0, we can choose i1 such that
bi1,t > 0. So, we have bi1,t = bi1,t+1 and bi1,t + b∗i > 0.

Lemma 2. Assume that ei,t − dtb
∗
i > 0 ∀i, ∀t, then we have

1

Rt+1

≤ max
i

βi,t+1u
′
i(ei,t+1 − dt+1b

∗
i )

βi,tu′
i(
∑

i ei,t + Ldt)
∀t ≥ 0. (A.1)

Proof. Recall that we have 1 = Rt+1 maxi
βi,t+1u

′

i(ci,t+1)

βi,tu
′

i(ci,t)
∀t ≥ 0. Let t ≥ 0, Lemma 1

implies that there exists an agent i = i(t) (depending on t) such that bi(t),t ≥ bi(t),t+1

and bi(t),t + b∗i(t) > 0. Then, we have ηi(t),t = 0 and hence

1 = Rt+1

βi(t),t+1u
′
i(t)(ci(t),t+1)

βi(t),tu′
i(t)(ci(t),t)

.

We observe that ci(t),t+1 = ei(t),t+1 + (qt+1 + dt+1)bi(t),t − qt+1bi(t),t+1 ≥ ei(t),t+1 −
dt+1b

∗
i(t) and ci(t),t ≤ Wt ≡

∑

i ei,t + Ldt. By consequence, we get that

1

Rt+1

=
βi(t),t+1u

′
i(t)(ci(t),t+1)

βi(t),tu′
i(t)(ci(t),t)

≤
βi(t),t+1u

′
i(t)(ei(t),t+1 − dt+1b

∗
i(t))

βi(t),tu′
i(t)(

∑

i ei,t + Ldt)
≤ max

i

βi,t+1u
′
i(ei,t+1 − dt+1b

∗
i )

βi,tu′
i(
∑

i ei,t + Ldt)

Lemma 3. Consider an equilibrium. Take γ in Assumption 3, we have that (1 −
γ)qtbi,t ≤ Wt ∀i, ∀t.

Proof. Suppose, by contradiction, that there exist i and t such that (1−γ)qtbi,t > Wt.
Let us consider a new allocation of agent i: zi := z

(

ci, t, γ, (1 − γ)qtbi,t
)

. We check
that this allocation is in the budget set of agent i because

(

ci,t + (1− γ)qtbi,t
)

+ qt
(

γbi,t
)

≤ ei,t + (qt + dt)bi,t−1

γci,s + qs
(

γbi,s
)

= γei,s + (qt + dt)
(

γbi,s−1

)

≤ ei,s + (qt + dt)
(

γbi,s−1

)

∀s ≥ t+ 1

According to Assumption 3, we have

Ui(ci) < Ui

(

z(ci, t, γ,Wt

)

< Ui

(

z
(

ci, t, γ, (1− γ)qtbi,t
)

)

. (A.2)

This is in contradiction to the optimality of (ci, bi).
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We now prove Proposition 3. Since points 1 and 2 are direct consequences of
(4), let us prove (4). According to Lemma 3, we have (1−γ)qtbi,t ≤ Wt ∀i, ∀t. Taking
the sum over i, we get (1− γ)qtL ≤ mWt ∀t. Since L(1− γ) > 0, we get that

qt ≤
mWt

L(1− γ)
∀t. (A.3)

According to Lemma 2, we have

1

Rt+1

≤ max
i

βi,t+1u
′
i(ei,t+1 − dt+1b

∗
i )

βi,tu′
i(
∑

i ei,t + Ldt)
∀t ≥ 0. (A.4)

Recall that there is no bubble iff limt→∞ Qtqt = 0. By combining these above argu-
ments, there is no bubble if condition (4) is satisfied.

B Proofs for Section 4. Models with bubbles

We firstly state and prove a condition under which a sequence is a system of prices.
This condition is very useful for the next proofs.

Lemma 4. Let Assumption 1, 2 be satisfied.
(1) The sequence (qt)t≥0, asset holdings given by (8) and agents’ consumptions

given by (9a-9c) constitute an equilibrium if and only if consumptions are strictly
positive and the following conditions hold

1 = γ2,0
u′
2(e2,1 + d1(L+ b∗1) + q1H)

u′
2(e2,0 + (q0 + d0)b2,−1 − q0(L+ b∗1))

q1 + d1
q0

(B.1a)

1 = γ1,2t−1
u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

q2t + d2t
q2t−1

(B.1b)

1 = γ2,2t
u′
2(e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H)

u′
2(e2,2t − b∗2d2t − q2tH)

q2t+1 + d2t+1

q2t
(B.1c)

γ1,2t−1
u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

≥
γ2,2t−1u

′
2(e2,2t − d2tb

∗
2 − q2tH)

u′
2(e2,2t−1 + d2t−1(L+ b∗1) + q2t−1H)

(B.1d)

γ2,2t
u′
2(e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H)

u′
2(e2,2t − d2tb∗2 − q2tH)

≥ γ1,2t
u′
1(e1,2t+1 − b∗1d2t+1 − q2t+1H)

u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

(B.1e)

γ2,0
u′
2(e2,1 + d1(L+ b∗1) + q1H)

u′
2(e2,0 + (q0 + d0)b2,−1 − q0(L+ b∗1))

≥ γ1,0
u′
1(e1,1 − b∗1d1 − q1H)

u′
1(e1,0 + (q0 + d0)b1,−1 + q0b∗1)

(B.1f)
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and

lim
t→∞

β1,2t+1u
′
1(e1,2t+1 − b∗1d2t+1 − q2t+1H)q2t+1H = 0 (B.2)

lim
t→∞

β2,2tu
′
2(e2,2t − d2tb

∗
2 − q2tH)q2tH = 0 (B.3)

Observe that the TVCs hold if lim
t→∞

β2,2tu
′
2(e2,2t)e2,2t = lim

t→∞
β1,2t+1u

′
1(e1,2t+1)e1,2t+1 = 0.

(2) When ui(c) = ln(c) ∀i = 1, 2, the sequence (qt)t, asset holdings given by (8)
and agents’ consumptions given by (9a-9c) constitute an equilibrium if, for any t ≥ 1,
γ1,2t−1 ≥ γ2,2t−1, γ2,2t ≥ γ1,2t

e1,2t−1 ≥ e2,2t−1 + (L+ 2b∗1)d2t−1 + 2Hq2t−1 (B.4a)

e2,2t ≥ e1,2t + (L+ 2b∗2)d2t + 2Hq2t (B.4b)

e2,0 ≥ e1,0 + d0(b1,−1 − b2,−1) + q0(L+ 2b∗1 + b1,−1 − b2,−1) (B.4c)

and

q0 = (q1 + d1)
γ2,0(e2,0 + (q0 + d0)b2,−1 − q0b2,0)

e2,1 + d1(L+ b∗1) + q1H
(B.5a)

q2t−1 = (q2t + d2t)
γ1,2t−1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

e1,2t + d2t(L+ b∗2) + q2tH
(B.5b)

q2t = (q2t+1 + d2t+1)
γ2,2t(e2,2t − b∗2d2t − q2tH)

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H
(B.5c)

Proof of Lemma 4. The part 1 of Lemma 4 is a direct consequence of Proposition
1. Let us prove the part 2. Since ui(c) = ln(c) ∀i, we have u′

i(c) = 1/c ∀i, and hence
FOCs now become

1 =
γ1,2t−1u

′
1(c1,2t)

u′
1(c1,2t−1)

q2t + d2t
q2t−1

=
γ1,2t−1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

e1,2t + d2t(L+ b∗2) + q2tH

q2t + d2t
q2t−1

1 =
γ2,2tu

′
2(c2,2t+1)

u′
2(c2,2t)

q2t+1 + d2t+1

q2t
=

γ2,2t(e2,2t − d2tb
∗
2 − q2tH)

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H

q2t+1 + d2t+1

q2t
γ1,2t−1u

′
1(c1,2t)

u′
1(c1,2t−1)

≥
γ2,2t−1u

′
2(c2,2t)

u′
2(c2,2t−1)

,
γ2,2tu

′
2(c2,2t+1)

u′
2(c2,2t)

≥
γ1,2tu

′
1(c1,2t+1)

u′
1(c1,2t)

The two last inequalities of the FOCs become

γ1,2t−1
e1,2t−1 − b∗1d2t−1 − q2t−1H

e1,2t + d2t(L+ b∗2) + q2tH
≥ γ2,2t−1

e2,2t−1 + d2t−1(L+ b∗1) + q2t−1H

e2,2t − d2tb∗2 − q2tH
(B.7a)

γ2,2t
e2,2t − d2tb

∗
2 − q2tH

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H
≥ γ1,2t

e1,2t + d2t(L+ b∗2) + q2tH

e1,2t+1 − b∗1d2t+1 − q2t+1H
(B.7b)
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At the first period, FOCs are

γ2,0u
′
2(c2,1)

u′
2(c2,0)

≥
γ1,0u

′
1(c1,1)

u′
1(c1,0)

⇔ γ2,0
c2,0
c2,1

≥ γ1,0
c1,0
c1,1

⇔ γ2,0
e2,0 + (q0 + d0)b2,−1 − q0b2,0
e2,1 + d1(L+ b∗1) + q1H

≥ γ1,0
e1,0 + (q0 + d0)b1,−1 − q0b1,0

e1,1 − b∗1d1 − q1H

and 1 =
γ2,0u

′
2(c2,1)

u′
2(c2,0)

q1 + d1
q0

= γ2,0
e2,0 + (q0 + d0)b2,−1 − q0b2,0
e2,1 + d1(L+ b∗1) + q1H

q1 + d1
q0

These inequalities are guaranteed by conditions (B.4a-B.4c) while these equalities are
ensured by conditions (B.5a-B.5c).

According to Proposition 1, it remains to prove the transversality conditions:

lim
t→∞

q2t(b1,2t + b∗1)λ1,2t = 0, lim
t→∞

q2t+1(b1,2t+1 + b∗1)λ1,2t+1 = 0

lim
t→∞

q2t(b2,2t + b∗2)λ2,2t = 0, lim
t→∞

q2t+1(b2,2t+1 + b∗2)λ2,2t+1 = 0.

Since b1,2t = −b∗1 and b2,2t−1 = −b∗2, they becomes

lim
t→∞

q2t+1(b1,2t+1 + b∗1)λ1,2t+1 = 0 and lim
t→∞

q2t(b2,2t + b∗2)λ2,2t = 0

or equivalently, lim
t→∞

q2t+1Hβ1,2t+1
1

c1,2t+1

= 0 and lim
t→∞

q2tHβ2,2t
1

c2,2t
= 0 (B.10)

These conditions are satisfied thank to (B.4a-B.4c).

Proof of Proposition 5. First, we observe that u′
1

(

e1,2t + d2t(L + b∗2) + q2tH
)

=
u′
1

(

e1,2t − d2tb
∗
1 + (q2t + d2t)H

)

and u′
2

(

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H
)

= u′
2

(

e2,2t+1 −
d2t+1b

∗
1 + (q2t+1 + d2t+1)H

)

. Since e1,t − dtb
∗
1, e2,t − dtb

∗
2 are strictly positive and the

function cu′
i(c) is increasing in c, the three numerators in FOCs (B.1a), (B.1b), (B.1c)

are increasing in q1, q2t, q2t+1 respectively. Moreover, the three denominators in FOCs
(B.1a), (B.1b), (B.1c) are increasing in q0, q2t−1, q2t respectively. By consequence, qt+1

is increasing in qt for any t. This in turns implies that qt+1+dt+1

qt
is increasing in qt

for any t. By consequence, qt is strictly increasing in q0 and 1
Rt

= qt−1

qt+dt
is strictly

decreasing in q0. Thus, the fundamental value FV0 =
∑

t≥1 Qtdt is strictly decreasing
in q0. Hence, the asset price bubble component B0 ≡ q0 − FV0 is strictly increasing
in q0.

Second, we prove that S0 is connected. Let x, y ∈ S0 with x < y, and let z ∈ (x, y).
Since qt(·) is a strictly increasing function, we have qt(y) > qt(z) > qt(x). So, the
sequence (qt(z))t is strictly positive and individual consumptions generated by this
sequence are strictly positive. To prove that the sequence (qt(z)) is a sequence of
equilibrium prices, we have to now verify FOCs and TVCs. FOCs (B.1a), (B.1b),
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(B.1c) are obviously satisfied. We present a proof of (B.1d) (conditions (B.1e), (B.1f)
can be proved by applying the same method). Indeed, we have

γ1,2t−1u
′
1(e1,2t + d2t(L+ b∗2) + q2t(z)H)

γ2,2t−1u′
2(e2,2t − d2tb∗2 − q2t(z)H)

≥
γ1,2t−1u

′
1(e1,2t + d2t(L+ b∗2) + q2t(y)H)

γ2,2t−1u′
2(e2,2t − d2tb∗2 − q2t(y)H)

≥
u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1(y)H)

u′
2(e2,2t−1 + d2t−1(L+ b∗1) + q2t−1(y)H)

≥
u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1(z)H)

u′
2(e2,2t−1 + d2t−1(L+ b∗1) + q2t−1(z)H)

.

because qt(y) > qt(z) ∀t. So, we obtain (B.1d).
TVCs (B.2), (B.3) are satisfied because qt(y) > qt(z) ∀t, u′

1(e1,2t+1 − b∗1d2t+1 −
q2t+1H)q2t+1 is increasing in q2t+1, and u′

2(e2,2t − d2tb
∗
2 − q2tH)q2t is increasing in q2t.

The two last points of Proposition 5 are a direct consequence of the fact that
B0 ≡ q0 − FV0 is strictly increasing in q0.

B.1 Proofs for Section 4.3.1

Proof of Example 1. Assume that there exists a bubble, then we have qt > 0 ∀t.
According to FOCs (B.5a-B.5c) we obtain that 1

Hqt+1
= βe

w
1

Hqt
− 1+β

w
∀t ≥ 0. From

this, by iterating, we get that

1

Hqt
=

1

Hq0
Γt −Dt =

1

Hq0

(βe

w

)t
−

1 + β

w

(

1 +
βe

w
+ · · ·+

(βe

w

)t−1
)

∀t ≥ 1 (B.11)

1. If βe

w
≤ 1 (i.e., R∗ ≥ 1), then the right hand side of (B.11) is negative if t is high

enough while the left hand side is strictly positive, a contradiction. Therefore,
there is no bubble in this case.

2. If βe

w
> 1 (i.e., R∗ < 1). In this case, we have

1

Hqt
=

(

βe

w

)t

Hq0
−

1 + β

w

(

βe

w

)t
− 1

βe

w
− 1

=

(

βe

w

)t

Hq0

(

1−Hq0
1 + β

βe− w

(

1− (
w

βe
)t
)

)

∀t ≥ 1

(B.12)

(a) If q0 >
1
H

βe−w

1+β
, then 1−Hq0

1+β

βe−w
< 0. By consequence, the right hand side

is strictly negative when t is high enough, a contradiction. In this case,
there is no bubble.

(b) If q0 =
1
H

βe−w

1+β
, then 1−Hq0

1+β

βe−w
= 0. By consequence, we have qt = q > 0

∀t ≥ 1. To verify that this is an equilibrium price, we must check conditions
(B.4a-B.4c) which now become e−w > 2H 1

H

βe−w

1+β
. This is satisfied because

β ∈ (0, 1).
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(c) If 0 < q0 < 1
H

βe−w

1+β
, then 1 − Hq0

1+β

γe−w
> 0. In this case, we see that

the sequence qt determined by (B.12) is positive and decreasing in t, and
limt→∞ qt = 0. Conditions (B.4a-B.4c) which now become e − w > 2Hqt
∀t. Since q0 < 1

H

βe−w

1+β
, we have 2Hqt ≤ 2Hq0 < e − w ∀t. So, conditions

(B.4a-B.4c) are satisfied. Therefore, the sequence (qt)t, determined by two
conditions q0 < 1

H

βe−w

1+β
and (B.11), constitutes a system of equilibrium

price with bubble.

Proof of Proposition 6. Part 1. Bubble exists iff qt > 0 ∀t. FOCs (B.5a-B.5c)
now become

{

1 = γ2,0
e2,0+q0b2,−1−q0(L+b∗1)

e2,1+q1H

q1
q0

1 = γt(et−Hqt)
wt+1+Hqt+1

qt+1

qt
∀t ≥ 1

⇔

{

e2,1
q1

+H = γ2,0
e2,0
q0

− γ2,0(L+ b∗1 − b2,−1)
wt+1

qt+1
+H = γtet

1
qt
− γtH ∀t ≥ 1

or equivalently

1

Hq1
=

γ2,0e2,0
e2,1

1

Hq0
−

1

e2,1

(

1 + γ2,0
L+ b∗1 − b2,−1

L+ b∗1 + b∗2

)

,
1

Hqt+1

=
γtet
wt+1

1

Hqt
−

1 + γt
wt+1

∀t ≥ 1

From this, we can compute that, for any t ≥ 2,

1

Hqt
=

γt−1et−1

wt

(γt−2et−2

wt−1

1

Hqt−2

−
1 + γt−2

wt−1

)

−
1 + γt−1

wt

=
γt−1et−1

wt

γt−2et−2

wt−1

1

Hqt−2

−
γt−1et−1

wt

1 + γt−2

wt−1

−
1 + γt−1

wt

= · · · =
γt−1et−1

wt

· · ·
γ1e1
w2

1

Hq1

−
(1 + γt−1

wt

+
γt−1et−1

wt

1 + γt−2

wt−1

+ · · ·+
γt−1et−1

wt

· · ·
γ2e2
w3

(1 + γ1)

w2

)

=
γt−1et−1

wt

· · ·
γ0e0
w1

1

Hq0

−
(1 + γt−1

wt

+
γt−1et−1

wt

1 + γt−2

wt−1

+ · · ·+
γt−1et−1

wt

· · ·
γ1e1
w2

1 + γ2,0
L+b∗1−b2,−1

L+b∗1+b∗2

w1

)

=
1

Hq0
Γt −Dt.

By consequence, we obtain (22).
Condition qt > 0 is equivalent to Dt/Γt < 1/(Hq0). We see that

Dt

Γt

=

1+γt−1

wt
+ γt−1et−1

wt

1+γt−2

wt−1
+ · · ·+ γt−1et−1

wt
· · · γ1e1

w2

1+γ2,0
L+b∗1−b2,−1
L+b∗1+b∗2

w1

γt−1et−1

wt
· · · γ0e0

w1

=
R∗

1 · · ·R
∗
t−1

et−1

(

1 +
1

γt−1

)

+ · · ·+
1

e0

( 1

γ0
+

L+ b∗1 − b2,−1

L+ b∗1 + b∗2

)
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where recall that γ0 = γ2,0, w1 ≡ e2,1, and
γt−1et−1

wt
= 1

R∗

t
. By combining this with

Dt/Γt < 1/(Hq0), we get that
∑∞

t=1
R∗

1 ···R
∗

t

et
< ∞.

Part 2. We have to check that (1) prices and consumptions are strictly positive,
and (2) all conditions in Lemma 4 are satisfied.

Since et −wt > 0, condition q0 <
Γt

H

(

Dt+
2

et−wt

) is equivalent to 1
Hq0

Γt −Dt >
2

et−wt

which implies that Γt > Hq0Dt and et − wt > 2Hqt. We have qt > 0 because
Γt > Hq0Dt. Condition et − wt ≥ 2Hqt ∀t ensures that consumptions given by
(9b-9c) are strictly positive.

Our construction 1
Hqt

= 1
Hq0

Γt −Dt ∀t ≥ 1 ensures FOCs (B.5a-B.5c).

By using condition et − wt ≥ 2Hqt, we obtain (B.4a) and (B.4b). Moreover,
condition q0 <

e2,0−e1,0
L+2b∗1+b1,−1−b2,−1

implies condition (B.4c).

Let us look at q̄. We can compute that

HDt

Γt

+
2H

(et − wt)Γt

= H
(R∗

1 · · ·R
∗
t−1

et−1

(
1

γt−1

+ 1) + · · ·+
1

e0
(
1

γ0
+

L+ b∗1 − b2,−1

L+ b∗1 + b∗2
)
)

+
2H

(et − wt)
γt−1et−1

wt
· · · γ0e0

w1

=
Hw1 · · ·wt−1

e0 · · · et−1

1 + γt−1

γ0 · · · γt−1

+
Hw1 · · ·wt−2

e0 · · · et−2

1 + γt−2

γ0 · · · γt−2

+

+ · · ·+
H

e0
(
1

γ0
+

L+ b∗1 − b2,−1

L+ b∗1 + b∗2
) +

2Hw1 · · ·wt

e0 · · · et−1(et − wt)

1

γ0 · · · γt−1

Recall that H ≡ L + b∗1 + b∗2. As a result, H
Γt
(Dt +

2
et−wt

) is increasing in L, b∗1, b
∗
2, wt

and decreasing in et, γt, b2,−1. By consequence, q̄ is decreasing in L, b∗1, b
∗
2, wt, b1,−1

and increasing in et, γt, b2,−1.

B.2 Proofs for Section 4.3.2

Proof of Proposition 7. We will prove, by induction, condition (33), i.e.,

σsasds
1 + dsHs

< qs−1 <
αsas
Hs

∀s ≥ 1. (B.16)

This is satisfied for t = 1 because we choose q0 ∈ ( σ1a1d1
1+d1H1

, α1a1
H1

). Assume that it holds
for s = t. Let us prove it for s = t+ 1. According to (30) and qt−1 <

αtat
Ht

, we have

qt =
(1 + dtHt)qt−1 − atdt

at −Htqt−1

<
(1 + dtHt)

αtat
Ht

− atdt

at −Ht
αtat
Ht

=
αt

Ht
− (1− αt)dt

1− αt

(B.17)

<
αt

(1− αt)Ht

<
αt+1at+1

Ht+1

(B.18)

39



where the last inequality is from (32b).
The system (30) and condition σtatdt

1+dtHt
< qt−1 imply that

qt =
(1 + dtHt)qt−1 − atdt

at −Htqt−1

>
(1 + dtHt)

σtatdt
1+dtHt

− atdt

at −Ht
σtatdt
1+dtHt

=
(σt − 1)dt

1− σtdtHt

1+dtHt

. (B.19)

According to condition 1 − (σt − 1)dtHt >, we have 1 − σtdtHt

1+dtHt
> 0 which in turn

implies that

qt > (σt − 1)dt > σt+1at+1dt+1 (B.20)

where the last inequality is from the first condition in (32c). Finally, we get that
qt >

σt+1at+1dt+1

1+Ht+1dt+1
. Therefore, we have just proved (33).

To prove that (qt) is a price sequence of an equilibrium, we check that all conditions
in Lemma 4 are satisfied. First, since 0 < αt < 1 < σt, condition (33) ensures that
qt > 0 ∀t ≥ 0.

Second, observe that condition (33) implies that qt < at+1

Ht+1
and hence qt < q̄t.

By definition of q̄t, the inequalities (B.4a-B.4c) can be rewritten as qt ≤ q̄t ∀t. So,
conditions (B.4a-B.4c) are satisfied. It also ensures that consumptions are strictly
positive.

Last, FOCs (B.5a-B.5c) are ensured by the system (30).

Proof of Proposition 8. Part 1. According to Remark 3, there is no bubble if
a < 1. Now, consider the case a > 1. Suppose that there is a bubble. We must have
∑

t dt < ∞. There are only two cases.
Case 1. If there is t0 such that qt0 ≤

a−1
h
, then we have

qt0+1 − qt0 =
qt0(hqt0 − (a− 1))

a− hqt0
− dt < 0 (B.21)

By induction, we have that qt < qt−1 < (a − 1)/h ∀t > t0. By consequence, the
sequence qt decreasingly converges to a value q ≥ 0. Observe that

(qt + dt)(a− hqt−1) = qt−1, and hence q(a− hq) = q, (B.22)

So, either q = 0 or q = (a − 1)/h. Since qt < qt−1 < (a − 1)/h ∀t > t0, the value q
must be strictly lower than (a− 1)/h. As a result, qt converges to zero.

Case 2. qt >
a−1
h

∀t ≥ 0. Observe that

(qt+d0+ · · ·+dt)−(qt−1+d0+ · · ·+dt−1) = qt+dt−qt−1 =
qt−1(hqt−1 − (a− 1))

a− hqt−1

> 0.

So the sequence (qt + d0 + · · · + dt) is strictly increasing. Since
∑

t dt < ∞ and
qt <

a
h
, this sequence is bounded, and hence converges. As a result, the sequence (qt)

converges. So, it must converge to a−1
h
.
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Part 2. We now prove that there is almost one equilibrium satisfying qt >
a−1
h

∀t,
in which asset holdings are given by (8) and agents’ consumptions are given by (9a-
9c). Let (qt) and (q′t) be two systems of equilibrium prices. We must have qt < a/h
and q′t < a/h.

Define xt = qt −
a−1
h
, x′

t = q′t −
a−1
h
, then we have 0 < xt, x

′
t < 1/h and

qt + dt =
qt−1

a− hqt−1

⇔ xt +
a− 1

h
+ dt =

xt−1 +
a−1
h

a− h(xt−1 +
a−1
h
)
⇔ xt + dt =

axt−1

1− hxt−1

Similarly, we have x′
t + dt =

ax′

t−1

1−hx′

t−1
. Therefore, we get that

xt − x′
t =

a(xt−1 − x′
t−1)

(1− hxt−1)(1− hx′
t−1)

∀t ≥ 1. (B.23)

We will prove that x0 = x′
0 (which implies that qt = q′t ∀t). Without loss of generality,

suppose that x0 > x′
0. According to (B.23), we have xt − x′

t > a(xt−1 − x′
t−1) ∀t ≥ 1.

Therefore, we have xt−x′
t > at(x0−x′

0) ∀t ≥ 1. Since a > 1, at(x0−x′
0) converges to

infinity. So, xt − x′
t also converges to infinity. However, this cannot happen because

both xt and x′
t belong the interval (0, 1/h).

Proof of Example 2. First, we see that

a2t = a2t+1 = a ≡
βe

w
, H2t = H2t+1 = h ≡

H(β + 1)

w
2Hq̄2t−1 ≡ e− w −Hd2t−1, 2Hq̄2t ≡ e− w −Hd2t

So, condition at+1

Ht+1
< q̄t ∀t becomes

β(e2,0 + d0b2,−1)

β(L+ b∗1 − b2,−1) +H
<

e2,0 − e1,0 − d0(b1,−1 − b2,−1)

L+ 2b∗1 + b1,−1 − b2,−1

(B.24)

2βe

1 + β
< e− w −Hd2t−1,

2βe

1 + β
< e− w −Hd2t. (B.25)

These conditions and condition q̄t > 0 are satisfied because we assume that dt <
1−β

1+β
e−w

H
.

Second, observe that condition σad1

1+d1
H(β+1)

w

< βe−w

H(β+1)
ensures that σad1

1+d1h
< a−1

h
. So,

the interval ( σad1
1+d1h

, a−1
h
] is well defined.

We next prove that qs ∈ ( σads
1+dsh

, a−1
h
] ∀s ≥ 0. This holds for s = 0 because

q0 ∈ ( σad1
1+d1h

, a−1
h
]. Assume that it holds for t − 1, we will prove this for t. Indeed,

condition dt < w
(σ−1)(β+1)H

is equivalent to 1 − σdth
1+dth

> 0. By combining this with
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σ−1
σ

dt
dt+1

> βe

w
, we get that

qt =
(1 + dth)qt−1 − adt

a− hqt−1

>
(1 + dth)

σadt
1+dth

− adt

at − h σadt
1+dth

=
(σ − 1)dt

1− σdth
1+dth

(B.26)

> (σ − 1)dt > σat+1dt+1 >
σat+1dt+1

1 +Ht+1dt+1

(B.27)

We also have

qt − qt−1 =
qt−1(hqt−1 − (a− 1))

a− hqt−1

− dt < 0 (B.28)

because hqt−1 < a − 1. So, we have qt < qt−1 < (a − 1)/h ∀t. This in turn implies
that qt < (a− 1)/h ∀t. By consequence, the sequence qt decreasingly converges, and
hence it cannot converge to (a− 1)/h. As a result, it converges to zero.

It remains to prove that (qt) is a price sequence of an equilibrium. To do so, we
verify that all conditions in Lemma 4 are satisfied. First, it is easy to see that qt > 0
∀t ≥ 0. Second, according to at+1

Ht+1
< q̄t, we have qt <

at+1

Ht+1
< q̄t. This shows that

conditions (B.4a-B.4c) are satisfied. It also ensures that consumptions are strictly
positive. Last, FOCs (B.5a-B.5c) are ensured by the system (30).

Proof of Example 3. We see that 1 − (a − 1)x > 0 and hxd0 < 1. So, we can
check that 0 < hxdt < 1 and xdt + dt =

axdt−1

1−hxdt−1
∀t ≥ 0. According to the proof of

Proposition 8, the sequence (qt), defined by qt =
a−1
h

+ xdt ∀t, satisfies: qt ∈ (a−1
h
, a
h
)

and qt + dt = qt−1

a−hqt−1
∀t. In order to prove that (qt) is a system of prices of an

equilibrium at which asset holdings are given by (8) and agents’ consumptions are
given by (9a-9c), we verify all conditions in Lemma 4.

As in the proof of Example 2, condition d0 <
1−β

1+β
e−w

H
ensures that a/h < q̄t ∀t.

Thus, qt < a/h < q̄t ∀t. This shows that conditions (B.4a-B.4c) are satisfied. It also
ensures that consumptions are strictly positive. Last, FOCs (B.5a-B.5c) are ensured
by the system qt + dt =

qt−1

a−hqt−1
∀t.

B.3 Proofs for Section 4.4

Proof of Proposition 9. We need an intermediate step.

Lemma 5. Assume that ui is strictly concave and u′′
i < 0. Then, β1,2t−1u1(c1,2t−1) +

β1,2tu1(c1,2t) and β2,2tu2(c2,2t) + β2,2t+1u2(c2,2t+1) are strictly positive and strictly in-
creasing in q0.
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Proof of Lemma 5. The FOCs in Proposition 1 imply that














γ1,2t−1
u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

u′
1(e1,2t−1 − b∗1d2t−1 − q2t−1H)

≥ γ2,2t−1
u′
2(e2,2t − d2tb

∗
2 − q2tH)

u′
2(e2,2t−1 + d2t−1(L+ b∗1) + q2t−1H)

γ2,2t
u′
2(e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H)

u′
2(e2,2t − d2tb∗2 − q2tH)

≥ γ1,2t
u′
1(e1,2t+1 − b∗1d2t+1 − q2t+1H)

u′
1(e1,2t + d2t(L+ b∗2) + q2tH)

and

β1,2t−1q2t−1u
′
1

(

e1,2t−1 − b∗1d2t−1 − q2t−1H
)

= β1,2tu
′
1

(

e1,2t + d2t(L+ b∗2) + q2tH
)

(q2t + d2t)

β2,2tq2tu
′
2

(

e2,2t − b∗2d2t − q2tH
)

= β2,2t+1(q2t+1 + d2t+1)u
′
2

(

e2,2t+1 + d2t+1(L+ b∗1) + q2t+1H
)

Taking the derivatives of both sides of equalities with respect to q0 and combining
with FOCs, we have

β1,2t−1q
′
2t−1(q0)u

′
1(c1,2t−1) ≤ β1,2t−1q

′
2t−1(q0)

(

u′
1(c1,2t−1)− q2t−1Hu′′

1(c1,2t−1)
)

= β1,2tq
′
2t(q0)

(

u′
1(c1,2t) +Hu′′

1(c1,2t)(q2t + d2t)
)

(B.29)

< β1,2tq
′
2t(q0)u

′
1(c1,2t)

β2,2tq
′
2t(q0)u

′
2(c2,2t) ≤ β2,2tq

′
2t(q0)

(

u′
2(c2,2t)− q2tHu′′

2(c2,2t)
)

= β2,2t+1q
′
2t+1(q0)

(

u′
2(c1,2t+1) +Hu′′

2(c2,2t+1)(q2t+1 + d2t+1)
)

(B.30)

< β2,2t+1q
′
2t+1(q0)u

′
2(c2,2t+1).

where we also use u′′
i < 0 (the function ui is strictly concave) for i = 1, 2.

By consequence, we have that

∂

∂q0

(

β1,2t−1u1(c1,2t−1) + β1,2tu1(c1,2t)
)

(B.31)

= −Hβ1,2t−1u
′
a(c1,2t−1)q

′
2t−1(q0) +Hβ1,2tu

′
a(c1,2t)q

′
2t(q0) > 0 (B.32)

and

∂

∂q0

(

β2,2tu2(c2,2t) + β2,2t+1u2(c2,2t+1)
)

(B.33)

= −Hβ2,2tu
′
b(c2,2t)q

′
2t(q0) +Hβ2,2t+1u

′
b(c2,2t+1)q

′
2t+1(q0) > 0. (B.34)

We now prove Proposition 9. According to Lemma 5, the sequences β1,2t−1u1(c1,2t−1)+
β1,2tu1(c1,2t) and β2,2tu2(c2,2t) + β2,2t+1u2(c2,2t+1) are strictly positive and strictly in-
creasing in q0.

We now prove that the function Wi(q) is increasing in q. Notice that we cannot
directly prove this by looking at

∑

t≥0
∂
∂q0

(

βi,tui(ci,t)
)

for i = 1, 2,, because it is unclear
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that this series converge. So, we will prove our result as follows. Let q0 and q′0 be the
two initial prices of two equilibria (qt, (ci,t)i) and (q′t, (c

′
i,t)i). Assume that q0 > q′0.

Consider agent 1 and denote AT ≡
∑T

t=0 β1,t

(

u1(c1,t)− u1(c
′
1,t)

)

. We will prove that

AT converges to a strictly positive number when T tends to infinity. Indeed, we

see that A2T =
∑2T

t=0 β1,t

(

u1(c1,t) − u1(c
′
1,t)

)

is strictly positive and increasing in T

(because β1,2t−1u1(c1,2t−1)+β1,2tu1(c1,2t) is strictly increasing in q0 et c1,0 is increasing
in q0). So, it converges to a strictly positive value.

We now observe that

A2T+1 =
2T
∑

t=0

β1,t

(

u1(c1,t)− u1(c
′
1,t)

)

+ β1,2T+1

(

u1(c1,2T+1)− u1(c
′
1,2T+1)

)

(B.35)

It is easy to see that β1,2T+1

(

u1(c1,2T+1)−u1(c
′
1,2T+1)

)

converges to zero because both
β1,2T+1u1(c1,2T+1) and β1,2T+1u1(c

′
1,2T+1) converge to zero. By consequence, we have

A2T and A2T+1 converge to the same value. So, At converges to a strictly positive
value when t tends to infinity.

By using the same method, we can prove that
∑T

t=0 β2,t

(

u2(c2,t) − u2(c
′
2,t)

)

con-
verges to a strictly positive number when T tends to infinity.
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