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Abstract

Do Body-Worn Cameras improve police efficiency? This study answers
this question in the context of a sample of local police agencies in the US,
where the adoption of BWCs by police agencies has increased significantly in
recent years. To estimate the effects of BWCs on police efficiency, I exploited
the differences in the adoption of BWCs between agencies that acquired
them (”acquirers”) and agencies that deployed them (”deployers”). Using a
multiple stage approach, in the first stage I estimated the efficiency of local
police agencies using a robust order-m model. In the second stage, I
estimated the effects of BWCs using a range of matching estimators and an
instrumental variable model. The first stage results show that police agencies
could improve their efficiency by 31 percent from 0.76 to 1. The second stage
matching and IV estimates suggest that BWCs can help improve police
efficiency between eight and 21 percentage points. The effects are larger for
those agencies that fully deployed BWCs with their officers. Overall, this
study’s results support the argument that BWCs can help improve police
efficiency.

Keywords: Police, Performance, Efficiency, Data Envelopment Analysis,
Matching Estimators, Instrumental Variables.

∗Faculty Fellow- Department of Justice, Law and Criminology, American University.

1



1 Introduction

During the last five years, there has been a dramatic increase in the use of

Body-Worn Cameras (BWCs)across law enforcement agencies in the US.

Police departments of all sizes have acquired and deployed BWCs to improve

their transparency, accountability, and performance (Chapman, 2018).

Simultaneously, research on the impact of BWCs on a wide range of law

enforcement outcomes has also burgeoned.

A growing body of empirical evidence provides support for the use of this

technology to improve various police outcomes, such as accountability,

reductions of civilian complaints against police, police-citizen interactions,

citizen behavior, among others (Lum, Stoltz, Koper,& Scherer, 2019).

However, research on the effects of BWCs on police efficiency, however,

remains unexamined. This study addresses some of these questions by

estimating the effects of BWCs on the efficiency of local police agencies.

Figure 1 summarizes this study’s results. The scatterplot illustrates the

correlation between the number of BWCs and a standard police output

measured by the percentage of all crimes cleared (Alda, 2014; Barros, 2007).

Figure 1 shows a positive correlation between the number of BWCs and

higher efficiency levels because agencies with more BWCs appear to clear a

higher percentage of crimes.

Figure 1: Bivariate plot of BWCs vs. Crimes Cleared

Notes: Dots represent the number of total crimes cleared by the
agency in 2016.

To answer this question, I first estimated police agencies’ efficiency using

well-known methods to measure efficiency in organizations such as Data
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Envelopment Analysis (Charnes & Cooper, 1957). In particular, I employed a

robust approach–order-m– (Cazals & Florens, 2007) that corrects for known

biases in efficiency measurement, such as the presence of outliers and

measurement error.

Secondly, I used a range of matching methods and instrumental variable

regression to assess the effect of BWCs on police efficiency between agencies.

The use of BWCs by police agencies varies widely. The data show that about

60%1 of agencies acquired BWCs compared to those that did not. However,

not all of the agencies deployed BWCs with their officers. In fact, out of the

60% of agencies that acquired BWCs, 84% implemented a partial or full

deployment; and only 40% of the 84% of agencies that deployed BWCs

implemented a full deployment with their officers.

I exploited this difference between BWCs ”acquirers” and BWCs

”deployers” and conceptualized the ”acquirers” as Intent to Treat (ITT) and

the ”deployers” as Treatment on the Treated (TOT). This difference in the

adoption of BWCs allowed me to match agencies on a set of organizational

and environmental characteristics and assess differences in efficiency levels

between ”acquirers” and ”non-acquirers”. Then, I used the ”acquirers” (ITT)

measure as an instrumental variable to examine differences in efficiency

between ”deployers2” and ”acquirers” using LATE3 analyses.

The findings indicate that BWCs increase police efficiency between seven

and 12 percentage points for the ITT analyses and between 10 and 21

percentage points for the LATE estimates. These results support arguments

that this technology can improve police efficiency and increase transparency

and accountability in police organizations.

This study’s results contribute to the rapidly growing literature on the

use of BWCs in various ways. First, to my knowledge, this is the first study

that examines the effect of BWCs on police efficiency. The current scholarly

and policy literature on this topic focuses mainly on measuring the effects of

BWCs on outcomes such as transparency, accountability, legitimacy, and on

criminal resolution, intelligence gathering, and criminal justice processes

outcomes. Some studies have examined outcomes like the speed of criminal

resolution or criminal justice processes outcomes. These outcomes

1This percentage is based on the final sample used for the analyses, which was 615 local police
agencies. See the section on data for more information.

2These are the agencies that are assumed compliant and deploy the BWCs.
3LATE stands for Local Average Treatment Effects. It is the same as Treatment on the Treated

(TOT) effects.
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approximate an efficiency measure since criminal investigations, for example,

are critical processes of a police production function because they may lead

to more crimes cleared (c.f. Morrow, Katz, & Choate, 2016; Owens, Mann, &

McKenna, 2014). However, none of these studies use efficiency as their

primary focus of research, nor do they produce an actual efficiency estimate.

Hence, in addition to examining the effect that BWCs have on police

efficiency, I borrow from the literature on productive efficiency and provide

an estimate of the levels of police efficiency by using a range and inputs and

how their combination contributes to police output (Charnes, Cooper, &

Rhodes, 1978).

Second, this study focuses on a sample of 615 police agencies instead of,

for example, a single agency or a subset of agencies within a police district

where most studies draw their experimental or quasi-experimental evidence

from (Kim, 2019; Ariel et al.,2016; Jennings et al.,2017; Harcourt &

Ludwig,2006). Although the strength and robustness of results from

well-designed experiments are irrefutable, the results of this study are useful

because they reveal effects across a larger number of police agencies and help

support the results found in experimental and quasi-experimental evaluations.

Finally, this study’s results can offer useful operational insights for police

agencies in that the deployment of BWCs can assist them in having higher

clearance rates because of the faster availability of critical information to

help them resolve crimes. In turn, efficiency gains resulting from BWCs can

help strengthen other important areas of police operations.

The remainder of the study is structured as follows. Section 2 presents a

review of the literature on the use of BWCs, which has focused mainly on

experimental evidence assessing BWCs’s efficacy on a broad range of

outcomes related to officer and citizen behavior, police use of force, civilian

complaints, and police accountability, among others. Section 3 presents the

data used in the analyses. Section 4 presents and discusses the multiple stage

empirical approach to first estimate the efficiency scores and then examine

the effects of BWCs using efficiency as the primary outcome of interest.

Section 5 presents the results of the preferred model and several robustness

tests and sensitivity of the results to the presence of hidden bias. Finally,

Section 6 concludes and discusses the limitations.

4



2 Literature Review

The past five years have witnessed a rapid growth in the literature on the

adoption of this technological innovation in law enforcement and its impacts

on a wide range of outcomes (Lum, Koper, Merola, Scherer, & Reioux, 2015).

Scholars have categorized research on the impact of BWCs around six main

areas of study, including impacts on officer behavior and citizen behavior;

officer attitudes about BWCs; citizen and community attitudes about police

or cameras; criminal investigations; and police organizational structure

(Lum, Stoltz, Koper, & Scherer, 2019).

The evidence around the impacts of BWCs police efficiency is still largely

understudied. Studies on the effects of BWCs on criminal investigations and

crime resolution are perhaps closest to efficiency measurement. Crime

investigations are a critical component of a police production function that is

often used to measure police organizations’ efficiency. For example, the time

it takes to clear crimes and the number of resources saved from using BWCs

could be interpreted as a measure of efficiency. In fact, previous research on

police efficiency has used these variables as outputs in an efficiency model

(c.f. Alda, 2014; Alda & Dammert, 2019). Thus, the literature review focuses

on the strand of research that more closely approximates the study of

efficiency as an outcome, although no studies to date have used a measure of

police efficiency as their primary outcome of interest. For a thorough review

of available evaluations and research on BWCs, see Lum et al. (2019).

The number of research studies focusing on this proxy of police efficiency,

however, is relatively small; it accounts for 6% of all the published research

on BWCs to date (Lum et al., 2019), and the results are mixed. Studies have

examined the impact of BWCs using the gold standard for evaluations

(RCTs) or quasi-experimental approaches, and ”before and after” approaches

as well as qualitative analyses to support their quantitative findings.

Yokum, Ravishankar, and Coppock (2017) conducted an RCT with more

than 2,000 police officers in DC’s MPD to examine the impact of BWCs on

police complaints, police use of force, policing activity, and judicial outcomes.

The latter approximates a measure of efficiency in that it captures the

process whereby police arrests are prosecuted in the justice system since the

footage produced by BWCs could lead to faster case resolution (Yokum et

al., 2017). Overall, the study found very small effects, none of which were

statistically significant. One potential explanation for the lack of results is

5



that the researchers did not have access to the full prosecutorial datasets but

a dataset on the police department’s initial charges.

While the authors offer a range of thorough explanations for the lack of

results, the simpler and most likely explanation is that BWCs do not affect

the outcomes studied. In the case of the efficiency proxy, the camera footage

did not affect judicial outcomes. The study concludes by nuancing the

message around the expectations of BWCs as well as encouraging more

research on the impact of BWCs (Yokum et al., 2017).

Owens, Mann, and McKenna (2014) also conducted an RCT to measure

the impact of BWCs for a sample of 308 police officers in Essex, focusing on

reducing bias in the results of incidents attended by officers. The authors

also interviewed officers in the treatment group to better understand the

operational challenges of BWC deployment.

The findings suggest no differences in the number of incidents sanctioned

between officers who wore BWCs and those who did not. However, they

suggest significant differences in the type of detected sanction that resulted

in criminal charges in the treatment group compared to the control

group–81% vs. 72%, respectively.

The study’s qualitative part showed that those officers who used BWCs

experienced more accountability and paid more attention to their behavior

while conducting policing activities. The study concludes with a hypothetical

statement that BWCs could be useful in increasing the proportion of

detected offenses that result in criminal charges, particularly around

domestic abuse cases (Owens et al., 2014).

A recent study used the LEMAS survey to examine the causal impact of

BWCs on a range of performance and police use of force outcomes by

exploiting the variation in the adoption of BWCs adoption (Kim, 2019).

Using the LEMAS BWCs supplement, this study departs from previous

research on BWCs. It examines the impact using a national survey of over

1,000 agencies instead of a single agency or group of agencies within a

district. The main finding suggests a 54% drop in citizen deaths resulting

from police use of force. Furthermore, the study argued that investing in

BWCs could yield substantial benefits to police agencies in reducing lawsuits

resulting from use of force incidents (Kim, 2019).

Katz and colleagues (2014) and Morrow, Katz, and Choate (2016) use a

reflexive comparison4 approach to examine the impact of BWCs on

4Reflexive evaluation or comparison compares the outcomes of the same group before and after
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complaints against the police and the processing of domestic violence cases in

a precinct of the Phoenix Police Department. The latter outcome could also

be considered an efficiency measure. The post-test results for the officers

using the camera indicate that cases were more likely to be initiated by the

prosecutor compared to pre-test data (40.9% vs. 34.3%). The authors

concluded that BWCs could also help improve officers’ productivity in

addition to reducing civilian complaints.

Finally, Ellis and colleagues (2015) assessed the effects of BWCs in the

Isle of Wight in the UK on a range of crime offenses, changes in criminal

justice processing, complaints against officers, and officers’ views on the use

of BWCs. Since all police officers were issued BWCs, the results of the study

also used a reflexive comparison approach. The findings related to criminal

justice processes on domestic abuse cases suggest an increase in the number

of cases from 3 to 21, and in 10 out the 21 cases, there was recorded footage.

Furthermore, seven of these 10 cases led to an arrest, and four of the seven

cases led to a criminal charge. The authors acknowledge that, because all

officers received BWCs, the evaluation did not lend itself to any type of

randomization within that police organization. Thus, in the absence of an

RCT, their objective was to assess the effectiveness of BWCs from an

operational angle for agencies that decide to have an agency-wide rollout of

BWCs (Ellis et al., 2015).

Of the five studies discussed above, it is worth noting the differences in

the methodological approaches and related findings. Except for Kim’s study,

the two studies that used more robust evaluation approaches (i.e., RCTs)

show null results or limited results compared to those that rely on a reflexive

comparison approach, showing significant improvements related to the use of

BWCs.

AAlthough informative, reflexive comparison studies have serious

limitations in their impact because these approaches attempt to examine

program impacts by comparing outcomes before the intervention and after

the intervention. The difference between these two periods in time is

considered the program’s impact.These approaches generally assume that

program participants’ outcome would have been the same as before the

intervention. Research has shown that this is not the case (Gertler, Martinez,

Premand, Rawlings, & Vermeersch, 2016), limiting the validity of their

findings. It is worth noting that although these studies are limited in their

program participation
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statistical validity and their impacts, they still offer lessons learned around

the implementation and operationalization of BWCs.

Despite the rapid growth in evaluations on the effect of BWCs on a wide

range of outcomes (Lum et al., 2019), research on the effects of BWCs on

police efficiency is still nascent. The strand of research presented above,

which closely approximates the analysis of efficiency, offers interesting

insights on the potential impacts that using BWCs could have in improving

police performance. However, as noted above, none of these studies estimate

a proper measure of police performance by considering how police inputs

contribute to police output production. This study aims to bridge this gap

by studying how BWCs contribute, if anything, to improving police

performance related to an important police output–clearance rates. The next

section discusses the data and methods used in this research.

3 Data

I built a dataset for the year 2016 with information from local police

agencies, crime data, and socioeconomic and demographic indicators from a

variety of sources. Data on BWCs availability and use and police inputs

come from the Law Enforcement Management Survey (LEMAS) (BJS, 2016).

The LEMAS survey collects data from various law enforcement agencies in

the US, including sheriff, state, and local agencies. For this study’s purposes,

I limited the sample to local police agencies because they are the law

enforcement arm closest to the citizen and where most interaction with law

enforcement occurs. Thus, it was important to limit the sample to local

police agencies to obtain efficiency estimates that more closely estimate their

performance from an efficiency perspective.

Data on police outputs comes from Kaplan’s crime dataset (Kaplan,

2020), which contains multi-year concatenated UCR data for state and local

police agencies across the US. The socioeconomic and demographic measures

come from the American Community Survey (ACS). For this study, I used

the ACS 5-year average data to capture changes in municipalities5

Before discussing the empirical approach, it is worth noting that

5The level of disaggregation in the ACS survey collects information on socioeconomic and
demographic conditions that could affect police output production. Using a five-year average is
to account for any variation in socioeconomic and demographic factors since these measures may
suffer little variation from year to year.
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non-parametric efficiency models suffer from potential drawbacks, which

require careful consideration because it could lead to biased efficiency

estimates. One potential drawback is the presence of missing data. Because

the police agency data come from the LEMAS survey there is missing

information since not all agencies responded to all question or did not have

enough information to answer the question. Thus, to mitigate the effects of

missing data on the efficiency estimates, I eliminated from the sample those

agencies that had missing information on police inputs before merging it with

the UCR and ACS datasets.

Another potential drawback is that non-parametric models require

meeting the positivity property; that is, that all values for inputs and outputs

have to be positive numbers (>0). If this property is not met, it could render

the efficiency model infeasible and yield invalid estimates because there is no

possible solution to the linear programming model (Bowlin, 1998).

The literature identifies various ways to deal with this problem in DEA.

One is to eliminate those observations with zeroes, and the other one is to

add a sufficiently large constant, so the observation meets the positivity

property. This approach, while simple in theory, could lead to an additional

problem known as translation invariance. Translation invariance occurs when

the addition of a constant alters the efficiency frontier and yield biased

estimates since not all DEA models are translation invariant (Lovell &

Pastor, 1995). Ali and Seiford (1990) developed a model that relaxes the

positivity requirement by adding a constant, which causes an affine

displacement of the efficiency frontier but does not alter it. In other words,

adding a constant would simply be pushing the efficiency frontier further to

the right but would not alter the frontier and, thus, not biasing the efficiency

estimates. However, this condition would only work if a constant is added to

the outputs in variable returns to scale models, and to the inputs and

outputs in additive models (Ali & Seiford, 1990; Lovell & Pastor, 1995).

As I show in the methodology section, the used of a variable returns to

scale model, allowed me to fulfill the positivity and translation invariance

properties by deleting those inputs with values =0 and adding a large enough

constant to the outputs. Thus, after pre-processing the data to correct the

potential drawbacks described above, the final study sample is comprised of

615 local police agencies.

To estimate the efficiency scores, I followed previous literature on police

efficiency and employed a model with four inputs and two outputs (Alda,
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2014; Alda, Giménez, & Prior, 2019; Barros, 2007; Garćıa-Sánchez,

Rodŕıguez-Domı́nguez, & Parra-Domı́nguez, 2013; Gorman & Ruggiero,

2008). The inputs include the number of full-time sworn officers and

non-sworn personnel, and the number of marked and unmarked vehicles (see

Table 1).

Defining police agencies’ output can be challenging as the ”bottom line”

of policing keeps on expanding and, as a result, its production technology6

(Moore and Braga, 2003). The challenge is then finding output measures

that can capture–to the greatest extent possible7–key functions of police

agencies. One commonly used measure used as an output in police efficiency

studies is the clearance rate (see Barros, 2007; Alda 2014; Alda et al., 2019).

The clearance rate captures critical functions of police operations, such as

the effectiveness of patrols, speed of police response, and police investigative

capacities (Moore and Braga, 2003). Therefore, I approximated police output

production by using the total number of index violent and the number of

index property crimes8 cleared by each agency.

Index crimes are a collection of four violent and property crimes that the

Federal Bureau of Investigation (FBI) uses to produce their annual crime

index. The violent index crimes comprise murder, rape, robbery, and

aggravated assault. The property index crimes comprise burglary, theft,

motor vehicle theft, and arson9.

Table 1 presents the summary statistics of the raw data on police inputs

and outputs. On average, agencies had 266 sworn officers and 71.3 civilians

(non-sworn officers); about 106 marked vehicles and 72 unmarked vehicles.

The total number of index property crimes cleared is about twice the total

number of index violent crimes cleared with 560.8 and 299, respectively.

4 Methodological Approach

4.1 Conceptual Issues

As indicated above, modern policing has an ever-expanding ”bottom

line”(Moore and Braga, 2003). Therefore, it is challenging to capture the

6This refers to what police agencies do.
7This challenge is compounded by limitations in data availability
8Efficiency models operate better when using units instead of rates.
9For an explanation of these crimes, please visit the FBI. Jacob Kaplan offers useful guidance on

the advantages and disadvantages of using index crimes vis − á − vis using these crimes separately.
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Table 1: Descriptive Statistics-Input/Output Set

Variable Obs Mean Std. Dev. Min Max

Inputs

Number of Sworn Officers 615 266.15 763.64 5 12042
Number of Non-Sworn Officers 615 71.28 180.26 1 2871
Number of Marked Vehicles 615 105.80 218.71 2 3797
Number of Unmarked Vehicles 615 72.19 140.78 1 1624

Outputs

Total Index Violent Crime Cleared 615 299.99 795.74 1 12806
Total Index Property Crime Cleared 615 561.82 870.51 1 8291

Source: Own Analysis based on data from BJS(2015) and Kaplan (2020).

police production function in a single model.

Production efficiency theory posits that a decision management

unit–police agency in this study–produces the same or higher output levels

using the same or fewer inputs, it would be efficient relative to its peers with

similar characteristics (Ray, Kumbhakar, & Dua, 2015).

A key aspect of using BWCs is to enable officers to resolve cases faster

and reduce paperwork and, as a result, increase the number of crimes cleared

(Chapman, 2018). In turn, a higher percentage of crimes cleared would lead

to higher police output production. At the same time, if police increase their

output production using fewer inputs (i.e., police officers) because BWCs

yield more readily available data and information in the investigative process,

efficiency would then improve. Furthermore, research has shown that using

BWCs can also help officers increase arrests, leading to a quicker resolution

of cases (Katz et al., 2014).

While trying to pinpoint how BWCs contribute to improving police

efficiency is challenging, using an output measure, such as clearance rates,

which encompasses critical police operational activities, can shed light on this

issue.

4.2 Analytical Strategy

In this section, I present and discuss the two-staged empirical approach I

employed to measure the effect of BWCs on police efficiency. In the first

stage, I estimated police efficiency scores using an output oriented model

with variable returns to scale. In the second stage, I used a range of matching
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estimators to assess the effect of agencies that acquired BWCs (”acquirers”)

and those agencies that did not acquire BWCs on police efficiency.

Matching helps balance confounding (observable) characteristics between

police agencies. However, this approach assumes that the deployment of

BWCs is completely exogenous to police efficiency, given a set of observable

characteristics. If the exogeneity assumption holds, then the estimates are

unbiased (Cavatassi, González-Flores, Winters, Andrade-Piedra, Espinosa, &

Thiele, 2011). However, as noted earlier, it is virtually impossible to match

police agencies on all the characteristics that can drive the adoption of

BWCs. Therefore, it is possible that differences in unobservable

characteristics between both groups of agencies exist and could lead to biased

estimates.

To address this potential bias, I used instrumental variable regression to

examine the effect of BWCs ”deployers” compared to ”acquirers” on police

efficiency and reduce potential biases due to unobservable differences between

each group. I discuss this issue in more detail in section 4.4.3.

4.3 First Stage

4.3.1 Data Envelopment Analysis

In the first stage, I employed a well-known non-parametric efficiency

measurement approach, Data Envelopment Analysis (DEA), to estimate the

technical efficiency of local police agencies. DEA models are powerful in

estimating organizational efficiency and have distinct advantages compared

to, for example, parametric approaches like regression analysis.

First, these models are flexible in that they can accommodate multiple

inputs and multiple outputs in the same model, which permits obtaining a

more accurate measure of efficiency of complex public-sector organizations

like the police. Second, non-parametric techniques provide information on

how DMUs can improve their efficiency based on the distance from the best

practice efficiency frontier. For example, the results of an output oriented

model can indicate to the researcher how much output could an agency

increase in order to improve efficiency relative to the best performers while

keeping the input set constant. Finally, these techniques do not experience

common statistical problems, like multicollinearity or heteroskedasticity, do

not require normality in their distribution (Charnes, Cooper, Lewin, &

Seiford, 2013), and do not require imposing an ’a priori’ functional form as it
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is the case in regression-based models.

To estimate efficiency, DEA uses the linear combination of DMU’s10 that

employ a set of inputs that are under the control of police managers–officers,

vehicles– and a set of outputs that the agencies produce–clearance rates,

crime prevented. This linear programming combination generates a ”best

practice” frontier, which captures the firm/s production of maximum

output/s given their set inputs relative to their peers in the sample (Charnes

et al., 1978). Therefore, a DMU that is on the ”best practice”11 frontier has

a value of 1 and indicates that, relative to its peers, it has produced more

output using the same or fewer inputs and is, therefore, more efficient.

When using frontier methodologies like DEA or similar linear

programming models, defining the type of model orientation is important.

There are two main types of models–input and output orientation. An

input-oriented model measures how much a unit (police agency) could reduce

its inputs while maintaining the same output level. In contrast, an output

oriented model measures how much a unit could maximize its output

production with the same number of inputs. Therefore, this study employs a

DEA output-oriented model with variable returns to scale (VRS). The use of

an output orientation is primarily a result of the type of output that defines

police agencies’ production technology. As discussed above, police agencies’

key objective is to call offenders to ”account”, which is measured by the

clearance rate (Moore & Braga, 2003 p.38). Therefore, from the point of

view of police production, the clearance rate is an output the police should

maximize.

The choice of variable returns to scale is also straightforward since an

additional input would not result in a proportional change of the output, as

it is the case of constant returns to scale models. This is because police

forces generally operate in a non-market environment with imperfect

competition and budgetary constraints (Jacobs, Smith & Street, 2006;

Giménez, Keith & Prior, 2019). This means that police agencies often

operate at an inefficient scale size. In order to support (or reject) the choice

of returns to scale, I conducted a non-parametric returns to scale test (Simar

& Wilson, 2002). The results rejected the null hypothesis (p<.01) that police

agencies operate at an efficient scale12, and thus, the choice of variable

10The DMU (Decision Management Unit) is the unit of analysis. In the case of the current study
is local police agencies.

11This is the efficiency frontier.
12This would mean that a constant returns to scale model would be more appropriate to analyze
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returns to scale model is appropriate.

Equation 1 below presents the basic output-oriented DEA model with

variable returns to scale.

Max θ

s.t.

∑n
j=1 λjxij = xio i = 1, 2, ..., m;

∑n
j=1 λjyrj = θyro r = 1, 2, ..., s;

∑n
j=1 λj = 1 j = 1, 2, ..., n.

λj ⩾ 0 j = 1, 2, ..., n.

(1) where DMUo represents a DMU under analysis, and xio and yro are the

ith input and rth output for DMUo.The value of θ ranges from 0 (inefficient)

to 1 (efficient) . Thus, in an output-oriented model, a value of 1-θ indicates

the proportional radial expansion in output that a DMU could achieve given

their input set.

Despite their power and flexibility, non-parametric efficiency methods also

suffer from limitations. Because of their non-parametric nature, it renders

them sensitive to the presence of outliers and measurement error, which

could lead to biased estimates. As discussed, given that the data used in this

study comes from a survey, it is likely to suffer from measurement error.

Furthermore, differences in the size, location, and output produced by the

agency will make some agencies outliers13 compared to the rest of the sample

because they perform significantly better than their peers. Therefore, this

group of outlier agencies could define the ”best practice” efficiency frontier

and bias the efficiency scores downward because no other agency can perform

better than this group of outliers.

Partial frontier models, such as order-m, enhance efficiency analyses and

mitigate some of the common statistical problems in non-parametric

techniques like DEA (Cazals, Florens, & Simar, 2002; Simar & Wilson, 2008).

Partial frontier methods operate as follows. To estimate the efficiency

score, the order-m algorithm finds an m number of units (police agencies)

with similar characteristics in their input/output set so it can calculate how

much an agency could produce using the same or fewer inputs than its peers.

Therefore, for this particular methodological approach, the choice of m is

efficiency.
13In efficiency analyses, outliers are also known as super-efficient or super-performers.
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relevant when estimating the efficiency scores (Felder & Tauchmann, 2013).

For example, choosing a value of m that is too small would yield a large share

of super-efficient observations and, as the value of m increases (m →∞), the

share of super-efficient observations decreases to zero14. While there is not a

recommended value of m, research suggests choosing a value that would yield

10% of the observations being super-efficient (Bonaccorsi, Daraio & Simar,

2006). For this study, I chose a value of m = 8015, which is considered a large

value. In multi-output studies like this, however, the values of m tend to be

larger than for single output studies (Felder & Tauchmann, 2013).

Furthermore, the choice of m enables the detection of outliers, which can

explain why they are outliers, and whether there are particular

characteristics of these agencies that make them outliers as compared to their

peers (Daraio & Simar, 2007). Also, because the efficiency frontier is not

bounded from above at 1, outperforming agencies (outliers) can yield

efficiency scores that are larger than 1 and will not bias efficiency estimates

downward. Consequently, the resulting efficiency estimates are closer to the

’true’ efficiency frontier compared to a DEA model (Daraio & Simar, 2007).

This last feature is potentially useful in studying police forces because their

inherent heterogeneity will be reflected in internal organizations, practices,

use of resources, and, ultimately, in the production process itself. When

performing efficiency analyses of police forces, outliers will emerge, and this

technique enables researchers to understand why those observations in the

sample perform significantly better than their peers.

4.4 Second Stage-Matching and Instrumental

Variable Regression

4.4.1 Matching

In the second stage of this study, I employed a range of matching estimators

to assess the effect of BWCs on police efficiency. Since this study is based on

survey and administrative data, there is no possible random assignment of

agencies into a treatment and a control group. Therefore, to be able to

compare the effects of agencies that acquired and deployed BWCs with those

that did not, it is important to create groups that are similar based on a set

14The maximum efficiency score would be 1.
15I conducted efficiency analyses for different values of m. They are not reported here but

available upon request.
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of observable characteristics.

Matching methods allow the researcher to generate a credible

counterfactual–what would the efficiency levels be in the absence of BWCs?–,

by creating two comparable groups based on observable characteristics. As a

result, the results on the efficiency scores could be attributed to the effect of

having adopted BWCs into their policing functions. In addition to being able

to generate comparable groups, matching methods reduce selection bias

(Cavatassi et al., 2011; Guo Fraser, 2010).

I considered two ways of matching police agencies. The LEMAS survey

contains two questions:

• Has your agency acquired body-worn cameras?

• Have body-worn cameras been deployed to officers in your agency?

The first question allowed me to construct an Intent to Treat (ITT)

variable comprising all the agencies that acquired BWCs (”acquirers”)

regardless of whether or not they deployed them. The second question

allowed me to construct a Treatment on the Treated (TOT) measure that

captures all agencies that had acquired BWCs and deployed them with their

officers (”deployers”). It was possible to generate the latter measure because,

according to the responses of the survey, 84% of agencies that acquired

BWCs implemented a partial or full deployment.

Scholars argue that studies of BWCs often suffer from potential selection

effects. This is because agencies choose to adopt BWCs technology for

various reasons, including consent decree, the agency’s interest to improve

their performance, accountability and legitimacy, mandated by state law, or

organizational characteristics (Maskaly, Donner, Jennings, Ariel, &

Sutherland, 2017). For example, larger police agencies may have the budget

to adopt and fully implement this type of technology. Nowacki and Willits

(2016), however, show that this might not be the case. In their study of

organizational drivers of adoption of BWCs, their findings suggest that

agencies that are prone to using technology in their operational activity

appear more likely to adopt innovative technology schemes such as BWCs.

Conversely, the size of the operational budget and the presence of unions

appear to hinder the adoption of this type of technology to prevent

limitations in police discretion.

Matching methods can help reduce potential selection biases associated

with the adoption of BWCs as well as minimizing Type I errors (Guo &

Fraser, 2014). However, as discussed earlier, it requires a strong exogeneity

16



assumption and that there are no lurking unobservable variables that could

bias the results. Because police agencies are complex organizations (Maguire,

2003), it is virtually impossible to match agencies on all the variables that

can influence the adoption of BWCs. I try to address this issue by first

matching agencies on a set of exogenous factors and internal organizational

characteristics that may influence the adoption of BWCs. Then, I conduct

additional tests to check whether the results could be affected by hidden bias

due the influence of unobservable characteristics. In the next sections, the

study presents the data, the empirical strategy, and the findings.

Although matching algorithms can yield consistent and robust estimates

on the effects of BWCs on police efficiency, using only the ITT sample would

yield conservative results (Gupta, 2011). This is because the ITT sample

includes those agencies that only acquired BWCs and those agencies that

deployed BWCs with their officers. This would somewhat underestimate the

effect of the actual deployment of BWCs because agencies may acquire

BWCs, but might be non-compliant due to limited capacity and

organizational management to effectively deploy BWCs (Hyland, 2018;

Nowacki & Willits, 2016). To address this issue and obtain a more precise

estimate of the effect of BWCs on efficiency from those that deployed BWCs,

I used an instrumental variable (IV) regression to conduct the TOT analyses;

that is, to examine the effect of BWCs ”deployers” compared to

”non-deployers”.

The TOT analysis yields what is known as the Local Average Treatment

Effects (LATE) estimates. Imbens and Angrist (1994) argue that LATE

estimates capture the average treatment effect among those exposed to the

treatment. In the case of this study, it would capture the effects on the

efficiency of those police agencies that deployed BWCs.

4.4.2 Matching Estimators

Matching can be accomplished in several ways. One of the most well-known

methods is propensity score matching (PSM). The propensity score defined

as the probability of receiving treatment conditional on a set of observable

baseline characteristics ei = Pr(Zi = 1∣Xi) (Rosenbaum & Rubin, 1983) (see 2

for the variables used to match agencies).

To estimate the propensity, I used a probit regression model16 that

16Probit and logistic regression models are the most common approaches to estimating the
propensity score, although researchers have examined other approaches.
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predicts the probability of being treated by an intervention. The propensity

score allowed me to create two groups17 that are similar based on a set of

observable covariates, and thus, any differences in the levels of efficiency

between these groups can be attributed to the adoption of BWCs.

To examine causal effects using observational data, Rosenbaum and

Rubin(1983) argued that two assumptions must be met. The first

assumption is the ”unconfoundedness assumption”,which states that

outcomes on the treatment and control groups are independent of

participation status conditional on a set of observable covariates (X). This is

illustrated with the following equation:

(Y (0), Y (1)) ⊥⊥D∣X

The second assumption that must be met in propensity score matching is

the ”overlap assumption”, which states that observations with the same

observable values can be in the treatment or control group (Caliendo &

Kopeinig, 2008). The following equation illustrates the overlap condition:

0 < P (D = 1∣X) < 1

Figure 2 illustrates the density curves before and after matching using the

propensity score. After matching, the figure shows no significant differences

between the BWCs ”acquirers” and ”non-acquirers”.

Recently, however, matching methods like PSM has sparked a debate

about its effectiveness in generating balanced samples to assess impact. For

example, King and Nielsen (2019) argue that PSM might achieve the

opposite of a balanced sample leading to inefficiency, model dependence, and

biased estimates (King & Nielsen, 2019 p.2; Iacus, King & Porro, 2012). To

address these shortcomings, the authors proposed a new approach–Coarsened

Exact Matching (CEM). This approach finds exact matches, one with that

has adopted BWCs and one that has not, instead of matching on a

propensity score.

The CEM approach coarsens the exogenous covariates, and divides them

into different strata, and finally performs an exact matching within each

stratum (King & Nielsen, 2019). One of the major trade-offs of matching is

that it requires the researcher to choose which covariates to match agencies.

This challenge is evident when using CEM in that if the strata are too

17To remind the readers, the two groups I created are: ”Acquirers” and ”Non-Acquirers” (ITT)
and ”Deployers” and ”Non-Deployers” (LATE)
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Figure 2: Density Curves-Unmatched vs. Matched Samples

complex, there is a lower likelihood of finding an exact match and, thus, not

being able to conduct any estimation (Vigneri & Lombardini, 2017). A

recent study argues that it is possible to conduct matching when using

algorithms that do not throw away good matches18 (Jann, 2017). Thus, for

this study, I used a wide range of matching algorithms, including CEM, to

check the consistency of the results across various models.

4.4.3 Instrumental Variable Regression

While useful and informative, the ITT analyses may not provide an accurate

estimate of BWCs effects on police efficiency since matching methods rely on

the assumption that the adoption of BWCs is exogenous to the outcome

given a set of observable characteristics Xi as shown in equation (1) above.

The main advantage of using an IV approach, when a valid instrument can

be found, is that it deals with potential bias from observable and

unobservable differences in BWCs adopters and non-adopters. In addition,

this method can be used to test the exogeneity assumption used in

propensity score matching (Ravallion, 2005). However, relaxing the

exogeneity assumption requires finding a valid instrument. A valid

instrument has to be strongly correlated with the adoption of BWCs but it

18Jann (2017) argues that the results presented by King and colleagues appear to be based on
the worst possible matching approach: one to one exact matching without replacement.
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cannot be correlated with the error term. It is common in impact evaluation

studies to use ITT as an instrument since, in the case of this study, all police

agencies that acquired BWCs have the option to deploy them but not every

agency does so. As noted earlier, out of 84% of in the sample that deployed

BWCs, only 40% deployed them fully with their officers.

An IV approach requires two stages, and each stage is illustrated in the

equations below:

BWCsi = δZi +ϕXi + vi (First Stage)

θi = βXi + B̂WCsi + ǫi (Second Stage)

where the first stage captures the relationship between instrument Zi and

the adoption of BWCs, and ϕ captures the relationship between instrument

Xi and the adoption of BWCs. In the second stage of the 2SLS model,

B̂WCsi captures the predicted adoption of BWCs estimated in the first

stage. The variables vi and ǫi are the error terms of the first and second

stage of the model (Cavataassi et al., 2011).

The first stage is estimated as a linear probability model. Angrist (2000)

suggests using this approach when the first stage is a limited dependent

variable model and argues that it is consistent and safer since using other

models, such as probit/logit, in the first stage is only consistent if the model

is exactly correct.

I used two measures of BWCs deployment to conduct the IV analyses.

The first variable captures those agencies that implemented a partial

deployment of BWCs with their officers. The second variable captures those

agencies that permanently deployed BWCs with their officers. I expect the

estimates on the full deployment to be larger than the partial deployment

because agencies that partially deployed BWCs did it for testing or for a

particular assignment and, thus, may not exploit the benefits of this

technology.

Table 2 presents the summary statistics of the set of observable

characteristics used to match police agencies and used as explanatory

variables in the IV regressions. Based on prior research and theoretical tenets

in organizational theory, I used a set of exogenous and organizational

characteristics that could influence the adoption of BWCs (Alda, 2017; Alda

& Dammert, 2019; Alda, Giménez, & Prior, 2019; Barros, 2007; Gorman &

Ruggiero, 2008). These include total population, population density, the

unemployment rate, the GINI coefficient of income inequality, the poverty
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rate, the adoption of other technology, the number of prevented civilian

complaints against officers; and important organizational structure

characteristics, such as the size of the police agency, operational budget; and

measures of organizational complexity, such as functional and vertical

differentiation. The first of the variables of organizational complexity

captures how a police agency assigns tasks within its organization, and it is

measured by the number of specialized units in each agency (Nowacki &

Willits, 2018; Maguire, 2003). Finally, the second organizational complexity

variable measures the hierarchy within an agency, and it is measured by the

midpoint salary difference between the highest and lowest rank officer

(Nowacki & Willits, 2018; Maguire 2003).
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Table 2: Summary Statistics-Observable Characteristics

Variable Obs Mean Std. Dev. Min Max
Population Density 615 3738.05 4450.13 217.56 53766.98
Population Estimate (2012) 615 124195.46 259902.74 702 3857799
% Population with less than High School 615 13.46 7.68 0 55.17
Unemployment Rate 615 7.86 3.16 1 22.15
GINI Coefficient of Income Inequality 615 0.45 0.047 0.31 0.62
Poverty Rate 615 16.24 7.74 0.61 43.25
All crimes recorded 615 6645.55 14905.18 0 172294
Civilian Complaints (Reciprocal*) 495 0.17 0.262 0.001 1
Police Agency Size 615 2.62 0.53 1 3
Acquired Car Dashboard Cameras 600 0.71 0.454 0 1
Budget (Ln) 598 16.47 1.417 12.723 20.951
Functional Differentiation 602 4.652 6.690 0 137
Vertical Differentiation 581 69116.98 34697.86 1195 246771

Source: BJS (2015), Kaplan (2020).
* The reciprocal value approximates the total number of civilian complaints prevented by each
agency.
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5 Results

Table 3 presents the overall efficiency estimates and the estimates

disaggregated by police size. The mean efficiency score was 0.76, which

indicates that, on average, police agencies that are inefficient relative to the

best performers could increase their outputs (crimes cleared) by 31 percent

(from 0.76 to 1). Larger and smaller police agencies perform better with

efficiency scores between 0.84 and 0.79, respectively. The efficiency score for

mid-size police agencies was 0.60, which suggests that they performed worst

relative to their larger and smaller peers.

Table 3: Order-m Efficiency Estimates

Mean Std. Dev. Min Max

Overall Efficiency Score 0.76 0.45 0.00 3.28
Police agency (1-10 Officers) 0.79 0.30 0.25 1.00
Police agency (11-100 Officers) 0.60 0.40 0.01 1.68
Police agency (¿100 Officers) 0.84 0.46 0.00 3.28

Source: Own Analyses using BJS (2015), Kaplan (2020).

Figure 3 illustrates the efficiency results by output. The figure reflects the

maximum level of output produced by municipal police forces given their

inputs. Police forces with values at or above 1 indicate that they performed

better in their output production than the number of m agencies used as

comparators.

Figure 3: Order-m Scores
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There is, however, significant variation in the levels of efficiency. Out of

615 agencies, only 28 were efficient (θ = 1), which is less than 5% of the

sample.These efficient agencies were distributed between small and mid-size.

It is worth noting that agencies were very inefficient and others were

super-efficient relative to their peers, with efficiency scores as high as 3.3. To

interpret this result, an agency with an efficiency score of 3.3 means that it

cleared as much as three times more output than a similar m number of

peers. Figure 4 in the Annex presents the same results without outlier

agencies–θ > 1– which shows more clearly the variation in police performance.

Table 4 presents the estimates on the effects of BWCs on police efficiency

using a range of matching estimators and instrumental variable regression.

The ITT results that agencies that acquired BWCs have a positive, strong,

and statistically significant effect on police efficiency. The estimates are

remarkably robust and consistent across model specifications. Improvements

in efficiency range from eight to 12 percentage points, depending on the

model. The regression adjustment model yielded the smallest coefficient,

whereas the mahalanobis distance estimator yielded the largest coefficient.

Regression adjusted models in matching estimators add an additional layer of

robustness because they reduce additional bias in the covariate balance,

ensuring consistency in the estimates, which might explain a slightly smaller

estimate in the analyses (Abadie & Imbens, 2011 p.1).

In regards to the IV estimates, the first stage criteria show that the ITT

is a valid instrument in the model. It is positive, strong, and statistically

significant in the first stage and the instrumented variable is also positive,

strong, and highly significant in the second stage. The F -statistic rejects the

null hypothesis that the instrument is weak with values well over the

accepted ’rule of thumb’ threshold of F > 1019 (Cuesta & Alda, 2012). Tests

for over-identification and endogeneity assumptions show that there are no

over-identifying restrictions and the tests accept the null hypothesis that the

instrument can be treated as exogenous. The latter supports the exogeneity

assumption needed for the matching estimators (Cavatassi et al., 2011).

As expected, the IV (LATE) estimates are larger in magnitude than the

ITT estimates. This is because the LATE estimates capture the effect of

BWCs on those agencies that deployed BWCs compared to those agencies

19New research questions the use of the F > 10 as the rule of thumb for first stage estimates. Lee
and colleagues (2020) suggest that F -statistic values should be larger than 104.7 in order to have
a true 5% t-ratio test. As Table 4 shows, the first stage F -statistic value is >104.7
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that acquired BWCs but did not deploy them. The results indicate that

agencies that deployed and permanently deployed BWCs improve their

efficiency between 12 and 21 percentage points, respectively. This suggests

that controlling for both observable and unobservable characteristics, agencies

that deployed BWCs experienced a greater efficiency gains, which supports

the argument that the use of BWCs can help improve police efficiency.
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Table 4: Regression Results

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.124*** 0.100** 0.103** 0.112** 0.105** 0.079** 0.086** 0.109** 0.125*** 0.209***
(0.033) (0.042) (0.040) (0.044) (0.044) (0.038) (0.037) (0.040) (0.043) (0.072)

Constant 0.669*** -0.427 -0.687
(0.0314) (0.503) (0.522)

Observations 446 446 446 446 446 446 446 415 446 446
R2 0.02 0.30 0.30

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.

9 2SLS Instrumental Variable Regression. First stage F-statistic, 301.3, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 268.11, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

Notes:
All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%
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Table 5 presents the predicted efficiency scores for each matching

algorithm and the IV models for each group of police agencies; that is,

”acquirers” vs. ”non-acquirers” and ”acquirers” vs. ”deployers”20. The

predicted efficiency scores are significantly higher, about ten percentage

points in the ITT analyses and 20 percentage points larger between

”acquirers” and ”deployers” in the LATE results.

Table 5: Predicted Efficiency Scores

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.678 0.802
PS 0.694 0.795
RM 0.693 0.796
NN-3 0.706 0.818
NN-5 0.712 0.817
RA 0.712 0.798
DWPS 0.718 0.798
CEM 0.667 0.783
IV 0.667 0.859
IV-2 0.667 0.860

Avg. 0.695 0.797 0.667 0.859

* Partial Deployment. ** Full Deployment.

5.1 Robustness Checks

Although the results are consistent across matching and IV specifications,

the presence of outliers could drive the second stage estimates, given that the

proportion of super-efficient agencies is somewhat large. Therefore, to check

whether these outliers drive the second stage results, I dropped from the

sample those agencies with efficiency scores larger than one and re-estimated

the matching and IV models. Table 6 in the Annex presents the result and

show, on average, slightly smaller effects, although the LATE estimates are

slightly larger than those of the preferred models in Table 4.

As an additional robustness test, I re-estimated the efficiency scores using

the reduced sample; that is, the resulting sample after eliminating the

20Predicted efficiency scores for deployers include those agencies that partially deployed BWCs
and agencies that implemented a full deployment of BWCs.
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observations that had efficiency scores > 121. Table 6 in the Annex presents

the estimates. The results are still strong and statistically significant across

matching estimators and the IV regressions, and do not substantially alter

the results of the preferred model specifications (see Table 4). The average of

all the effects are slightly larger in the preferred model specifications–0.115

vs. 0.109 percentage points–, which is driven by the ITT estimates.

The reduced sample of the original order-m scores to ⩽ 1 shows that

BWCs improve efficiency between eight and 11 percentage points for the ITT

estimates and 13 to 23 percentage points for the LATE estimates.

Conversely, the results on the re-estimated efficiency scores on the reduced

sample (see Table 7 in Annex) also show positive, strong, statistically

significant effects of BWCs on police efficiency. The magnitude of the

coefficients ranges from 13 to 16 percentage points for the ITT estimates and

from 20 to 34 percentage points for the LATE estimates. The coefficients are

larger likely as a result of the sample being reduced by 166 agencies. Also,

the efficiency estimates have changed because the number and type of

comparators (agencies) in the sample differ from the base sample and that

will invariably influence the generation of the efficiency frontier.

I also conducted the matching and IV analyses on the group of

super-efficient police agencies (θ > 1) (see Table 8 in the Annex). These

results indicate no effects of BWCs on efficiency among the super-performing

agencies22.

A concern with efficiency estimation is the potential imbalance in the

data because of differing magnitudes in inputs and outputs. One way to

address this issue in DEA and DEA-based analyses is to mean-normalize the

data to ensure similarity in inputs and outputs across units (Sarkis, 2007). I

proceeded to mean-normalize the inputs and outputs, estimate the efficiency

scores, and use them as the outcome in the matching and IV analyses.

The results indicate that the mean efficiency scores were slightly lower

than the preferred model–0.68 compared to 0.76 (see Table 10 in Annex).

This reduction in the efficiency scores is likely a result of mean-normalizing

the data, which may lessen the influence of outlier agencies in the model.

The matching and IV results are smaller in magnitude compared to the

preferred models, but are still positive and statistically significant (see Table

21The reader should note that even after dropping outlier observations, the analyses will still
yield super-efficient observations.

22It is worth noting that the N for these analyses is substantially smaller–166– and will likely
affect the results.
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9 in Annex). For the ITT analyses, the effects of BWCs on police efficiency

range from six to ten percentage points, and for the IV models, effects range

from 11 to 18 percentage points.

Finally, Table 12 presents the estimates of a basic DEA model using an

output-oriented and variable returns to scale model. As discussed above it is

plausible that super-efficient agencies may drive the efficiency

scores.Therefore, an order-m model would prevent these agencies from

setting the efficiency frontier–at = 1 and introduce bias by pushing the rest of

the units downward and causing a higher percentage of agencies to become

inefficient (Epstein & Henderson, 1989).

The results show a significant drop in efficiency scores to an average score

of 0.46 compared to the average of 0.76 in the order-m model. These results

help validate the use of an order-m model to obtain more accurate efficiency

estimates.

Table 10 presents the matching and IV estimates. Similar to the preferred

models, the ITT results indicate that acquiring BWCs has a positive and

statistically significant effect on police efficiency. The ITT estimates range

from four to seven percentage points23. Similarly, the IV estimates are

positive and statistically significant, and the size of the coefficients indicate

effects ranging from five to 10 percentage points.

5.2 Hidden Bias

I further checked the sensitivity of the results to the presence of hidden bias

driven by unobservable factors that could influence the adoption of BWCs.

As noted earlier, several internal and external organizational factors and

operational factors can influence decision-making in the adoption of BWCs.

Therefore, the results should not rule out the possibility of the presence of

hidden bias. Gangl and DiPrete (2004) argue that although propensity score

matching24 removes most of the bias due to observable characteristics, it is

not a consistent estimator in the presence of hidden bias (DiPrete and Gangl,

2004, p.272).

23The regression adjustment estimates are positive but no longer statistically significant at
conventional levels (p < .05).

24Note that propensity score matching is one of several matching algorithms I used in the analyses.
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5.2.1 Rosenbaum Bounds

First, I used the Rosenbaum bounds test to examine how the results would

be affected in the presence of hidden bias from an unobserved confounding

variable. It is worth noting that the presence of hidden bias does not mean

the results are invalid; rather, they convey important information on how

large the effect of an unobserved variable has to be in order to change the

conclusions we infer from the original estimates (DiPrete & Gangl, 2004).

To conduct the analysis, I set the maximum value for Γ, at 1 with

increments of 0.1, which are considered appropriate for these type of data

(Keele, 2010). Γ values start at 1 and indicate no presence of unobserved

confounders, and the p-value should hold if there is no hidden bias. The

results suggest that the critical value Γ at which the p-value is no longer

statistically significant at conventional values is equal to 1.7 (see Table 15 in

the Annex). Thus, in order to question the study’s results, an unobserved

variable would have to affect the log odds of adoption of BWCs by a factor of

1.7.

5.2.2 Simulated Confounder

Second, I used the simulated confounder approach proposed by Ichino,

Mealli, and Nannicini (2008). It assumes that a binary variable ⋃ can be

simulated and used as another observable characteristic in the matching

analysis. This approach’s primary underlying assumption is that the both

the observable characteristics and the simulated confounder can influence the

adoption of BWCs.

The results show the extent to which the baseline estimates are robust to

the failure of the conditional independence assumption. I employed two

variables to conduct the simulated confounder analyses on the original

outcome variable–police efficiency. The first variable is the size of the

police25, and the second variable is the use of dashboard computers. Both

variables are likely associated with the adoption of BWCs. Using a nearest

neighbor and kernel matching. Table 16 in the Annex presents the results

and show positive and statistically significant effects of both the baseline and

the simulated confounder model. The coefficient of 0.11 suggests negligible

differences between the baseline and the simulated confounder estimates.

25Generating the simulated confounder requires a binary variable. Thus, I generated one where
large police agencies take a value of 1 and 0 otherwise.
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Furthermore, as recommended in Ichino et al. (2008), both the outcome and

selection effects are positive (>1). Like the Rosenbaum bounding approach,

these results confirm the robustness of the estimates in the preferred models.

5.2.3 Relative Correlation Restrictions

Finally, I used the relative correlation restrictions (RCR) methodology

proposed by Krauth (2016) to construct informative bounds on the effects of

BWCs on police efficiency and assess how these estimates behave to

deviations from the exogeneity assumptions (Krauth, 2016, p. 2). This

methodology assumes a correlation between the adoption of BWCs and the

unobserved variables relative to the correlation between the variable of

interest and the observed exogenous characteristics. I examined the potential

effect of a correlation between the adoption of BWCs and unobservable

characteristics that is 0.25, 0.5, 0.75, 1, and twice the correlation size

between the adoption of BWCs and the observable characteristics I employed

for the matching and IV analyses (Desai & Joshi, 2013).

Table 17 presents the results. The first row shows the OLS regression

point estimates in the absence of hidden bias (λ=0), while the remaining

rows present the point estimates for up to twice the correlation between the

adoption of BWCs and observable characteristics. The RCR results suggest

that the point estimates are robust to a weak correlation–0 and 10 percent–

between the adoption of BWCs and observable characteristics. However,

although the bounds on the effect are narrow and close to the OLS estimate,

these are not statistically significant at conventional levels. Furthermore, the

RCR bounds show no effect at moderate or large correlations (0 ≤ λ ≤ 1) as

the bounds include 0. Thus, the RCR results may raise concern on the

influence of unobserved confounding variables on the matching estimates.

Overall, the signs and magnitudes of the effects of BWCs on police

efficiency are robust to different matching estimators and potential hidden

bias.

6 Conclusions and Limitations

In this study I examined the effect of BWCs on police efficiency on a sample

of local police agencies in the U.S. in 2016. I conceptualized the adoption of

BWCs across local police agencies as those agencies that acquired BWCs and
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those that deployed them, either partially or fully, with their officers. This

differentiation allowed creating an Intent to Treat (ITT) group for all the

agencies that acquired BWCs, and a Treatment on the Treated (TOT) group

for those agencies that deployed them. To examine the effects of BWCs on

police efficiency, I employed a two-stage analytical approach.

In the first stage, I estimated the levels of police efficiency using an

efficiency model that is robust to the presence of outliers and measurement

error inherent to administrative and survey data. I specifically used an

output-oriented and variable returns to scale model because organizations

like the police should maximize the output produced (clearance rates) using

the same or fewer inputs.

In regards to efficiency, the estimates suggest that police agencies have

room for improvement. The efficiency scores range from 0.60 to 0.84,

depending on the police agency’s size, with an overall mean of 0.76. In other

words, on average, police agencies could improve their performance by

increasing 31 percent of their output production–clearance rates– using the

same or fewer inputs. Furthermore, the results showed that over 100 agencies

were deemed super-efficient. This means that these agencies produced output

between more than 1 (efficiency score >1), and as much as three times more

output than similar peers using the same number of inputs.

In the second stage of the analyses, I employed a range o matching

estimators and instrumental variable analyses using the efficiency scores as

the outcome of interest. The results indicated a positive, strong, and

statistically significant across all matching and IV models. The ITT

estimates suggest an improvement in efficiency between seven and 12

percentage points, and the LATE estimates suggest an improvement in

efficiency ranging from ten to about 21 percentage points. The effects on

efficiency gains substantial. For example, if police can increase efficiency by

an average of 11 percentage points26,the number of crimes cleared would

increase from an average of 430 violent and property crimes cleared to 494.

While it seems like a small number, it amounts to an average of 64 more

crimes cleared annually through the deployment of BWCs.

I also conducted robustness tests and examined the sensitivity of the

results to the presence of hidden bias. The robustness tests suggested that,

after re-analyzing the models, the presence of outliers does not affect the

estimates’ strength and robustness, and, if anything, the magnitude of the

26This is the average of all the regression coefficients in Table 4.
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effects increases from an average of 11 to 12 percentage points. The

sensitivity analyses suggest that the models are robustness to the presence of

hidden bias except for the relative correlation restrictions approach. The

RCR results showed mild robustness to the presence of unobserved factors

that could question the robustness of the estimates in the preferred models.

Altogether, the findings of this study provide strong support to the argument

that the adoption of BWCs can contribute to improving police efficiency,

among other aspects of policing.

There are several important caveats to keep in mind with this study.

First, the study sample is limited to only local police agencies. The LEMAS

survey collects data on a much larger sample of law enforcement agencies and

includes the sheriff, county, and state police, among others. Hence, any

inferences based on these results should be attributed to local police agencies

and not as effects that can be generalized across law enforcement agencies.

Furthermore, due to data limitations and missing data for a number of

agencies, the data required pre-processing and, as a result, ended up limiting

the sample size to 615 local police agencies.

Second, there are limitations in the number and types of police inputs.

The LEMAS survey does not contain data on key inputs in a police

production function, such as computers, phones, and GPS, among others.

The use of technology, paired with adequate organizational and management

changes, is important in improving efficiency (Garicano & Heaton, 2010;

Milgrom & Roberts, 1990). For this study’s purposes, I was able to use two

key police inputs, which are the number of police officers and civilian

personnel.

Third, I could not capture in the analyses the variation in the adoption of

BWCs. The data indicate that some agencies had acquired BWCs 10-15

years ago, and some as recently as 2016, the year the BWCs survey was

implemented. Since 2012 the number of police agencies that have adopted

BWCs increased by more than 500% from 19 in 2013 to 121 in 201527 (see

Figure 4 in the Annex). Therefore, it is possible that the early adoption of

BWCs may have influenced the efficiency results since they have had more

time to use this technology. One possible way to address this issue is to

conduct temporal analysis and estimate yearly efficiency levels since the

shape of the efficiency frontier, and the units that generate it may change

from year to year.

27This is based on this study’s sample.
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Finally, although the study deliberately focused on local police agencies,

they still face variation in their technology sets due to differences in

organizational structure, financial and human resources, and the operating

environment. For example, the efficiency results indicate that the number of

super-efficient agencies is somewhat large and driven by mid-size and large

agencies. While the methods used in the first and second stages helped

address differences between agencies to a great extent28, there still exists

variation in agencies’ technology sets, which ultimately affects the generation

of the efficiency frontier (O’Donnell, Rao, & Battese, 2008). Thus, modeling

the production frontier to account for differences in technology sets would

yield efficiency estimates that compared the performance of agencies with

peers that have similar technology sets. Unfortunately, sample size

limitations did not allow me to model police production function under

different technology sets.

Considering these caveats, the findings nevertheless raise a question on

the mechanisms through which the use of BWCs improve police efficiency.

This is important from an operational point of view. It is challenging to shed

light a priori on how BWCs cameras could improve police efficiency, given

limitations in data that would allow researchers to model the complexity of a

police agency’s production function. However, this study offers some

potential channels.

Research shows that using BWCs generally contributes to reducing the

time needed to clear a crime and send it to the next phase within the

criminal justice system (c.f. Morrow et al., 2016). Furthermore, historical

research on clearance rates appears to provide support to this argument.

Scott and colleagues (2019) suggest average historical trends, despite showing

significant stability, there was substantial variation among agencies in their

clearance rate performance. Organizational changes and other factors were

the primary drivers of variation (Scott, Wellford, Lum & Vovak, 2019).

Another potential channel is the compounding effect that BWCs can have

on improved performance through faster police response times. For example,

recent evidence suggests that faster police response times can improve crime

clearance rates by as much as 4.7% (Vidal & Kirchmeier, 2018). If faster

response times alone can lead to higher clearance rates, the enhanced data

and information that BWCs can collect could be a key factor in improving

clearance rates.

28Note that eliminating the super-efficient observations did not substantially alter the estimates.
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Of course, organizational factors and external factors beyond police

managers’ control invariably influence an agency’s performance (Alda &

Dammert, 2019). As Scott and colleagues(2019) suggested, differences in

organizational characteristics could explain variation in clearance rate

performance. Hence, having adequate organizational factors conducive to a

full deployment of BWCs, and training on proper use of BWCs and other

available technology, can positively impact efficiency (Milgrom & Roberts,

1990). Ultimately, however, officers must be compliant in using and

exploiting this technology’s capabilities to improve law enforcement

practices, particularly around maximizing output production while using the

same or fewer resources.

Improving police organizations’ efficiency can significantly impact

budgetary allocations in local government and police organizations to ensure

proper allocation of resources to maximize service delivery. Taken together,

the results of this study shed light on the effects that this technology has on

police efficiency. It will be important to expand on this strand of research

within the growing body of literature on the use of BWCs by law

enforcement agencies.
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Annex-Supplementary Figures and Tables

Figure 4: Yearly Adoption of BWCs

Notes: Source: Own Analyses using BJS (2015), Kaplan (2020).

Figure 5: Order-m Scores

Notes: Order-m efficiency scores without outlier agencies.
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Figure 6: Efficiency by Agency Size

Notes: Order-m efficiency scores by agency size.

Figure 7: Bivariate Plot: Efficiency Scores vs. Efficiency Scores-Mean Normalized
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Table 6: Results-Sample with Efficiency Scores ⩽ 1

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.111∗∗∗ 0.094∗∗ 0.093∗∗ 0.0790∗ 0.090∗∗ 0.0827∗ 0.096∗∗∗ 0.0850∗∗∗ 0.133∗∗∗ 0.230∗∗∗

(0.0339) (0.0377) (0.0379) (0.0413) (0.0397) (0.0424) (0.0367) (0.0327) (0.0390) (0.0675)
Constant 0.517∗∗∗ 0.823 0.447

(0.0252) (0.557) (0.582)
Observations 320 320 320 320 320 320 320 316 320 320
R2 0.02 0.13 0.12

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 760.27 (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates.

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 162.20, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates.

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 7: Results - Re-Analyses of Efficiency Scores and BWCs Effects

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.167∗∗∗ 0.151∗∗∗ 0.153∗∗∗ 0.110∗∗∗ 0.048∗∗∗ 0.032∗∗∗ 0.049∗∗∗ 0.0.050∗∗ 0.196∗∗∗ 0.338∗∗∗

(0.0462) (0.0442) (0.0456) (0.0512) (0.0262) (0.0263) (0.0262) (0.0259) (0.0496) (0.0870)
Constant 0.360∗∗∗ 0.302 -0.252

(0.0204) (0.641) (0.677)
Observations 320 320 320 320 446 446 446 416 320 320
R2 0.01 0.23 0.20

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 760.27, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 11.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 162.20, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 8: Results - Robustness Analyses-Outlier Agencies

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.0661 0.0208 0.0145 0.0391 0.0355 0.0273 -0.0147 0.000814 0.0501 0.0764
(0.0548) (0.0529) (0.0575) (0.0517) (0.0507) (0.117) (0.0521) (0.0851) (0.0463) (0.0713)

Constant 1.302∗∗∗ -0.933 -1.029
(0.0721) (0.711) (0.738)

Observations 126 126 126 126 126 126 126 71 126 126
R2 0.00 0.44 0.42

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 742.95, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 117.03, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses
were done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 9: Results - Robustness Analyses-Normalized Input/Output Set

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.103*** 0.0892** 0.0919** 0.0969** 0.0916** 0.0684** 0.0763** 0.0940*** 0.110*** 0.184***
(0.0355) (0.0374) (0.0383) (0.0376) (0.0364) (0.0343) (0.0379) (0.0344) (0.0379) (0.0632)

Constant 0.608*** 0.0471 0.182
(0.0270) (0.432) (0.446)

Observations 446 446 446 446 446 446 446 416 446 446
R2 0.02 0.24 0.24

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 1271.66, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for maximum
bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 246.22, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for maximum
bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 10: Order-m Efficiency Estimates- Mean Normalized

Mean Std. Dev. Min Max

Overall Efficiency Score 0.68 0.27 0.0003 2.40
Police agency (1-10 Officers) 0.78 0.30 0.25 1.00
Police agency (11-100 Officers) 0.57 0.38 0.006 1.16
Police agency (>100 Officers) 0.73 0.36 0.0003 2.40

Source: Own Analyses using BJS (2015), Kaplan (2020).

Table 11: Predicted Efficiency Scores- Mean Normalized

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.618 0.721
PS 0.625 0.714
RM 0.623 0.715
NN-3 0.636 0.733
NN-5 0.641 0.732
RA 0.646 0.714
DWPS 0.63 0.706
CEM 0.607 0.701
IV 0.607 0.7619
IV-2 0.607 0.771

Avg. 0.62825 0.717 0.607 0.76645

Source: Own Analyses using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
* Partial Deployment. ** Full Deployment.

46



Table 12: Results - Robustness Analyses using a DEA model

DM1 PS2 RM3 NN-34 NN-55 RA-MD6 DWPS7 CEM8 IV9 IV-210

Efficiency 0.0732*** 0.0524** 0.0557** 0.0542** 0.0484* 0.0322 0.0481* 0.0501* 0.0584** 0.0975**
(0.0251) (0.0266) (0.0271) (0.0264) (0.0262) (0.0263) (0.0260) (0.0259) (0.0283) (0.0473)

Constant 0.360*** 0.383 0.262
(0.0203) (0.338) (0.348)

Observations 446 446 446 446 446 446 446 415 446 446
R2 0.01 0.19 0.19

1 MD = Malahanobis Distance Matching.
2 PS = Propensity Score Matching.
3 RM = Propensity Score Ridge Matching.
4 NN-3 = Nearest Neighbor Matching (3).
5 NN-5 = Nearest Neighbor Matching (5).
6 RA-MD = Regression Adjustment.
7 DWPS = Doubly Weighted Propensity Score Matching.
8 CEM = Coarsened Exact Matching.
9 2SLS Instrumental Variable Regression. First stage F-statistic, 1271.66, (p < .01).

Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates..

10 2SLS Instrumental Variable Regression-2 First stage F-statistic, 246.22, (p < .01).
Kleibergen-Paap rank statistic for cluster-robust 2SLS (null hypothesis is that the equation is under-identified) is rejected.
Stock-Yogo critical value (at 95% confidence) for weak-instrument test statistics (Kleibergen-Paap Wald or CraggDonald F) is 16.38 for
maximum bias of IV estimator to be no more than 10% of the maximal IV size (inconsistency) of OLS estimates. .

Notes: All matching methods except for CEM were done using Stata’s user-written command kmatch (Jann, 2019). The CEM analyses were
done using Stata’s user-written command CEM (King, 2019). Standard Errors in Parenthesis: significance *10%, **0.05%, ***0.01%

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 13: DEA Efficiency Estimates

Mean Std. Dev. Min Max

Overall Efficiency Score 0.41 0.27 0.0001 1.00
Police agency (1-10 Officers) 0.65 0.37 0.05 1.00
Police agency (11-100 Officers) 0.36 0.30 0.002 1.00
Police agency (>100 Officers) 0.41 0.24 0.0001 1.00

Source: Own Analyses using BJS (2015), Kaplan (2020).

Table 14: Predicted Efficiency Scores-DEA Model

Non-Acquirers Acquirers Acquirers Deployers*,**

MD 0.361 0.434
PS 0.368 0.420
RM 0.366 0.422
NN-3 0.372 0.426
NN-5 0.377 0.425
RA 0.389 0.421
DWPS 0.374 0.422
CEM 0.359 0.409
IV 0.358 0.446
IV-2 0.358 0.447

Avg. 0.370 0.422 0.358 0.446

Source: Own Analyses using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
* Partial Deployment. ** Full Deployment.
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Table 15: Rosenbaum Bounds

Γ sig+ sig- t-hat+ t-hat- CI+ CI-

1.0 0.0000 0.0000 0.1490 0.1490 0.0796 0.2120
1.1 0.0002 0.0000 0.1310 0.1664 0.0595 0.2295
1.2 0.0009 0.0000 0.1133 0.1822 0.0439 0.2451
1.3 0.0037 0.0000 0.0971 0.1961 0.0277 0.2595
1.4 0.0114 0.0000 0.0815 0.2106 0.0127 0.2724
1.5 0.0286 0.0000 0.0667 0.2221 -0.0017 0.2850
1.6 0.0602 0.0000 0.0557 0.2346 -0.0137 0.2956
1.7 0.1099 0.0000 0.0445 0.2445 -0.0252 0.3063
1.8 0.1785 0.0000 0.0342 0.2536 -0.0371 0.3147
1.9 0.2636 0.0000 0.0233 0.2631 -0.0477 0.3247
2.0 0.3599 0.0000 0.0138 0.2713 -0.0583 0.3335

Γ- Log odds of differential assignment due to unobserved factors.
sig+-Upper bound significance level.
sig--Lower bound significance level.
t-hat+-Upper bound Hodges-Lehmann point estimate.
t-hat--Lower bound Hodges-Lehmann point estimate.
CI+-Upper bound confidence interval (a= .95).
CI--Lower bound confidence interval (a= .95).
Source: Own analysis using BJS (2015), Kaplan (2020), and US
Census Bureau (2017).

Table 16: Simulated Confounder

Police Size Baseline Estimate Simulated Estimate Outcome Effect Selection Effect
Kernel Matching 0.114*** 0.112*** 1.44 1.525
Nearest Neighbor 0.057 0.106 1.576 1.538
Dashboard Cameras
Kernel Matching 0.114*** 0.114*** 1.081 1.833
Nearest Neighbor 0.056 0.11 1.045 1.829

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau (2017).
Estimates are based on 1,000 bootstrap replications.
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Table 17: Relative Correlation Restrictiions

ITT TOT
OLS point estimate ( λ = 0) 0.106*** 0.110***
(95% CI) (0.03,0.178) (0.04,0.183)
Bounds, 0 ⩽ λ ⩽ 0.1 [0.112,0.260] [0.29,0.444]
(95% CI) (0.09,0.106) (0.10,0.112)
Bounds, 0 ⩽ λ ⩽ 0.25 [-0.212,0.260] [-0.409, 0.444]
(95% CI) (0.065,0.106) (0.082,0.112)
Bounds, 0 ⩽ λ ⩽ 0.5 [-0.405,0.260] [-0.611,0.444]
(95% CI) (0.206,0.106) (0.050,0.112)
Bounds, 0 ⩽ λ ⩽ 1 [-0.920,0.260] [-1.00,0.444]
(95% CI) (-0.081,0.106) (-0202,0.112)
Bounds, 0 ⩽ λ ⩽ 2 [-3.10,0.260] [-1.883,0.444]
(95% CI) (-0.390,0.106) (-0.204,0.112)
λ∞ 2.82 3.34
λ(0) 0.61 2.94
Minimum λ for which bounds include zero 0.61 2.94

Source: Own analysis using BJS (2015), Kaplan (2020), and US Census Bureau
(2017).
Notes: λ is the assumed correlation between the treatment and the observed
variables. Bounds reflect the estimates of the adoption of BWCs (ITT and TOT)
on police efficiency. Intervals in brackets are the estimated rcr bounds and the
intervals in parenthesis are 95% asymptotic confidence intervals.
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