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Abstract: This paper analyses the evolution of the size distribution of cities in 

the United States throughout the 20
th

 century.  In particular, we are interested in 

testing the fulfilment of two empirical regularities studied in urban economics: 

Zipf’s law, which postulates that the product between rank and size of a 

population is constant, and Gibrat’s law or the law of parallel growth, according 

to which the growth rate of a variable is independent of its initial size. For this 

parametrical and non-parametrical methods have been used. These laws have 

already been studied for the American case with the most populous cities or with 

MSAs. The main contribution of this work is the use of a new database with 

information on all the cities, thus covering the entire distribution. The results 

show that although if the sample is considered as a whole the fulfilment of 

Zipf’s law is rejected, Gibrat’s law is accepted for all the period considered.  
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1. Introduction 

One of the stylized facts in urban economics is that the size distribution of cities 

in many countries can be approximated by a Pareto distribution, and it is an extensively 

studied empirical regularity that the parameter of this distribution, the Pareto exponent, 

is close to the unit
1
. This empirical regularity has produced theoretical developments 

which explain the fulfilment of Zipf’s law, justifying it analytically, associating it 

directly with an equilibrium situation and relating it to parallel growth (Gibrat’s law). 

Much of this theoretical literature takes as reference the case of the US, assuming an 

exponent equal to 1. The purpose of this work is to test if this supposition is true, 

studying the evolution of the size distribution of cities in the US during the 20
th

 century. 

Gabaix [1999] presents a model based on local random amenity shocks, 

independent and identically distributed, which through migrations between cities 

generate Zipf’s law. The main contribution of the work is to justify the fulfilment of 

Zipf in that the cities in the upper tail of the distribution follow similar growth 

processes, that is, that the fulfilment of Gibrat’s law involves Zipf’s law. Thus, the 

explanation for the smaller cities’ having a smaller Pareto exponent is that the variance 

of their growth rate is larger
2
 (deviations from Zipf’s law appear due to deviations in 

Gibrat’s law). Córdoba [2004] concludes that under certain conditions Gibrat’s law is 

not just an explanation of Zipf’s law, but is the (statistical) explanation.  

Rossi-Hansberg and Wright [2007] develop a model of urban growth which 

generates Zipf’s law in two restrictive cases (when there is no physical capital and 

productivity shocks are permanent, or when city production is linear in physical capital 

and there is no human capital, depreciation is 100% and productivity shocks are 

temporary), and identifies the standard deviation of industrial productivity shocks as the 

key parameter which determines dispersion in the size distribution of cities. Eeckhout 

[2004] presents a model which also relates the migration of individuals between cities 

with productive shocks, obtaining as a result a lognormal and non-Paretian distribution 

of cities, although satisfying Gibrat’s law. Duranton [2006] offers a model of urban 

economics with endogenous growth based on knowledge spillovers which in the 

stationary state reproduce Zipf’s law for cities in the upper tail of the distribution; it also 

introduces some extensions which give empirically observed results (for example, a 

concave relationship between the rank and population logarithms). 

To sum up, these theoretical models rest on local externalities, whether  

amenities or shocks in production or tastes, which must be randomly distributed  

independently of size, and identify deviation from Zipf’s law with a distribution of these 

shocks which is not independent of size. Other works also show the empirical relevance 

of other variables distributed clearly heterogeneously, such as climate or geographical 

advantages (access to the sea, bridges, etc). 

These theoretical developments arise in response to numerous empirical works 

which explore the relationship between the growth rate and Zipf’s law. For the 

American case, Beeson et al. [2001] conclude, based on data on the population of 

counties, that during the period 1840-1990 there is a weak convergence in the 

population considering the entire sample, but if the counties of the western frontier are 

excluded, the conclusion is the opposite: divergence in the population.  

Both Krugman [1996] and Gabaix [1999] use data from metropolitan areas from 

the Statistical Abstract of the United States and conclude that for 1991 Pareto’s 

exponent is exactly equal to 1.005. This implies the fulfilment of Zipf’s law for this 

specific year. For a dynamic analysis, Ioannides and Overman [2003] use data from 
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metropolitan areas from 1900 to 1990 and arrive at the conclusion that Gibrat’s law is 

fulfilled in the urban growth processes and that Zipf’s law is also fulfilled 

approximately well for a wide range of city sizes. However, their results suggest that 

local values of Zipf’s exponent can vary considerably with the size of cities. 

Nevertheless, Black and Henderson [2003] arrive at different conclusions for the same 

period (because they use different metropolitan areas). Zipf’s law will be fulfilled only 

for cities in the upper third of the distribution, while Gibrat’s would be rejected for any 

sample size. These results highlight the extreme sensitivity of conclusions to the 

geographical unit chosen and to sample size.  

To close the debate, Eeckhout [2004] demonstrates that if we consider all the 

cities for the period 1990 to 2000 the city size distribution follows a lognormal rather 

than a Pareto distribution, so that the value of Zipf’s parameter is not one, as earlier 

works concluded, but is slightly above 21 , as well as fulfilling Gibrat’s law for the 

entire sample. The shortcoming of this work is that this is a short-term analysis, as only 

two decades are considered. The explanation is the data of only the last two decade are 

computerised. The aim of the present study is to generalise this analysis for all of the 

20
th

 century and extract long-term conclusions. For this it uses a new database which 

covers all the cities included in the ten-yearly census carried out by the US Census 

Bureau. Section 2 presents the database, sections 3 and 4 concern Zipf’s and Gibrat’s 

laws respectively, and section 5 concludes. 

 

2. The Database 

A very basic description of the territorial configuration of the United States is 

that the territory is divided into states, these are divided into counties, and finally, cities 

are the base of the system (although their relationship with counties is not always 

hierarchical; a city may belong to various counties). However, a slightly more detailed 

view shows that the reality is a little more complex. The US Census Bureau deals with 

several different types of geographical units. If our interest centres on analysing the 

evolution over time of the urban structure of the US, the first decision to make is which 

should be the unit of study. The literature usually chooses between two possibilities: 

cities or metropolitan areas. 

What is a city? 

We identify cities as what the US Census Bureau denominates as places. This 

generic denomination, since the 2000 census, includes all incorporated and 

unincorporated places. 

The US Census Bureau uses the generic term incorporated place to refer to a 

type of governmental unit incorporated under state law as a city, town (except the New 

England states, New York, and Wisconsin), borough (except in Alaska and New York), 

or village and having legally prescribed limits, powers, and functions. On the other hand 

there are the unincorporated places (which were renamed Census Designated Places, 

CDPs, in 1980), which designate a statistical entity, defined for each decennial census 

according to Census Bureau guidelines, comprising a densely settled concentration of 

population that is not within an incorporated place, but is locally identified by a name. 

Evidently, the geographical limitation of unincorporated places may change if 

settlements move, so that the same unincorporated place may have different boundaries 

in different census. 
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They are the statistical counterpart of the incorporated places. The difference 

between them in most cases is merely political and/or administrative. Thus for example, 

due to a state law of Hawaii there are no incorporated places there; they are all 

unincorporated.  

Metropolitan Areas 

We begin by examining briefly the US Census Bureau’s definition of 

metropolitan areas, those which could be considered “official” MAs, and then go on to 

see which MAs are most commonly used in the literature, which will not be the 

“official” ones due to the periodical changes in methodology.  

The definition of a metropolitan area is from the Office of Management and 

Budget (OMB), based on data provided by the US Census Bureau. Standard definitions 

of metropolitan areas were first issued in 1949 by the then Bureau of the Budget 

(predecessor of OMB), under the designation "standard metropolitan area" (SMA). The 

term was changed to "standard metropolitan statistical area" (SMSA) in 1959, and to 

"metropolitan statistical area" (MSA) in 1983. The term "metropolitan area" (MA) was 

adopted in 1990 and referred collectively to metropolitan statistical areas (MSAs), 

consolidated metropolitan statistical areas (CMSAs), and primary metropolitan 

statistical areas (PMSAs). Finally, the term "core based statistical area" (CBSA) became 

effective in 2000 and refers collectively to metropolitan and micropolitan statistical 

areas. 

Without entering into each definition
3
, what interests us is the basic criterion 

used to define a MSA, as CMSAs and PMSAs are still MSAs which fulfil certain 

conditions. Thus, according to the OMB definition, qualification of an MSA requires 

the presence of a city with 50,000 or more inhabitants, or the presence of an urbanized 

area
4
 and a total population of at least 100,000 (75,000 in New England). However, this 

criterion has changed over the course of the 20
th

 century. Thus, the original criterion of 

1950 only required the city of 50,000 inhabitants.  

But leaving aside changes of denomination, what interests us is that there have 

also been changes in standards to define what is a metropolitan area in 1958, 1971, 

1975, 1980, 1990 and 2000. Changes in the definitions of these statistical areas since the 

1950 census have consisted chiefly of: 

i. The recognition of new areas as they reached the minimum required city or 

urbanized area population. 

ii. The addition of counties (or cities and towns in New England) to existing areas 

as new decennial census data showed them to qualify.  

In some instances, formerly separate areas have been merged, components of an area 

have been transferred from one area to another, or components have been dropped from 

an area. 

Because of these historical changes in geographic definitions, one has to be very 

cautious when comparing data from these statistical areas from different dates. The 

Census Bureau itself suggests that is some cases it may be preferable to maintain a 

consistent area definition through time, and provides historical metropolitan area 

definitions for 1999, 1993, 1990, 1983, 1981, 1973, 1970, 1963, 1960 and 1950.  

Given the above, when carrying out an empirical study which requires temporal 

analysis there are three options: 
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1) Use a consistent yardstick, i.e., take the MSA definition from one year and apply 

it to all of them. The work of Bogue [1953] consists of this. He took the 

definitions of MSAs for 1950 and reconstructed the population of these areas for 

the period 1900-1940. 

2) Use the areas as defined in each period; i.e., use the 1960 definitions for 1960, the 

1970 definitions for 1970, and so on. This option presents problems, as a 

metropolitan area changes a good deal from decade to decade.  

This criterion is used in the works of Dobkins and Iaonnides [2000, 2001] and 

Iaonnides and Overman [2001, 2003]. For the period 1900-1950 they use the 

MSAs of Bogue [1953], and for the rest, the contemporary definitions of each 

period, with some adaptations.  

3) Choose the geographical area which defines the metropolitan area and use it 

consistently. Thus, Black and Henderson [2003] built their database of 

metropolitan areas based on the situation in 1990, and applied the definition they 

created based on the county limits (approximately half the metropolitan areas 

consist of a single county) to earlier periods. That is, they took the geographical 

area which defined the MSA in 1990, examining the counties which made it up. 

To avoid inconsistencies, they eliminated from the sample the counties which had 

changed, building up what they defined as a set of “common denominator 

counties”. But the number of MSAs was not fixed; they used a cut-off point, 

determined by a variable criterion which depended on the mean and minimum 

size. 

In any case, any definition of metropolitan areas will be arbitrary to some 

degree. Ehrlich and Gyourko [2000] investigated a variety of possible definitions 

(considering up to four ways of measuring metropolitan areas) and tested their results 

for robustness between the different definitions and over time, using descriptive 

statistics (mainly distribution by deciles). This work shows that there are different 

definitions of MSA which are not mutually compatible (unlike places), which often 

include non-urban areas, and sometimes include various counties, and thus mix different 

administrative units.  While consistency is obtained in the qualitative results – prior to 

the Second World War there is a clear skewing of the population share into the largest 

metropolitan areas, and following the Second World War the top decile of areas by 

population loses share (almost all of which is picked up by the next-largest decile) - 

perceptible quantitative differences are seen according to the method chosen.   

Which geographical unit to choose? 

The above has shown some of the possible characteristics of the two possible 

options, cities and MSAs. City boundaries respond to a legal and political limit, but may 

not reflect what a city is really in economic terms. Thus it is argued that MSAs 

represent better the job market and are more appropriate for analyzing the impact of 

large infrastructure projects. On the other hand, cities capture better the effect of local 

externalities (especially spillovers of human capital, which operate on a very local 

level), or the impact of taxes or education policies.  

However, city boundaries change over time as their population grows, and some 

divide and others are annexed. But this drawback is also seen in MSAs, whose 

definitions change over time. Also, taking into account that the Census Bureau 

introduced them in 1950, if we want to carry out a long term analysis we will be obliged 
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to reconstruct the areas for earlier years, and if we also want that analysis to be 

consistent, we will have to correct somehow the change of definitions for each period.  

But there is a powerful reason for choosing cities: as Eeckhout [2004] 

demonstrates the use of MSAs bias the analysis from the start. A MSA may include 

several large cities; also, due to the minimum size restriction of at least 50,000 

inhabitants, smaller cities are excluded from the analysis, which thus does not cover the 

entire size distribution of cities. 

However, in practice most research done has been on data from MSAs. Few 

researchers choose cities, and those that do choose only the biggest.  For example, Kim 

[2002, 2007] takes cities with populations over 25,000 and Dobkins and Iaonnides 

[2001] take cities with populations over 50,000. This is due to a practical reason, the 

availability of data. Also, the data of only the last two decades are computerized (1990 

and 2000). To quote Eeckhout himself: “Ideally…one would like to analyze the entire 

size distribution over time… Unfortunately, due to the lack of available data covering 

the entire size distribution, those further analyses are at this point in time not possible”. 

The data 

Our base is the available data of all incorporated places for each decade of the 

20th century
5
. Two details should be noted. First, that all the places corresponding to 

Alaska, Hawaii, and Puerto Rico for each decade are excluded, as these states were 

annexed during the 20th century (Alaska and Hawaii in 1959, and the special case of 

Puerto Rico, which was annexed in 1952 as a Free Associated State) and data do not 

exist for all periods. Their inclusion would produce geographical inconsistency in the 

samples, which would not be homogenous in geographical terms and thus could not be 

compared.  

And second, the unincorporated places, which began to be accounted for from 

1950. The US Census Bureau established size restrictions for their inclusion (except in 

2000, when they were all counted). Although the overall criterion is usually that they 

have over a thousand inhabitants, there are differences in each decade.  However, these 

settlements existed earlier and so their inclusion again faces us with a problem of 

sample inconsistency, as our proposal is to carry out a dynamic analysis. Also, only in 

the last period, in 2000, are they all included, so that even if we entered all the 

unincorporated places for which we have data each year, a bias would be introduced. 

The alternative, excluding them, is the only way to obtain homogenous samples for 

comparisons between decades and for robust conclusions
6
. As a result we decided to 

exclude unincorporated places from the sample in order to carry out a long term analysis 

of the 20th century with a homogenous sample. The results obtained will thus be 

conditioned by this choice of sample size. But bear in mind that the unincorporated 

places are known to be less populated settlements, so that the loss of representativeness 

of the sample is minimal. 

Table 1 presents the number of cities for each decade and the percentage that the 

cities in the database represent of the total population of the US. Table 2 shows the 

descriptive statistics. The sample reflects the urbanization process which took place 

throughout the 20
th

 century. Thus the population of cities goes from less than half the 

total population of the US in 1900 (46.99%) to 61.49% in 2000. The number of cities 

increased by 82.11%, from 10596 in 1900 to 19296 in 2000. From the beginning of the 

century to 1930 there was a rapid increase both in the number of cities and in the 

percentage of the total population that they represent. This informs us of an urbanization 

process which has two manifestations: on one hand, already existing cities which are 
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capable of attracting new population (the mean value of inhabitants per city grows over 

time, as can be seen in Table 2) and on the other, the growth in the number of cities. 

After this decade growth slows and stabilises at around 64% until the last decades (from 

1970 to 2000) when it falls to 61.49%.  

Also, a glance at the minimum values of each decade enables us to state that 

absolutely all incorporated places for which data exist are included, without size 

restrictions. 

Table 3 shows both the mean growth rates for the whole period ( )
pg , calculated 

from gross growth rates, defined as 
1

1

−

−−
=

it

itit
it

S

SS
g , where itS  is the population of the 

city i  in the year t , and the annual mean growth rates ( )ag , which are calculated from 

the mean growth rates for the whole period applying that ( ) pa gg =+ 10
1 . It can be 

observed that indeed, the first decades of the century saw strong growth rates for city 

sizes. Between 1940 and 1980 the high growth rates seem to recover, and then fall in 

the last two decades. The two periods of lowest growth, 1930-1940 and 1980-1990, 

coincide with the two periods of lowest growth of the total population in United States 

history, 7.3% and 9.8% respectively
7
.  

  

3. Zipf’s law 

 The aim of this work is to study the temporal evolution of the American city size 

distribution during the 20
th

 century. For this we will use Pareto’s distribution [1896] as a 

statistical approximation, also known as power law, originally used to study the 

distribution of incomes. If we use s  to denote the relative size of the city
8
 and R  for its 

rank, a power law links relative size of the city and rank as follows: 

a
AssR

−=)( ,   (1) 

where A  and a  are parameters. This expression is applied to the study of very varied 

phenomena, such as the distribution of the number of times different words appear in a 

book, the intensity of earthquakes or the flow of rivers. It has been used extensively in 

urban economics to study the city size distribution (see, for example, Eeckhout [2004] 

and Ioannides and Overman [2003] for the US case). It has also been used recently to 

study the country size distribution (Rose [2006]). 

Zipf’s law is an empirical regularity which appears when Pareto’s exponent of 

the distribution is equal to the unit ( 1=a ). The term was coined after a work by Zipf 

[1949], which observed that the frequency of the words of any language is clearly 

defined in statistical terms by constant values. Or, applied to our variable, that ordered 

from largest to smallest, the relative size of the second city is half that of the first, the 

relative size of the third is a third of the first, and so on. 

Parametric approach 

The expression (1) of Pareto’s distribution is usually estimated in its logarithmic 

version:  

saKR lnln −= ,  (2) 

where K  is a constant. 
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It is useful to test if Pareto’s parameter is more or less than the unit and the 

evolution of this coefficient in time, that is, for the different cross-sections available. 

Indeed, if the coefficient is greater (smaller) than the unit this would indicate that the 

relative sizes would tend to be more (less) homogenous regarding size. Also, if an 

evolution is growing (decreasing) in time we would have a process of convergence 

(divergence) as regards the size of cities. 

Equation (2) can be represented as a graph. Figure 1 shows the Zipf plots which 

relate the logarithm of rank (y axis) with the logarithm of relative size (x axis) for the 

initial and final periods. The behaviour of other decades, which is not shown, is 

identical. If Zipf’s law were fulfilled, the points would represent a decreasing straight 

line with a slope equal to minus one. However, a non-linear and clearly concave 

behaviour is observed.  

Table 4 shows the results of the OLS estimation
9
 of Pareto’s exponent. The 

residues resulting from this regression usually present problems of heteroskedasticity, 

so to analyse the significance of the parameters the corrected standard error proposed by 

Gabaix and Ioannides [2004] is used: ( ) 21
2ˆ s.e. GI Na ⋅= , where N  is the sample size. 

The results indicate that when the entire sample is taken, Pareto’s exponent is 

always less than the unit and thus Zipf’s law is not verified. Also, the estimations 

decrease over time, which would indicate that for the entire sample (including all the 

cities for each year) a divergent behaviour was produced. This divergence would be 

explained not so much by differences in the growth rate of cities but by the appearance 

of new cities which enter with very small relative sizes.  

However, if we consider different cross-sections of the sample we can observe 

different behaviours. Thus, for the 1,000 biggest cities the exponent grows over time, so 

that we can state that for the biggest cities the trend has been convergence: they have 

become closer in relative size. For the 5,000 biggest cities the exponent remains stable, 

and from there the exponents decrease in time for different size samples.  

It is also corroborated that as Eeckhout [2004] showed in theory, if the 

underlying distribution is lognormal the estimated value of Pareto’s exponent depends 

negatively on the cut-off point, so that as we increase the sample size and include ever 

smaller cities, the estimated coefficient decreases (but not always; in principle, starting 

with a small sample and going on to a slightly larger one, as for example from 100 cities 

to 500, the coefficient can grow).  

Non-parametrical approach 

Once proven that Zipf’s law is not fulfilled for the entire sample, we wonder 

what distribution best fits the data. For this, we estimate the empirical distribution of the 

data using an adaptive kernel
10

. 

Figure 2 shows the results for four representative decades. The graphs show the 

estimated density or probability in the y axis, and the logarithm of relative size in the x 

axis. The scale is the same in all graphs to enable comparison. It is observed that 

starting in 1900 from a very leptokurtic distribution with much density concentrated in 

the mean value of the distribution, its pointing increases until 1930. Starting from this 

decade, in which as we have seen in Table 3 there is slowdown in the growth of the 

urban population, the distribution loses kurtosis and concentration decreases until in 

1970 it reaches a distribution very similar to lognormal, which it maintains until 2000. 

This evolution can also be seen in Figure 3, which shows the empirical cumulative 
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density functions estimated for 1900 and for 2000. The y axis shows the accumulated 

probability, while the x axis shows the logarithm of relative size. It can be observed that 

in the year 2000 (the solid line) probability accumulates much more slowly than in 1900 

(the dotted line), which indicates a change to a less concentrated distribution.  

Unfortunately, we must limit ourselves to a graphic examination of the distributions, as 

the normality tests are not robust for such high sample sizes. The most usual, 

Kolmogorov-Smirnov and Jarque-Bera, systematically reject the null hypothesis of 

normality for such large samples.  

 

4. Gibrat’s law 

 The above section has shown what we may consider to be a snapshot of the 

distribution of American cities during the 20
th

 century. For each decade we obtained the 

graphic representation of the distribution and the estimated coefficients of Pareto’s 

exponent for different sample sizes, which enabled us to conclude if there had been 

important variations in the distribution, or if concentration had increased or decreased. 

However, a more rigorous dynamic analysis demands that we work with growth rates. 

We are particularly interested in seeing if there is fulfilment of Gibrat’s law or the law 

of parallel growth, which postulates that the growth of a variable is independent of its 

initial size; Gibrat [1931] observed that the size distribution (measured by sales or the 

number of employees) of companies tends to be lognormal, and his explanation was that 

the growth process of companies could be multiplicative and independent of the size of 

the company. It is interesting to test this over the entire 20
th

 century from a long term 

perspective. 

Parametric approach 

 The parametric approach consists of estimating growth regressions, which relate 

the growth rate with initial size (the ever popular β-convergence in economic growth). 

We take two specifications; in one growth depends on the initial relative size, while in 

the other the exogenous variable is a mean of the relative size of the two periods: 
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2
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This means that relative growth can be produced not only by the increase in 

population of the city; it also happens if the number of cities rises or the total population 

of all the cities decreases.  

Table 5 shows the results of the OLS estimations decade by decade and for a 

pool of the observations of the whole century. The conclusion is that the parameter â  is 

not significant for any period with either of the specifications, which adds evidence in 

favour of Gibrat’s law and the independence of growth in relationship to relative size. 

The only exception is the period 1980-1990, where the estimated coefficients are 

significant and positive (although very close to zero), which would indicate that a 

positive relationship existed between growth and size, with the largest cities gaining the 

most population. Remember that this is the period of least growth in urban population of 

the entire 20th century, about 1.69 % (Table 3), and the second lowest period of growth 

of the total population in the history of the United States, at 9.8%. 

Non-parametrical approach 

The earlier results confirm the fulfilment of Gibrat’s law. However, Quah [1993] 

points out the problems of regressions towards the mean, so current in studies of 

economic growth, and proposes using non-parametric methods, specifically, transition 

matrices. We will use the methodology followed by Eeckhout [2004] and Ioannides and 

Overman [2003]. It consists of taking the following specification: 

( ) iii smg ε+= ,   (5) 

where ig  is the normalized growth rate
11

 (subtracting the mean and dividing by the 

standard deviation) and is  is the logarithm of relative size, and instead of making 

suppositions about the functional relationship of m  and supposing a linear relationship, 

as in equations (3) and (4), ( )sm̂  is estimated as a local average around point s  and is 

smoothed using a kernel, which is a symmetrical, weighted and continuous function 

around s . 

In order to analyse the entire period 1890-2000 all the growth rates are taken 

between consecutive periods. And the Nadaraya-Watson method is used, exactly as it 

appears in Härdle [1990], based on the following expression
12

: 
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where hK  denotes the dependence of the kernel K  (in this case an Epanechnikov) on 

the bandwidth h  (0.5). Starting from this calculated mean ( )sm̂  , the variance of the 

growth rate ig  is also estimated, again applying the Nadaraya-Watson estimator starting 

from: 
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The estimator is very sensitive, both in mean and in variance, to atypical values. 

Thus, the growth rate, both in mean and in variance, of the smallest cities usually has 

much higher values than for the rest. If we examine the smallest 5% of cities the 

differences are even greater
13

. This is logical; we are considering cities of under 200 

inhabitants, where the smallest increase in population is very large in percentage terms.  

For example, the value which distorts the mean and the variance in 1940-1950 is Pine 

Lake (De Kalb, Georgia), which goes from 2 inhabitants in 1940 to 566 in 1950. But we 

need not consider such extreme changes; any city with fewer than 50 inhabitants which 

sees some population growth increases a great deal in percentage terms. Thus, we 

decided to eliminate this 5% of the smallest distribution observations, as they are 

characterised by very high dispersion in mean and in variance, and they distort the 

results.  This is not a great loss in terms of representativeness of the sample, as the size 

of the last city excluded is under 180 inhabitants.   

Gibrat’s law implies that growth is independent of size in mean and in variance. 

As growth rates are normalized, if Gibrat’s law were strictly fulfilled and growth were 

independent of size, the estimated kernel would be a straight line on the zero value. 

Values different to zero involve deviations from the mean. And variance would also be 

a straight line, supposing that variance does not depend on the size of the variable 

analysed. 

Figures 4 and 5 show the estimated kernels of growth and the variance of 

growth, respectively, for all the 20th century (a pool of 162,403 observations). It is 

noticeable that the estimation of growth is nearly a straight line around zero, meaning 

that as a mean we can accept that during the whole period growth was independent of 

size, and Gibrat’s law was fulfilled. Regarding variance, Figure 5 shows that even if the 

smallest 5% of observations are eliminated, the smallest cities show greater variance 

than the rest of the sample. But it should be noted that starting from the zero value 

(being in a logarithmic scale, this corresponds to a size relative to 1, i.e., cities whose 

size is equal to the mean) variance begins to decrease, becoming much more 

homogenous, indicating that the variance of growth is independent of size for cities with 

a population equal to or greater than the mean (a little over 3,000 inhabitants at the 

beginning of the century and almost 9,000 at the end).  

 

5. Conclusions 

  This work analyses the evolution of the urban structure of the United States 

during the entire 20
th

 century, analysing whether two empirical regularities profusely 

studied in urban economics are fulfilled: Zipf’s and Gibrat’s laws. The main 

contribution consists of using a database of cities (understood as incorporated places), 

created from the census of what is now the US Census Bureau, which permits us to 

cover almost the entire city size distribution.  

 Regarding Zipf’s law, the results indicate that when the entire sample is taken, 

Pareto’s exponent is always less than the unit and thus Zipf’s law is not verified. Also, 

the estimations decrease over time, which would indicate that including all the cities for 

each year a divergent behaviour was produced. This divergence would be explained not 

so much by differences in the growth rate of cities but by the appearance of new cities 

which enter with small relative sizes.  

However, if we consider different sections of the sample we can observe 

different behaviours. Thus, for the 1,000 biggest cities the exponent grows over time, so 
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that we can state that for them the trend has been convergence: they have become closer 

in relative size. For the 5,000 biggest cities the exponent remains stable, and from there 

the exponents decrease in time for different size samples.  

 It can also be observed that starting in 1900 with a leptokurtic distribution with a 

great deal of density concentrated in the mean value of the distribution, kurtosis is 

progressively lost and concentration decreases until in 1970 a distribution very similar 

to lognormal is reached, which is maintained until the year 2000.  

 Regarding Gibrat’s law, the estimation of growth for the whole period (all the 

20
th

 century in the long term) shows that as a mean we can accept that during all the 

period growth was independent of size and Gibrat’s law was fulfilled. And regarding 

variance, the smallest cities present greater variance than the rest of the sample, 

although it appears that for cities with a population equal to or more than the mean, 

variance is more homogenous and thus independent of size.  

 

Appendix A: Normalized growth rates and the different measurements of city size 

 When growth rates are normalized, subtracting the mean and dividing by the 

standard deviation, the choice of measurement of size (size, relative size or share of the 

total) makes no difference, as it means only a change of scale. 

 If we take size ( )itS : 
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Footnotes 

                                                 
1 However, the Pareto exponent varies greatly between countries (Rosen and Resnick [1980], Soo 

[2005]). And recent works, Eeckhout [2004], demonstrate its sensitivity to the geographical unit chosen 

and the sample size. 
2 For the US, Glaeser and Shapiro [2001] study what factors influence the growth rate of American cities 

(cities of over 100,000 inhabitants and MSAs) using a very wide range of explicative variables (per capita 

income, average age of the residents, variables in the education level of individuals, temperature, 

distribution of employment among sectors, public spending per capita, etc.), attempting to capture the 

influence of local externalities. According to this work, the three most relevant variables would be human 

capital, climate and transport systems for individuals (public or private). 
3 These can be consulted at http://factfinder.census.gov - American FactFinder Help. 
4 An urbanized area (UA), according to the Census Bureau, consists of a central place(s) and adjacent 

territory with a general population density of at least 1,000 people per square mile of land area that 

together have a minimum residential population of at least 50,000 people. 
5 While the data of only the last two decades are computerized (US Bureau of the Census, County and 

City Data Book, Washington DC), the data corresponding to other decades is available in the original 

documents (US Bureau of the Census, Census of Population, Washington DC). We have created our 

database from these. 

Source for 1900-1980: http://www.census.gov/prod/www/abs/decennial/ 

Source for 1990: http://www.census.gov/main/www/cen1990.html 

Source for 2000: http://www.census.gov/main/www/cen2000.html 
6 Although we have carried out the exercise of using a sample of places which includes both the 

incorporated places and all the unincorporated places available for each decade. The results obtained 

would not vary significantly from those obtained with the sample of incorporated places.  
7 Source: http://www.census.gov/population/censusdata/table-4.pdf.  
8 In a long term temporal perspective of stationary equilibrium it is necessary to use a relative measure of 

size. The chosen measurement is the relative size, defined as: 

t

tN

i

it

it

t

it
it

NS

S

S

S
s

∑
=

==

1

. The other 

option most used in the literature is to take the share which represents the size of the city over the total 

population, ∑
=

tN

i

itit SS
1

. The results of this section are robust for the three options, size, relative size and 

share over the total, as the ratios involve only a change of scale. 
9 Gabaix and Ioannides [2004] show that the Hill (Maximum Likelihood) Estimator is more efficient if 

the underlying stochastic process is really a Pareto distribution. As we will see below, this is not the 

distribution that the data follow, and so we use the OLS estimator.  

10 The adaptive kernel density estimate is given by ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑
∑ =

= i

i
n

i i

i

n

i i
h

xx
K

h

w

w
xf

1
1

1ˆ , where the  ix ’s 

are the data points (associated with weights iw ), K  is a kernel function, and ii hh λ×= . The local 

bandwidth factors are proportional to the square root of the underlying density functions at the sample 

points: ( ) ( )( ) 5,0~
iii xfGx == λλ , where G  is the geometrical mean over all i  of the pilot density 

estimated ( )xf
~

. The pilot density estimate is a standard fixed bandwidth kernel density estimate 

obtained with h  as bandwidth.  
11 Taking normalized growth rates will mean that the choice of the unit of measurement, size, size relative 

to the average or share of the total, is indifferent, as it means only a change of scale; the results regarding 

growth are robust. See Appendix A. 
12 The calculation was done with the KERNREG2 Stata module, developed by Nicholas J. Cox , Isaias H. 

Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi, and available online at: 

 http://ideas.repec.org/c/boc/bocode/s372601.html.  

This programme is based on the algorithm described by Härdle [1990] in Chapter 5. 
13 The specific values are available from the author upon request. 
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Tables 

 

Table 1. - Size of the database 

 

Year  Cities    

% of the total US 

population 

1900 10596 46.99% 

1910 14135 54.90% 

1920 15481 58.62% 

1930 16475 62.69% 

1940 16729 63.75% 

1950 17113 63.48% 

1960 18051 64.51% 

1970 18488 64.51% 

1980 18923 61.78% 

1990 19120 61.33% 

2000  19296   61.49% 

      

Excluding Alaska, Hawaii and Puerto Rico 
 

Table 2. - Descriptive statistics of the sample 

 

 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

N 10596 14135 15481 16475 16729 17113 18051 18488 18923 19120 19296 

Mean  3376.04 3560.92 4014.81 4642.02 4975.67 5613.42 6408.75 7094.29 7395.64 7977.63 8968.44 

Median 640 630 643 638 699 758 828 907 1019 1014 1093 

Mode  200 276 300 279 226 217 153 235 139 196 86 

Standard deviation 42323.896 49351.239 56781.645 67853.648 71299.371 76064.402 74737.618 75319.588 69167.914 71873.911 78014.749 

Minimum 7 4 3 1 1 1 1 3 2 2 1 

Maximum 3437202 4766883 5620048 6930446 7454995 7891957 7781984 7894862 7071639 7322564 8008278 
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Table 3. - Average growth rates of the sample 

 

Period N Period mean Annual mean 

1890-1900 7531 31.43% 2.77% 

1900-1910 10502 30.56% 2.70% 

1910-1920 13578 18.78% 1.74% 

1920-1930 15310 15.15% 1.42% 

1930-1940 16211 10.39% 0.99% 

1940-1950 16420 16.21% 1.51% 

1950-1960 17075 20.79% 1.99% 

1960-1970 17832 16.25% 1.52% 

1970-1980 18321 19.13% 1.77% 

1980-1990 18991 1.69% 0.17% 

1990-2000 19179 11.80% 1.12% 
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Table 4. - Pareto coefficients estimated by decade 

 
Truncation point                        

 
    1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

100 1.050 1.086 1.095 1.101 1.095 1.096 1.167 1.201 1.271 1.313 1.320 

 (0.148) (0.153) (0.154) (0.155) (0.154) (0.154) (0.165) (0.169) (0.179) (0.185) (0.186) 

500 1.063 1.060 1.047 1.062 1.088 1.101 1.198 1.233 1.278 1.315 1.341 

 (0.067) (0.067) (0.066) (0.067) (0.068) (0.069) (0.075) (0.078) (0.08) (0.083) (0.085) 

1000 1.034 1.060 1.022 1.030 1.065 1.078 1.190 1.211 1.265 1.293 1.319 

 (0.046) (0.047) (0.045) (0.046) (0.047) (0.048) (0.053) (0.054) (0.056) (0.058) (0.059) 

5000 0.967 0.978 0.954 0.924 0.941 0.939 0.947 0.949 0.975 0.962 0.963 

 (0.019) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018) (0.019) (0.019) (0.019) 

10000 0.831 0.889 0.884 0.845 0.839 0.828 0.797 0.793 0.806 0.784 0.773 

 (0.011) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

14000  0.770 0.810 0.785 0.773 0.752 0.716 0.709 0.719 0.695 0.683 

  (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) 

15000   0.776 0.763 0.752 0.729 0.695 0.687 0.697 0.673 0.661 

   (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.007) 

16000    0.732 0.724 0.702 0.673 0.665 0.675 0.651 0.639 

    (0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 

16700     0.683 0.676 0.656 0.647 0.658 0.634 0.623 

     (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 

17100      0.642 0.644 0.636 0.648 0.624 0.613 

      (0.007) (0.007) (0.007) (0.007) (0.006) (0.006) 

18100       0.599 0.600 0.617 0.595 0.585 

       (0.006) (0.006) (0.006) (0.006) (0.006) 

18400        0.580 0.605 0.584 0.575 

        (0.006) (0.006) (0.006) (0.006) 

18900         0.572 0.560 0.555 

         (0.005) (0.005) (0.006) 

19100          0.542 0.545 

          (0.005) (0.005) 

19200           0.537 

                       (0.005) 

(GI s.e.) Gabaix-Ioannides (2004) corrected standard error. All coefficients are significantly different from zero at the 0.05 level.    

N
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Table 5. - Estimated coefficients of parametric growth regressions 

 

                    Specification I          Specification II 
Initial year   Final year  N   (s.e.)  (s.e.) 

1890  1900  7531 8.28E-04 7.17E-04 3.68E-04 9.72E-04 

1900  1910  10502 4.43E-04 4.51E-04 6.62E-04 4.02E-04 

1910  1920  13578 4.83E-04 3.50E-04 2.40E-04 3.64E-04 

1920  1930  15310 3.14E-04 3.75E-04 5.86E-04 3.63E-04 

1930  1940  16211 -1.03E-04 2.42E-04 -1.54E-04 2.40E-04 

1940  1950  16420 1.73E-04 1.13E-03 1.37E-05 1.13E-03 

1950  1960  17075 6.26E-04 6.66E-04 -1.38E-04 6.16E-04 

1960  1970  17832 2.17E-04 7.29E-04 -3.46E-04 7.01E-04 

1970  1980  18321 -7.22E-04 6.94E-04 -1.11E-03 6.49E-04 

1980  1990  18991 1.07E-03* 3.38E-04 7.05E-04* 3.35E-04 

1990  2000  19179 3.78E-04 4.13E-04 2.58E-05 4.20E-04 

Pool  Pool  170950 3.43E-04 1.91E-04 3.81E-05 1.88E-04 

                    

* Significant coefficients for a confidence level of 95%     

 

 

 

 

 

 

 

 

 

â â
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Figures  

Figure 1. – Zipf plots (relationship between Rank (ln scale) and Relative 

Size (ln scale)) 

 

Figure 2. - Adaptive kernels of Relative Size (ln scale) 
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Figure 3. - Empirical cumulative density functions in 1900 and 2000 

 

Figure 4.- Kernel estimate (Bandwidth 0.5) of Population Growth (1900-

2000) 
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Figure 5.- Kernel estimate (Bandwidth 0.5) of the Variance of Population 

Growth (1900-2000) 
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