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model solution for examining if international spillovers come from multivariate volatility, time variation,

or contemporaneous relationship. An empirical application among Central-Eastern and Western Europe
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1 Introduction

Vector Autoregressions (VARs) are widely used when studying macroeconomic–financial linkages to detect

interdependencies and co-movements among multiple economic time-series. In the simplest form, error terms

in the VAR models are assumed to have constant variances. While convenient, assuming time-invariant coef-

ficients and variances, it turns out to be highly restrictive in capturing the evolution and thus the dynamics

of multiple economic time-series. When time-varying series are introduced in a VAR to highlight the evolving

relationship between multiple economic-financial variables, its state space structure need to be modeled and

then used in the empirical analysis to estimate unobserved time variations and volatility. Since allowing

time-varying coefficients and/or volatility introduces too many parameters than data points, the literature

have proposed random processes to time variations or volatility to deal with the curse of dimensionality (see,

for instance, Koop and Korobilis (2013)). The randomness in these time-varying parameters fits sufficiently

well with Bayesian methods because there is no strict distinction between fixed (true) parameters and random

samples.

In this context, multicountry Bayesian VAR (BVAR) models have given a new impulse to the literature

to evaluate macroeconomic-financial linkages, to test specification hypotheses, and to conduct policy exer-

cises (see, e.g., Ciccarelli et al. (2018), Canova and Ciccarelli (2009), Canova et al. (2007, 2012), and Koop

(1996)). Nevertheless, although estimation of time-varying structures is feasible with a large homogeneous

cross-section, heterogeneous dynamics due to an unexpected shock combined with not directly observed or

measured factors make it difficult to exploit cross-sectional information to estimate time-series variations

in multicountry setups. More precisely, these empirical models tend to be non-structural and constrained

because of time-invariant or exogenous factors in the system. Thus, when formulating policies or forecasting,

it is not possible to identify – for example – the reasons underlying different cross-country reactions given an

unexpected shock, the causality between real and financial variables, how additional transmission channels

allow shocks to spill over, and how economic and institutional implications matter in driving shock transmis-

sion.

My approach and empirical application aim to contribute to this debate. More precisely, they build on

Pacifico (2019b), who developed a structural version of the BVAR – labeled as Structural Panel Bayesian

VAR (SPBVAR) – in order to deal with model misspecification and unobserved heterogeneity problems when

jointly modeling and quantifying multicountry data using the information contained in a large set of en-

dogenous and economic–financial variables1. The advantage of this approach is that it is easier to match

endogenous variables to additional time-variant factors. However, the framework is valid if and only if prior

specifications are satisfied and a fully hierarchical structure is provided. The latter focuses on a state-space

factorization structure where the factors driving the coefficients of the SPBVAR are restricted to evolve over

1See, for further studies, Pacifico (2019a), Pacifico (2020a), and Curcio et al. (2020).
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time as random walks so as to: (i) reduce the number of parameters; (ii) allow for the evaluation of perma-

nent shifts; (iii) investigate any type of coefficient factors via their interactions; and (iv) replace volatility

changes by coefficient changes. This latter turns out to be highly restrictive to evaluate multiple time-varying

change-points (or structural breaks) when studying macroeconomic and financial time-series. For example,

international business cycle dynamics, policy interactions, and interdependencies and co-movements among

different sectors and countries have changed substantially during the recent global crisis and successive con-

solidation periods. In addition, the increasing volatility and uncertainty in financial markets have confirmed

the close volatility linkage between economic-financial data and thus the need to investigate shifts in either

coefficients or volatility when describing these changes in a time-varying multicountry framework (see, e.g.,

Primiceri (2005), Canova and Gambetti (2009), Clark (2009), Cogley et al. (2010), and Sims and Zha (2006)).

The methodological implementation described in this paper consists of overtaking these limits and thus

jointly deal with multiple structural breaks, policy regime shifts, and policy interactions among countries

and sectors. The model suggested in this paper takes the name of multicountry SPBVAR with Multivariate

Time-varying Volatility (SPBVAR-MTV). The two main differences with respect to a standard SPBVAR lie

in an additional component to investigate fiscal and monetary policy implications and interactions, and in the

variance-covariance matrix allowed to be time-variant. The latter is an useful way of modeling time-varying

conditional second moments to provide an alternative to the stochastic volatility specification; therefore, in

this context, volatility changes are not more replaced by coefficient changes. The computational costs involved

in using that specification are moderate since the high dimensionality is avoided via Bayesian inference and

Monte Carlo Markov Chain (MCMC) implementations. For instance, Kalman-Filter technique is used to get

appropriate posterior distributions for time-varying coefficients and Metropolis-Hastings algorithm is used

to draw posteriors for log-volatilities evolving over time. A Structural Normal Linear Regression (SNLR)

model is obtained via Bayesian methods to work with smaller systems in which all the regressors are en-

dogenous, observable, directly measured, and time-varying linear combinations of the right-hand variables of

the SPBVAR-MTV model. I also account for three more indices2 in order to quantify international spillover

effects and thus evaluate their size (or intensity in terms of volatility) and dynamics (or spreading) among

countries and sectors over time. (i) The Bilateral Net Spillover Effect (BNSE) is used to account for cross-unit

interdependencies, feedback effects from the impulse variables, and temporary or persistent long-run effects of

a potential shock (or excess spillover effects). (ii) The Systemic Contribution (SC) index is used to evaluate

sequential features associated with systemic events. And (iii) the Total Contagion Index (TCI) is addressed

to investigate contagion measures in real economy and financial markets when dealing with both issues of

endogeneity (because of omitted variables and unobserved heterogeneity) and volatility (because of policy

regime shifts and structural changes).

In this paper, the SPBVAR-MTV model incorporates the econometric literature on standard Time-Varying

2The first two indices have been constructed as Pacifico (2019b).
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Parameter Vector Autoregressions (TVP-VARs) with stochastic volatility, become a benchmark model for

analysing and forecasting the evolving inter-relationships between multiple macroeconomic variables (see,

e.g., Koop et al. (2009), Koop and Korobilis (2013), Liu and Morley (2014), D’Agostino et al. (2013), and

Clark and Ravazzolo (2015)). Despite the empirical success of these flexible time-varying models, they show

a relevant limit about their potential and feasible over-parameterization. More precisely, on the methodolog-

ical side, the literature makes out two popular Bayesian methods for TVP-VARs with stochastic volatility:

Marginal Likelihood (ML), evaluating how likely the observed data are occurred within the system, and

Deviance Information Criterion (DIC), trading off between model fit and model complexity. As regards ML

estimates, they are usually obtained by using the harmonic mean3 of a conditional likelihood4 that tends to

have a substantial bias selecting the wrong model (see, for instance, Chan and Grant (2015) and Frühwirth-

Schnatter and Wagner (2008)). Concerning DIC procedure, the MCMC integration based on the conditional

likelihood tends to associate higher probability to the most complex models (overfitting5).

The methodology proposed in this paper overtakes these limits by using analytically integrations for in-

tegrating out the time-varying volatilities. More precisely, integrated likelihood evaluation is achieved by

integrating out the time-varying parameters analytically (e.g., Kalman-Filter technique), whereas the log-

volatilities are integrated out numerically via importance sampling. The latter consists of two steps: (i) the

Metropolis-Hastings algorithm is used to draw posteriors for time-varying log-volatilities from the proposal

density distributio, and then (ii) the Newton-Raphson (N-R) method6 algorithm is involved to find the max-

imum of the (log) conditional density. In this way, the computational costs are further reduced focusing on

band and sparse matrix algorithms instead of the conventional Kalman filter.

An empirical application is developed by accounting for the Central, Eastern, and Western European

(CEWE) countries in order to include a large pool of advanced and emerging economies, with particular em-

phasis to the most recent recession and successive post-crisis periods. The United States (US) are included in

the analysis to assess international spillover effects and possible contagion measures among financial markets.

In this study, I focus on the latest two alternative monetary policy regimes that have been in place since

the 1990 (see, for instance, Kallianiotis (2019)): (1) the Inflation Stabilization Era (ISE) from 1994 to 2008

and (2) the Zero Interest Rate Era (ZIRE) from 2008 to 2015. I also consider two more additional periods:

(1) 2006q1− 2009q4 to investigate possible commonality between financial markets and real economy during

the Great recession and (2) 2010q1 − 2018q4 to evaluate fiscal implications and policy perspectives during

post-crisis consolidation. Moreover, since most of countries joined in with Euro Area (EA), one is also able to

investigate how policy regime shifts and endogeneity issues matter when studying macroeconomic–financial

3See, for instance, Gelfand and Dey (1994).
4It would correspond to the conditional density of the data given the log-volatilities, but marginal of the time-varying

parameters.
5Overfitting and thus overestimation of effect sizes refers to a common problem in Bayesian Model Averaging since more

complex models will always provide a somewhat better fit to the data than simpler models, where the ’complexity’ stands (for
example) for the number of unknown parameters. See, for instance, Pacifico (2020b).

6See, for instance, Tjalling (1995).
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linkages. The analysis focuses on five main questions. First, I investigate how different economic–institutional

characteristics affect the transmission of fiscal and monetary policy shocks among countries and sectors. Sec-

ond, I investigate how policy interactions affect the benefits of consolidation among countries. Third, I

evaluate how endogeneity and volatility issues affect inter-sector and inter-country linkages in panel setups.

Fourth, I evaluate the role of policy regime shifts and their interactions when structural changes and conta-

gion effects matter.

The remainder of this paper is organized as follows. Section 2 introduces the econometric model and

the estimation procedure. Section 3 describes the dynamic analysis focusing on prior assumptions strategy,

posterior distributions, and MCMC implementations. Section 4 presents the data and the empirical anal-

ysis. Section 5 addresses a counterfactual assessment on macroeconomic-financial linkages in multicountry

dynamic setups by investigating in depth how structural changes and policy regime shifts affect the spreading

and the evolution of international spillover effects, with particular attention on triggering events and policy

recommendations for decision makers. The final section contains some concluding remarks.

2 Econometric Model

According to Pacifico (2019b), I extend and improve the standard version of the multicountry SPBVAR model

in order to jointly account for time-varying parameters and multivariate volatility evolving over time.

Thus, the SPBVAR-MTV model developed in this study includes two additional components: (i) a set of

lagged endogenous variables in order to assess different policy regimes and their interactions and (ii) time-

varying log-volatilities to capture further evolving inter-relationships between multiple economic-financial

data. The model has the form:

Y m
i,t = µt +

l
∑

λ=1

[

Am
it,j(L)Y

m
i,t−λ +Bq

it,j(L)W
q
i,t−λ + B̈q̃

it,j(L)Ẅ
q̃
i,t−λ + Cξ

it,j(L)Z
ξ
i,t−λ

]

+ εit (1)

where the subscripts i, j = 1, 2, . . . , N are country indices, t = 1, 2, . . . , T denotes time, L stands for the lag

operator, µt is an NM · 1 vector of time-varying intercepts stacked for i, Ait,j is an NM · NM matrix of

coefficients for each pair of countries (i, j) for a given m, Yi,t−λ is an NM · 1 vector of lagged variables of

interest for each i for a given m, Bit,j is an NQ · NQ matrix of coefficients for each pair of countries (i, j)

for a given q, Wi,t−λ is an NQ · 1 vector including a set of lagged directly observed variables for each i for

a given q, B̈it,j is an NQ̃ · NQ̃ matrix of coefficients for each pair of countries (i, j) for a given q̃, Ẅi,t−λ is

an NQ̃ · 1 vector including a set of additional lagged endogenous variables for each i for a given q̃, Cit,j is

an NΞ · NΞ matrix of coefficients for each pair of countries (i, j) for a given ξ, Zi,t−λ is an NΞ · 1 vector

including a set of lagged proxy7 variables for each i for a given ξ, and εit ∼ i.i.d.N(0,Σt) is an NM ·1 vector of

7A proxy variable is an easily measurable variable used in place of a variable that cannot be directly measured.
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disturbance terms. The subscripts λ = 1, 2, . . . , l are lags for each of the m = 1, . . . ,M endogenous variables,

q = 1, . . . , Q (directly) observed variables to account for additional transmission channels, q̃ = 1, . . . , Q̃

(directly) additional observed variables to account for policy shifts and interactions, and ξ = 1, . . . ,Ξ proxy

variables to account for economic–institutional implications and macroeconomic imbalances among countries

and sectors. Here, all variables in the system are endogenous and time-varying.

The two main differences with respect to a standard SPBVAR lie in the additional component B̈it,jẄi,t−λ

and – particularly – in the variance-covariance matrix of the vector of innovations (εit). More precisely,

Σt = diag
(

exp(h1t), exp(h2t), . . . , exp(hNt)
)

, where ht = (h1t, h2t, . . . , hNt)
′

denotes the time-varying log-

volatilities according to the following random walk:

ht = ht−1 + vt where vt ∼ N(0,Σh) (2)

where Σh = diag(σ2
h,1t, σ

2
h,2t, . . . , σ

2
h,Nt) is a block diagonal covariance matrix and h0 denotes the initial

conditions to be estimated. The random-walk assumption in (2) is very common in the time-varying VAR

literature, having the advantage of focusing on permanent shifts and reducing the number of parameters in

the estimation procedure. The variance in vt is allowed to be time-variant and it is an useful way of modeling

time-varying conditional second moments to provide an alternative to the stochastic volatility specification.

The main usefulness is that volatility changes are not more replaced by coefficient changes and the computa-

tional costs – involved in using that specification – are moderate since the high dimensionality can be avoided

via Bayesian inference and MCMC integrations.

In equation (1), the dynamic relationships are allowed to be unit-specific and all the (potential) structural

changes are allowed to vary over time. In addition, whenever the matrices Ait,j(L), Bit,j(L), B̈it,j(L), and

Cit,j(L) differ8 for some L, cross-unit lagged interdependencies matter, and then dynamic feedback and in-

teractions among countries and variables are possible. Thus, the framework of the model (1) makes it able

to connect the empirical results to the existing literature and contemporaneous developments when quan-

tifying international business cycles, evaluating policy interactions, and performing conditional forecasting.

Nevertheless, even if this feature adds flexibility to the specification, it is very costly. In fact, the number of

coefficients is increased by N(M +Q+ Q̃+ Ξ)l factors.

Let k = N [M +Q+ Q̃+Ξ]l be the number of all matrix coefficients in each equation of the SPBVAR-MTV

model for each pair of countries (i, j), a 1 ·k vector Xt = (I, Y
′m
i,t−1, Y

′m
i,t−2, . . . , Y

′m
i,t−l,W

′q
i,t−1,W

′q
i,t−2, . . . ,W

′q
i,t−l,

Ẅ
′q̃
i,t−1, Ẅ

′q̃
i,t−2, . . . , Ẅ

′q̃
i,t−l, Z

′ξ
i,t−1, Z

′ξ
i,t−2, . . . , Z

′ξ
i,t−l)

′

can be defined containing all lagged (endogenous) vari-

ables in the system for each i. Then, I define an NMk · 1 vector γkit,j = vec(gkit,j) containing all columns,

stacked into a vector9, of the matrices At(L), Bt(L), B̈t(L), and Ct(L) for each pair of countries (i, j) for a

given k, with gkit,j = (µt, A
1′
it,j , A

2′
it,j , . . . , A

M ′

it,j , B
1′
it,j , B

2′
it,j , . . . , B

Q′

it,j , B̈
1′
it,j , B̈

2′
it,j , . . . , B̈

Q̃′

it,j , C
1′
it,j , C

2′
it,j , . . . , C

Ξ′

it,j)
′

,

8See, for instance, Pacifico (2019b).
9The vec operator transforms a matrix into a vector by stacking the columns of the matrix, one underneath the other.
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and γt = (γ
′

1t, γ
′

2t, . . . , γ
′

Nt)
′

denoting the time-varying coefficient vectors, stacked for i, for each country–

variable pair. With these specifications, I can express the model (1) in a simultaneous-equation form:

Yt = X̃tγt + Et (3)

where Yt = (Y m′

1t , . . . , Y m′

Nt )
′

and Et = (ε
′

1t, . . . , ε
′

Nt)
′

are NM · 1 vector containing the observable variables of

interest and the random disturbances of the model for each i for a given m, respectively, and X̃t = (INM⊗Xt)

contains all the lagged time-varying variables within the system stacked in Xt.

Now, because the coefficient vectors in γt vary in different time periods for each country–variable pair and

there are more coefficients than data, it is impossible to eliminate γt. Thus, to avoid the curse of dimension-

ality, I adapt the framework in Pacifico (2019b) and assumes γt to have the following factor structure:

γt =
F
∑

f=1

Gf · βft + ut with ut ∼ N(0,Σu) (4)

where F ≪ NMk and dim(βft) ≪ dim(γt) by construction, Gf = [G1, G2, . . . , GF ] are NMk · κf matrices

obtained by multiplying the matrix coefficients (gkit,j), stacked in the vector γt, by conformable matrices Df

with elements equal to zero and one, with κ
f being a numerical index that depends on the typology of the

factorization, ut is an NMk ·1 vector of unmodeled variations present in γt, and E(utu
′

t) = Σu = Σe⊗V , with

Σe denoting the covariance matrix of the vector Et that includes time-varying log-volatilities and V = (σ2Ik)

as in Kadiyala and Karlsson (1997). In this framework, unobserved heterogeneity and functional forms of

misspecification are absorbed in the κ
f · 1 time-varying coefficient vectors βft. They are observable smooth

linear functions of the lagged variables and thus can be easily estimated with a gain in efficiency and accuracy.

The idea is to shrink γt to a much smaller dimensional vector βt, with βt = (β
′

1t, β
′

2t, . . . , β
′

Ft)
′

, containing

all the regression coefficients stacked into a vector. In this way, further investigations (e.g., policy regine

shifts and interactions, international business cycles, and economic–institutional linkages) can be performed.

Finally, the factorization of γt becomes exact as long as σ2 converges to zero.

In equation (4), all factors are permitted to be time-varying, and thus time-variant structures can be

obtained via implementations of MCMC algorithms. Moreover, time variations in the variance of shocks ut

to the factors βft are also allowed so that Yt can capture (potential) structural changes among countries and

variables. Running equations (3) and (4) for equation (1), the factorization is:

F
∑

f=1

Gf · βft = G1 · β1t +G2 · β2t + . . .+GF · βFt (5)

Given the factorization in equation (5), the reduced-form SPBVAR-MTV model in equation (3) can be
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transformed into a Structural Normal Linear Regression model with an error covariance matrix of an Inverse–

Wishart (IW ) distribution10. By equations (3) and (4), the SNLR model can be written as

Yt = X̃t

(

F
∑

f=1

Gfβft + ut

)

+ Et ≡ χftβft + ηt (6)

where χft ≡ X̃tGf is an NM · κf matrix that stacks all coefficients and their possible interactions in the

SPBVAR-MTV model in (1), with χt = diag(χ
′

1t, χ
′

2t, . . . , χ
′

Ft), and ηt ≡ X̃tut + Et ∼ N(0, σt · Σu) has a

particular heteroskedastic covariance matrix that needs to accounted for, with σt = (IN +Σh ⊗ X̃
′

tX̃t).

To complete the specification, I suppose the following state-space structure for the time-varying regression

coefficients:

βt = βt−1 + ṽt with ṽt ∼ N(0, Pt) (7)

where βt = (β1t, β2t, . . .)
′

, Pt = diag(P̄1t, P̄2t, . . . , P̄Ft) is a block diagonal matrix, and P̄ft = (pft · Ik),

where pft controls the tightness (stringent conditions) of the factorization (f) of the time-varying coefficient

parameters (βt) in order to make them estimable. Here, some considerations on the innovations are in order:

(i) the errors Et, ut, and vt are mutually independent; (ii) the error terms ηt and ṽt are allowed to be

correlated between them; and (iii) vt and ηt are correlated between them by construction.

Finally, if the factorization in equation (5) is exact, σ2 → 0 and one has to act on three competing

models:

1. Model I (MI): A benchmark model with no change-points, denoting the ’General Case’.

Here, ηt ∼ N(0, Σ̇) and depends on the only disturbances contained in ut, with

Σ̇ = diag(Σ
′

e,Σ
′

e, . . . ,Σ
′

e). The MI would corresponds to the standard SPBVAR, with h0 = 0, ht = ht−1,

and Σt = Σ.

2. Model II (MII): A benchmark model with change-points in the only log-volatilities, denoting the

’Special Case’.

Here, ηt ∼ N(0, Σ̃) and depends on the only disturbances contained in Et, with Σ̃ = σt. The MII refers

to the case of structural breaks because of (potential) unmodeled dynamics11 in γt, with h0 6= 0, ht

evolving over time, Σt 6= Σ, and uncorrelatedness between the innovations ηt and ṽt.

3. Model III (MIII): A benchmark model with change-points in either time-varying parameters or log-

volatilities, denoting the ’Full Case’.

10See, for instance, Pacifico (2019b), concerning the conformation of the SNLR model and the exact form of the βft’s and the
Gf ’s.

11They denote both unobserved heterogeneity and misspecification problems.
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Here, ηt ∼ N(0, Σ̈) and depends on the disturbances contained in vt and ut, with Σ̈ = σt·diag(Σ
′

e,Σ
′

e, . . . ,Σ
′

e).

The MIII refers to the case of structural breaks because of both unmodeled dynamics and policy regime

shifts, with h0 6= 0, Σt 6= Σ, and ht evolving over time.

Finally, once the (conditional) marginal likelihood12 is obtained for any model, the exact and final solution

can be obtained via MCMC integrations, corresponding to the best13 model solution with higher log Bayes

factor (lBF):

lBFk,k∗ = log

(

L(YT |Mk)

L(YT |Mk∗)

)

(8)

where Mk denotes all the possible model solutions accounting for the ’General Case’ (MI) with no change-

points and Mk∗ refers to all the possible model solutions according to the ’Special Case’ (MII) or the

’Full Case’ (MIII). The higher lBF refers to the final solution having higher Posterior Model Probabilities

(PMPs)14 according to a generalised version of the Kass and Raftery (1995)’s scale of evidence:















































0 < lBξ,l < 2 no evidence for submodel Mξ

2 < lBξ,l < 6 moderate evidence for submodel Mξ

6 < lBξ,l < 10 strong evidence for submodel Mξ

lBξ,l > 10 very strong evidence for submodel Mξ

(9)

The methodology does not include studies focused on Markov-Switching dynamics to model covariance

matrices of country-specific Markov chains15, since this paper aims to extend and improve recent works as-

sessed when studying macroeconomic–financial linkages in multicountry dynamic panel setups. Nevertheless,

to solve potential overfitting problems and cross-unit unobserved heterogeneity, Markov-switching models

follow similar hierarchical prior specification strategy proposed in those works, where their empirical results

met with positive feedback in the empirical analysis.

3 Dynamic Analysis

Before specifying prior assumptions and posterior distributions, I recall the state-space structure of the

reparameterized SPBVAR-MTV model in (6):

12See Section 3.2 for further detail.
13Here, best stands for the model solution (or combination of predictors affecting the outcomes) with better prediction accuracy

(see, for instance, Pacifico (2020b).
14The PMPs, in Bayesian statistics, are computed by updating the prior probabilities through Bayes’ theorem. See, for

instance, Pacifico (2020b) concerning PMPs’ computations in time-varying high dimensional data.
15See, for instance, Krolzig (1997, 2000) and Sims and Zha (2006).
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Yt =
(

X̃t ·G
)

βt + ηt

(

’Measurement Equation’
)

(10)

βt = βt−1 + ṽt

(

’State-Transition Equation’
)

(11)

3.1 Hierarchical Prior Setups and Assumptions

Supposing exact factorization in (5), in order to complete the model, I need to define prior moments on

(Σ−1
e ,Σ−1

h , pf0, β0). Thus, collecting them in a vector φ0, with φ0 = (Σ−1
e ,Σ−1

h , pf0, β0) being prior densities,

the conditional likelihood function can be derived from the sampling density p(Y |φ0) by using a mixture

hierarchical distribution. In other words, (i) a Normal distribution for factors β and log-volatilities h; (ii) a

Wishart distribution for Σ−1
e ; and (iii) an Inverse-Gamma distribution for Σh and pf , where pf = vec(Pt).

That is,

β|Σ−1
e ,Σ−1

h , Y ∼ N
(

β̂, ¨̃Σ−1 ⊗ (χ
′

χ)−1
)

(12)

Σ−1
e |Y ∼ W

(

S−1
p , T − k − 1

)

(13)

h|Σ−1
h , Y ∼ N

(

αh, Vh

)

(14)

Σ−1
h |Y ∼ G

{

ωh

2
,
Sh

2

}

(15)

p−1
f |Y ∼ G

{

ωp

2
,
Sp

2

}

(16)

with ¨̃Σ depending on the benchmark model: (i) ¨̃Σ = Σ̇ = Σe in Model I; (ii) ¨̃Σ = Σ̃ in Model II; and (iii)

¨̃Σ = Σ̈ in Model III.

Here, αh, Vh, ωh, and ωp are hyperparamenters, Sp = (Yt− β̂χt)
′

(Yt− β̂χt) is the sum of the squared errors,

with β̂ = (Σtχ
′

tχt)
−1 · (Σtχ

′

tYt) referring to the OLS estimate of β, Sh denotes the least squares estimate of

σh based on the (satured) model, with σh = vec(Σh). Finally, the equation (14) corresponds to the proposal

distribution obtained by MCMC integration (such as Metropolis-Hastings algorithm16).

Since the above-mentioned hierarchical prior specification strategy is affected by common or subjective

beliefs because of the marginal effect of economic–financial variables, the Independent Normal-Wishart Prior

is used in this analysis so as to assume that tentative beliefs for φ0 = (Σ−1
e ,Σ−1

h , pf0, β0) are derived from

16See, for instance, Levine and Casella (2014).
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separate considerations.

Given the state-space structure in equations (10) and (11), MCMC methods and implementations (such as

Gibbs sampling, Kalman Filter algorithm, and Metropolis-Hastings algorithm) can be computed numerically

and joint distributions characterised analytically. The first step is to suppose that data run from (t = 0) to

(t = T ) in order to obtain a training sample (−τ, 0) and then to estimate the features of the priors. When

such a sample is unavailable, it is just sufficient to modify the expressions for the prior moments in equations

(12)–(16) as:

p
(

Σ−1
e ,Σ−1

h , pf0, h0, β0

)

= p
(

Σ−1
e

)

·
∏

f

p
(

h0

)

·
∏

f

p
(

pf0

)

· p
(

h0

)

· p
(

β0

)

(17)

where

p
(

Σe

)

= iW (z1, β1) (18)

p
(

Σh

)

= IG

(

ω̄0

2
,
S̄0

2

)

(19)

p
(

pf0

)

= IG

(

ω̄0

2
,
S̃0

2

)

(20)

p
(

h0

)

= N(α0, V0) (21)

p
(

β0|F−1

)

= N(β̄0, R0) (22)

Here, N() stands for a Normal distribution, iW() denotes an Inverse-Wishart distribution, IG() indicates

an Inverse-Gamma distribution, and F−1 refers to the information available at time −1. The prior for β0 in

(22) and the law of motion for the factors imply that:

p
(

βt|F−1

)

= N
(

β̄t−1|t−1, Rt−1|t−1 + Pt

)

(23)

where β̄t−1|t−1 and Rt−1|t−1 denote mean and variance-covariance matrix of the conditional distribution of

β̄t|t, respectively.

All the hyperparameters are known. More precisely, collecting them in a vector δ, where δ = (z1, β1, ω̄0, S̄0, S̃0,

α0, V0, β̄0, R0), they are treated as fixed and are either obtained from the data to tune the prior to the specific

applications (such as z1, ω̄0, α0, and β̄0) or selected a priori to produce relatively loose priors (such as β1, S̄0,

S̃0, V0, and R0). In this context, the only fully Bayesian approach that leads to analytical results requires
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the use of a natural conjugate prior. According to equations (12), (13), and (15), the natural conjugate prior

has the form17:

βt|Σ
−1
e ,Σ−1

h , Y T ∼ N
(

β̄t|t, Rt|t + Pt

)

or p
(

βt|Σ
−1
e ,Σ−1

h , Y T
)

= N
(

β̄t|t, Rt|t + Pt

)

(24)

Σe|Y
T ∼ iW (z1, β1) or p

(

Σe|Y
T , β

)

= iW (z1, β1) (25)

Σh|Y
T ∼ IG

(

ωα

2
,
SV

2

)

or p
(

Σh|Y
T , β

)

= IG

(

ωα

2
,
SV

2

)

(26)

where β̄t|t and Rt|t are hyperparameters collected in the vector δ, and ωα and SV are parameters to be

estimated.

If Pt = 0, allowing for time-variant factors and volatilities, draws of pft and σ2
hi can be taken from Normal-

Inverse-Gamma distributions.

According to the natural conjugate prior (24), βt depends on Σe and Σh. Thus, βt, Σe, and Σh are not

independent of one another. To allow different equations in the VAR to have different explanatory variables,

previous specifications have to be modified. More precisely, given the SNLR model in (10), general priors that

do not involve the restrictions inherent in the natural conjugate prior are the Independent Normal-Wishart

(INW) and the Independent Inverted Gamma (IIG) distributions. The latter has different scale and shape

parameters with respect to pft and is obtained by maximum likelihood estimates. Thus, the natural conjugate

priors (24)–(26) can be re-written as:

p
(

βt,Σ
−1
e ,Σ−1

h |Y T
)

= p
(

βt|Y
T
)

· p
(

Σ−1
e |Y T

)

· p
(

Σ−1
h |Y T

)

(27)

where

βt|Y
T ∼ N

(

β̄t|t, Rt|t

)

or p
(

βt|Y
T
)

= N
(

β̄t|t, Rt|t

)

(28)

Σe|Y
T ∼ iW (z1, β1) or p

(

Σe|Y
T , β

)

= iW (z1, β1) (29)

Σh|Y
T ∼ IG

(

ω̂α

2
,
ŜV

2

)

or p
(

Σh|Y
T , β

)

= IG

(

ω̂α

2
,
ŜV

2

)

(30)

Here, the hyperparameters ω̂α and ŜV denotes scale and shape parameters, respectively, collected in the

17Analytical integration for integrating out the time-varying log-volatilities are explained in depth in Section 3.2.
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vector δ. Moreover, the prior (28), with Pt = 0, allows for the prior covariance matrix Rt|t to be anything the

researcher chooses, rather than the restrictive (Σe|Y
T ⊗Rt|t+Σh) form of the natural conjugate prior.

3.2 Posterior Distributions and MCMC Implementations

3.2.1 Conditional Likelihood and Kalman Filter Technique for Time-varying Parameters

The posterior distributions for φ = (Σ−1
e ,Σ−1

h , pft, ht, {βt}
T
t=1) are calculated by combining the prior with

the (conditional) likelihood for the initial conditions of the data. The resulting function is then proportional

to

L
(

Y T |φ
)

∝
(

¨̃Σ
)−T

2

· exp

{

−
1

2

[

Σt

(

Yt − (X̃tG)βt

)′
]

· ¨̃Σ−1 ·

[

Σt

(

Yt − (X̃tG)βt

)

]}

(31)

where Y T = (Y1, . . . , YT ) denotes the data and φ = (Σ−1
e ,Σ−1

h , pft, ht, {βt}
T
t=1) refers to the unknowns whose

joint distribution needs to be found, with φ−k standing the vector φ, excluding the parameter k.

Despite the dramatic parameter reduction obtained with equation (10), the analytical computation of

posterior distributions (φ|Y T ) is unfeasible. Thus, a variant of the Gibbs sampler approach – Kalman-

Filter technique – can be used through MCMC integrations. More precisely, for the conditional posterior

distribution of (β1, . . . , βT |Y
T , φ−βt

), it gives the following forward recursions for posterior means and the

covariance matrix, respectively:

β̄t|t = β̄t−1|t−1 +
[

Rt|t−1(X̃tG)F−1
t|t−1

][

Yt − (X̃tG)
′

β̄t−1|t−1

]

(32)

Rt|t =
[

Ik −
(

Rt|t−1 · (X̃tG) · F−1
t|t−1 · (X̃tG)

′

)]

· (Rt|t−1) (33)

where

Ft|t−1 =
[

(X̃tG)
′

·Rt|t−1 · (X̃tG)
]

+Σe (34)

Rt|t−1 = Rt−1|t−1 +Σh (35)

Starting from βT |T and RT |T , the marginal distributions of βt can be computed by averaging over draws in

the nuisance dimensions, and the Kalman filter backward can be run to characterise posterior distributions

for φ:

βt|βt−1, Y
T , φ−βt

∼ N(β̄t|t+1, Rt|t+1) or p(βt|βt−1, Y
T , φ−βt

) = N(β̄t|t+1, Rt|t+1) (36)
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where

β̄t|t+1 = R̃t|t+1

[

(

R−1
t|t+1 · β̄t|t

)

+

( T
∑

t=1

(X̃tG)
′

· Σ−1
e · (X̃tG)β̂

)]

(37)

Rt|t+1 =
[

Ik −
(

Rt|t ·R
−1
t+1|t

)]

· (Rt|t) (38)

with

R̃t|t+1 =

[

(

R−1
t|t+1 +Σh

)

+

( T
∑

t=1

(X̃tG)
′

· Σ−1
e · (X̃tG)

)]−1

(39)

β̂ =
[

(X̃tG)
′

· Σ−1
e · (X̃tG)

]−1
·
[

(X̃tG)
′

· Σ−1
e · Yt

]

(40)

The equations (38) and (40) refer to the variance-covariance matrix of the conditional distribution of β̄t|t+1

and the Generalized Least Square (GLS) estimator, respectively. By rearranging the terms, equation (37)

can be rewritten as

β̄t|t+1 = R̃t|t+1 ·

[

(

R−1
t|t+1β̄t|t

)

+

( T
∑

t=1

(X̃tG)
′

· Σ−1
e · Yt

)]

(41)

where β̄t|t+1 and Rt|t+1 denote the smoothed one-period-ahead forecasts of βt and of the variance–covariance

matrix of the forecast error, respectively.

The above output of the Kalman filter is used to generate a random trajectory for {βt} by using the

backward recursion starting with a draw of {βt} from N(β̄T |T , RT |T )
18. Given (36), the other posterior

distributions can be defined as:

Σe|Y
T , φ−Σe ∼ iW (ẑ1, β̂1) or p

(

Σe|Y
T , φ−Σe

)

= iW (ẑ1, β̂1) (42)

Σh|Y
T , φ−Σh

∼ IG(ω̄α, S̄V ) or p
(

Σh|Y
T , φ−Σh

)

= IG(ω̄α, S̄V ) (43)

ht|Y
T , φ−ht

∼ N(ãh,m̄, Ṽh,m̄) or p
(

ht|Y
T , φ−ht

)

= N(ãh,m̄, Ṽh,m̄) (44)

pft|Y
T , φ−pft ∼ IG

(

ω̄p

2
,
S̃p

2

)

or p
(

pft|Y
T , φ−pft

)

= IG

(

ω̄p

2
,
S̃p

2

)

(45)

18See, for instance, Carter and Kohn (1994).
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Here, some considerations are in order.

In equation (42), ẑ1 = z1+T and β̂1 = β1+Σtu
′

tut, with z1 and β1 denoting the arbitrary degree of freedom

and the arbitrary scale parameter, respectively. In this analysis19, z1 ∼= N(M +Mv +Mc) and β1 ∼= 1.0.

In equation (43), ω̄α = ω̄0 + ω̂α and S̄V = S̄0 + ŜV , with ω̄0 and S̄0 denoting the arbitrary degree

of freedom (sufficiently small) and the arbitrary scale parameter, respectively, ω̂α =
(

∑T
t=1 log(τt)/t

)

+

log
(

∑T
t=1(1/τt)

)

− log(t) and ŜV = (t · ω̂α)/
(

∑T
t=1(1/τt)

)

referring to the Maximum Likelihood Estimates

(MLEs). In this analysis, τt = {τ1, . . . , τT } is the random sample from the data {0, T}, ω̄0
∼= 0.1 · exp(M +

Mv +Mc), S̄0
∼= 0.01, and ŜV is obtained by numerically computing ω̂α.

In equation (44), ãh,m̄ = α0 · ω̄ is obtained by Metropolis-Hastings algorithm20 and Ṽh,m̄ = V0 + Σ̂h∗ is

computed by MCMC-based EM algorithm21, with α0 and V0 denoting the arbitrary degree of freedom and

the arbitrary scale parameter, respectively, and Σ̂h∗ = (Σ̂1T , . . . , Σ̂nT ) referring to the estimated covariance

matrix for each i in a regime m̄ given t. In this analysis, ãh,m̄ is constructed to be close to zero, with

ω̄ ∼= 0.1 · exp(NM), and h∗ is an arbitrary vector given m̄ regimes according to the state-transition equations

(2) and (11).

In equation (45), ω̄p = ω̄0 + k and S̃p = S̃0 + Σt(β
f
t − βf

t−1)
−1 · (βf

t − βf
t−1), with S̃0 and βf

t denoting the

arbitrary scale parameter and the f th subvector of βt, respectively. In this analysis, S̃0
∼= 0.1, f refers to the

factors described in equation (5), and k denotes the number of all matrix coefficients in each equation of the

SPBVAR-MTV model in (1).

Finally, the last two hyperparameters to be defined in the vector δ are β̄0 = β̂0, with β̂0 denoting the

Ordinary Least Squares (OLS) estimates of equation (10), and R0 = Ik.

3.2.2 Metropolis-Hastings Algorithm for hit

Suppose m̄ regimes, with m̄ = 0, 1, . . . , s, and use Metropolis-Hastings algorithm to draw posteriors for hit

from the proposal density distribution δ∗(hit) with probability αm̄ equals:

αm̄ =
p
(

hm̄it |h
m̄
it−1, h

m̄−1
it+1 , Y

T , {βt},Σh

)

· δ∗(hm̄−1
it )

p
(

hm̄−1
it |hm̄it−1, h

m̄−1
it+1 , Y

T , {βt},Σh

)

· δ∗(hm̄it )
(46)

According to the SNLR described in equation (10), let β∗
t denote the time-varying coefficient vectors when

m̄ 6= 0 (some forms of break occur), the probability function takes the form:

p
(

βt|Y
T
)

· δ∗(β∗
t |βt) · α(β

∗
t , βt) = p

(

β∗
t |Y

T
)

· δ∗(βt|β
∗
t ) (47)

19See Section 4 for the form of the Mv’s and the Mc’s.
20See Section 3.2.2.
21See Section 3.3.
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where

α(β∗
t , βt) = min

[

p(β∗
t |Y

T ) · δ∗(βt|β
∗
t )

p(βt|Y T ) · δ∗(β∗
t |βt)

, 1

]

∼= αm̄ (48)

In (48), α(β∗
t , βt) is the probability to accept or reject a draw22. In addition, since the posterior distribu-

tion corresponds – by construction – to a multivariate normal distribution, the Optimal Acceptance Rates

(OARs)23 are:































m̄ = 1 with OAR = 44%

1 < m̄ ≤ 5 with OAR = 28%

m̄ > 5
(large dimension)

with OAR = 23.4%

(49)

3.3 Analytical Integration for Integrating out the Time-varying Volatilities

Given the proposal density distribution δ∗(β∗
t , βt) in Section 3.2.2, with probability α(β∗

t , βt) in (48), one

needs to integrate out hit using importance sampling. More precisely, in this study, I approximate the log

conditional marginal density log[p(h|Y, Pt,Σh, β0, h0)] by using a Gaussian density, which is then used as

the importance sampling density. Thus, the Expectation-Maximization (EM) algorithm is used to find the

maximum of the log conditional marginal density and consists of two steps: the Expectation step (E-step)

and the Maximization step (M-step)24.

3.3.1 Expectation Step (E-step)

The E-step is implemented by computing the following conditional expectation:

Ψ(h|h∗) = Eβ|h∗

[

log
(

p(h, β|Y, Pt,Σh, β0, h0)
)

]

(50)

where the expectation is taken with respect to p(β|Y, h∗, Pt,Σh, β0, h0) for an arbitrary vector h∗ as Kroese

and Chan (2014). More precisely, given the SNLR described in (10) and let P̃β denote the first difference

matrix, the state-transition equation (11) can be rewritten as:

P̃β · β = ᾱβ + η̃ with η̃ ∼ N(0,Υβ) (51)

22See, for instance, Jacquier et al. (1994).
23See, for instance, Roberts and Rosenthal (2001).
24See, for instance, McLachlan and Krishnan (1997) and Steele (1996).
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where ᾱβ = (β
′

0, 0, . . . , 0)
′

, Υβ = IT ⊗ Pt, and P̃β is a lower triangular matrix of dimension k. Thus, the

conditional marginal density for β would be distributed as a Normal according to standard linear regression

results:

p(β|Y, h∗, Pt,Σh, β0, h0) ∼ N(β̃,Φ−1
β ) (52)

where

β̃ = Φ−1
β · ϕβ (53)

Φβ =
(

P̃
′

β ·Υ−1
β · P̃β

)

+
[

(X̃tG)
′

· ¨̃Σ−1 · (X̃tG)
]

(54)

ϕβ =
(

P̃
′

β ·Υ−1
β · P̃β

)

β̄0 +
[

(X̃tG)
′

· ¨̃Σ−1 · Y
]

(55)

Here, the precision sampler of Chan and Jeliazkov (2009) can be used to sample from N(β̃,Φ−1
β ) efficiently.

In other words, the mean vector β̃ and the precision matrix Φβ are computed using h∗.

The expectation in (50) can then be written in terms of an explicit expression:

Ψ(h|h∗) = −
1

2

{

(h− α0)
′

·
[

Π
′

h · (IT ⊗ Σ−1
h ) ·Πh

]

· (h− α0)

}

+

−
1

2
(1

′

nT · h)−
1

2
tr

{

diag(e−h) ·

[

(

(X̃tG) · Φ−1
β · (X̃tG)

′

)

+

+
(

Y − (X̃tG)β̃
)(

Y − (X̃tG)β̃
)′
]}

+ c (56)

where tr() is the trace operator, c is a constant independent of h, 1
′

nT is a vector of ones, Πh is a lower

triangular matrix of dimension n, α0
∼= Π−1

h · α̃0, with α̃0 = (h
′

0, 0, . . . , 0), and εi =
(

Y − (X̃tG)β̃
)

is the

error term.

3.3.2 Maximization Step (M-step)

The M-step consists of maximizing the function Ψ(h|h∗) with respect to h by using the Newton-Raphson

method25. Thus, the gradient (gΨ) and the Hessian (HΨ) are, respectively:

25See, for instance, Kroese et al. (2011).
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gΨ = −

[

Π
′

h

(

IT ⊗ Σ−1
h

)

Πh · (h− α0)

]

−
1

2
(1nT − e−h ⊙ θ̄) (57)

HΨ = −

[

Π
′

h

(

IT ⊗ Σ−1
h

)

Πh

]

−
1

2
(e−h ⊙ θ̄) (58)

where ’⊙’ refers to the entry-wise product and θ̄ = (s21T + ε̂21T , . . . , s
2
nT + ε̂2nT )

′

, with s2iT denoting the i− th

diagonal element of
[

(X̃tG) ·Φ−1
β · (X̃tG)

′

]

∼= V0 and ε̂2iT denoting the i− th element of
[

Y − (X̃tG)β̃
]

∼= Σ̂h∗ .

Here, HΨ is negative definite for all h, ensuring fast convergence of the N-R method, and Φβ , since it is a

band matrix, guarantees that its Cholesky factor Lβ can be obtained without further effort. More precisely,

given Φβ = Lβ · L
′

β , with Lβ denoting a lower triangular matrix, G = L
′

β · (X̃tG) can be obtained by solving

the linear system LβG = (X̃tG) for G. Thus, the diagonal elements of
[

(X̃tG) ·Φ−1
β · (X̃tG)

′

]

will be the row

sums of the squares of G.

Finally, the MCMC Expectation-Maximization (MCMC-EM) algorithm can be summarised in this way:

A. E-step: Compute Φβ , β̃, and θ̄ given the current value hν−1
it , with ν denoting the ν − th iteration.

B. M-step: Maximise Ψ(h|hν−1) with respect to h by the N-R method. That is,

hν = argmax
h

Ψ(h|hν−1)

.

C. Compute gΨ and HΨ from Ψβ , β̃, and θ̄ obtained in (A), and set h = h(m̄−1,ν−1).

D. Update h(m̄,ν−1) = h(m̄−1,ν−1) −
(

H−1
Ψ · gΨ

)

.

E. Repeat steps (A)-(D) until some convergence criterion is met at the OARs in (49). Thus, terminate the

iteration and set hν = h(m̄,ν−1), denoting that a certain change-point among time-varying coefficient

vectors and log-volatilities has been assessed correctly.

4 Data Description and Empirical Model

The SPBVAR-MTV model in (1) contains 17 country-specific models, including the United States, 8 Central-

Eastern Europe (CEE) economies26 and 8 Western Europe (WE) economies27. The CEE and WE countries

– except for SL – also refer to European emerging and advanced economies, respectively. Moreover, all the

European countries are Eurozone members, with the exception of CZ, HU, and PO, and thus inter-sector and

inter-country linkages can be investigated in depth.

26Czech Republic (CZ ), Hungary (HU ), Estonia (EE), Latvia (LV ), Lithuania (LT ), Poland (PO), Slovak Republic (SK ),
and Slovenia (SL).

27Austria (AT ), Belgium (BE), France (FR), Germany (DE), Ireland (IE), Italy (IT ), Portugal (PT ), and Spain (ES).



19

The dataset contains the following collection of variables. (i) Six endogenous variables are involved to

describe real economy (realit,j) and financial markets (finit,j): three real variables to capture real business

cycles (general government spending, gross fixed capital formation, GDP growth rate) and three financial

variables to highlight the situation in the lending markets (bank leverage, flow of credit into economy, in-

flation rate). (ii) Bilateral flows of trade (rweightsit,j) and financial transactions (fweightsit,j) are used

to deal with endogeneity issues when studying international spillover effects among countries and variables.

(iii) Three policy variables (policyit,j) are used to investigate monetary and fiscal policy implications and

interactions among countries and sectors (international interest policy rate, general government debt, and

current account balance). (iv) Five (directly) observed variables are used as proxy variables (structuresit,j)

to evaluate economic–institutional implications in driving the evolution of international spillovers and trans-

mission of shocks over time among countries and variables: three indicators to deal with internal imbalances

(financial consumption expenditure, private sector consumption, change in unemployment rate); one indicator

to capture competitiveness developments and catching-up effects (nominal labour cost); and one indicator

to monitor the probabilities of transitions between expansion/recession phases in business cycles and po-

tential macroeconomic imbalances (house price indices). (v) The real GDP per capita in logarithmic form

(productivity) is used to evaluate the size and the spreading of international spillover effects over time among

countries and sectors given an unexpected shock. The weightsit,j
28, the policyit,j , and the structuresit,j

components are treated endogenously and used to jointly deal with endogeneity issues, structural changes,

and policy regime shifts.

The series are expressed in standard deviations with respect to the same quarter of the previous year

(qt/qt−1), and seasonally and calendar adjusted. All variables are used in year-on-year growth rates and all

data comes from OECD data source.

The estimation sample covers the period from December 1994 to December 2018. It amounts, without re-

strictions, to 26, 384 regression parameters. More precisely, each equation of the time-varying SPBVAR-MTV

in (1) has k = [17(6+2+3+5)]·1 = 272 coefficients, and there are 97 equations in the system. Given the struc-

tural conformation of the model and a sufficiently large number of quarters describing economic–institutional

and policy implications, it is able to capture: (i) endogeneity issues because of unobserved heterogeneity

and misspecified dynamics across the sample; (ii) interdependency, commonality, and homogeneity because

of potential international macroeconomic-financial linkages among countries and sectors; and (iii) relevant

monetary and fiscal policy interactions and contagion measures.

Given the factor structure in (4), I assume that the coefficient vector γt depends on ten factors. Thus,

28The weightsit,j component corresponds to the sum of rweightsit,j and fweightsit,j .
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Gfβft = G1β1t +G2β2t +G3β3t +G4β4t +G5β5t +G6β6t +G7β7t +G8β8t +

+G9β9t +G10β10t + ut (59)

where, stacking for t, βf = (β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)
′

contains all time-varying coefficient vectors

to be estimated. Given the factorization in (59), the SNLR model in (10) can be written as:

Yt = X̃t

(

10
∑

f=1

Gfβft + ut

)

+ Et ≡

10
∑

f=1

χftβft + ηt with X̃t =
(

INM ⊗Xt

)

(60)

According to diagnostic tests (Table 1), the marginal (conditional) likelihood estimation confirms the exact

γt’s factorization in (59) and the estimates are asymptotically consistent given the absence of serial correla-

tions across the residuals. Thus, the specified factors in (60) can be made clearer and estimated in terms of

posterior means.

The indicators χ1tβ1t and χ2tβ2t are NM · 1 vectors of observable country-specific indicators for Yt, and

account for the only realit,j and finit,j components, respectively, in order to evaluate international spillover

effects and transmission of shocks among countries in real economy and financial markets.

The indicators χ3tβ3t and χ4tβ4t are NM · 1 vectors of observable country-specific effects for Yt, and ac-

count for one additional component: (1) realit,j with policyit,j and (2) finit,j with policyit,j . They are able

to investigate monetary and fiscal policy implications and interactions among countries in the real and the

financial dimensions, respectively.

The indicators χ5tβ5t and χ6tβ6t are NM ·1 vectors of observable country-specific effects for Yt, and account

for two components further: (1) realit,j with rweightsit,j and policyit,j , and (2) finit,j with fweightsit,j and

policyit,j . They are able to jointly evaluate how international transmission channels and policy issues affect

the size and spreading of spillover effects given an unexpected shock among countries in real economy and

financial markets, respectively.

The indicators χ7tβ7t and χ8tβ8t are NM ·1 vectors of observable country-specific effects for Yt, and account

for one component further: (1) realit,j with rweightsit,j , policyit,j , and structuresit,j , and (2) finit,j with

fweightsit,j , policyit,j , and structuresit,j . They are able to assess the role that international transmission

channels, macroeconomic–institutional implications, potential macroeconomic imbalances, and policy impli-

cations play in allowing shocks to spill over among countries in real and financial sectors, respectively.

The indicator χ9tβ9t is a NM ·Mv vector of observable cross-country variable-specific effects for Yt, where

Mv = (Mv1,Mv2,Mv3,Mv4) denotes the number of variable groups: (i) Mv1 = realit,j and policyit,j ; (ii)

Mv2 = finit,j and policyit,j ; (iii) Mv3 = realit,j , rweightsit,j , policyit,j , and structuresit,j ; and (iv) Mv4 =
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finit,j , fweightsit,j , policyit,j , and structuresit,j . The variable-specific factor is able to investigate endo-

geneity issues, policy regime shifts, and multivariate structural breaks among variables in real economy and

financial markets.

Finally, the indicator χ10tβ10t is a NM · Mc vector of observable common effects for Yt, where Mc =

(Mc1,Mc2) denotes the number of common groups: (i) Mc1 = realit,j , finit,j , and policyit,j and (ii) Mc2 =

realit,j , finit,j , weightsit,j , policyit,j , and structuresit,j . The common factor is able to assess idiosyncratic

spillover effects due to different reactions or co-movements among countries and variables for a given common

unexpected shock in the real and financial dimensions. This latter (Mc2) is also used to investigate and then

quantify contagion measures during triggering events and policy regime shifts.

Table 1: Diagnostic Tests

Test Test Statistics Degrees of freedom p-value

LGBπ 16573 1649 0.00
Pπ 837.3 1261 0.30

MLEf 67.44 10 0.00

Here, LGBπ stands for a Multivariate Ljung-Box Test of the series, with lags
π = 30; Pπ refers to the Portmanteau (Asymptotic) Test on the residuals,
with lags π = 30; MLEf is the Marginal (Conditional) Likelihood Estima-
tion Test obtained through the Schwartz approximation, with f = 10.

Dynamic analyses have been conducted via accurate MCMC implementations. The total number of draws

was 5000+ 1000 = 6000, which corresponds to the sum of the final number of draws to discard and draws to

save, respectively. A total of 1000 draws has been used to conduct posterior inference at each t. The outcomes

absorb the conditional forecasts computed for a time frame of 9 quarters (2 years and a quarter) in order to

also address potential findings concerning the impact of an ongoing pandemic crisis on the global economy.

The natural conjugate prior refers to four subsamples: (i) 1994q4–2008q3 and (ii) 2008q4–2015q4 in order to

evaluate how monetary policy regimes affect the dynamics of the GDP growth; and (iii) 2006q1–2009q4 and

(iv) 2010q1–2018q4 in order to highlight the impact of the most recent financial crisis and fiscal consolidation

when investigating international spillover effects.

According to the log Bayes Factor in (8) and the exact factorization in (59), most of the time-varying

estimated coefficient vectors (β̂ft) embrace the ’Full Case’ (MIII), where structural changes and policy

regime shifts hold in either time-varying parameters or log-volatilities (see Table 2). It accounts for: two of

the country-specific factors (χ7tβ̂7t and χ8tβ̂8t); the cross-country variable-specific factor (χ9tβ̂9t) belonging

to the variable groups Mv3 and Mv4; and the common factor (χ10tβ̂10t) belonging to the common group Mc2.

All remaining empirical results embrace the ’Special Case’ (MII), except for two factors concerning the

’General Case’ (MI). They correspond to the first two country-specific indicators (χ1tβ̂1t and χ2tβ̂2t). These

findings highlight the performance and then the potential of the SPBVAR-MTV model pointing out that:

(i) change-points and policy regime shifts need to be taken into account when dealing with macroeconomic–

financial linkages in multicountry dynamic panel setups; (ii) multiple structural changes in time-varying
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log-volatilities occur when evaluating international transmission channels and policy implications among

countries and sectors in both the real and the financial dimensions; and (iii) change-points and policy regime

shifts in either time-varying coefficients or log-volatilities occur when accounting for economic–institutional

implications to investigate unobserved heterogeneity and misspecified dynamics among country- and variable-

specific factors and common features.

Table 2: Empirical Results on the Benchmark Model

Time-varying Factors ’General Case’ (MI) ’Special Case’ (MII) ’Full Case’ (MIII)

χ1tβ̂1t , χ2tβ̂2t lBF >10 2 ≤ lBF ≤ 6 0 ≤ lBF ≤ 2

χ3tβ̂3t , χ4tβ̂4t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6

χ5tβ̂5t , χ6tβ̂6t 0 ≤ lBF ≤ 2 lBF >10 6 ≤ lBF ≤ 10

χ7tβ̂7t , χ8tβ̂8t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

χ9,1tβ̂9,1t , χ9,2tβ̂9,2t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6

χ9,3tβ̂9,3t , χ9,4tβ̂9,4t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

χ10,1tβ̂10,1t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6

χ10,2tβ̂10,2t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

The first column denotes the time-varying factors and the other three columns refer to all three (potential)
best benchmark models. The best model solution is highlithed in bold and corresponds to the highest log
Bayes Factor with respect to the generalised version of the Kass and Raftery (1995)’s scale of evidence as
(49).

5 Macroeconomic-financial Linkages with Structural Changes and Policy

Regime Shifts: a Counterfactual Assessment

The aim of this empirical analysis is to improve the existing literature on macroeconomic–financial linkages

in multicountry dynamic panel setups when dealing with either endogeneity or volatility issues. Thus, the

SPBVAR-MTV model is appropriate to be used for investigating in depth how structural changes and policy

regime shifts affect the intensity and the evolution (or dynamics) of international spillover effects among

countries and sectors.

More precisely, intra-CEWE dynamics are assessed in four related contexts. (i) Firstly, international

spillovers and policy issues are evaluated in an international and broader European setting (Section 5.1).

(ii) Then, the empirical results are reevaluated accounting for additional time-varying factors to address

endogeneity issues because of unobserved heterogeneity and misspecified dynamics (Section 5.2). (iii) A

deepened investigation is further conducted accounting for multivariate change-points and policy regime shifts

during different phases of financial cycles, where many emerging market economies have experienced a large

surge of capital inflow following the notably expansionary monetary policies of major advanced countries, and

fiscal consolidation adjustments, playing a central role in the disinflation process (Section 5.3). (iv) Finally,

policy implications and suggestions for decision makers are addressed according to all the aforementioned

findings (Section 5.4).
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5.1 International Spillovers and Policy Issues among CEWE Economies

In Figure 1, where I consider the first two country-specific indicators (χ1t, χ2t) for the overall sampled time-

series, all the CEE economies tend to be net receivers (or inward spillovers) in the real dimension and thus

would be affected by the conditional impulse responses received from the European advanced countries (net

senders). Overall, the size of the spillover effects is larger in the financial dimension because of highly strong

cross-country interdependencies. These results find confirmation in previous related works such as Pacifico

(2019a,b), Pacifico (2020a), and Curcio et al. (2020).

However, contrary to them, the findings highlight that a consistent cross-country heterogeneity across

the spillovers’ dynamics would matter more in financial markets (Figure 1b), while a persistent degree of

homogeneity and larger co-movements among countries tend to occur in the real dimension despite stronger

inter-country linkages in the financial one (Figure 1a). The results confirm the presence of potential functional

form of misspecifications that need to be investigated thoroughly when studying macroeconomic-financial

linkages.

(a) χ1tβ̂1t Factor - Overall Period (b) χ2tβ̂2t Factor - Overall Period

Figure 1: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions are
drawn as standard deviations of the variables in the system and in year-on-year growth rates. They account
for χ1tβ̂1t (plot a) and χ2tβ̂2t (plot b) cross-country indicators, referring to the overall sampled time-series,
where β̂1t and β̂2t are posterior means.

In Figure 2, I account for the two country-specific indicators dealing with policy issues and their interac-

tions (χ3t, χ4t). In contrast to the previous results, most CEE economies tend to be net senders (outward

international spillovers) in their real dimension (Figure 2a). Cross-country heterogeneity follows to be con-

sistent and stronger in real economy and even more in financial markets (Figure 2b). In addition, larger

commonality and homogeneity matter across the spreading and the intensity of spillover effects. The findings

confirm the importance to account for either endogeneity and volatility issues.

From a global perspective, the same dynamic behaviour is observed in the transmission of US financial

shocks, with outward spillover effects. The results are consistent and robust with the more recent literature

on multicountry dynamic panel setups. More precisely, they confirm that US seem to be an important driver

in allowing unexpected shocks to spill over and thus affecting European financial markets, mainly regarding

CEE economies with inward spillovers. Then, intra-country shocks directly affect a country’s own output

growth in the real economy because of consistent cross-country interdependencies29.

29See, for instance, Pacifico (2020a) and Curcio et al. (2020).
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(a) χ3tβ̂3t Factor - Overall Period (b) χ4tβ̂4t Factor - Overall Period

Figure 2: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions are
drawn as standard deviations of the variables in the system and in year-on-year growth rates. They account
for χ3tβ̂3t (plot a) and χ4tβ̂4t (plot b) cross-country indicators, dealing with policy regime shifts and structural
changes, where β̂3t and β̂4t are posterior means.

Established that structural changes and policy shifts affect macroeconomic-financial linkages among coun-

tries in an international and broader context, I consider the first two group-variable factors (χ9,1t, χ9,2t) in

order to examine in depth how monetary policy regimes and fiscal implications drive international shocks

among real and financial sectors (Figure 3). Here, the countries are grouped in three clusters: WE, CEE,

and BLS30.

During the ISE Regime, most countries tend to be net receivers and net senders in the real and the finan-

cial dimensions, respectively (Figure 3a). Moreover, larger homogeneity in the spreading and the intensity of

international spillovers would matter more among CEE economies given an unexpected financial shock. From

a policy perspective, since in that period (1994− 2008) the only country joined in with EU was Slovenia, the

results highlight that the transmission of shocks among sectors are mainly affected by highly strong cross-

country interdependencies rather than policy implications (e.g., because of high persistent inflation among

emerging and then CEE countries).

During ZIRE Regime, emerging economies become net senders in real economy with larger spillover effects

than advanced economies (Figure 3b). In financial markets, international spillovers show higher intensity

than real economy due to a deeper state of severe fiscal reforms. In addition, higher co-movements among

sectors in both the real and the financial dimensions matter than the ISE period because of persistent finan-

cial measures to foster the output stabilization.

From a modeling perspective, inward spillovers during the ISE Regime highlight that CEE countries are

less competitive than WE economies, requiring appropriate emergency programs in order to be up against

triggering events. From a policy perspective, outward spillovers during the ZIRE Regime in real economy

point out that more stringent fiscal constraints would need to support developing economies in absorbing the

effects of unexpected financial shocks (misspecified dynamics).

30It stands for the Baltic States (EE, LV, and LT ).
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(a) χ9t,1β̂9t,1 & χ9t,2β̂9t,2 Factors - ISE
Regime

(b) χ9t,1β̂9t,1 & χ9t,2β̂9t,2 Factors - ZIRE
Regime

Figure 3: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions are
drawn as standard deviations of the variables in the system and in year-on-year growth rates. They account
for the variable-specific indicators χ9t,1β̂9t,1 and χ9t,2β̂9t,2 during ISE (plot a) and ZIRE (plot b) regimes,

dealing with policy issues and their interactions, where β̂9t,Mv̇
’s are posterior means with v̇ = v1, v2.

5.2 Unobserved Heterogeneity and Misspecified Dynamics accounting for Additional

Time-variant Factors

Accounting for additional time-variant factors in order to investigate in depth policy regime shifts and struc-

tural breaks along with endogeneity issues, relevant empirical results and policy perspectives are derived

(Figure 4).

As regards weightsit,j component (standing for omitted factors), most countries follow to show inward and

outward spillovers in the real and the financial dimensions, respectively. Despite a consistent heterogeneity

persists in their own output growth responses, larger co-movements matter accounting for additional shock

transmission channels in real economy and even more in financial markets because of stronger cross-country

financial linkages (Figures 4a and 4b). From a global perspective, outward spillovers in US confirm the im-

portance about international spillover effects affecting European financial shocks (see, for instance, Pacifico

(2020a) and Curcio et al. (2020)). From a modeling perspective, capital flows tend to matter more than trade

flows in allowing shocks to spill over among countries (see, for instance, Pacifico (2019b) and Pacifico (2020a)).

However, higher intra-CEWE heterogeneity in the financial dimension, in terms of spillovers’ intensity and

spreading, emphasises more consistent difference among financial markets due to tighter monetary policies.

Concerning structuresit,j component (standing for unobserved heterogeneity), the intensity of spillover ef-

fects tends to increase confirming that economic–institutional linkages significantly affect countries’ responses

(Figures 4c and 4d). Cross-country commonality would be larger in real economy and thus if capital flows

tend to matter more in driving shock transmission among financial markets, trade flows would matter more in

affecting the spreading of spillover effects among countries. Moreover, output responses over time are larger

in WE countries despite catching-up effects in CEE economies due to persistent and consistent cross-country

heterogeneity. From a policy perspective, the results face a situation of trade-off. More precisely, if on one

hand the adoption of sounder macroeconomic policies and economic–institutional changes – put in place to

foster consolidated policy actions – have helped to bring inflation in emerging (and then CEE) economies back

under control, on the other hand, in case of a noteworthy unexpected financial shock – without appropriate
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coordinated structural reforms in trade, product, and labour markets – outward government benefits will be

not able for supporting the process of international financial integration among countries and boosting the

output to potential growth.

(a) χ5tβ̂5t Factor - Overall Period (b) χ6tβ̂6t Factor - Overall Period

(c) χ7tβ̂7t Factor - Overall Period (d) χ8tβ̂8t Factor - Overall Period

Figure 4: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system and in year-on-year growth rates. They
account for χ5tβ̂5t (plot a) and χ6tβ̂6t (plot b) cross-country indicators, dealing with policy regime shifts and
omitted factors, and χ7tβ̂7t (plot c) and χ8tβ̂8t (plot d) cross-country indicators, dealing with endogeneity
and volatility issues, where β̂5, β̂6t, β̂7t, and β̂8t are posterior means.

Established that policy regime shifts and endogeneity issues (both omitted factors via additional transmis-

sion channels and unobserved heterogeneity via economic–institutional linkages) affect the spreading and the

intensity of international spillovers, the same analysis is conducted by focusing on the last two cross-country

variable-specific factors (χ9,3t, χ9,4t in Figure 5).

In this context, some main considerations are in order. First, during ZIRE Regime, CEE and BLS countries

from net senders become net receivers in the financial dimension. It highlights that, even if substantial struc-

tural reforms in terms of radical fiscal adjustments were able to absorb unexpected financial shocks (outward

spillovers), consistent cross-country interdependencies among financial sectors – because of EA’s common

monetary policy – brought about ’pseudo-shock’ in the short term to catch up with the economic growth

of the other euro partecipants31 (inward spillovers). Second, structural–institutional implications along with

policy reforms affect the intensity (or volatility) of spillover effects in CEE and even more in BLS countries –

because of larger current account deficits and lower real economic convergence – via international transmis-

sion channels, that allow in turn financial shocks to spill over. Third, persistent cross-country heterogeneity

during monetary policy regimes emphasises that the fairly well synchronized business cycles among emerging

and advanced economies might be unlikely, mainly on account of triggering events in the long run. Thus, the

increasing need of consistent reforms of the international financial system to accelerate well-suited financial

integration in developing countries. These findings are against existing studies that support similarity across

31They refer to the advanced and then WE countries.
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business cycles in CEWE economies because of dealing with too short periods. For instance, they consider up

to seven years or less, implying that only a single business cycle would be covered by the available data.

(a) χ9t,3β̂9t,3 & χ9t,4β̂9t,4 Factors - ISE
Regime

(b) χ9t,3β̂9t,3 & χ9t,4β̂9t,4 Factors - ZIRE
Regime

Figure 5: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions are
drawn as standard deviations of the variables in the system and in year-on-year growth rates. They account
for the variable-specific indicators χ9t,3β̂9t,3 and χ9t,4β̂9t,4 during ISE (plot a) and ZIRE (plot b) regimes,

dealing with endogeneity and volatility issues, where β̂9t,Mv̈
’s are posterior means with v̈ = v3, v4.

5.3 Policy Interactions, Common Features, and Contagion Measures among Countries

and Sectors

In the aftermath of the Great Recession and an ongoing postcrisis consolidation, the intensity of spillover

effects becomes larger in real and even more in financial dimension because of stronger inter-country link-

ages among financial markets behind stringent fiscal adjustments (Figures 6a and 6b). More precisely, the

spreading and the size of spillover effects tend to be higher among CEE and even more BLS countries –

because of extensive reforms – in real economy because of radical policy actions and among WE countries

in financial markets because of stronger interdependencies. Despite a consistent homogeneity holds among

CEWE economies, different countries’ responses matter during financial crisis and even more fiscal consol-

idation periods due to coordinated but not fairly flexible fiscal actions, mainly among emerging economies

suffering from lower competitiveness.

Finally, according to all the aforementioned findings, I compute the Total Contagion Index (TCI) on the

only common indicator χ10t,2 β̂10t,2, so as to investigate in depth commonality among sectors and countries in

real economy and financial markets. To do it, the cumulative impulse responses are restricted in the interval

[0, 1] and the (individual) spillover effects are restricted in the interval [−1,+1] so that the index will be bound

between 0 and 100 (or between −100 and 0 if negative effects occur). Thus, the TCI is so obtained:

TCIyi,j =
100

N(N − ṽ)
·

N
∑

i=1

IRyi→yj with i = j = 1, . . . , N (61)

where, IRyi→yj denotes individual (out) spillover effects and N− ṽ refers to the degrees of freedom depending

on the needs of the investigation, with ṽ accounting for the terms chosen in the factorization (59).

Here, some considerations are in order (Figure 6c). During crisis period, emerging and advanced economies
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show inward and outward spillovers in the financial dimension, respectively. Contrary to postcrisis consoli-

dation periods, where CEE and BLS countries become net senders and WE countries are net receivers. It

highlights the presence of consistent policy interactions: an unexpected shock in financial markets (e.g., be-

cause of inflationary pressures, unsustainable credit boom, stiffening of banking supervision) affects the real

economy through fiscal adjustments (e.g., public expenditure cuts, lowers increasing tax). Then, stringent

economic–institutional linkages cause a ’pseudo-shock’ among CEE and BLS economies because of larger

fiscal adjustments – mainly in the last two decade – to catch up with the economic growth of the other

advanced EA economies (from net receivers to net senders).

(a) χ9t,3β̂9t,3 & χ9t,4β̂9t,4 Factors - Crisis Pe-
riod

(b) χ9t,3β̂9t,3 & χ9t,4β̂9t,4 Factors - Fiscal
Period

(c) χ10t,2β̂10t,2 Factors - Contagion Index

Figure 6: Systemic Contributions of the productivity given a 1% shock to real and financial dimensions are
drawn as standard deviations of the variables in the system and in year-on-year growth rates. They account
for the variable-specific indicators χ9t,3β̂9t,3 and χ9t,4β̂9t,4 during crisis (plot a) and post-crisis (plot b) periods,

dealing with endogeneity and volatility issues, where β̂9t,Mv̈
’s are posterior means with v̈ = v3, v4.

5.4 Lessons and Matters for Future Policy Efforts

In summary, all the aforementioned results lead to four important chain-effect findings: (i) given an unex-

pected shock in financial markets, countries’ responses show higher heterogeneity among real sectors, point-

ing out non-homogeneous real economic convergence among countries (endogeneity issues); (ii) the related

spillover effects show larger intensity among developing economies due to sever overheating periods, mainly

during the recent financial crisis due to radical structural fiscal adjustments (policy-regime shifts); (iii) at the

same time, higher intensity in the spreading of spillovers bring about larger volatilities among either sectors

or countries over time (structural changes); and (iv) these volatility issues highlight an unlikely international

business cycle synchronization among emerging economies and thus a solid but not properly achieved inte-

gration within EU, increasing the cost of partecipation in the European and Monetary Union (EMU).

Since developing countries tend to bear the brunt of triggering events due to their relatively low economic



29

weight (in terms of international trade exposures), ’quasi-flexible’ policies should be conducted in order

to ensure in a not-too-distant future: (i) the restoration of the confidence in financial systems, still recovering

from the recent financial crisis; (ii) higher homogeneity across countries’ responses in real economy given an

unexpected financial shock so as to safeguard the inter-country real convergence; and (iii) stronger cross-

correlations among CEWE economies when facing international shocks transmission.

In this context, ’quasi-flexible’ policies stand for coordinated structural policy actions among foreign

and domestic sectors along with more pointed fiscal adjustments according to country-specific requirements.

Furthermore, the analysis highlights that, in case of a noteworthy unexpected shock in real economy, outward

government benefits would be really beneficial for supporting the European integration and boosting the

output to potential growth. Thus, the need of examining international spillovers accounting for both model

misspecification problems and implied volatility changes.

In Figure 7, I display the generalized Entropy Index from 1994q4 to 2021q1. It corresponds to the Theil’s

Entropy, calculated by weighing the GDP with the population in terms of proportions with respect to the

total, and can be used to measure the degree of divergence and economic inequality among countries. Here,

forecasts from 2019q1 to 2021q1 correspond to conditional projections of each variable drawn in the SPBVAR-

MTV in (1) and thus are able to point out the impact of an ongoing pandemic crisis on the global economy.

The coronavirus (or COVID-19) pandemic is a major global crisis negatively affecting sustainable develop-

ment, economic growth, and stability and security across the globe. It constitutes an unprecedented challenge

with very severe socio-economic consequences and highly strong deterioration of already existing humanitar-

ian crises. In this study, the findings confirm the radical decrease of the economy in the last two quarters of the

current year pursuant to the pandemic of coronavirus disease. However, a hint of the economic recovery shows

up among countries in the next quarter. Thus, some considerations can be addressed. (i) First, coordinated

and radical policy actions are necessary to deal with health emergency needs, support inter-country economic

activity, and face the ground for the recovery. (ii) These adjustments should be implemented combining

short, medium and long-term initiatives, but taking into account the dynamics of international spillovers

and the cross-country economic–financial linkages so as to preserve confidence, stability, and financial inte-

gration (where highly strong heterogeneity and volatility matter). (iii) Moreover, even if several measures

have already been taken at the national and EU levels, temporary and targeted discretionary fiscal stimulus

have to keep on being adopted in a coordinated manner. More precisely, public resources and structural

reforms in trade, product, and labour markets have to be directed to strengthen the healthcare sector and

support affected economic–financial sectors. (iv) As regards monetary policy, closed resolute actions have to

be taken by the European Central Bank to support liquidity and finance conditions to households and banks

in order to preserve the smooth provision of credit to the economy. (v) Finally, to overcome the financing

pressures faced by banks and households, all these policy adjustments need to be implemented by closely

monitoring the evolution of the situation in each country and coordinating country-specific European and
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national measures. However, if an increasing degree of divergence should overlook among countries, further

and different actions, including legislative measures, will have to be taken – where appropriate – to mitigate

the impact of Covid-19.

Figure 7: Generalized Entropy index according to the productivity growth from 1994q4 to 2021q1 is drawn. It corresponds
to the Theil’s Entropy and is computed by weighing the GDP with the population in terms of proportions with respect to the
total. The conditional projections of each variable drawn in the SPBVAR-MTV in (1) have been used to perform forecasting
from 2019q1 to 2021q1.

6 Concluding Remarks

This paper provides new empirical insights in order to give a relevant contribution to the more recent literature

on international macroeconomic-financial linkages when jointly modeling and quantifying multicountry data

using the information contained in a large set of endogenous and economic–financial variables. A multicountry

SPBVAR with Multivariate Time-varying Volatility is developed to jointly deal with issues of endogeneity,

because of omitted factors and unobserved heterogeneity, and volatility, because of policy regime shifts and

structural changes. The two main differences with respect to a standard SPBVAR lie in an additional

component to investigate fiscal and monetary policy implications and interactions, and in the variance-

covariance matrix allowed to be time-variant. The latter is an useful way of modeling time-varying conditional

second moments to provide an alternative to the stochastic volatility specification; therefore, in this context,

volatility changes are not more replaced by coefficient changes. The computational costs involved in using

that specification are moderate since the high dimensionality is avoided via Bayesian inference and Monte

Carlo Markov Chain (MCMC) implementations.

An empirical application is developed by accounting for the Central, Eastern, and Western European

countries, with particular emphasis to the most recent recession and successive post-crisis periods. The

United States are included in the analysis to assess international spillover effects and possible contagion

measures among financial markets. In this study, I focus on the latest two alternative monetary policy

regimes that have been in place since the 1990: (1) the Inflation Stabilization Era from 1994 to 2008 and

(2) the Zero Interest Rate Era from 2008 to 2015. Two more additional periods are also considered: (1)

2006q1 − 2009q4 to investigate possible commonality between financial markets and real economy during
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the Great recession and (2) 2010q1 − 2018q4 to evaluate fiscal implications and policy perspectives during

post-crisis consolidation.

From a global perspective, the same dynamic behaviour is observed in the transmission of US financial

shocks, with outward spillover effects. The findings are consistent and robust with the more recent literature

on multicountry dynamic panel setups. More precisely, they confirm that US seem to be an important driver

in allowing unexpected shocks to spill over and thus affecting European financial markets, mainly concerning

CEE economies with inward spillovers. Then, intra-country shocks directly affect a country’s own output

growth in the real economy because of consistent cross-country interdependencies.

From a modeling perspective, the presence of highly strong intra-CEWE heterogeneity, in terms of intensity

and spreading of spillover effects, emphasise more consistent difference among financial markets due to tighter

monetary policies. In the aftermath of the Great Recession and an ongoing post-crisis consolidation, despite

a consistent homogeneity holds among CEWE economies, different countries’ responses tend to matter due

to coordinated but not fairly flexible fiscal actions, mainly among emerging economies suffering from lower

competitiveness. The findings confirm the need of examining international spillovers accounting for both

misspecification problems and implied volatility changes.

From a policy perspective, the empirical results face a situation of trade-off. More precisely, if on one

hand the adoption of sounder macroeconomic policies and economic–institutional changes – put in place to

foster consolidated policy actions – have helped to bring inflation in emerging economies back under control,

on the other hand, in case of a noteworthy unexpected financial shock – without appropriate coordinated

structural reforms in trade, product, and labour markets – outward government benefits will be not able

for supporting the process of international financial integration among countries and boosting the output to

potential growth.
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A Data Collection

Table 3: Basic Data Description

Variable Description

General Government Spending Financial accounts for general government spending.
Gross Fixed Capital Formation Investments of fixed assets at current prices.

GDP Growth Rate It is calculated as: Log
(

GDPit,j

GDPit−1,j

)

.

Inflation It is calculated from the Consumer Price Index.
Bank Leverage It is calculated as Loan (L) to Deposit (D) ratio.

Crited Growth It is calculated as: 100 ·
(

(Lt/Pt)−(Lt−4/Pt−4)
Lt−4/Pt−4

)

.

Bilateral Flows of Trade Exports and imports in goods and services.
Financial Transactions Financial Assets on the total economy.
Interest Rate International interest policy rate.
Public Debt Non-financial accounts for general government debt.
Current Account Balance Non-financial accounts for general government net.
Financial Consumption Expenditure Total general government expenditure at current prices.
Private Sector Consumption Private consumption expenditure.
Change of unemployment rate Growth rate of the unemployment rate as percentage.
Nominal Labour Cost It is defined as the ratio of labour costs to labour productivity.
Household price index Real household per capita index.
Productivity It corresponds to logarithm of the real GDP per capita.

Here, general government spending, gross fixed capital formation, bilateral flows of trade, financial transac-
tions, public debt, current account balance, financial consumption, private consumption, and unemployment
rate are weighted for the GDP.
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