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Abstract

The following thesis compares the performance of several parametric and semi-

parametric estimators in binary choice models using the method of Monte Carlo

studies. Particularly, the thesis compares estimators of the parametric linear

probability-, logit- and probit model, a model derived from Cauchy distributed

errors (cauchit model) as well as the estimator proposed by Klein and Spady (KS)

and the local likelihood logit estimator by Frölich (LLL), which are of the semipara-

metric class. Furthermore, the thesis proposes a Hausman type test to compare

parametric with semiparametric estimators. The main results are as follows: all

considered estimators delivered decent estimates of the average marginal effects,

independent of the assumed functional form. The results for the estimation of

marginal effects at specific points are different. The parametric estimators gener-

ally perform poorly, whereas the estimators derived from the true models perform

well. Klein and Spady´s estimator performs decently in large samples. Moreover,

a good performance with respect to the root mean squared error (RMSE) does

generally not translate into a good estimation of the marginal effects.
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55 Performance for ŷ given wrong index function . . . . . . . . . . . . . . . . . . . 72

56 Average ME and ME at average given wrong index function . . . . . . . . . . . 72

57 ME at first quartlile and third quartile given wrong index function . . . . . . . 73

58 Performance for ŷ given omitted variable bias . . . . . . . . . . . . . . . . . . . 74

59 Average ME and ME at average given omitted variable bias . . . . . . . . . . . 75

60 ME at first quartlile and third quartile given omitted variable bias . . . . . . . 75

4



1 Introduction

The following thesis compares the performance of several parametric and semiparametric es-

timators used in binary choice models. The aim is to give practical guidance for the use of

estimators in applied econometric work. The main part of the thesis consists of a comparison

of the different estimators via Monte Carlo studies. Additionally, a Hausman test is proposed

as a guide to choose between several competing models.

The thesis is structured as follows: In the first chapter, I will give a brief introduction to

the framework of binary choice models as well as a description of the quantities of interest.

The first part of chapter two reviews the well known parametric estimators which are the ones

derived from the linear probabilty-, the probit- and the logit model. Furthermore, a model

derived from Cauchy distributed errors, from now on called “cauchit model”, is introduced.

The first part of chapter two ends with a discussion of how to construct ideal models for

known distributions of the error term. The second part of chapter two is concerned with

the class of semiparametric estimators. As will be discussed in greater detail in section 1.1,

the choice of the functional form of the relationship between the dependent and independent

variables often appears to be arbitrary. The advantage of the semiparametric estimators stems

from the fact that they do not require assumptions on the functional form and therefore have

the appeal to be more robust. This robustness comes in general at the cost of less efficiency.

Since the theory of semi- and nonparametric estimation is less common than its parametric

counterpart, the second part of chapter two starts with an introduction to semiparametric

estimation, which is strongly related to the discussion in Cameron and Trivedi (2005, pp. 294-

333). After introducing the semiparametric methodology, the estimator of Klein and Spady

(1993) and the local likelihood logit estimator by Frölich (2006), as representatives of the class

of semiparametric estimators, are described. Since the class of semiparametric estimators

is large1 the choice made deserves some justification. The estimator of Klein and Spady is

chosen on theoretical grounds. It attains the asymptotic semiparametric efficiency bound and

therefore seems to be an obvious choice for an estimator if the sample size is large. The choice

of the local likelihood logit estimator is motivated by the result obtained by Frölich (2006)

that his estimator outperforms Klein and Spady´s in several specifications. Chapter three

describes the different setups of the Monte Carlo study. In total, I present the results of ten

different Monte Carlo setups. These Monte Carlo setups can be divided into two groups. The

first seven setups vary the distribution of the error term. In these setups, the link function

is unknown and potentially misspecified, while the index is well specified. The errors are

drawn from a normal-, logistic-, Cauchy-, Gumbel- and mixture normal distribution. Normal

and logistic error terms are frequently assumed in applied work, whereas Cauchy distributed

errors represent errors with fat tails. Gumbel distributed errors are skewed and errors from the

mixture normal distribution are bimodal. Furthermore, one setup extends the number of non-

constant regressors from three to six and one uses error terms which contain “outliers”. The

next three setups focus on misspecifications of the index given normally distributed errors. The

1An extensive list of semiparametric estimators is given in Pagan and Ullah (1999, pp. 272-299).
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misspecifications result from omitted variables or misspecification of the index function. The

results are presented in chapter four. I chose the following quantities to assess the performance

of the estimators. The predictive power is mainly assessed by the root mean squared error,

however additional measures are considered. The performance concerning the marginal effects

is measured via the comparison of the true marginal effects and the estimated marginal effects.

Here the average marginal effect, the marginal effect at the average and marginal effects at

the first and third quartile are considered. After assessing the performance of the estimators

chapter five proposes a Hausman type test as a potential decision rule between parametric

and semiparametric estimators. Finally chapter six concludes.

1.1 Binary choice models

This class of models has the special feature that the dependent variable takes only two values.

Such models are frequently used to study choice phenomena, e.g. why people smoke, why

they are homeowners and not tenants or what drives people to become criminal, to name just

a few. As usual in econometric analysis, the focus of the researcher lies either in a causal

analysis or in predicting outcomes given certain characteristics. Since the conditional expec-

tation coincides with conditional probabilities in binary choice models, it seems convenient

that causal or predictive statements are based on probabilities.2 An exemplary statement of

an empirical analysis in a binary context is the following: increasing yearly income by 1000 €

and holding all other characteristics of an individual constant increases the likelihood of being

a house owner by 2.5 %. Since probabilites are bound between zero and one, the framework to

study such phenomena should take this into account. While in principle these questions can

be adressed by the linear regression framework, the fact that predicted probabilities may lie

outside of the closed zero-one intervall for some observations makes the use of this econometric

model problematic. In the following, I will give a brief technical introduction to the binary

choice framework, which is closely related to the discussion in Cameron and Trivedi (2005, pp.

463-487).

The starting point of the empirical analysis is a random sample of independent identically

distributed (i.i.d.) observations {yi, Xi}Ni=1 where yi is a scalar dependent variable and Xi is

a k × 1 vector of explanatory variables. Since the observations are assumed to be i.i.d., data

fitting the model presented is likely to be cross sectional. In the following, I will sometimes rely

on matrix notation. Capital letters either denote vectors or matrices and lowercased letters

scalars. Y is the N×1 vector of endogenous variables and X is the N×k matrix of regressors.

As pointed out before, yi can only take two values which are labelled as 0 and 1. Using the

homeowner example, yi could take the value 0 if the observed individual i is a tenant and 1 if

he or she is a homeowner. Since yi is a binary random variable its distribution is necessarily

Bernoulli. The density function of a Bernoulli distribution is given by

2The conditional probabilities will be modelled as p(Xi) = G(X ′
i�), where X ′

i� =
∑k

j=1 xij�j is called the
index function. The function G is called the link function.
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f(yi) =

⎧

⎨

⎩

pi for yi = 1

1− pi for yi = 0
(1)

Due to the independence of the observations in the random sample the joint likelihood func-

tion of all N dependent variables is the product of the individual likelihood functions. The

fact that yi is assumed to have an identical distribution for all i implies that p is the same for

all individuals (pi = p, ∀i). Hence the joint likelihood becomes

Ψ(p) =
N
∏

i=1

pyi(1− p)1−yi (2)

The joint log-likelihood function is given by

L(p) =
N
∑

i=1

[yiln(p) + (1− yi)ln(1− p)] (3)

As common in econometric modelling, the researcher is concerned with modelling the condi-

tional expectation of a random variable E(Y ∣X) and how this conditional expectation changes

when the explanatory variables change dE(Y ∣X)
dXj

. In binary choice models, the modelling of the

conditional expectation is equivalent to modelling the conditional probabilities. This can be

seen by noting that E(Y ∣X) = 1 ⋅ p(X) + 0 ⋅ [1− p(X)] = p(X).

A general econometric model is given by

E(Y ∣X) = p(X) = m(X) (4)

where m(X) is an arbitrary function. This model is nonparametric since it does not involve any

parametrization (alternatively one can see the function as a collection of infinite parameters).

Due to the fact that this thesis is concerned with parametric and semiparametric models the

econometric model will look as follows:

E(Y ∣X) = p(X) = G(X ′�x) (5)

where the function G is called link function and is assumed to be known in the parametric

case. In the semiparametric case G is unknown and will be estimated simultaneously with the

parameter vector �x, which is of the dimension k × 1. X ′�x is called the index function. For

all estimators considered in this work, with exception of the LLL estimator, the parameter

vector is assumed to be constant across the whole sample. Formally stated, �x = � ∀x.

The main advantage of semiparametric to nonparametric modelling is the reduction of the

dimensionality of the link function. In the nonparametric case m is k-dimensional whereas G

in equation (5) is a function of one variable.3

3Due to the high dimensionality, nonparametric estimators frequently cannot be estimated accurately in
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Since the link function maps the regressors into the space of probabilities, it seems reasonable

that the image(G) does not contain elements outside [0, 1] as it is required from Kolmogorovs

axioms. Further desirable properties are smoothness and monotonicity. Smoothness easens

the optimization required to obtain maximum likelihood estimates and monotonicity helps in

interpreting the estimated coefficients, i.e. linking the sign of the coefficient on the parameter

�j with the direction of the marginal effect (ME). Later on, I will describe the relationship

between the link function and the distribution of the error terms in random utility models.

There the fact that cumulative distribution functions (CDF´s) of continuous random variables,

are monotone, continuous and bounded between zero and one, will be useful.

Given the econometric model E(Y ∣X) = p(X) = m(X), the estimation of the function p(X)

differs depending on whether the model is parametric, semiparametric or nonparametric. Para-

metric estimation assumes that the functional form of p(X) is known and that the conditional

probability only depends on the single index X ′
i�.4 Summarizing, one can say that the para-

metric approach of modelling binary choice models assumes p(Xi) = G(X ′
i�), where G is a

known function of only one argument X ′
i�. Consequently, the estimation of the model reduces

to the estimation of �. The semiparametric approach still assumes that there exists a function

p(Xi) = G(X ′
i�) of a single argument. However, this function is not assumed to be known and

is therefore estimated simultaneously with � in a nonparametric fashion. For completeness,

the fully nonparametric approach assumes that the function which models p(Xi) can depend

in an arbitrary way on all regressors Xj . Therefore, the nonparametric approach generally

requires the estimation of a multidimensional function.

The following table gives a summary of the distinction between parametric, semi- and

nonparametric approaches to model the conditional probabilities.

Table 1: Characteristics of the parametric, semi- and nonparametric approach

Approach Model of p(x) known components unknown components

Parametric G(X ′
i�) G �

Semiparametric G(X ′
i�) G(X ′

i�) G; �

Nonparametric m(Xi) - m

Instead of using an ad hoc guess of the form of the link function in the parametric case,

Cameron and Trivedi (2005, pp. 475-478) motivate the binary choice model using both the

index function model and the additive random utility model. These models suggest a structure

to model p(x).

applied work. This is sometimes referred to as the “curse of dimensionality”.
4Among other things, this means that for any individuals whose combination of Xi´s which result in the

same value of X ′
i� is assumed to have the same probability of y = 1. For the LLL estimator the index X ′

i�Xi

varies through Xi and �Xi and Frölich (2004, p. 4) motivates this generalization with the following example
considering female labour supply: “The single index restriction imposes that the labour supply effect of, e.g.,
one versus zero children is identical for all woman for whom the linear combination X ′

i� has the same value,
even if they have very different characteristics”.
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The index function model assumes that each observation has an unobserved (latent) index

y∗i which can be appropriately explained by the regression

y∗i = X ′
i� + u (6)

Due to the latency of the index we merely observe whether the dependent variable takes the

value 0 or 1,

yi =

⎧

⎨

⎩

1 if y∗i > 0

0 if y∗i ≤ 0
(7)

Now noticing that our object of interest is p(Xi) = p(y = 1∣Xi), we can rewrite this in terms

of y∗. Doing so yields

p(Xi) = p(y = 1∣Xi) = p(y∗ > 0∣Xi)

= p(X ′
i� + ui > 0∣Xi) = p(ui > −X ′

i�∣Xi)

= 1− p(ui < −X ′
i�∣Xi) = 1− Fui∣Xi

(−X ′
i�) (8)

This means that the index function model suggests to model p(Xi) = 1−Fui∣Xi
(−X ′

i�), where

Fui∣Xi
is the conditional CDF of the error term in the index function model. If one assumes

that Xi and ui are independent and that the individual errors are i.i.d. the underlying dis-

tribution function reduces to the unconditional CDF Fu. If the distribution of the error is

symmetric, (8) simplifies to p(yi = 1∣Xi) = Fui∣Xi
(X ′

i�). The probit and logit models de-

scribed in chapter 2.1.2 can be motivated by assuming that u follows a normal distribution

(probit) or a logistic one (logit).

The additive random utility model assumes that the choices between the two alter-

natives are based on utility comparison. Formally, the individual i decides between Ui0 and

Ui1 depending on their corresponding levels, with Ui0 and Ui1 modelled as

Ui0 = X ′
i�0 + �i0

Ui1 = X ′
i�1 + �i1

Since y = 1 is chosen whenever U1 > U0 it follows that

P (yi = 1∣Xi) = P (Ui1 > Ui0∣Xi)

P (X ′
i�0 + �i0 > X ′

i�1 + �i1∣Xi) = P (�i0 − �i1 > X ′
i(�1 − �0)∣Xi)

9



P (�i0 − �i1 > X ′
i(�1 − �0)∣Xi) = 1− F�i0−�i1∣Xi

(X ′
i(�1 − �0))

Hence, the additive random utility model suggests that p(Xi) = 1− F�i0−�i1∣Xi
(X ′

i(� − �0))
5,

which is again based on the distribution function of the error terms.

As we have seen from the index function model and the additive random utility model there ex-

ists a one to one relationship between the distribution of the error terms and the link function.

The relation is explicitly given by

p(Xi) = G(X ′
i�) = 1− Fu(−X ′

i�) = 1− F�0−�1(X
′
i(�1 − �0)) (9)

If F is symmetric, then the relationship simplifies further:

p(Xi) = G(X ′
i�) = Fu(X

′
i�) = F�0−�1(X

′
i(�0 − �1)) (10)

Summing up the main points of this chapter, the primary goal in the context of binary choice

models is captured by the quantity p(Xi), which relates the probability of outcome 1 to ob-

served characteristics. The estimation procedure of p(Xi) can be parametrical, semi- or non-

parametrical. The basis of the estimation is the likelihood function Ψ(p) =
∏N

i=1 p(Xi)
yi(1−

p(Xi))
1−yi whose log-transformation becomes L(p) =

∑N
i=1[yiln(p(Xi))+(1−yi)ln(1−p(Xi))].

To obtain some idea which functional form p(Xi) has, one can think of the decisions about

yi descending from the index function model or the random additive utility model. The next

part will motivate some quantities of interest, which are used to assess predictive power of the

estimators and their appropriateness for causal analysis.

1.2 Quantities of interest

1.2.1 Predictive power

The thesis introduces four measures for the (in-sample) predictive power of the estimators.

i) RMSE: The Root Mean Squared Error (RMSE) is defined as

√

E((yi − Ê(yi∣Xi)2), which

equals
√

E((yi − p̂(Xi))2) in binary choice models. Lower values of the RMSE indicate better

performance of the estimator.

ii) RMSE80: The RMSE80 is defined as the RMSE by

√

E((yi − Ê(yi∣Xi)2). The dif-

ference stems from the fact that after the initial estimation several observations are dropped

when calculating the RMSE. The procedure for dropping observations is as follows. First, the

observations are demeaned. Then the sum of the squared demeaned dependent variable and

the squared demeaned regressors is computed for each observation. Finally, the lower and

upper ten percent of the observations (according to this distance measure) are deleted. The

5If the errors are i.i.d. and X is independent of �i then F�i0−�i1∣Xi
(X ′

i(�1 − �0)) = F�0−�1(X
′
i(�1 − �0))
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RMSE80 therefore measures the predictive power in the inner 80% of the sample.

iii) RMSE_p̂: The definition for the RMSE stays the same. However, the predicted value

is changed to Ê(yi∣Xi) = 1, if p̂ > 0.5 and Ê(yi∣Xi) = 0 otherwise. This measure might be

interesting for individuals who have to make a one time decision given the knowledge of p̂.6

iv) SWP0.95: SWP0.95 is the share of wrong predictions given p̂ > 0.95. This measure

assesses the predictive performance at the upper tail. The measure is constructed as follows.

First, all individuals for whom p̂i < 0.95 are deleted. Second, all remaining observations

are assigned the value one. Third, the difference between one and the realization of y is

computed. Then the sum of this differences is divided by the number of individuals whose

predicted probability is larger than 0.95. Formally stated:

SWP0.95 =

∑

i:p̂i>0.95

(1− yi)

∑

i:p̂i>0.95

(1)
(11)

Interest in this statistic can be motivated in the following way. Consider a doctor who wants

to calculate the survival probability of a patient for a certain period given some characteris-

tics. He then might use one of the binary choice estimators. After the calculation, the patient

receives the pleasant message that his likelihood of surviving a certain period is larger than

95%. The reliability of this information from an individual perspective could be assessed by

the measure SWP0.95, which gives in this context the share of dead people, given that their

predicted survival probability exceeded 95%.

The following table gives an overview of the measures of predictive power.

Table 2: Overview of the measures for predictive power

Name Purpose

RMSE overall in-sample predictive power

RMSE80 predictive power in the inner 80% of the sample

RMSE_p̂ predictive power given zero-one decisions

SWP0.95 predictive power at the upper tail of the index

1.2.2 Causal (marginal) effects

Expected causal effects answer questions of the kind: “What is the expected change in the

dependent variable E(yi∣X) if the independent variable xij is changed, holding all other Xi−j

constant?” In a binary choice context, the change in the conditional expectation coincides

with the change in conditional probabilites p(Xi). Since in the general case, p(Xi) is a mul-

tidimensional function p : ℝK → [0, 1], the marginal effects can be described by the partial

6There exist more specialized semiparametric estimators like the maximum score estimator by Manski which
have superior properties with respect to in-sample prediction, which are not covered in the thesis.
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derivative of p(Xi) with respect to xij denoted by ∂p(Xi)
∂xij

≡ pj(Xi).
7Alternatively the marginal

effects can be defined via finite differences, i.e. p(Xi)−p(Xi−e⋅ℎ)
ℎ , where e is a vector consisting

of zeros and a single one placed such as to give the direction of the derivative. Both methods

will be employed in the Monte Carlo study. Here it should be noted that this on its own

does not reduce the complexity of the object we want to describe. Still, the partial derivatives

themselves are multidimensional functions. To receive results which are easily interpretable

the partial derivative is evaluated at several points. As common in the literature the eval-

uation points chosen are the mean and the first and third quartile of X. Evaluation of the

partial derivative at the mean is given by pj(n
−1

∑

Xi) and called the marginal effect at the

sample average. Generally the evaluation at a quantile is given by pj(Xq) , where Xq denotes

the vector of the q-th quantile of the individual regressors. pj(Xq) is called the marginal effect

at the sample quantile q. Finally, one can evaluate the partial derivative at each sample point

and then average the effects. The result is called average marginal effect and is given by the

formula n−1
∑N

i=1 pj(Xi). The following table summarizes the marginal effects, given G(⋅) as

the link function which depends on the single index X ′
i�. Further

∂G(X′
i�)

∂(X′
i�)

≡ g(X ′
i�).

Table 3: Overview of the marginal effects

Sample average ME ME at sample average ME at sample quantile
1
N

∑N
i=1 g(X

′
i�)�j g( 1

N

∑N
i=1(X

′
i�))�j g(X ′

q�)�j

In the case of a symmetric error distribution from an index function model,
∂G(X′

i�)
∂(X′

i�)
=

∂F (X′
i�)

∂(X′
i�)

= f(X ′
i�) where f denotes the probability density function (PDF) of the errors.

It depends on the application which of the marginal effects is of interest. The average

marginal effect is a good measure for the overall effect of a policy change which affects all

individuals. However as usual with averages, the average marginal effect does not capture

that the marginal effects might differ substantially across individuals. The marginal effect at

some specific point uses a constructed individual, which generally does not exist in the sample

and gives the expected change in y given that Xi is equal to the initial point. The marginal

effect at the first (third) quartile gives the effect for low (high) values of Xi. The marginal

effect at the median and at the mean describe the effects for representative individuals. It

should be noticed that plim( 1
N

∑N
i=1 g(X

′
i�)�j) and plim(g( 1

N

∑N
i=1(X

′
i�))�j) do not coincide.

Hence, the marginal effect at the average and the average marginal effect are fundamentally

different objects. Their relation depends on the shape of the link function and, given concavity

or convexity, Jensens inequality might be exploited (details can be found in the appendix).

If the researcher has a real world application at hand, it would be desirable to calculate the

marginal effects at each point in the sample and then estimate the distribution of the effects

along different dimensions. Furthermore, the researcher could describe the marginal effects for

7These marginal effects obviously differ from the coefficients � and due to the dependence of ∂p(Xi)
∂xij

=

∂G(X′

i�)

∂X′

i�
�j on G it seems not reasonable to compare the parameter estimates, disregarding the assumed or

estimated functional relationship.
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different groups. An example to clarify the discussion above would be the marginal effect of

smoking on the likelihood of having lung cancer given a certain age. The marginal effect at

the mean would take the mean value of smoking (e.g. 20% smoke) and age (mean age of 40)

and estimate the effect for a “created” individual who has a value for smoking of 0.2 (which is

clearly imaginary) and an age of 40. The average marginal effect would calculate the marginal

effects (ideally calculated by finite differences with h=1) for all individuals and then average

those effects. As one can see from this example it might be interesting to distinguish young

people from old ones. One could then compare the average marginal effect only by considering

those individuals which are less than 40 years old with the average marginal effect for those

who are older than 40.

The only difference between the marginal effects of the parametric and the semiparametric

setup is the fact that G has to be estimated in the semiparametric case. Since monotonicity

and differentiability imply that
∂G(X′

i�)
∂X′

i�
has the same sign for all Xi, one observes the direction

of the marginal effects by looking at the coefficients �j . To assess the quality of the esimators,

the thesis compares the four different kinds of marginal effects with the theoretical marginal

effects and the estimated marginal effects from the efficient parametic model.

2 The estimators

This chapter describes the most common estimators for the conditional probability in

the binary choice literature including some of their properties. It will distinguish between

parametric and semiparametric estimators. Since the use of semiparametric estimators is not

common for young researchers who apply econometric techniques, I will introduce some ideas

of semiparametric estimation, so that the thesis is self contained.

2.1 Parametric estimators

To distinguish the parametric estimators from the semiparametric estimators one can think

of the binary choice model as a nonlinear regression model. In the case of parametric estima-

tors the functional relationship between the dependent and the independent is assumed to be

known.

2.1.1 Linear probability model

The linear probability model (LPM) is the simplest possible model. It assumes that the

link function is linear in Xi. Therefore, the econometric model looks as follows:

E(yi∣Xi) = p(Xi) = X ′
i� ∀i ∈ {1, ..., N} (12)

Hence, the likelihood function of this model is:

L(�) =

N
∑

i=1

[yiln(X
′
i�) + (1− yi)ln(1−X ′

i�)] (13)
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Maximizing the likelihood yields the closed form solution �̂ = (X ′X)−1X ′Y .8 Since p̂(Xi) =

X ′
i�̂ there might exist an i where p̂(Xi) /∈ [0, 1], which implies the possibility of predicted

probabilities outside the closed zero-one intervall. This is one reason why the estimator seems

problematic. The marginal effects implied by this model are independent of Xi and given by
∂p(Xi)
∂xij

= �j . Interestingly, Cameron and Trivedi (2005, p.471) claim that the OLS estimator

“provides a reasonable direct estimate of the sample-average marginal effect on the probability

that yi = 1 as xij changes”. This hypothesis was reviewed in the Monte Carlo study and

receives support. For the sake completeness, it should be noted that the error terms in the

LPM are heteroscedastic by construction, and hence heteroscedasticity adjusted standard er-

rors should be used.

2.1.2 Probit, logit and cauchit models

i) The probit model assumes that the link function is the cumulative distribution func-

tion (CDF) of a standard normal distribution. Since the PDF of the normal distribution is

symmetric, this model can be justified when the error terms in the index function model follow

a standard normal distribution.

E(yi∣Xi) = p(Xi) = Φ(X ′
i�) ∀i ∈ {1, ..., N} (14)

The likelihood function of the probit model is

L(�) =
N
∑

i=1

[yiln(Φ(X
′
i�)) + (1− yi)ln(1− Φ(X ′

i�))], (15)

where Φ is the CDF of a standard normal distribution. Since the image of Φ(z) for z ∈ ℝ

is [0, 1] the probabilities are bound between zero and one. The marginal effects are given by
∂p(Xi)
∂xij

= �(X ′
i�)�jand therefore depend on Xi.

9 A closed form solution does not exist and

hence one has to rely on numerical optimization procedures to solve for the parameter esti-

mates �̂ which maximize the likelihood.

ii) The logit model has the logistic CDF as its link function. Again, due to symmetry

of the logistic PDF it follows that a motivation for the logit model can be logistic distributed

errors in the index function model.

E(yi∣Xi) = p(Xi) = Λ(X ′
i�) ∀i ∈ {1, ..., N} (16)

and the likelihood of the logit model is given by

L(�) =

N
∑

i=1

[yiln(Λ(X
′
i�)) + (1− yi)ln(1− Λ(X ′

i�))] (17)

8�̂ is equivalent to the ordinary least squares estimator (OLS).
9Where �(z) denotes the PDF of the standard normal distribution
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Λ denotes the CDF of the logistic distribution. The structure of the model is similar to the

probit model. p(x) is bound between zero and one and the marginal effects are given by
∂p(Xi)
∂xij

= �(X ′
i�)�j , where �(z) is the PDF of the logistic distribution.

The results of the marginal effects coming from logit and probit models are in general very

similar. An advantage of the logit model is the relatively simple functional form of the distri-

bution function which eases numerical optimization. This becomes important when building

more sophisticated econometric models like the local logit model. Frölich (2006, p.6) states

that the use of the logistic distribution instead of relying on the cumulative distribution func-

tion of a standard normal random variable is due to computational ease. The probit model,

on the other hand, might have the appeal that it can be derived by the index function model

with normal errors, which have a long tradition in econometrics.

iii) The cauchit model has the CDF of a Cauchy distribution10 as its link function.

E(yi∣Xi) = p(Xi) = C(X ′
i�) ∀i ∈ {1, ..., N} (18)

and the likelihood of the cauchit model is given by

L(�) =

N
∑

i=1

[yiln(C(X ′
i�)) + (1− yi)ln(1− C(X ′

i�))] (19)

The main purpose of introducing the cauchit model is that it seems suitable to deal with

problems such as outliers, through its “fat tails”. The marginal effects are given by ∂p(Xi)
∂xij

=

c(X ′
i�)�j .

The following graphs depict the PDF´s and the CDF´s of the standard normal-, logistic-,

and Cauchy distribution.

10The cauchy distribution is “fat tailed” and even its first moment does not exist.
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Figure 1: CDF and PDF of normal-, logistic- and Cauchy distribution

As one can see, the densities are symmetric. Since the marginal effects are given by
∂p(Xi)
∂xij

= f(X ′
i�)�j , where f denotes the density, one further sees that the marginal effects

vary with a maximum at the mean of the single index X ′
i�.

2.1.3 A model using general distributional assumptions

The probit- and the logit model are special cases of the model using general distributional

assumptions. The likelihood function of this model is given by

L(�) =

N
∑

i=1

[yiln(1− Fu(−X ′
i�)) + (1− yi)ln(Fu(−X ′

i�))] (20)

L(�) =
N
∑

i=1

[yiln(G(X ′
i�)) + (1− yi)ln(1−G(X ′

i�))] (21)

where Fu denotes the error distribution in the index function model. If one knew the true

distribution of the error term, using the distribution function as the link function would be

generally asymptotically efficient.11 Clearly, the distribution of the error term is unknown in

real world applications. Direct estimation of the distribution of the error terms would require

the knowledge of the latent utility index. Since the utilities are not observed, the estimation

11This comes from the fact that the estimator is an M-Estimator and under certain regularity conditions is
therefore asymptotically efficient, see Amemiya (1985, pp.123-124).
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of the error terms distribution seems impossible. However, due to the fact that I create the

data generating process (DGP) used in the Monte Carlo study, the model using the correct

distributional assumptions will serve as a benchmark. Two further distributions have been

used in the Monte Carlo study, namely the Gumbel- and a mixture normal distribution. The

PDF´s and CDF´s of the Gumbel- and the considered mixture normal distribution are plotted

below. The Gumbel distribution is skewed whereas the mixture normal is multimodal. All

random variables are normalized such that they have zero expected value.

Figure 2: CDF and PDF of Gumbel- and mixture normal distribution

2.2 Semiparametric estimators

The terminology for non- and semiparametric estimation varies across authors and instead

of defining the terminology rigorously, I will use the terms parametric, semiparametric and

nonparametric as follows: “Parametric estimation” refers to the estimation of a finite ordered

set of parameters, like in the case of the ordinary least squares, the estimation of the param-

eter vector �. The term “nonparametric estimation” refers to an infinite-dimensional object

like the link function in a binary choice model Ĝ(z). The term “semiparametric estimation”

is used when both a finite dimensional and an infinite dimensional object is estimated, like

Ĝ(X ′
i�̂). Loosely speaking, the semiparametric approach to estimation is a combination of the

parametric approach, which is usually concerned with the estimation of parameters, and the

nonparametric approach, which is concerned with the estimation of functions.
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2.2.1 Introduction to semiparametric estimation

As stated above, semiparametric estimation mixes the parametric- and the nonparametric es-

timation methods and attempts to combine the benefits of both. The main advantage of the

parametric estimation method is its parsimony, whereas the nonparametric approach offers

flexibility. To give some intuition behind semiparametric estimation, I will briefly introduce

the nonparametric approach and then describe the two semiparametric estimators under con-

sideration. The following introduction of the nonparametric approach is closely related to

Cameron and Trivedi (2005, pp. 294-333) and should help readers who are not familiar with

nonparametric econometrics in understanding the properties of the estimators presented.

A nonparametric econometric model in a binary choice context can be specified as

E(Y ∣X) = m(X) (22)

or in terms of individuals

E(yi∣Xi) = m(Xi) ∀i ∈ {1, .., N}, (23)

where the functional form m is fully unspecified. The whole chapter 2.2.1 will be concerned

with the question how a reasonable estimator m̂ for m can be formed. To answer this question,

it seems helpful to introduce the following concepts and some new terminology. First, we

notice that the model implies that we have to estimate m which is a function. A good way

to start estimating functions is by estimating the function values for specific points in the

domain. A first step could be to just use m̃(Xi) = yi as a first guess. Two things are relatively

problematic. What happens if we have individuals which have the same regressors but different

values for y. An answer to this question could be averaging. Hence m̃ could look as follows:

m̃(Xi) =
∑N

j=1
I(Xj=Xi)

∑n
j=1 I(Xj=Xi)

⋅ yj , where I is the indicator function which takes the value one

if Xj = Xi and zero otherwise. The second problem would be the estimation of y given that

the values for the regressors are not present in the sample. Consequently, the first formula

for m̃ would lead to Ê(yi∣X) = 0 ∀X ∕= Xi ∀i ∈ {1, .., n}. Hence, the estimator would be

extremely nonsmooth. A smoother and relatively general estimator which is able to deliver

non-zero values for regressor values not represented in the sample is given by

∼w
m (x) =

N
∑

i=1

wni(x) ⋅ yi (24)

This estimator is called local weighted average estimator. The general idea behind this esti-

mator is that we average over y in a specific way. Usually, one assigns lower weights to those

values of y where the distance to the initial x is large. The following estimator is a special

kind of local weighted average estimator. It is called Nadaraya-Watson (NW) estimator and
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is one representative of the class of kernel regression estimators.

m̂(x) =
1

Nℎ

∑N
i=1K

(

xi−x
ℎ

)

⋅ yi
1

Nℎ

∑N
i=1K

(

xi−x
ℎ

)
(25)

Simple manipulations of (24) reveal the weighting function.

m̂(x) =

N
∑

i=1

K
(

xi−x
ℎ

)

∑N
i=1K

(

xi−x
ℎ

) ⋅ yi =
N
∑

i=1

wNW
ni (x) ⋅ yi (26)

The weighting function wNW
ni (x) =

K
(

xi−x

ℎ

)

∑N
i=1 K

(

xi−x

ℎ

) consists of several components. K is a kernel

function, ℎ is called the bandwidth and xi−x is the difference of the sample point to the point

of evaluation.

Since these concepts might be new, I give an illustration of the estimators, with OLS as a

reference. The DGP is given by yi = −I(xi ≤ −1) + xiI(−1 < xi < 1) + I(xi ≥ 1) + �i, which

is piecewise linear. The regressors xi are drawn from a normal distribution with mean 0 and

variance 4. The error terms are drawn from a normal distribution with mean 0 and variance

0.25. The number of observations is 40 and � and x are independent.

Figure 3: Comparison of estimators: OLS, m̃, m̂

As one can see in Figure 3, the assumed linear relation between x and y from the OLS

estimator is clearly violated. Further, the relation between the NW estimator and the naive

nonparametric estimator becomes apparent. For the NW estimator ℎ is chosen to be Silver-

man´s plug-in estimate, which will be explained later. Intuitively the NW estimator averages

the values of y in the neighbourhood of x. Looking at x ≈ −4, the values of y result ap-

proximately from averaging the yi´s for xi lying in the intervall [−5,−3]. The length of the
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intervall depends on the choice of ℎ.

Since this introductory example is definitely not sufficient to understand the working of

kernel regression estimators, the thesis will now discuss the components of those estimators

beginning with the kernel function and the bandwidth. The kernel function is discussed via

introducing kernel density estimation, which can be seen as a smoothed extension to the well

known histogram. In the context of the kernel density estimation, the choice of ℎ plays a

crucial role. Therefore the thesis will discuss the choice of ℎ in some detail. After this, the

thesis returns to the NW kernel regression estimator and gives a rigorous description of the

properties of the estimator.

Kernel density estimation:

The starting point for kernel density estimation is a given sample of data denoted by

{yi}Ni=1. A first step in approximating the density could be by a nonsmooth estimator like the

histogram. A smooth extension is given by a kernel estimate of the density denoted by f̂(y).

The estimated density at a point y0 is given by the formula

f̂(y0) =
1

Nℎ

N
∑

i=1

K(
yi − y0

ℎ
) (27)

(27) describes the “height” of the estimated density at an arbitrary point y0. To construct the

value f̂(y0), the kernel density estimator uses the whole sample and weights the observations

according to their difference to the point of interest. The weighting depends on K and ℎ.

Following the definition by Cameron and Trivedi (2005, p. 299) “the kernel function K(⋅) is a

continuous function, symmetric around zero, that integrates to unity and satisfies additional

boundedness conditions”. Examples for kernel functions are given in the following table.

Table 4: Kernel Functions

Name Kernel function

Uniform 1
2 ⋅ I(∣yi−y0

ℎ ∣ < 1)

Epanechnikov 3
4 ⋅ (1− [yi−y0

ℎ ]2) ⋅ I(∣yi−y0
ℎ ∣ < 1)

Gaussian (2�)−
1
2 exp(

−[
yi−y0

ℎ
]2

2 )

Quartic 15
16 ⋅ (1− [yi−y0

ℎ ]2)2 ⋅ I(∣yi−y0
ℎ ∣ < 1)
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Figure 4: Graphs of kernel functions

Figure 4 gives an intuition how the sample observations yi are weighted according to their

difference to y0. If ∣yi − y0∣ > ℎ the uniform- and Epanechnikov kernel produce a zero weight,

whereas the Gaussian kernel gives a positive weight for all observations. The influence of the

choice of the kernel function on the estimate of the density is limited. The only thing which

is left unclear in formula (27) is the choice of the parameter ℎ. It influences the smoothness

and the bias of the density estimator. Maybe the simplest way to illustrate the influence of

ℎ on the smoothness is given by little example. The example is constructed by generating

15 observations from a standard normal distribution. The kernel used is Gaussian and the

bandwidth ℎ varies across the four plots which are given below.

Figure 5: Kernel density estimate of standard normal data, size 15
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The density estimate on the upper right is computed using an optimal bandwidth given

the data is normally distributed. One observes that as ℎ increases, the estimator becomes

smoother. However the increased smoothness comes at the cost of a higher bias. The bias of

an estimator is defined as the difference of the expected value of an estimator to the true value.

In the case of the kernel density estimate at y0, the bias is given by the following formula.

b(y0) = E[f̂(y0)]− f(y0) =
1

2
ℎ2f

′′
(y0)

ˆ

z2K(z)dz (28)

As illustrated in the graphs above, the formula reveals that the bias is increasing in ℎ. Since

lim
ℎ→0

b(y0) = 0, it seems reasonable to choose smaller values for ℎ when larger samples are

available. Further, it can be shown that the bias corrected estimator is asymptotically normal.

Formally this is given by

√
Nℎ(f̂(y0)− f(y0)− b(y0))

d→ N(0, f(y0)

ˆ

K(z)2dz) (29)

By dividing the expression above by
√
Nℎ one sees that the variance of the estimator f̂(y0)

goes to zero as Nℎ → ∞.

To sum up, unbiasedness requires ℎ → 0 and consistency Nℎ → ∞. For the choice of

the bandwidth and the kernel one can rely on the mean integrated square error (MISE) as a

measure of optimality. The objective function to be minimized is the following:

MISE(ℎ) =

ˆ

MSE[f̂(y0)]dy0 =

ˆ

E[ ˆ(f(y0)− f(y0))
2]dy0 (30)

where the mean squared error (MSE) is a local measure of performance and is approximately

given by MSE[f̂(y0)] ⋍
1

Nℎ ⋅ f(y0)
´

K(z)2dz + {1
2ℎ

2f
′′
(y0)
´

z2K(z)dz}2. The dependence

of the MSE on ℎ through the kernel function complicates the minimization. Strictly speaking

the optimal kernel and the optimal ℎ can not be chosen independently. Minimization with

respect to ℎ yields

dMISE

dℎ
= 0 ⇐⇒ ℎ∗ = �(

ˆ

f
′′
(y0)

2dy0)
−0.2N−0.2 (31)

where � =
( ´

K(z)2dz

(
´

z2K(z)dz)2

)0.2
and depends on the kernel chosen. Furthermore, it can be shown

that the Epanechnikov kernel is optimal. Since ℎ∗ depends on the true curvature of the

unknown density given by f
′′
, the formula is not directly applicaple.

There are two main approaches how to choose ℎ. The first one relies on plug-in estimates,

the second on Cross-Validation (CV).

i) Plug-in estimate: Cameron and Trivedi (2005, p. 304) state that “a plug-in estimate for

the bandwidth is a simple formula for ℎ that depends on the sample size N and the sample
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standard deviation”. Silverman´s plug-in estimate is given by

ℎ∗ = �

(

3

8
√
� ⋅min(s5, iqr5/1.349)

)−0.2

N−0.2 (32)

which is optimal for normally distributed data, since
´

f
′′
(x0)

2dx0 = 3
8
√
��5 .12 According to

Cameron and Trivedi (2005, p. 304), “these plug-in estimates for h work well in practice, espe-

cially for symmetric unimodal densities, even if f(x) is not the normal density. Nonetheless,

one should check by using variations such as twice and half the plug-in estimate.”

ii) Cross Validation: CV is a data driven approach which chooses ℎ by minimizing a

monotone transformation of
´ ˆ(f(y) − f(y))2dy which is the integrated squared error (ISE).

The mathematics carried out by Pagan and Ullah (1999, p. 51) show that choosing ℎ by

minimizing the ISE is equivalent to 13

ℎ̂∗CV = argmin(CV (ℎ)) = argmin(
1

N2ℎ

∑

i

∑

j

K ∘K
(

xi − xj
ℎ

)

− 2

N

N
∑

i=1

f̂−i(yi)) (33)

Furthermore it can be shown that ℎ̂∗CV

p→ ℎopt, with a rate of convergence of n− 1
10 . This pro-

cedure is computationally intensive, and will not be used in the Monte Carlo study. Generally

the use of plug-in estimates is weakly inferior to cross validation. Hence, the thesis might

underestimate the performance of the semiparametric estimators. Now that the basic ideas of

nonparametric density estimation have been introduced we can proceed to a major ingredient

of the semiparametric estimators: the kernel regression.

Kernel regression:

As stated in the beginning of chapter 2.2.1 the econometric model is

E(yi∣Xi) = m(Xi) ∀i ∈ {1, .., n} (34)

Leaving out the indices and inserting the definition of E(y∣x) =
´

y ⋅ f(y∣x)dy and noting

that f(y∣x) = f(y,x)
f(x) results in m(x) =

´

y f(y,x)
f(x) dy where a natural estimator is given by

m̂(x) =
´

y f̂(y,x)

f̂(x)
dy. Pagan and Ullah (1999, pp.83-84) show that, given a symmetric kernel,

m̂ can be expressed as follows.

m̂(x0) =
1

Nℎ

∑N
i=1K

(

xi−x0
ℎ

)

⋅ yi
1

Nℎ

∑N
i=1K

(

xi−x0
ℎ

) (35)

Therefore, the kernel regression estimator is simply obtained by combining the kernel density

12s denotes the sample standard devation and iqr the interquartile range, which is robust to outliers.
13K ∘K is the convolution of the kernel functions and f̂−i(yi) is the leave one out kernel density estimator

given by f̂−i(yi) =
1

Nℎ

∑N
j ∕=i K(

yj−yi
ℎ

).
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estimator with the data on the dependent variable. m̂(x) is biased where the bias is given by

b(x0) = ℎ2(m
′
(x0)

f
′
(x0)

f(x0)
+

1

2
m

′′
(x0))

ˆ

z2K(z)dz (36)

and the bias corrected kernel regressor is asymptotically normal:14

√
Nℎ(m̂(x0)−m(x0)− b(x0)

d→ N(0,
�2
�

f(x0)

ˆ

K(z)2dz) (37)

Plug-in estimates for ℎ as in the case of kernel density estimation can be used. In the case

of multiple regressors I used plug-in estimates for the univariate regressors seperately which

might be justified by the fact that most Monte Carlo setups used regressors drawn from

independent normals. Hence the gain of cross validation could be limited15. As in the kernel

density estimation, cross validation procedures could be used to determine the optimal ℎ∗CV .

This procedure is computationaly intensive but the choice of ℎ is more robust to deviations

from normality. The criterion to be minimized is

CV (ℎ) =
N
∑

i=1

(yi − m̂−i(xi))
2�(xi) (38)

As Cameron and Trivedi (2005, p. 315) state “the weights �(xi) are introduced to downweight

the end points” and m̂−i is the leave one out estimator given by:

m̂−i(xi) =

∑

j ∕=iK
(

xj−xi

ℎ

)

yj
∑

j ∕=iK
(

xj−xi

ℎ

) (39)

Further ”it can be shown that yi− m̂−i(xi) =
y−m̂(xi)

1−K

(

xi−xi
ℎ

)

/
∑

j
K

(

xj−xi
ℎ

) so that for each value of ℎ

cross validation requires only one computation of m̂(xi), i = 1, ..., N ”, Cameron Trivedi (2005,

p.315). However, as one will see in the section presenting the local likelihood logit estimator,

this would at least require an additional minimization at each sample point, given an initial

estimate of the parametric component, which would assume that the parametric component

was chosen correctly.

Two further refinements of the Nadaraya-Watson estimator could be considered. The first

one is concerned with outliers, the second one with the problem of values near zero in the

denominator of m̂(x0) =
1

Nℎ

∑N
i=1 K

(

xi−x0
ℎ

)

⋅yi
1

Nℎ

∑N
i=1 K

(

xi−x0
ℎ

) . The discussion is again not innovative and

resembles the discussions in standard textbooks like Pagan and Ullah (1999).

To deal with the sensitivity of the kernel regression to outliers, one can use leave one

out estimators. To illustrate this, assume a dataset contains an extreme outlier (xo, yo).

14Where �2
� is the variance of the error term resulting from the model equivalent to (34), which is given by

yi = m(Xi) + �i, E(�i∣Xi) = 0 ∀i ∈ {1, .., n}
15It might even be that the estimation of the optimal bandwidth might lead to additional noise as discussed

in Frölich (2006, p. 7).
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For points sufficiently far apart from the rest
∑

j ∕=o

K
(

xj−xo

ℎ

)

≈ ∑

j ∕=o

0 = 0. Hence m̂(xo) ≈

K(xo−xo
ℎ )⋅yo

0+K(xo−xo
ℎ )

= yo. Thus, one value determines the whole estimate. To overcome this problem,

one can use the leave one out estimator. m̂−o(xo) =

∑

j ∕=o K
(

xj−xo

ℎ

)

yj
∑

j ∕=o K
(

xj−xo

ℎ

) . This unfortunately

results in m̂−o(xo) ≈ 0
0 , which directly leads us to the procedure of trimming. Trimming is

concerned with the problem of denominators near zero. As Cameron and Trivedi (2005, p.

317) state, trimming greatly downweights all points with f̂(xi) < b which are the points where

the kernel density estimator predicts smaller probability mass than b, where b should be small

and decreasing with N .16

To bridge the gap to binary choice models, equation (40) introduces the semiparametric

single index model.

E(yi∣Xi) = m(X ′
i�) (40)

where m is an unknown function to be estimated via kernel regression and � are the

unknown parameters which will be jointly maximized via M-estimation. One point is worth

adding. Horrowitz (2009, p. 13-14) states that in semiparametric models, � is identified

only if a location and scale normalization is introduced. This can be seen by the following

argument. Imagine that the true model is given by E(yi∣Xi) = G(X ′
i�), then one can find a

G∗(� + �X ′
i�) = G(X ′

i�) via an appropriate concatenation of two functions. Since the code

used for the Klein and Spady estimator provided bei Yingying Dong17 normalizes the last

coefficient to one the relation between the initial function m(X ′
i�) and the normalized function

m(v(Xi, �)) is as follows: X ′
i� = 1 ⋅ �1 + x2i�2 + ... + xki�k = a + b ⋅ v(Xi, �), where a = �1,

b = �k and v(Xi, �) = x2i�1 + ..+ xk−1,i�k−2 + xk, with �1 = �2/�k,..., �k−2 = �k−1/�k.
18

2.2.2 Klein and Spady

In what follows, I will discuss the main properties of the estimator by Klein and Spady,

like the likelihood function and its asymptotic efficiency. There exist several implementations

which differ in the degree of complexity. Three of them will be discussed. After the technical

introduction to the estimator, I will present the details of the implementation procedure.

The original likelihood function suggested by Klein and Spady is given below. The discus-

sion mainly summarizes what is stated in Pagan and Ullah (1999, pp.284).19

L =

N
∑

i=1

�i(1− yi)ln(1− m̂−i(v(xi, �))) +

N
∑

i=1

�iyiln(m̂−i(v(xi, �))) (41)

16As stated several times before, the refinement of the semiparametric estimators was not a key part of the
thesis. However some robustness checks were conducted, as one will see in the following chapters. Admittedly
the performance of the semiparametric estimators might improve through refinements.

17The code for Klein and Spady´s estimator is downloaded from
http://www.yingyingdong.com/Codes/KleinSpady.m.txt, last accesed on 09.01.2012

18In the Monte Carlo setup the regressors do not contain a constant. Hence a scale normalization is not
needed.

19With minor modifications with respect to the estimator of m. In my understanding the original article by
Klein and Spady (1993, p. 394), suggests the use of a leave one out estimator.
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m̂−i =

∑N
j ∕=i yjK((vj − vi)/ℎ)

∑N
j ∕=iK((vj − vi)/ℎ)

(42)

E(yi∣Xi) = m(v(xi, �)) ∀i ∈ {1, ..., N} (43)

As in the parametric case, the likelihood function is given by the product of Bernoulli

distributions. The only difference to the parametric likelihoods is that the functional relation

between the parameter p of the Bernoulli distribution and the regressors is left, up to the

index, unspecified.20 Hence the econometric model for the conditional expectation is given by

(43). To obtain the functional relationship between the single index v(xi, �) and p, a kernel

regression of y on the linear index v(xi, �) is performed. The estimator �̂ is then found by

maximizing (41).

Two parts of (41) seem non-standard. First, �i denotes a trimming function, which down-

weights or even discards those observations where the kernel density estimate of the single

index is below a given level, f̂(v(xi, �)) < b . Second, m̂−i is a leave one out kernel estimator.

Pagan and Ullah (1999, pp. 284-285) state, that the trimming function is necessary for the

derivation of the theoretical results, like asymptotic normality of �̂. However, Klein and Spady

(1993, p. 406) claim that “there is a wide range of trimming specifications that have almost

no effect on the estimates. Moreover, the estimate obtained without any trimming performed

quite similar to that under the trimming that we employed.” To motivate why Klein and

Spady´s estimator behaves quite differently than the usual parametric ones, despite the simi-

larity in the likelihood function, it is useful to compare the first order conditions (FOC) of the

estimators.

To make the main points clear, we compare a symmetric parametric model, with a version

of Klein and Spady´s estimator which is untrimmed and uses an ordinary kernel regression.

Table 5: First order conditions: general parametric model vs. Klein and Spady´s

Likelihood Parametric L(�) =
N
∑

i=1

[yiln(G(X ′

i�)) + (1− yi)ln(1−G(X ′

i�))]

FOC (for �j) Parametric
N
∑

i=1

[G
′

G yixij − G′

1−G (1− yi)xij ] = 0

Likelihood Klein Spady L(�) =
N
∑

i=1

[yiln(
∑N

j=1 yjK((vj−vi)/ℎ)
∑N

j=1 K((vj−vi)/ℎ)
) + (1− yi)ln(1−

∑N
j=1 yjK((vj−vi)/ℎ)

∑N
j=1 K((vj−vi)/ℎ)

)]

FOC (for �j) Klein Spady
N
∑

i=1

⎡

⎣

yi

m̂i

d

(
∑N

j=1 yjK((vj−vi)/ℎ)
∑N

j=1
K((vj−vi)/ℎ)

)

d�j
− (1−yi)

1−m̂i

d

(
∑N

j=1 yjK((vj−vi)/ℎ)
∑N

j=1
K((vj−vi)/ℎ)

)

d�j

⎤

⎦ = 0

Considering the FOCs might help understanding the complicated dependence structure of

the likelihood function on �. The main difference is that the change in �j in the parametric

20In other words: it is only specified that the functional relation depends on a single index, which will be
assumed to be linear.
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models only alter the evaluation points of G
′

G or G′

1−G , whereas changes in �j lead to changes in

the whole estimate of m̂ which are additionally weighted by the change in
∑

yjK((vj−vi)/ℎ)
∑N

j=1 K((vj−vi)/ℎ)
.21

The reason for stressing the difference between the estimators will become clear when consid-

ering the difference between the logit and local likelihood logit estimator. By focusing on the

first order conditions, I came to the conclusion that the local likelihood logit estimator is a

local logit estimator in the sense, that it only uses a subsample of the data near the point of

evaluation.22 Such an interpretation does not exist for the estimator of Klein and Spady.

Next we turn to the properties of the estimator by Klein and Spady. The estimator is

consistent and
√
n asymptotically normal.23 Furthermore, Klein and Spady (1993, p. 405,

Theorem 5) state and prove the asymptotic efficiency of the estimator. Klein and Spady´s

estimator is optimal in the sense that it has the lowest possible asymptotic variance in the

class of consistent semiparametric binary choice estimators. This means that the estimator at-

tains the semiparametric efficiency bound specified in Chamberlain (1986) and Cosslet (1987),

which is a similar concept as the more popular Cramer Rao bound for parametric models. The

Cramer Rao parametric efficiency bound is attained by those parametric maximum likelihood

estimators which fulfill some regularity conditions and have a properly specified likelihood.

Due to the fact that the Cramer Rao bound is below the semiparametric asymptotic efficiency

bound the following corollary should hold.

Corollary 1: Given a linear single index and a correctly specified link function, the follow-

ing performance ranking should be resembled in the Monte Carlo study in large samples. The

parametric estimator with true link function is more efficient than Klein and Spady´s, which

in turn is more efficient than the local likelihood logit estimator.

Further, since Klein and Spady´s estimator is consistent, theory suggests that it performs

better than misspecified parametric models.

Implementation methods of Klein and Spady´s estimator:

As stated before, the implementation of Klein and Spady´s estimator varies across au-

thors. Three implementations were considered. Two implementations were programmed by

the author and one is taken from Yingying Dong.24 Due to the fact that the code written

by the author took about 40 minutes to find the optimal �̂´s, the code by Yingying Dong is

used in the Monte Carlo study. The different kinds of implementations and the estimation of

marginal effects are discussed in the following. The main procedure is as follows. First, we

obtain �̂ (three different methods for that), than estimate m̂´s via kernel regression and finally

we estimate the marginal effects of interest via finite differences.

21Where the change comes through the depndence of vj and vi on �j
22As discussed later, this interpretation of only using a subsample is valid if a uniform kernel is used. However

a similar interpretaion should be valid for other kernels
23Details and proofs are provided in Klein and Spady (1993).
24The code for Klein and Spady´s estimator is downloaded from

http://www.yingyingdong.com/Codes/KleinSpady.m.txt, last accesed on 09.01.2012
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Implementation I:

�̂ = argmax
(

∑N
i=1 �i(1− yi)ln(1− m̂−i(v(xi, �))) +

∑N
i=1 �iyiln(m̂−i(v(xi, �)))

)

, where

�i = I(f̂i(v(xi, �̃)) > b). Hence, the trimming function discards the observations where the

estimated density of the index f̂i(v(xi, �̃)) is smaller than b. For the leave-one-out kernel

regression and kernel density estimation, the Epanechnikov kernel and Silverman´s plug-in

estimate for ℎ are used.

Implementation II:

�̂ = argmax
(

∑

i∈N∗
n
(1− yi)ln(1− m̂−i(v(xi, �))) +

∑

i∈N∗
n
yiln(m̂−i(v(xi, �)))

)

, where the

trimming function is 1, and N∗
n denotes the set N where the n most extreme observations are

discarded. The leave one out kernel regression uses the Epanechnikov kernel and Silverman´s

plug-in estimate of ℎ.

Implementation III:

�̂ = argmax
(

∑N
i=1(1− yi)ln(1− m̂i(v(xi, �))) +

∑N
i=1 yiln(m̂i(v(xi, �)))

)

, which is the

default implementation in Yingying Dong´s code. The ordinary kernel regression uses a quar-

tic kernel and Silverman´s plug-in estimate for h. Furthermore this implementation does not

use any trimming.

The results of a naive comparison with 20 draws with 100 observations and three regressors

are the following. The values displayed in Table 6 are the mean of the percentage deviations

of the first two methods with the third method. The standard deviations are given in paren-

theses.25

Table 6: Comparison: implementation methods for KS´s estimator

�1 �2 Comment
�qIII−�qI

�qI
-0.02 (0.07) -0.02 (0.07) Trimming b = 0.002

�qIII−�qI

�qI
-0.01 (0.09) -0.03 (0.09) Trimming b = 0.05

�qIII−�qII

�qII
-0.03 (0.09) -0.02 (0.09) 2% of sample cut

On average, the deviations lie between 1% and 3%, which can be regarded as minor.

However, looking at the standard deviation reveals that the individual deviations might be

substantial. Hence, further research could undertake a more extensive comparison between

the different implementation methods.

The Monte Carlo study will use, mainly because of computational effort, implementation

method III. To obtain estimates of y, I first constructed the estimate of the single index given

25The regressors and the error terms are drawn from independent standard normal distributions. The
trimming parameter �̃ equals the probit estimate �̂Pr. An extensive comparison was not possible due to time
constraints, partially due to the fact that the estimators programmed by myself where computationally so
burdensome, that a single optimization required 40 min (on a dual core processor with 4 GB RAM).
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by X ′�̂. The estimate for the single index is then used as an input in a simple kernel regression

using a quartic kernel and Silverman´s plug-in estimate. The outcome of this estimation is ŷ.

The marginal effects are then computed by finite differences. More exactly for the estimation

of the partial marginal effect of variable k at a given point X0 I estimated ŷ0. Then I fixed the

value of the regressor at variable k and searched the value of the nearest not identical value

of variable k in the sample. Given the nearest value of variable k I held all other variables

constant and estimated ŷnn. Then I divided by the difference between the initial value of

the regressor at variable k and the value of the k-th regressor at the “nearest” sample point.

Formally:

ŷ0 =

∑N
j yjK((Xj �̂ −X0�̂)/ℎ)

∑N
j K((Xj �̂ −X0�̂)/ℎ)

(44)

MEFD(X0) =
y0 − ynn

x0k − xnnk
(45)

The thesis will now describe the second semiparametric estimator under consideration, the

local likelihood logit estimator by Frölich (2006).

2.2.3 Local likelihood logit

The main part of the description below relies on the primary source by Frölich (2006). The

local likelihood logit estimator is defined by its local likelihood function.

L(x0) =

N
∑

i=1

(yiln

(

1

1 + e−X
′
i�x0

)

+ (1− yi)ln

(

1

1 + eX
′
i�x0

)

) ⋅KH (Xi −X0) (46)

Kℎ,�,�(Xi −X0) =

q1
∏

q=1

�(
Xq,i −Xq,0

ℎ
) ⋅

q2
∏

q=q1+1

�∣Xq,i−Xq,0∣ ⋅
Q
∏

q=q2+1

�1(Xq,i ∕=Xq,0) (47)

E(y∣X0) =
1

1 + e−X
′
0�x0

∀i ∈ {1, ..., N} (48)

Equation (47) describes the kernel function. Frölich (2006) uses a product kernel, which differs

across three types of regressors. The types of regressors are: continuous regressors and discrete

regressors with and without natural ordering. The first q1 regressors are the continuous ones,

the regressors from q1 + 1 to q2 are the discrete regressors with natural ordering, and the

remaining ones are those without ordering. Unlike in the original paper where the bandwidth

ℎ, � and � are chosen by cross validation, the thesis uses different plug-in estimates.26 There

are several differences to Klein and Spady´s estimator. First the functional form of the link

26Frölich (2006) uses the following cross validation criterion which is minimized: CVLS =
∑

[Yi −
g(Xi, �̂−Xi∣ℎ,�,�)], where �̂−Xi∣ℎ,�,� is the leave one out coefficient estimate. In my understanding this re-
quires N additional optimizations for each individual, which would lead to (N2 −N) additional optimizations
in each loop of the Monte Carlo study. Clearly, as stated above the use of cross validation theoretically en-
hances the performance of the LLL estimator, and hence there is room for improvements of the local likelihood
logit estimator.
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function is modelled directly and is given by a logistic CDF. Second, the conditional mean

function is defined only locally. Hence, � is allowed to vary across observations. Third, the

likelihood function is defined locally and the estimation procedure for � is done locally at

x0 via weighting observations using a kernel function. For comparison, Klein and Spady´s

likelihood function and the parameter vector � are defined globally. The link function is as

well globally defined, but left unspecified. Table 7 captures the main characteristics of the two

semiparametric estimators under consideration.

Table 7: Comparison: Klein and Spady´s- and local likelihood logit estimator

Characteristica KS LLL

Likelihood: Defined globally Defined locally

Link function: Defined globally, unspecified Defined Locally, given by Logistic CDF

Conditional mean: Defined globally, unspecified Defined Locally, given by Logistic CDF

Further it is worth looking at the first order conditions, which are displayed in Table 8.

Table 8: First order conditions: general parametric model vs. local likelihood logit

Likelihood Parametric L(�) =
N
∑

i=1

[yiln(G(X ′

i�)) + (1− yi)ln(1−G(X ′

i�))]

FOC (for �j) Parametric
N
∑

i=1

[G
′

G yixij − G′

1−G (1− yi)xij ] = 0

Likelihood LLL L(�) =
N
∑

i=1

[yiln(G(X ′

i�)) + (1− yi)ln(1−G(X ′

i�))] ⋅K (Xi −X0)

FOC (for �j) LLL
N
∑

i=1

[

G
′

G yixij − G′

1−G (1− yi)xij

]

⋅K (Xi −X0) = 0

As can be already seen from the likelihood function, the similarities to the logit estimator

are huge. The easiest way to imagine the effect of the kernel function is by considering a

product kernel formed by uniform kernels. Given a uniform kernel for the estimation of �̂X0 ,

all observations more distant than ℎ from X0 are discarded. This means that the likelihood

function and the j-th first order condition look as follows.

L(x0) =
∑

i∈N∗

(yiln

(

1

1 + e−X
′
i�x0

)

+(1−yi)ln

(

1

1 + eX
′
i�x0

)

), N∗ = {i : (xik−x0k) < ℎk ∀k}

(49)

∑

i∈N∗

[

G
′

G
yixij −

G′

1−G
(1− yi)xij

]

= 0, N∗ = {i : (xik − x0k) < ℎk ∀k} (50)

which just means that those parts of the sample are discarded where the distance of the

individual regressors is higher than the bandwidth.

Due to the fact that E(y∣X0) = 1

1+e−X
′
0�x0

, one can estimate ŷ = 1

1+e−X
′
0�̂x0

. For the
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estimation of the marginal effects, two methods were considered. First, I used the partial

derivative of E(y∣X) and second finite differences.

i) ∂E(y∣X0)
∂xj

= pdflogistic(X0�x0) ⋅ �jx0 This method appears problematic in the following

sense. The model for the conditional expectation of E(y∣X) assumes that variation in X

affects E(y∣X) through two channels. First E(y∣X) changes due to the change in X and

second through changes in �x. Method one does not account for any changes in �x and

therefore could be seen as implausible.

ii) MEFD(X0) =
(y∣X0,�X0)−(y∣XT ,�XT )

x0k−xTk
. The second method is similar to the one used for

Klein and Spady´s estimator. The only difference is that the distance between x0k and xTk

is fixed at 0.02. XT is a transformation of X where all elements except the k-th are the same

and the k-th element itself is adjusted by 0.02, formally: xTk = x0k − 0.02. The fixed choice

of the distance has the disadvantage that the marginal effects should not be interpreted as

derivatives even in large samples. The advantage consists in the fact that the denominator

does not come too close to zero and the predicted values generally have a difference which

is measured larger than zero by the computer. Furthermore, the “marginal” effects have the

clear interpretation of varying xik by 0.02 units.27

3 The Monte Carlo study

3.1 Monte Carlo studies in general

Since the objective of the thesis is to compare different properties of estimators, one needs a

method which allows such comparisons. Instead of comparing the estimators on theoretical

basis, I will conduct several Monte Carlo studies. The structure of the Monte Carlo study is

the following. First, I will generate data from a known true data generating process.28 After

the data is generated, several estimators are calculated. After obtaining the estimators of

interest, several quantities (RMSE´s and ME´s) are calculated and compared with those of

the true DGP. This procedure is iterated several times. In the following, I will describe the

setup of the Monte Carlo study.

The Monte Carlo study is done in three steps and then iterated R times.

i) Data is generated from a DGP:

A researcher who conducts an econometric study in a binary choice context usually has

the following data at hand: {yi, Xi}Ni=1 where yi is the dependent and Xi are the independent

variables. In a first step, the Monte Carlo study assumes a specific DGP and generates the

data. For interpretational convenience, the data is generated using an index function model.

This has been implemented as follows.

a) Draw N -times Xi´s and ui´s from some random number generator.

b) Choose a function which links the Xi´s and ui´s to the latent index y∗i . Usually this is

done in a linear fashion, i.e. y∗i = Xi� + ui. Hence, in the linear case one has to fix the true

270.02 units usually correspond to a change which is 2% of the standard deviation of the xik´s.
28These data will come from random number generators in MATLAB.
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coefficient vector �.

c) Given y∗i , one generates the yi using the following rule: for all i with y∗i > 0, choose

yi = 1. For the remaining i ´s choose yi = 0. Notice, that at this point we know the quantities

{yi, y∗i , Xi, �, ui}Ni=1. Since the researcher only knows {yi, Xi}Ni=1 these are the only informa-

tion which are used in the next step.

ii) Estimation:

As stated in chapter 1 we are interested in different properties of the estimators. Usually

statistical properties of interest are the following. Is an estimator unbiased? Is it consistent?

And given that it is both, which estimator is most efficient. Still the question remains: “what

is the object of interest?”

In the linear regression framework the standard answer would be �. However, in the binary

choice context an interpretation of �j would be that it corresponds to the expected marginal

effect of an increase in xj on the latent index (which can represent utility) and is hard to

interpret. Hence, the interest of the researcher in the parameter value � is assumed to be

limited.29 It seems plausible that the following two quantities are of major interest in the

binary choice context: ŷi the predicted value for the likelihood that an individual has y = 1

and the M̂E ´s, which are the estimators of the marginal effects discussed in chapter 1. For

the estimator of ŷ the RMSE is used as the main of performance measure. For the M̂E´s the

property of unbiasedness is considered via looking at small samples. Consistency is informally

checked by looking at large samples and the behaviour of the variance of the M̂E´s. Efficiency

is considered via the comparison of the variance of those estimators which are consistent.

a) For each of the seven estimators the quantities of interest are calculated. The quantities

of interest are RMSE, RMSE80, RMSEs0_5, SWP0_95, for the performance of the estimators

ŷ, and the marginal effects at the first- and third quartile as well as the marginal effects at

the average and the average marginal effects (for details see chapter 1).

b) Given the true DGP, the true marginal effects are calculated in each iteration by re-

placing the realizations of Xi in the corresponding true functional form of the marginal effects.

iii) Repetition:

After the computation of the quantities of interest a new set of random variables, i.e.

{Xi, ui}Ni=1, is drawn and step i) and ii) are repeated R times.

iv) Summary of results:

After the R repetitions the results of the Monte Carlo study are summarized and presented.

29Furthermore it is relatively obvious that the parameter estimate will depart substantially from the true
parameter, when the functional form is misspecified. Still it might be the case that the marginal effect on the
probability of y = 1 (the observed variable) might be close to the truth, even under misspecification of the
functional form.
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3.2 The different Monte Carlo setups

Since the results of the Monte Carlo study are specific to the assumed DGP, the DGP is

varied across many dimensions. Ten different setups are considered. There is a clear division

between the 10 setups. The setups S1 i) - S1 vii) share the following property. Asymptotic

theory predicts, that under each of the setups one parametric estimator is efficient and Klein

and Spady´s estimator is consistent. The setups S2 i) - S2 iii) share the following. Theory

predicts, that none of the estimators under consideration is consistent. The main point of

this analysis is how severe the deviations from the truth are (for example, if the signs of the

marginal effects change). The following table gives a summary of the different setups.

Table 9: Summary of the Monte Carlo setups

Setup DGP Main concern

S1: i) y∗ =
∑3

j=1 �jxj + u ; u is normal Performance under standard assumptions

S1: ii) y∗ =
∑3

j=1 �jxj + u ; u is logistic Performance under standard assumptions

S1: iii) y∗ =
∑3

j=1 �jxj + u ; u is Cauchy Performance under fat tails

S1: iv) y∗ =
∑3

j=1 �jxj + u ; u is Gumbel Performance under skewness

S1: v) y∗ =
∑3

j=1 �jxj + u ; u is mixture normal Performance under multimodality

S1: vi) y∗ =
∑6

j=1 �jxj + u; u is normal Performance with many regressors

S1: vii) y∗ =
∑3

j=1 �jxj + u; u has outliers Performance under presence of “outliers”

S2: i) y∗ =
∑2

j=1 �jxj + ln(x3) + u; u is normal Behaviour under misspecified index

S2: ii) y∗ =
(

∑3
j=1 �jxj

)3
+ u; u is normal Behaviour under misspecified index

S2: iii) y∗ =
∑4

j=1 �jxj + u; u is normal Behaviour under omitted variables

In the following, I will give a more detailed description of the different Monte Carlo se-

tups. If not mentioned differently, the regressors Xi are drawn from the standard normal

distribution. Further, the marginal effects are calculated for the last observed variable and

the number of repetitions was 200. The number of observations was element of the set

Nobs = {50, 100, 250, 500, 750, 1000}.

Setup 1 i) is the setup which is often implicitly assumed, when a researcher uses a pro-

bit model. The DGP is given by y∗ =
∑3

j=1 �jxj + u , where the true � coefficient vector

is
(

2 −0.5 1
)′

. The error term u is drawn from a standard normal distribution. Hence

theory predicts that the optimal model is the probit model.

Setup 1 ii) uses the following DGP. The latent index is given by y∗ =
∑3

j=1 �jxj + u ,

where the true � coefficient vector is ( 2 −0.5 1 )′. The error term u is drawn from a lo-

gistic distribution, with location parameter 0 and scale parameter 1.30 Theory predicts that

30Some of the (pseudo) random number generators were not implemented in Matlab. If this was the case, I
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the logit model is optimal.

Setup 1 iii) has the following DGP. The latent index is given by y∗ =
∑3

j=1 �jxj + u ,

where the true � coefficient vector is ( 2 −0.5 1 )′. The error term u is drawn from a

Cauchy distribution. Hence the first moment of the error term does not exist. This setup

is therefore concerned with the performance of the estimators, when the density of the error

term has very fat tails.

Setup 1 iv) has the following DGP. The latent index is given by y∗ =
∑3

j=1 �jxj + u ,

where the true � coefficient vector is ( 2 −0.5 1 )′. The error term u is drawn from a

Gumbel distribution. The PDF of the Gumbel distribution is given by the following formula

f(z) = e−e−(z−�)/�
. The following parameter values were chosen: � = 1 and � = −0.5772.

The parameters are chosen such that E(u) = 0. Due to the fact that the Gumbel distribution

has a skewness of ≈ 1.14, this setup is concerned with the performance of the estimators when

the error terms are skewed.

Setup 1 v) uses a DGP for the latent index, which is given by y∗ =
∑3

j=1 �jxj + u ,

where the true � coefficient vector is ( 2 −0.5 1 )′. The error term u is drawn from a

symmetric mixture normal distribution. The mixture distribution of u has the PDF f(z) =
1
2�(z + 2) + 1

2�(z − 2), where �(⋅) denotes the PDF of a standard normal distribution. Hence

the mixture distribution used consists of two equally weighted normal distributions with mean

-2 and 2, and variance of 1. The PDF of the distribution is depicted in Figure 2. Since the

distribution is bimodal31 the setup is concerned with errors that are bimodal which results in

a non-standard link function.

Setup 1 vi) uses a DGP, which is given by y∗ =
∑6

j=1 �jxj + u , where the true � coefficient

vector is ( 1 1 1 1 1 1 )′. The error term u is drawn from a standard normal distri-

bution. Hence theory again suggests that the optimal model is the probit model. First, this

setup was constructed to check the robustness of the results for more than three non-constant

regressors. Second, this setup will shed some light on the differences in the performance of the

semiparametric estimators, when the dimension of X changes. From a theoretical perspective

this change should not be substantial. This stems from the fact that the estimators reduce

the dimensionality of their nonparametric part through the single index stucture.32

Setup 1 vii) uses the following DGP, which is given by y∗ =
∑3

j=1 �jxj + u, where the

true � coefficient vector is ( 2 −0.5 1 )′. The error term consists of a mixture of three

normal distributions. 10% of the data are generated by a normal distribution with mean -1

programmed the random number generators using the uniform random number generator and evaluating the
inverse of the distribution function of interest. The method is described in the appendix.

31The modes are near -2 and 2.
32The semiparametric estimators use X ′

i� which is a scalar instead of Xi which is k-dimensional for the
nonparametric estimation.
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and standard deviation 1, 80% stem from a standard normal distribution and the remaining

10% come from a normal distribution with mean 1 and standard deviation 1. Hence the setup

is not concerned with single classical isolated outliers. However, it is likely by construction

that some observations will occur as if they were pure outliers, especially in smaller samples.

Setup 2 i) uses y∗ =
∑2

j=1 �jxj+�3ln(x3)+u as the DGP. The error terms were drawn from

a standard normal distribution. Since the natural logarithm ln(⋅) is not defined for negative

inputs, the regressors x3 are drawn from the lognormal distribution, whose support is positive.

To make the setup similar to the first seven setups I transformed the random variables and the

coefficients such that E(y∗) = 0 and hence E(p) = 0.5.33 In the estimation, the variable x3

instead of ln(x3) enters the index. This setup is motivated through the fact, that in empirical

applications one usually does not know the exact relation between x and y. Since the func-

tional form of the index is misspecified, it is unlikely that any of the estimators will estimate

the marginal effects consistently. However, since the ln(⋅) is a positive monotone transforma-

tion, the models should be able to estimate the sign of the marginal effects consistently.

Setup 2 ii) has the following DGP. y∗ =
(

∑3
j=1 �jxj

)3
+ u. u is drawn form a stan-

dard normal distribution and � = ( 2 −0.5 1 )′. Setup 2 ii) is similar to setup 2 i). Again

we assume that the exact form of the index function is not known. Hence in the estimation
∑3

j=1 �jxj is used as the index. The interest focuses on the question if the sign of the marginal

effects is estimated consistently given positive monotone transformations of the index.

Setup 2 iii) has the DGP y∗ =
∑4

j=1 �jxj + u . The first two regressors and u are drawn

from standard normal distributions. {xi3, xi4}Ni=1 are drawn from a multivariate normal dis-

tribution with correlation � = 0.5. The coefficient vector is � = ( −1 −.5 1 −2 )′. For

the estimation it is further assumed that {xi4}Ni=1 is unknown. In a linear model, the omitted

variable would lead to a downward bias in �̂3. Since the link function is monotone, I expect

that the marginal effects are as well downward biased.

33This was done as follows. x1 was drawn from a normal distribution with expected value of one, x2

was drawn from a standard normal. x3 was drawn such that ln(x3) had an expected value of one. Since
� = ( −1 −0.5 1 )′, the expected value of y∗ is zero.
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4 Results

This chapter describes the results of the ten different Monte Carlo setups. Since the

bandwidth choice and the calculation method of the marginal effects for the LLL estimator

have a huge effect on the estimates, the chapter starts with a discussion of the specifications of

the LLL estimator. Afterwards, the discussion of the results of the ten different Monte Carlo

setups focus on three aspects. First, the predictive performance of ŷ is discussed. Second, the

results for the average marginal effect, the marginal effect at the average and the marginal

effects at the first and third quartile are presented. Finally, for the Monte Carlo setups S1 i) -

S1) vii), the distributions of the average marginal effects are presented. The reason why this

presentation seems relevant is the fact that theory predicts that some estimators should have

asympotically normally distributed average marginal effects.34 Since it is not a priori obvious

which sample size is sufficient, such that the estimators of the marginal effects are more or less

normal distributed, the visual presentation might help to get an idea, when this is the case.35

The asymptotic normal distribution of the average marginal effect estimators is at least in two

ways useful. First, it allows to conduct usual t-tests. Second, a test proposed in chapter 5

which helps deciding between a parametric and a semiparametric estimator is based on the

assumption of normally distributed estimators of the average marginal effects.

The amount of results produced makes it impossible to describe them completely within the

thesis. Since a graphical presentation has the advantage to describe a great number of results

in an accessible manner, I decided to present the results via graphs. As the disadvantage of

the graphical presentation is less accuracy I offer to give the exact results on request. Further,

I made the decision to present the graphs within the text. This shall enable the reader to form

his own opinion regarding the results of each setup directly (without switching from the text

to the appendix). The results of the first Monte Carlo setup presented in chapter 4.2. will

be described extensively, while the remaining setups will be described more briefly. Still the

graphical presentation allows the reader to form his own opinion of the results of each setup.

For the reader exclusively interested in the main results I suggest to skip the description of

the single setups and to go directly to the end of chapter 4.8. The main conclusions regarding

the results of the first seven setups are given there. For the reader specifically interested in a

particular setup I suggest to read chapter 4.2. first and then to go to the setup of interest.

34Given that the coefficient estimates are asymptotically normal, the parametric estimators should deliver
estimates of the average marginal effects which are asymptotically normally distributed. Further, Klein and
Spadys estimator should as well have asymptotically normal estimated average marginal effects. A heuristic
explanation for this is given in the appendix.

35It should be kept in mind that due to the full dependence of the results on the assumed DGP extrapolation
of the results might not be valid.
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4.1 Bandwidth choice and marginal effects method for the LLL estimator

In the following, I will present the results of six different specifications for the LLL estimator.

The results presented are the RMSE, the average marginal effect and the marginal effect at

the first quartile for the standard setup S1 i) where errors are normally distributed. The

specifications are three choices of the bandwidth combined with two ways of calculating the

marginal effects. The bandwidth choice was half (ℎ = 0.5S), twice (ℎ = 2S) Silverman´s

plug-in estimate and Silverman´s plug-in estimate itself (ℎ = S) as discussed in chapter 2.2.1.

The calculation of the marginal effects was performed either over finite differences (FD) or the

partial derivative (PD) as discussed in section 2.2.3.

Table 10: Results of the LLL specifications

Quantity Specification n=100 n=500 n=1000

RMSE ℎ = S 0.22 0.27 0.28

ℎ = 0.5S 0.06 0.15 0.18

ℎ = 2S 0.28 0.29 0.3

AvME ℎ = S, PD -8.49 0.90 0.49

ℎ = S, FD 0.13 0.16 0.17

ℎ = 0.5S, PD -183.81 0.08 0.33

ℎ = 0.5S, FD 0.04 0.09 0.14

ℎ = 2S, PD 0.33 0.41 0.38

ℎ = 2S, FD 0.17 0.16 0.16

True 0.16 0.16 0.16

MEQ1 ℎ = S, PD 0.16 0.05 0.04

ℎ = S, FD 1.82 0.10 0.07

ℎ = 0.5S, PD -0.0003 -0.077 0.2813

ℎ = 0.5S, FD 0.09 -0.25 0.003

ℎ = 2S, PD 0.063 0.077 0.074

ℎ = 2S, FD 0.069 0.084 0.083

True 0.10 0.10 0.10

As one can see from Table 10, the estimated marginal effects are closest to the true value,

when the bandwidth choice is the largest and the finite difference method is used. Further,

the results with respect to the RMSE are best when the bandwidth is small. At first glance

this might seem surprising. Hence, I try to give an intuitive explanation for the results, but

do not attempt to formalize the ideas. As the bandwidth choice decreases the local character

of the estimation becomes more pronounced. In the limit, as ℎ → 0 the local estimator takes

only one value of X into account. If the value for X happens to be in the sample, the local

estimator assigns the corresponding value of y for ŷ,36 if it is not, the corresponding value is

zero. Mechanically, this results in an estimation where ŷ → y, hence the following assertion

36More exactly the �̂´s are chosen such that ŷ takes the value of y. As an aside there will be an identification
problem for ℎ → 0, since only one sample point is used to estimate k parameters. Additionally this only holds
if the values X is taken by only one sample point. However the idea stays the same if there are several sample
points with the same value of X.
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seems reasonable. As ℎ tends to zero, the RMSE should tend to zero as well. On the other

hand as ℎ becomes small the changes in the prediction of y are rapid. Again looking at the

limiting case might help to get an intuition. As one changes X marginally, starting from a

point in the sample with y = 1, it is most likely that for ℎ ≈ 0 the predicted value jumps from

1 to 0. Therefore, the estimation of the marginal effects via finite differences does not seem

accurate for small ℎ. Again, as discussed in section 2.2.3, when considering a uniform kernel

and ℎ ≈ 0 only few values in the sample are taken into account to estimate k parameters of

the vector �. Therefore, it is no surprise that the estimation of � becomes inaccurate. This

reasoning might explain the poor performance of the analytical derivative for small ℎ. As a

result the LLL estimator is considered with bandwidth equalling twice Silverman´s plug-in

estimate and the finite difference method is used for the estimation of the marginal effects.
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4.2 Setup 1 i): Normally distributed errors

Figure 6 describes the performance of the estimators with respect to their predicted values ŷ.

The upper left graph describes the mean of the RMSE for the five estimators given in the legend

as the sample size varies. The upper right graph describes the evolution of the mean of the

RMSE for the inner 80% of the sample. The lower left graph displays the mean of the RMSE

using zero-one predictions. The lower right graph describes the share of “wrong” predictions

given that p̂i > 0.95. The results for the OLS estimator (used in the linear probability model)

are not displayed. The RMSE´s of OLS take on values between 0.53 and 0.63 and given

that p̂i > 0.95 no individual had a value of yi = 0. The main results of the graphs are the

following. Regarding the RMSE, the LLL estimator outperforms all other estimators. This

is not surprising given the local character of the estimation. This result is very robust across

setups and will therefore not be discussed in the remaining setups. The probit and logit

estimators have nearly the same RMSE. The cauchit estimator becomes worse and Klein and

Spady´s estimator becomes relatively better as the sample size increases. The results for the

inner sample (RMSE80, upper right corner) are similar. Given zero-one predictions (lower

left corner) cauchit, KS and LLL outperform the logit and probit estimators. The lower right

graph depicts the share of “wrong” predictions, where “wrong” means that an individual with

p̂i > 0.95 has a value of yi = 0. This measure should be smaller than 5%. All estimators fulfill

this criterion, they all lie below 1.2%.

Figure 6: Performance of ŷ given u is normal

Figure 7 depicts the estimates of the average marginal effect and the marginal effect at the

average. The upper graphs display the means, whereas the lower graphs display the standard

deviations. All estimators, except the cauchit estimator, appear consistent for the average

marginal effect. Klein and Spady´s estimator improves substantially when the sample size

increases, however the sample size was insufficient to assess formal consistency. The probit and
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logit model have a low variance. As theory would suggest, it seems that the probit estimator

is asymptotically efficient.

The only estimator which appears consistent for the marginal effect at the average is

the probit estimator. The deviations of the estimates from the LLL, KS and logit estimator

to the true value are minor. KS´s estimator improves substantially when the sample size

increases. Due to the fact that the sample size was not sufficiently large a final assessment

of KS´s consistency is not possible. Since the deviations of the estimates from OLS and the

cauchit model to the true value are large, their performance with respect to the marginal effect

at the average is poor.

Figure 7: Average ME and ME at average for u normal

Figure 8 displays the mean and the standard deviation of the estimates of the marginal

effects at the quartiles. As for the marginal effect at the average, the only consistent estimator

for the marginal effects at the quartiles is the probit estimator. Again the sample size

is insufficient for the assessment of KS´s consistency. The deviations for KS, LLL and logit

to the true value are minor, whereas OLS and cauchit perform poorly. Moreover it is worth

noticing that the standard deviation of the estimated marginal effect at the quartiles from the

LLL model does not decrease uniformly with growing sample size.

As one will see later on, the pattern above repeats over most of the setups in the Monte

Carlo study. Most estimators perform well in estimating the average marginal effect and in

general the performance of the parametric estimators, except the one with properly specified

likelihood, is poor for the marginal effect at the mean or the quartiles.
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Figure 8: ME at first quartlile and third quartile for u normal

Figure 9 to 11 depict the distribution of the estimates for the average marginal effects.

The two axis at the bottom describe the sample size and the value of the average marginal

effect. The vertical axis describes the value of a density estimate. Hence, slices along the

axis, holding the number of observations constant, describe an estimate of the density of the

average marginal effect estimator. The upper graphs attempt to present the distributions for

small samples and the lower graphs focus on the distribution for large samples. The discussion

is very informal. The advantage of the graphs is that the behaviour of the estimators for the

average marginal effect, for different sample sizes, is easily seen. A disadvantage is that the

tail behaviour is hard to interpret. Therefore it might be the case that an estimator appears

normally distributed in the picture, but has substantial excess probability mass in the tails.

This limitation should be kept in mind.

The main points to notice are the following. The distribution of the estimated average

marginal effects of the parametric estimators appears normal, even for relatively small sample

size. Klein and Spady´s estimator produces estimates of the average marginal effect which seem

non-normal for small samples but become normally distributed as the sample size increases.

Even in large samples the LLL estimator appears non-normal at the tail of the distribution

(around 0.2). The relative frequency does not decline smoothly. However, with the exception

of the tail behaviour the distibution appears normal. This result could be due to the limited

number of repetitions (R=200) in the Monte Carlo study.
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Figure 9: Distribution average ME, Probit and Logit, u is normal

Figure 10: Distribution average ME, OLS and Cauchit, u is normal
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Figure 11: Distribution average ME, KS and LLL, u is normal
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4.3 Setup 1 ii): Logistic distributed errors

The results for the estimators of ŷ are similar to those of the previous setup. The LLL esti-

mator performs best. The estimators derived from the logit and probit model have nearly the

same RMSE. Looking at zero-one predictions the cauchit-, and Klein and Spady´s estimator

outperform the logit and probit estimators. The mean share of wrong predictions is lower than

3% for all estimators. Note though that the mean share of wrong predictions is higher than in

the previous setup in general. The OLS estimator (not displayed) has a RMSE between 0.55

and 0.65 and the share of wrong predictions is zero in all samples.

Figure 12: Performance for ŷ given u is logistic

As in the previous setup all the estimators perform well with respect to the average marginal

effect. Only Klein and Spady´s estimator deviates substantially from the true value in small

samples, but improves as the sample size increases. OLS and cauchit substantially underesti-

mate or overestimate the marginal effect at the average. The LLL estimator has the highest

variability.
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Figure 13: Average ME and ME at average for u logistic

As expected, the logit estimator estimates the effects at the quartiles consistently. The

deviations of the remaining estimators, except cauchit, are of magnitude smaller than 0.02.

At least for the OLS estimator this result seems to be a coincidence, resulting from the fact

that the true average marginal effect nearly coincides with the marginal effects at the first and

third quartile. As for the setup with normally distributed errors, the standard deviation of

the LLL estimator seems not to diminish uniformly as the sample size grows.

Figure 14: ME at first quartlile and third quartile for u logistic
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The distributional pattern of the estimated average marginal effects is mainly similar to

those resulting from the setup with normally distributed errors. All estimators appear normally

distributed. Moreover the shapes of KS´s and the LLL estimator look more like a normal

distribution than in the setup with normal distributed errors.

Figure 15: Distribution average ME, Probit and Logit, u is logistic

Figure 16: Distribution average ME, OLS and Cauchit, u is logistic
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Figure 17: Distribution average ME, KS and LLL, u is logistic
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4.4 Setup 1 iii): Cauchy distributed errors

Running the simulation with fat tailed, Cauchy distributed errors, the semiparametric esti-

mators outpeform the parametric ones with respect to the RMSE. In the class of parametric

estimators, the theoretically efficient cauchit estimator outperforms both logit and probit. The

mean share of “wrong” predictions varies substantially across estimators. KS´s share of wrong

predictions is below 1%, Cauchit´s and LLL´s near 5 % and the share of wrong predictions for

the logit and probit model is generally above 5%. The OLS estimator (not displayed) has a

RMSE of around 0.55 to 0.65 and a share of wrong predictions substantially above zero, more

exactly the share increases from 1% to 4% as the sample grows. From setup 1 i) - setup 1 iii)

a potential hypothesis could be that higher kurtosis of the error term leads to a higher share

of “wrong” predictions in the upper tail of ŷ. However, as we will see in the next setup the

share of “wrong” predictions at the upper tail is lower for Gumbel distributed errors than for

logistic distributed errors (even though the Gumbel distribution has a higher kurtosis). Thus,

the effect of the kurtosis of the error term on the share of “wrong” predictions seems unclear.

Figure 18: Performance for ŷ given u is Cauchy

Surprisingly for the first non-standard distribution of the error term, the picture for the

average marginal effect looks similar to those presented before. Speaking from consistency

in a strict statistical sense is problematic. However the deviations of the estimators from

the true model are minor. Initially KS´s estimator performs poorly, but as before becomes

substantially better with growing sample size.

Looking at the estimated marginal effects at the mean reveals, that the cauchit estimator

performs best, whereas for large N the two semiparametric estimators are ranked second and

third. The remaining parametric estimators perform poorly.
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Figure 19: Average ME and ME at average for u Cauchy

As above the best performing estimators for the marginal effects at the first and third

quartile are, cauchit and KS. Since the standard deviation of the LLL estimator is not uni-

formly decreasing, the hypothesis of LLL being consistent for the estimation of the marginal

effects at the quartiles is not supported.

Figure 20: ME at first quartlile and third quartile for u Cauchy
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The results for the distribution of the estimated average marginal effects displayed in Figure

21-23 are the following. As for the setups before the shape of the distributions looks for not

too small samples similar to a normal distribution.

Figure 21: Distribution average ME, Probit and Logit, u is Cauchy

Figure 22: Distribution average ME, OLS and Cauchit, u is Cauchy
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Figure 23: Distribution average ME, KS and LLL, u is Cauchy
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4.5 Setup 1 iv): Gumbel distributed errors

Next the results for errors drawn from the skewed Gumbel distribution are presented. The

performance ranking for the RMSE (Figure 24) is the following. The LLL estimator performs

best. Second best is the “true model” which uses the appropriate transformation of the Gumbel

distribution as the link function. Third ranks Klein and Spadys estimator. For Gumbel

distributed errors the share of wrong predictions lies consistently below 1%.

Figure 24: Performance for ŷ given u is Gumbel

For the mean of the estimated average marginal effects (Figure 25) the differences across the

estimators are minor. The parametric estimators, with the exception of the cauchit estimator,

perform very well. As before KS´s estimator performs better, when the sample size increases.

For the marginal effect at the average, the ranking is as follows. The model which uses

the true link function (true model) performs best, followed by the probit-, the LLL- and KS´s

estimator. The deviations for the cauchit and the OLS estimator are sizeable.
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Figure 25: Average ME and ME at average for u Gumbel

The true model performs best, when one considers the marginal effects at the quartiles.

Klein and Spady´s estimator again becomes better as sample size increases. The LLL estima-

tors standard deviation does not decrease as the sample size grows. The performance of the

cauchit estimator is worst.

Figure 26: ME at first quartlile and third quartile for u Gumbel
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Figures 27-30 below show symmetric distributions, which appear normal.

Figure 27: Distribution average ME, Probit and Logit, u is Gumbel

Figure 28: Distribution average ME, OLS and Cauchit, u is Gumbel
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Figure 29: Distribution average ME, KS and LLL, u is Gumbel

Figure 30: Distribution average ME, True Model, u is Gumbel
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4.6 Setup 1 v): Bimodal errors

The following setup uses bimodal errors. With respect to the RMSE and the RMSE for the

inner 80%, the semiparametric estimators perform best. Then the “true model” follows. Using

the zero-one predictions the true model performs worst. The mean share of “wrong” predictions

is below 2% for all estimators.

Figure 31: Performance for ŷ given u is mixture normal

The estimators perform well in estimating the average marginal effects. Cauchit and KS

perform worse than the others. As frequently observed before, KS´s estimator becomes better

as the sample size increases.

For the marginal effects at the average the only estimators with a decent performance are

the ones derived from the true model and KS´s estimator.
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Figure 32: Average ME and ME at average for u mixture normal

Considering the performance with respect to the estimation of the marginal effects at the

quartiles, the estimator derived from the true model performs best. The performance of KS´s

and the LLL estimator appears acceptable. The LLL estimator has again the property that

its standard deviation does not uniformly decrease as the sample size increases.

Figure 33: ME at first quartlile and third quartile for u mixture normal
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The distribution of the estimated average marginal effects again appear normal for medium

and large samples.

Figure 34: Distribution average ME, Probit and Logit, u is mixture normal

Figure 35: Distribution average ME, OLS and Cauchit, u is mixture normal
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Figure 36: Distribution average ME, KS and LLL, u is mixture normal

Figure 37: Distribution average ME, True model, u is mixture normal
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4.7 Setup 1 vi): Many regressors

This setup is concerned with the performance of the estimators when the number of noncon-

stant regressors is increased from three to six. The performance of the estimators with respect

to ŷ is similar to their performance with three regressors. The LLL estimator has an even

lower RMSE, whereas the remaining estimators have similar RMSE´s. The mean share of

“wrong” predictions is below 2% for all estimators.

Figure 38: Performance for ŷ given u is normal, many regressors

The performance of the estimators with respect to the average marginal effect is very

similar to their performance in the three regressor case. All estimators perform acceptably.

There is no substantial difference in the performance of Klein and Spady´s estimator, when

varying the number of regressors. This is probably due to the semiparametric character of the

estimator, which reduces the dimensionality of the nonparametric estimation. The parametric

estimators, except cauchit, outperform the semiparametric ones.

Acceptable estimators for the marginal effect at the average are probit, logit, KS and LLL.

Figure 40 shows that the marginal effects at the quartiles (which are close to zero by

construction), are reasonably estimated by all estimators except OLS and the LLL estimator.

For the LLL estimator again twice Silverman´s plug-in estimate was used as the bandwidth

choice. This might be the main reason for the relatively poor performance at the quartiles and

the substantially higher standard deviation at the average marginal effect and the marginal

effect at the average. An initial guess would be that the bandwidth choice should substantially

increase as the number of regressors increases. Further it might be the case that the optimal

bandwidth choice by cross validation has this property. Hence one conclusion of this setup is,

that a careful analysis of the local likelihood logit estimator by Frölich (2006) should take its

sensitivity with respect to the bandwidth choice into account.
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Figure 39: Average ME and ME at average for u normal, many regressors

Figure 40: ME at first quartlile and third quartile for u normal, many regressors
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Comparing the distributions of the estimated average marginal effects reveals the following.

No sizeable changes in the distribution occur for the probit-, logit-, cauchit-, OLS- and Klein

and Spadys estimator. The LLL estimator has a high variability in the estimation of the

average marginal effect. This variability could be reduced by choosing higher values of the

bandwidth.

Figure 41: Distribution average ME, Probit and Logit, u is normal, many regressors

Figure 42: Distribution average ME, OLS and Cauchit, u is normal, many regressors
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Figure 43: Distribution average ME, KS and LLL, u is normal, many regressors
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4.8 Setup 1 vii): Errors with more mass in the tails

In this setup no true model was considered. Figure 44 depicts the true error distribution used

in the DGP. Since there were major computational problems in the estimation of the marginal

effects for the LLL estimator, this setup used sample sizes ranging from 250 to 1000.

Figure 44: True error PDF and CDF

The RMSE and RMSE for the inner 80% of the sample are smallest for the LLL estimator.

Klein and Spady´s- and the cauchit estimator have the highest RMSE´s. For the zero-one

predictions LLL performs best, whereas logit and probit perform worst. As usual OLS is not

displayed and has a substantially higher RMSE. The share of wrong predictions is at most

1.2%.

Figure 45: Performance for ŷ given u has more mass in the tails
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All estimators perform well in estimating the average marginal effects. KS and cauchit

rank least. The marginal effect at the average is estimated well by probit. The performance

of logit, LLL and KS is acceptable.

Figure 46: Average ME and ME at average for u has more mass in the tails

It seems that the probit model is able to estimate the marginal effects at the quartiles fairly

well, while OLS and cauchit perfom poorly. The performance of the remaining estimators´

is acceptable. As usual, the problem that the LLL´s standard deviation not decreasing with

increasing sample size remains.

Figure 47: ME at first quartlile and third quartile given u has more mass in the tails
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All estimators, except the LLL estimator appear more or less normally distributed (Figure

48-50).

Figure 48: Distribution average ME, Probit and Logit given u has more mass in the tails

Figure 49: Distribution average ME, OLS and Cauchit given u has more mass in the tails
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Figure 50: Distribution average ME, KS and LLL given u has more mass in the tails
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Summarizing the main results of the first seven Monte Carlo setups six aspects can be perceived

1) Regarding the RMSE the local likelihood logit estimator performs best, resulting from

the flexibility of the estimator. In general, Klein and Spady´s estimator ranks within the top

estimators regarding the RMSE. Furthermore, in the class of the parametric estimators the

true model usually performs best.

2) The share of wrong predictions is below 3% for almost all setups (except for the setup

with Cauchy distributed errors).

3) With respect to the average marginal effect, the performance of all estimators is good.

This supports inter alia the hypothesis that the linear probability model, which uses the OLS

estimator, is useful in estimating the average marginal effect. The cauchit estimator generally

performs worst (except in the case of Cauchy distributed errors). A good performance of Klein

and Spady´s estimator requires a large sample.

4) The performance concerning the marginal effects at specific points varies. Usually the

only model which estimates the marginal effects close to the true value is the model derived

from the true distribution. Klein and Spady´s estimator comes closer to the true value as

sample size grows and is often ranked second. The LLL estimators standard deviation is fre-

quently not uniformly decreasing. The performance of the remaining parametric models is

generally poor.37

5) The graphical inspection of the distribution of estimated average marginal effects indi-

cates that for sufficiently large samples, the estimated average marginal effects approximately

follow a normal distribution for almost all estimators.

6) The performance of Klein and Spady´s estimator seems relatively unaffected by the inclu-

sion of additional regressors. Moreover, the rule of using twice Silverman´s plug-in estimate for

the bandwidth choice of the local likelihood estimator seems not reasonable when the number

of regressors increases. A suggestion could be the use of cross validation or at least to increase

the bandwidth “manually” as the number of regressors rises.

37It could be added that minor deviations from normality as present in setup vii) do not lead to extreme
changes in the performance of the probit estimator.

68



4.9 Setup 2 i): Wrong index function (ln(x) vs. x)

In setup 2 i) the functional form of the index is misspecified. The true index of the DGP uses

ln(x3) whereas the estimators use x3. Comparing the results from the well specified setup 1i)

with those of the current setup reveals that every estimators RMSE is higher in the current

setup, with the exception of OLS. Further the mean share of “wrong” predictions for the OLS

estimator is substantially higher than usual.

Figure 51: Performance for ŷ given wrong index function

The main conclusion from Figures 52-53 is that all estimators estimate the sign of the

marginal effects correctly. Further, the performance with respect to the different marginal

effects varies. The decent performance of the estimators regarding the average marginal effect

does not carry over when the index is misspecified. The good performance of the probit

estimator with respect to the marginal effect at the average could be due to the following.

First, notice that the expected value of the third regressor is one. The true marginal effect

is given by: ∂G(x1�1+x2�2+ln(x3))
∂x3

= g(x1�1 + x2�2 + ln(x3))
1
x3

and the misspecified marginal

effect equals ∂G(x1�1+x2�2+x3�3)
∂x3

= g(x1�1+x2�2+x3�3)�3. Due to the fact that f(x) = ln(x)

behaves similar to ℎ(x) = x around x = 1 (which can be seen by a taylor expansion) it is likely

that the performance of the probit model with respect to the marginal effect at the average is

due to E(x3) = 1.

Moreover, no estimator is able to capture the fact that the true marginal effects at the first

and the third quartile differ. As stated before, the main conclusions are: with a monotonically

misspecified index the estimators estimate the sign of the marginal effects correctly, however

the point estimates are not reliable.
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Figure 52: Average ME and ME at average given wrong index function

Figure 53: ME at first quartlile and third quartile given wrong index function
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4.10 Setup 2 ii): Wrong index function ((X ′�)3 vs. X ′�)

The following setup is again concerned with the importance of specifying the index function

correctly. Here the correct index is (X ′�)3 but the researcher wrongly assumes that the index

is given by X ′�. The upper graph of Figure 54 describes the true conditional expectation

E(Y ∣X) and the one assumed, given the correct link function. The lower graph describes the

true and the assumed marginal effects.

Figure 54: True versus assumed conditional expectation and marginal effects

As visualized in Figure 55, the perfomance for the prediction of ŷ, does not differ substan-

tially from the setups where a correct index function was used. The RMSE of OLS is near 0.6

and its mean share of wrong predictions is zero.
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Figure 55: Performance for ŷ given wrong index function

The results for the average marginal effects (Figure 56) are suprising. All estimators

perform well. This can be explained by the true average marginal effect being very similar

to the one in setup 1 i). Since the estimators use the same information as in setup 1 i) and

a positive monotone transformation of the index, does not change the individual yi´s the

resulting estimates are identical. The performance of the estimators for the marginal effect at

the average is different. All the estimators substantially overestimate the marginal effect at

the average. As one can see from Figure 54 the theoretical marginal effect is close to zero. As

the sample size increases the realizations of the mean of X ′� come closer to the theoretical

moment and hence the true marginal effect approaches zero.

Figure 56: Average ME and ME at average given wrong index function
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As for the marginal effect at the average, the performance for the marginal effects at the

quartiles is poor (Figure 57). The unusual behaviour of the true marginal effects changing

with sample size can be explained as follows. For large samples the realization of the quar-

tiles of the individual regressors will be close to their theoretical values. For the setup under

consideration the theoretical quartile of the index given standard normal distributed regres-

sors becomes Q0.25(X)� ≈ [−0.68,−0.68,−0.68] ⋅ [2,−0.5, 1]′ = −1.7. The corresponding true

marginal effect is zero (see Figure 54). However for small samples the realizations of the quar-

tiles can deviate substantially and hence the true marginal effect is substantially above zero.

Figure 57: ME at first quartlile and third quartile given wrong index function

The conclusion for this setup is the following. With a misspecified index function none of

the estimators under consideration is able to estimate the marginal effects at specific points

consistently. However it should be noticed that the signs of the marginal effects are estimated

consistently for all estimators.
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4.11 Setup 2 iii): Omitted variable bias

Omitted variable bias (OVB) is a classical problem in econometrics. This setup is introduced

to show the limitations of the preceding analysis. The thesis is not concerned with the var-

ious effects of omitted variable bias in nonlinear models.38 It seems to be consensus among

econometricians that nonlinearity complicates the analysis of marginal effects under omitted

variable bias substantially.

The RMSE is on average higher than in the well specified setups (Figure 58). The share

of “wrong” predictions yields an interesting finding. While OLS had no “wrong” predictions

in most setups, the share of wrong predictions given OVB is ≈ 20%.39 This result might be

useful to develop a test for misspecification. As of now, this is just a preliminary idea which

requires further testing. It should be possible to check the share of wrong predictions for the

OLS estimator for different values of p̂. If one finds serious deviations from the theoretical

behaviour, this might indicate a serious misspecification as one resulting from omitted variable

bias. This hypothesis could be tested conducting a further Monte Carlo analysis. Further it

might be possible to construct an informal decision rule or even a test based on the share of

wrong predictions of the OLS estimator. As stated before, this is merely an idea and further

research will reveal the usefulness of the consideration.

Figure 58: Performance for ŷ given omitted variable bias

The data generating process is such that the estimate of the coefficient in the index model

is downward biased in expectation.40

38For a classical treatment see Yatchew and Griliches (1985).
39The only setup where OLS has a share of “wrong” predictions substantially above 5% is setup 2 i) with

misspecified index.
40This is due to the fact that the correlation between the variable of interest and the omitted variable is 0.5

and the effect of the omitted variable on the dependent variable is negative. Further the expected correlation
between the remaining regressors and the variable of interest as well as with the omitted variable is zero due
to draws from independent distributions.
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The results in Figure 59 support the hypothesis that omitted variable bias has unusual

effects in nonlinear models. The marginal effects are estimated substantially below the true

value for all estimators except OLS. Many estimators deliver negative estimates of the marginal

effects, whereas the true marginal effects are positive. The decent performance of the OLS

esitmator with respect to the average marginal effect raises further questions, but should not

be interpreted in the sense of immunity of OLS to omitted variable bias in binary choice

models.

Figure 59: Average ME and ME at average given omitted variable bias

Figure 60: ME at first quartlile and third quartile given omitted variable bias
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The results of the omitted variable bias setup demonstrate that the use of semiparametric

estimators is not a universal remedy for all econometric problems. A further conclusion re-

sulting from this setup is that the consequences of omitted variable bias are in general more

severe than the consequences from misspecification of the functional form.

5 Possible extensions

Two major questions remain open. The first is concerned with the standard errors of the

marginal effects in binary choice models. The second question focuses on the choice between

parametric and semiparametric models. Two possibilities will be described to obtain estimates

of the standard errors of the marginal effects, namely the “Delta Method” and “Bootstrapping”.

Finally, a Hausman type test is proposed to decide between parametric and semiparametric

models.

5.1 Standard errors

i) Delta method

In principle, it is possible to obtain estimates of the standard errors via the so called “Delta

Method”.41 Informally the Delta Method can be represented by the following statement.

If
√
n(�̂N − �)

d→ N(0,V) and the parameter space Θ ∈ ℝ
P ,

then
√
n(c(�̂N )− c(�))

d→ N(0, (∇�c(�))V (∇�c(�))
′).

Loosely speaking, the delta method links the asymptotic distribution of asymptotically normal

distributed estimators of the parameters to the distribution of functions of these estimators.

For the parametric estimators this seems a plausible way to calculate an estimate of the

variance for the marginal effects. V̂ can be computed over the Hessian of the likelihood

function. Further, if the researcher is interested in an individual marginal effect, he can use

c(�) =
∂G(X′

i�)
∂(X′

i�)
�j . Since � is finite dimensional and asymptotically normal with convergence

rate square root n, the use of the delta method seems justified. As for the parametric estima-

tors the asymptotic distribution for Klein and Spady´s estimator of � is available and can be

estimated consistently. Owing to the fact that the function c has to be estimated and therefore

is random, the theorem above is not directly applicable. In principal it should be possible to

adjust the delta method, such that the asymptotic variance of the marginal effects could be

worked out. A profound discussion of the delta method for nonparametric estimators is given

in Ait-Sahalia (1993).

ii) Bootstrapping

A second alternative to the calculation of the standard errors is the bootstrap, which is avail-

able without relying on an estimate of the Hessian. The bootstrap method offers a simple

procedure to estimate the distribution or standard errors of specific statistics. In the following

41For a formal statement see Wooldridge (2010, pp. 46-47).
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I will give a brief summary of how bootstrapping works. This summary is mainly a restatement

of some sections in Cameron and Trivedi (2005, pp. 357-365).

The starting point is an i.i.d. sample of {yi, xi}Ni=1. The interest lies in the distribution of

the estimator �̂.42 The bootstrap algorithm looks as follows.43

1) Resample {y∗i , x∗i }Ni=1 from the set {yi, xi}Ni=1 with replacement. This could result in a

sample where the original {y1, x1} is represented twice whereas {yN,xN} is not represented at

all.

2) Calculate the statistic of interest i.e. �̂b and store it.

3) Repeat step 1) and 2) B times.

The result of this procedure is the set {�̂b}Bb=1. From this set one can easily calculate the

standard error or a kernel density estimate of �̂. As a rule of thumb for B Cameron and

Trivedi (2005, p. 361) suggest that B = 384! where
√
B(�̂B−�̂∞)

�̂∞

d→ N(0, !), whith �̂∞ denot-

ing the ideal bootstrap estimator with B = ∞. For estimation of standard errors ! = 2+4
4

where 4 equals the excess kurtosis of �̂. Since the main interest lies on normally distributed

estimators 4 = 0 and therefore B = 192.

Following this procedure, one can easily obtain the standard errors for the estimators of the

marginal effects.

5.2 A Hausman test

Until now the thesis was concerned with the performance of the different estimators given var-

ious DGP´s. Since the true DGP is unknown to the researcher, it might be useful to propose

a decision rule for competing models. How could one justify the decision between competing

models. Three decision criteria are prevalent in applied econometric work. First, one can gen-

erally rely on the theoretical robustness of the models under consideration, whereby the more

robust model is often favoured. Second, one can rely on appropriate evidence from previous

Monte Carlo studies, which compared the competing estimators under similar circumstances,

such as the sample size. Those two approaches have the disadvantage that they barely take

the structure of the data into account. The third decision criteria, a statistical test explicitly

uses the dataset and would thus remedy this criticism. How to construct such a test, clearly

depends on the models we would like to compare. From my point of view a suitable comparison

would focus on the marginal effects from conventional parametric models with the ones from

the semiparametric models. This comparison has the advantage of a special structure. If the

parametric model is true, then the corresponding parametric etimator is efficient and Klein

and Spady´s estimator is consistent but inefficient. If the parametric model is false, Klein and

Spady´s estimator is still consistent, whereas the parametric estimator is not. This kind of

42Even though �̂ can be seen as any possible estimator it might help to imagine �̂ as an estimator of the
marginal effects.

43This procedure sometimes appears under the terms empirical distribution function bootstrap, nonpara-
metric bootstrap or paired bootstrap.
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setup calls for the use of Hausman test. Frequently in Hausman tests the coefficient on the

regressors of competing models are compared. However since the coefficient on the regressors

do not have an intuitive explanation and different coefficients might still lead to the same

conditional probabilities p(x),44 the comparison of marginal effects seems more reasonable.

The test procedure

Next, I outline the test procedure using a comparison between the logit- and Klein and Spady´s

estimator. In general the comparison should be between a parametric estimator (assumed to

be efficient under the null-hypothesis) and a surely consistent semiparametric estimator such

as Klein and Spady´s. So if one could establish consistency and asymptotic normality for the

LLL estimator, a comparison between the parametric estimators and the LLL estimator would

be as well valid. The null hypothesis and the alternative are

Hypothesis:

H0 : E(y∣X) = Λ(X ′�)

H1 : E(y∣X) = F (X ′�) (where F(z) ∕= Λ(z) for some z )

These test statistics could be considered:

H1 =
(M̂EjLo−M̂EjKS)

2

ˆV ar(M̂EjKS−M̂EjLo)

H2 =
(M̂EjLo−M̂EjKS)

2

ˆV ar(M̂EjKS)− ˆV ar(M̂EjLo)

H3 =
(M̂EjLo−M̂EjKS)

2

ˆV ar(M̂EjKS)

It will be shown in the appendix that Hj
a∼ �2(1) under H0 for j = 1, 2, 3.

Critical value:

Depending on the level of the type I error (�), the critical values are 3.84 (� = 0.05), 6.64

(� = 0.01) or 10.83 (� = 0.001).

Decision Rule:

Discard the null hypothesis if the value of the test statistic is above the critical value. This

indicates evidence against the parametric model and suggests to choose Klein and Spady´s

estimator.

Intuition:

If H0 is true it is likely that the estimates of the marginal effects are very similar in both

specifications. This is due to the fact that both estimators are consistent under H0. If the

alternative H1 is true, the fact that one estimator is consistent and the other is not, suggests

44As mentioned before, this is due to the two sided dependence of p(x) on the choice of the link function
and the index function X ′�. Differences in the �´s might be offset by differences in the link function.
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that the difference between the two estimators is different from zero. The distribution of

the test statistics can be made plausible by the following consideration. As will be shown in

the appendix, the estimators of the marginal effects are asymptotically normally distributed.

Additionally, if one normalizes the normally distributed estimators of the marginal effects by

their standard deviation, the result is a standard normal distribution. Due to the fact that the

square of a standard normal distributed random variable is a chi-square distributed random

variable the test statistics are asymptotically chi-square distributed.45 The three proposed

test statistics merely differ in the estimation of the variance of the difference of the estimators

for the marginal effects. The test statistic H1 uses a standard estimator for the variance.

H2 utilizes that Hausman (1978, pp. 1253-1254) showed that the asymptotic variance of the

differences has the following form, V ar(M̂ELo−M̂EKS) = V ar(M̂EKS)−V ar(M̂ELo). The

test statistic H3 has only a weak theoretical justification. The idea is that the marginal effects

from Klein and Spadys estimator converge at rate
√
Nℎ3, whereas the parametric marginal

effects converge at rate
√
N . Therefore the variance estimator ˆV ar(M̂ELo)

p→ 0, much faster

than ˆV ar(M̂EKS). Hence the effect of V ar(M̂ELo) might be close to zero.

Critique:

An appropriate analysis of the test properties was beyond the scope of the thesis and thus not

conducted. Before such an analysis is not carried out, it would not be reasonable to apply the

test in practice. Hence, one part of my future research will be devoted to conduct an extensive

size and power analysis of the proposed test statistics and compare the test to already existing

ones (see for example Pagan and Ullah (1999, pp. 141-150)).

6 Conclusions

It was stated in the introduction that the goal of the thesis is to give practical guidance

for the selection of binary choice estimators in applied work. The Monte Carlo study sug-

gests that there is no unique optimal estimator for all setups. An applied researcher should

answer two questions before deciding for any of the proposed estimators. First, what is the

quantity of interest? Second, is the sample large enough to use a semiparametric estimator

given the number of regressors? If the researcher is interested in the average marginal effect

of a change in a specific variable, the Monte Carlo study suggests that each of the estimators

can be used. Even the crude linear probability model gives reasonable estimates. If the re-

searcher is interested in the marginal effects at specific points or the distribution of marginal

effects and the sample size is sufficiently large, the Monte Carlo study suggests to use the

semiparametric estimators. At this point the suggestion would further be to rely on Klein

and Spady´s estimator. The local likelihood logit estimator was not always found to be con-

sistent. But it should in general be kept in mind that the lack of using cross validation for

the semiparametric estimators might underestimate their performance. The second question

45The test statistic can be easily extended to jointly test the difference of all marginal effects, as it is done
in the appendix.
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relates to the appropriateness of the sample size. As especially the last setup, concerned with

omitted variable bias, suggests it seems more important to include all relevant variables than

to decide between parametric or semiparametric estimators. Given a sufficiently large sample

the researcher could compute the marginal effects from a parametric model and informally

compare the values with those from a semiparametric model. If the values are close, one

could as a rule of thumb use the parametric estimator. If they depart substantially in large

samples, the suggestion would be to use the semiparametric estimator. If the sample is rel-

atively small one should use a parametric estimator to estimate the average marginal effect.

Finally, researchers interested in the marginal effects at specific points should be aware of the

small sample bias of the semiparametric estimators as well as the substantial inconsistency of

misspecified parametric estimators.
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Appendix

Derivations and Proofs

The following four theorems will be used. They are taken from Wooldridge (2010, pp. 37-47).

a) Weak law of large numbers: Let {wi : i = 1, 2, ....} be a sequence of independent,

identically distributed G× 1 random vectors such that E(∣wig∣) < ∞, g = 1, ..., G. Then the

sequence satisfies the weak law of large numbers (WLLN): N−1
∑N

i=1wi
p→ �w, where

�w =E(wi)

b) Slutsky´s theorem: Let g : ℝK → ℝ
J be a function continuous at some point c ∈ℝK.

Let {xN : N = 1, 2, ...} be a sequence of K × 1 random vectors such that xN
p→ c. Then

g(xN )
p→ g(c) as N → ∞. In other words, plim(g(xN )) = g(plim(xN )) if g(⋅) is continuous

at plim xN .

c) Delta method: Let {�̂N : N = 1, 2, ...} be a sequence of estimators of the P × 1 vector

� ∈ Θ. Suppose that
√
N(�̂N − �)

d→ N(0,V), where V is a P × P positive semidefinite

matrix, and let c: Θ → ℝ
Q be continuously differentiable function on the parameter space

Θ ⊂ ℝ
P , where Q ≤ P , and assume that � is in the interior of the parameter space, then√

N(c(�̂N )− c(�))
d→ N(0, (∇�c(�))V (∇�c(�))

′), where ∇�c(�) denotes the gradient of c.

d) Asymptotic equivalence lemma: Let {xN} and {zN} be sequences of K × 1 ran-

dom vectors. If zN
d→ z and xN − zN

p→ 0, then xN
d→ z.

i) The probability limit of the average marginal effect and the marginal effect

at the average

In the following I will derive the probability limit of the average marginal effect and the

marginal effect at the average treating x as a 1× k random vector and � as known.

The true marginal effect at the average is given by

∂E(yi∣x̄)
∂xij

= g(x̄�)�j

From the weak law of large number we know that sample averages converge to their expected

value. Hence

plim(x̄�)
WLLN
= E(xi�)
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Further we know by Slutsky´s theorem that

plim(g(x̄�)�j)
Slutsky
= g(plim(x̄�))�j = g(E(xi�))�j

If we directly apply the WLLN to the true average marginal effect, we receive

1

n

∑ ∂E(yi∣xi)
∂xij

=
1

n

∑ ∂G(xi�)

∂xij
=

1

n

∑

g(xi�)�j

plim(
1

n

∑

g(xi�)�j)
WLLN
= E(g(xi�))�j

Due to the fact, that g(E(xi�)�j ∕= E(g(xi�))�j the two objects of interest have a dif-

ferent probability limit. To get an idea concerning the difference, knowledge of the shape

of g is needed. If g is either concave or convex Jensens inequality can be employed. For

the quasiconcave normal distribution it seems to be that “the concave part dominates” and

g(E(xi�)�j ≥ E(g(xi�))�j which means that the marginal effect at the average is larger than

the average marginal effect.

ii) Inverse transform sampling

In the cases were no pseudo random number generator was implemented in matlab, I gen-

erated the random numbers with the inverse transform sampling method. Suppose we want

to draw pseudo random numbers from a random variable X with CDF FX . Further we have

already produced draws from a uniform distribution from zero to one (denoted by ui) using

matlabs built in function. The inverse transform sampling method then works as follows.

a) Construct the inverse of Fx, denoted by F−1
x .

b) Evaluate the inverse of Fx at ui.

c) The pseudo random draw Xi = F−1
x (ui).

For details see Rinne (2003, p. 209).

iii) The asymptotic normal distribution of the marginal effects

Establishing the asymptotic normality of the marginal effects in parametric models, given

that the coefficient estimates are normally distributed is straightforward. We know that√
N(�̂N − �)

p→ N(0,V), by direct application of the delta method we receive
√
N(c(�̂N ) −

c(�))
d→ N(0, (∇�c(�))V (∇�c(�))

′). Now setting c(�) = g(X ′
i�)� = MExi shows that the

estimator of the marginal effects are asymptotically normally distributed, if the coefficient

estimators are normally distributed. For Klein and Spady´s estimator the discussion is more

elaborate. Pagan and Ullah (1999, p. 177) describe the conditions for the partial derivative
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estimator being asymptotically normal. Moreover, Pagan and Ullah (1999, p. 165) show that

the difference between the finite difference- and the partial derivative estimator is O(ℎ). For-

mally, we know that under some conditions
√
Nℎ3 ˆ(MEPD −ME)

d→ N(0,V). Further if we

require ℎ → 0 as N → ∞, one can conclude that M̂EFD−M̂EPD = o(ℎ1+�) from the fact that

M̂EFD − M̂EPD = O(ℎ). Since ℎ → 0 we have M̂EFD − M̂EPD = o(1), which is equivalent

to M̂EFD − M̂EPD
p→ 0 . Collecting both results, we can apply the asymptotic equivalence

lemma. If
√
Nℎ3 ˆ(MEPD − ME)

d→ N(0,V) and
√
Nℎ3M̂EFD −

√
Nℎ3M̂EPD

p→ 0, then√
Nℎ3 ˆ(MEFD −ME)

d→ N(0,V).

iv) The derivation of the asymptotic distribution of the Hausman test statistic

The following formulas are given in terms of the marginal effects of all variables. Hence using

the test statistics as a joint test is possible. The test statistics proposed in section 5.2. can

be deduced by replacing the marginal effect vector and the covariance matrix of the marginal

effects by the marginal effects of a variable and its variance. The derivation of the asymp-

totic distribution of the test statistics is close to the one in Hausman (1978, p. 1256). The

discussion of the asymptotic properties of the test statistic is preliminary and merely heuris-

tic. The main idea is to show that, the difference of the estimators is normally distributed.

Then it follows from a standard relation between the normal- and the chi-square distribution

that H = (M̂ELo− M̂EKS)V ar(M̂ELo− M̂EKS)
−1(M̂ELo− M̂EKS)

′ is asymptotically dis-

tributed as �2
K .

Initially we know from the discussion above that

√
Nℎ3(M̂EKS −ME)

d→ N(0,VKS) and
√
N ˆ(MELo −ME)

d→ N(0,VLo)

Since both M̂EKS and M̂ELo are consistent under the null-hypothesis, plim ˆ(MELo−M̂EKS) =

0. With a central limit theorem we can show that
√
Nℎ3(M̂ELo − M̂EKS)

d→ N(0,Σ).

Since it is established that (M̂ELo − M̂EKS) is asymptotically normal it follows directly

that H = (M̂ELo − M̂EKS)V ar(M̂ELo − M̂EKS)
−1(M̂ELo − M̂EKS)

′ is �2
K . Reducing the

formula for H to a univariate marginal effect and replacing V ar(M̂EjLo − M̂EjKS) by a con-

sistent estimator ˆV ar(M̂EjKS − M̂EjLo) yields the test statistic H1. For H2 and H3 being

asymptotically chi-square distributed it remains to show that ˆV ar(M̂EKS)− ˆV ar(M̂ELo) and

ˆV ar(M̂EKS) are consistent estimators of V ar(M̂ELo − M̂EKS). The first part is shown in

Hausman (1978, p.1253). He shows that the fact that M̂ELo is efficient leads to an asymp-

totic Cov(M̂ELo, M̂EKS − M̂ELo) = 0 . From this it follows that Cov(M̂ELo, M̂EKS) −
Cov(M̂ELo, M̂ELo) = 0 ⇔ V ar(M̂ELo) = Cov(M̂EKS , M̂ELo). Plugging the result into

the formula V ar(M̂ELo − M̂EKS) = V ar(M̂ELo) + V ar(M̂EKS)− 2Cov(M̂ELo, M̂EKS) =

V ar(M̂ELo) + V ar(M̂EKS)− 2V ar(M̂ELo) justifies the use of test statistic H2. As stated in

the text H3 has a weak theoretical fundament. One could argue that the sample size N is so

large that V ar(M̂ELo) is close to zero however Nℎ3 is such that the V ar(M̂EKS) is not close

to zero. Finally a thorough Monte Carlo study will yield evidence if one of the proposed test

statistics is useful.
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