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Abstract

In reality, the organizational structure of information — describing how informa-

tion is transmitted to its recipients — is as important as its content. In this paper,

we introduce families of (indirect) information structures, namely meeting schemes

and delegated hierarchies, that capture the horizontal and vertical dimensions of real-

world transmission. We characterize the outcomes that they implement in general

(finite) games and show that they are optimal in binary-action environments with

strategic complementarities. Our application to classical regime-change games illus-

trates the variety of optimal meeting schemes and delegated hierarchies as a function

of the objective. (JEL codes: C72, D82, D83.)
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1 Introduction

Information is often transmitted in horizontal or vertical ways. Horizontal transmis-

sion refers to informing a group of listeners symmetrically and simultaneously. Academic

seminars are an example of this, where a researcher speaks in front of an assembly of

peers. Board meetings are another example in which management presents performance

indicators to directors. Vertical transmission, instead, refers to information passed down

sequentially, and perhaps partially, from one individual to another. In organizations, in-

formation is regularly communicated by directors to managers, then to supervisors, and

finally to lower-level employees. In marketing, viral strategies rely on consumers “spread-

ing the word” and forwarding information to friends and family.

There are many reasons why such protocols are ubiquitous in practice, even purely

logistical reasons underlying the cost of information transmission. For one, giving infor-

mation to many people at once, instead of giving the same information to each of them

individually, saves on physical communication costs. In this vein, most researchers may

prefer to present their work to an assembly of peers rather than give the same presenta-

tion to each of them in private (even abstracting from the benefits of collective engagement

in seminars). Delegating information transmission to the receivers themselves can be an-

other economical strategy. Downstream communication in organizations is an illustration,

where an executive may inform a supervisor and instruct him how to inform other subor-

dinates rather than personally bring that information to those subordinates.

In this paper, we introduce families of indirect information structures1 that capture the

horizontal and vertical dimensions of real-world transmission. In incomplete information

games, information (about the state of the world and others’ information about it) affects

equilibrium behavior and, thus, the resulting outcomes. We characterize the outcomes that

these families of information structures implement in general finite games, and show that

they are optimal in binary-action games with strategic complementarities.2 These games

cover important economic applications, such as global games of regime-change, team effort

problems and purchase decisions with network effects.

We capture horizontal transmission through information communicated publicly but to

a restricted audience. This family of information structures we call single-meeting schemes.

1An information structure specifies a distribution over message profiles for each realization of the state,

thereby formalizing the protocol by which players get informed.
2There is a high and a low action and the low action carries a zero payoff.
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In organizations, for example, this is akin to the board calling a meeting during which a

public announcement will be made to all people the board has chosen to invite. These in-

formation structures are intuitively appealing, because only one meeting ever takes place,

during which information is communicated publicly to the participants or, equivalently,

one email is ever sent to selected recipients.

We capture vertical transmission through delegated hierarchies, where transmission is

handed to the players themselves and information flows down the hierarchy, in a sequen-

tial Cheap Talk fashion, after communicating directly with the highest ranked player only.

Players are totally ordered according to how informed they are, so that they are able to

inform the next player in the hierarchy, and they also have the strategic incentives to pass

down information truthfully. In organizations, delegated transmission is used for obvious

reasons, as executives cannot realistically deliver all the different pieces of information to

different subordinates on a regular basis. In marketing, high-profile individuals are often

the target of information about a product or an event, so that in turn they can inform their

social media followers, who can in turn inform their followers, and so on.

In comparison, direct information structures, which invoke the Revelation Principle

(Myerson (1991)) and make incentive-compatible action recommendations, do not con-

strain information to be commonly observed by some players or to be transmittable from

one player to another in an incentive compatible manner. This can make them very diffi-

cult to implement in reality. Indeed, in many environments,3 optimal direct information

structures are not single-meeting schemes or delegated hierarchies, as the action recom-

mendations they involve are often private information to each player, which others are

uncertain about. To implement these privacy requirements, there is hardly any other way

but to communicate with every single player individually. In large organizations or mar-

kets, this describes an unrealistic picture of information transmission.4

In incomplete information games, the strategic outcomes can be described by distribu-

tions over action profiles and states. Fixing the payoffs and the prior beliefs, an outcome

distribution is (weakly) implemented by an information structure if it is the result of pure

3These include monotone environments, where players play an incomplete information game with strate-

gic complementarities and the sender wants to foster large actions. For example, consider a seller of a good

with positive network effects, who wants to maximize total sales by revealing information about its quality

to a population of heterogeneous consumers.
4Concerns about direct mechanisms have been raised previously by Van Zandt (2007): “The Revelation

Principle in mechanism design is both a blessing and a curse [. . . ] It is a curse because direct mechanisms

provide such an unrealistic picture of decision-making in organizations.”
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Bayes Nash equilibrium (BNE) behavior under that information structure. In which en-

vironments do single-meeting schemes and delegated hierarchies implement an optimal

outcome distribution? What outcome distributions can they implement in general?

Our optimality results (Theorems 1 and 3) show that single-meeting schemes and del-

egated hierarchies are optimal in binary-action games with strategic complementarities.

From Bergemann and Morris (2016), an outcome distribution is implementable if and only

if it is a Bayes correlated equilibrium (BCE). We look at environments for which an optimal

BCE5 can be implemented by one of our information structures. Intuition suggests that if

players’ actions are strategic complements, then some degree of shared information should

help coordination. Yet, we know that purely public information is often strictly subopti-

mal in such contexts, for example when the objective is to maximize the total probability

of the high action among heterogenous players. Theorem 1 sheds light on this matter, as

single-meeting schemes provide the optimal kind of shared information. This holds with

great generality provided each player finds it more beneficial to choose the high action if

others do so as well. Theorem 3 obtains under a stronger form of complementarities: if

each player’s utility in the high action is not only increasing but also supermodular in the

others’ actions, then a delegated hierarchy is optimal. This result implies that an infor-

mational line network (where players are totally ordered by informedness) implements an

optimal BCE, even though players’ interdependencies could be described by any network

of supermodular interactions.

Our implementation results (Theorems 2 and 4) characterize the outcome distribu-

tions that can be implemented in pure Bayes Nash equilibrium by our families of infor-

mation structures.6 The theorems make a direct connection between the organizational

constraints on information and the resulting constraints on strategic outcomes. These

results are for general finite environments, and while the restriction to pure strategies en-

tails a loss of generality, the analysis benefits from the additional structure and remains

rich enough to be interesting. When thinking about how a group of players self-organize

(or are organized by a third party) to receive information, horizontal and vertical trans-

mission offer natural options, as modeled by our information structures. By shaping the

kind of incomplete information that can emerge within the group, this also shapes the

5That is, maximizing the expected value of an objective function.
6While these characterizations are in terms of distributions over actions and states, direct implementation

à la Bergemann and Morris (2016) and Taneva (2019) — by using action recommendations as messages —

will generally not succeed in implementing the desired outcome distributions by a single-meeting scheme or

a delegated hierarchy.
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strategic outcomes that can emerge. Our results characterize these strategic outcomes by

means of linear systems — with stronger conditions than the BCE constraints. A natural

application of the characterizing inequalities is to information design, where they appear

as constraints in linear programming.

Finally, we illustrate our optimality results in a classical global game of regime change

(Sakovics and Steiner (2012)). We show how the optimal single-meeting scheme and dele-

gated hierarchy change with the objective function. In a different application, we illustrate

that optimization may require players to be treated equally, because they should receive

the same information, yet delegation may require them to be ordered distinctively.

Related Literature. Various definitions of correlated equilibrium in games with incom-

plete information have been proposed (Forges (1993, 2006), Bergemann and Morris (2016)),

depending on what variables the mediator or the correlating device can condition on to cor-

relate players’ actions (e.g., the state, private types). Our characterizations propose new

forms of correlated equilibrium, where the ability to correlate behavior is not limited by

the conditioning variables, but by the organizational structure of information. In doing so,

we bring an organizational perspective to the formulation of incomplete information and

study the resulting strategic implications.

This paper contributes to the information design literature, surveyed in Bergemann

and Morris (2019) and Kamenica (2019), by importing organizational considerations into

the designer’s problem. In particular, our optimality results contribute to the recent in-

terest in binary-action supermodular games. Arieli and Babichenko (2019), Candogan

and Drakopoulos (2020) and Candogan (2020) study the optimal design of direct infor-

mation structures in binary-action supermodular games (with binary states or in linear

networks). Our motivation is different and highlights the role of indirect information

structures. Oyama and Takahashi (2020) focus on equilibrium robustness in binary-action

supermodular games and Morris, Oyama, and Takahashi (2020) on implementation in the

smallest equilibrium through information design. Under adversarial equilibrium selec-

tion, Inostroza and Pavan (2020) derive an optimal public information structure, while Li,

Song, and Zhao (2019) and Mathevet, Perego, and Taneva (2020) have shown the impor-

tance of indirect private information structures.

In the context of a multi-player email game, Morris (2002) introduces the concept of

locally public communication where subgroups of players meet sequentially and share in-

formation that becomes common knowledge within each meeting. The size of the meetings
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is shown to play a pivotal role in making coordination possible. Two recent papers examine

how information is structured or shared among many players. Brooks, Frankel, and Ka-

menica (2020) define an information hierarchy as a partially ordered set of agents, where

the order describes who is better informed about the state in the Blackwell sense. They

characterize the information hierarchies that are compatible with the strong “informed-

ness” order, in which higher ranked players know all the information of less informed

ones. Our definition of delegated hierarchy completely ranks the players under the strong

informedness order and adds incentive compatibility to information transmission. Galperti

and Perego (2020) study the impact of information spillovers on the outcomes of incomplete

information games. Their notion of an information system assumes that messages are au-

tomatically shared between linked players on a network.

Hierarchical transmission relates to strategic communication. Ambrus, Azevedo, and

Kamada (2013) and Laclau, Renou, and Venel (2020) study rich cheap talk intermediation

networks between a sender and a single receiver, where the intermediators do not interact

with each other beyond the transmission of messages. Our players both receive and send

information, and strategically choose an action; their ordering and interdependence shape

our characterization — for the special case of a line network. Hagenbach and Koessler

(2010) and Galeotti, Ghiglino, and Squintani (2013) examine strategic (and simultane-

ous) pre-play communication and characterize the communication networks that emerge

in equilibrium under quadratic payoffs. Our delegated hierarchies represent an equilib-

rium communication network in pre-play communication over multiple rounds, when only

the highest-ranked player starts off with private information.

Finally, our work is also related to information transmission within organizations (Rad-

ner (1993), Van Zandt (1999), Rantakari (2008), Alonso, Dessein, and Matouschek (2008),

Hori (2006), Dessein (2002), Crémer, Garicano, and Prat (2007) among others). In our

framework, however, the principal is not trying to elicit information from better informed

players, but instead to disseminate it effectively throughout the organization.

2 The Framework

2.1 Payoffs

A set of players I = {1, . . . ,n} interact in an environment where the state of the world, ω,

is drawn from a finite set Ω⊆R according to prior µ ∈∆(Ω). Players simultaneously choose
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one of two actions, ai ∈ A i = {0,1} for all i ∈ I , and payoffs are given by ui : A×Ω→ R for

each i ∈ I where A = ×i A i. Assume that i ∈ I gets utility 0 if ai = 0. This framework

captures well-known economic applications.

Network Interactions. Consider players making a binary choice while on a network:

ui(ai,a−i;ω)= γi(ω)ai +
∑

j 6=i

γi j(ω)aia j,
7

where γi measures i’s intrinsic preference for the high action and γi j measures the inter-

dependence between i’s and j’s actions. In this incomplete information version of Ballester,

Calvo-Armengol, and Zenou (2006), the state may affect the intrinsic preferences for ac-

tion 1, but also the interdependencies in the network. This covers fixed networks where

γi j(ω) = γi j for all ω ∈Ω, but also random networks where the coefficients {γi j(·)} are un-

certain.

This formulation subsumes the investment game of Carlsson and van Damme (1993),

as well as “beauty contest” descriptions of social phenomena such as location choice of city

versus suburb, or entry into versus exit from the labor force (see Brock and Durlauf (2001)

and Glaeser and Scheinkman (1999)).

Regime-Change Models. These models are coordination games with binary actions in which

a status quo is abandoned when a sufficiently large number of players choose action 1.

Examples abound in the global games literature (Morris and Shin (2003)), such as currency

attacks (Morris and Shin (1998)), bank runs (Goldstein and Pauzner (2005)), and many

others. A finite set of investors make binary investment decisions into a common project

of uncertain quality ω ∈Ω. Let κi > 0 be i’s contribution to success, ci > 0 his investment

cost, and bi > ci his benefit from a successful project. If i invests, his payoff is:

ui(a−i;ω)=











bi − ci if κi +
∑

j 6=i

κ ja j > 1−ω

−ci otherwise.

2.2 Outcome Distributions

2.1.1 Definitions. An outcome distribution is any p ∈ ∆(A ×Ω). Given prior µ ∈ ∆(Ω)

and payoff functions {ui}, Bayes correlated equilibria (BCE, Bergemann and Morris (2016))

7Other terms could be added, such as
∑

j 6=i,k 6=i, j γi jk(ω)aia jak (for example, γi jk(ω) ≥ 0) to capture i’s

preference for coordination between j and k.
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are outcome distributions p such that p(A× {ω}) = µ(ω) for all ω ∈Ω, and for all i ∈I and

ai ∈ A i,
∑

ω∈Ω

∑

a−i∈A−i

p(a,ω)
(

ui(a;ω)−ui(a
′
i,a−i;ω)

)

≥ 0 ∀a′
i ∈ A i. (1)

This equilibrium concept describes state-dependent correlated behavior that respects the

prior µ and satisfies the obedience constraints given by (1). Let BCE(µ) denote the set of

BCE given µ.

An information structure is a pair (S,P), where S =
∏

iSi is a finite message space and

P = {P(·|ω)}ω∈Ω is a family of conditional distributions over S. In any state ω, message

profile s = (si)i is drawn with probability P(s|ω) and i observes si. Given I
′ ⊆ I , we use

P((si)i∈I ′) =
∑

ω

∑

j∉I ′

∑

s j
P(s|ω)µ(ω) as a shorthand notation for the unconditional proba-

bility of (si)i∈I ′ . Without loss, assume P(si) > 0 for each si ∈ Si. Given µ and information

structure (S,P), let

µi

(

s′
−i,ω|si

)

=
µ(ω)P(s′

−i
, si|ω)

P(si)
and µi

(

s′
−i,ω|si, s j

)

=
µ(ω)P(s′

−i
, si|ω)

P(si, s j)
✶{s j=s′

j
}

denote the conditional probabilities that the state is ω and others receive s′
−i

given si and

(si, s j), and let

E (S,P)=
{

a∗
= (a∗

i ) : a∗
i : Si → A i and

a∗
i (si) ∈ argmax

ai∈A i

∑

ω,s−i

ui(ai,a
∗
−i(s−i);ω)µi(s−i,ω|si) ∀i ∈I , si ∈ Si

}

(2)

be the set of pure Bayes Nash equilibria (BNE).

A distribution p ∈∆(A×Ω) is (weakly) implemented by an information structure (S,P)

if there is a∗ ∈ E (S,P) such that p(a,ω)=
∑

s∈S µ(ω)P({s : a∗(s)= a}|ω) for all a ∈ A and ω ∈

Ω. From Bergemann and Morris (2016, Theorem 1), p is implemented by some information

structure if and only if p ∈ BCE(µ).8

2.1.2 Stochastic Orders. Our optimality results focus on activity and welfare enhance-

ment. We define partial orders on ∆(A×Ω) that capture both of these. Let v : A×Ω→R be

weakly increasing if a′ ≥ a implies v(a′;ω)≥ v(a;ω) for all ω ∈Ω.

Definition 1. Distribution p′ dominates distribution p, denoted p′ ºd p, if Ep′[v] ≥ Ep[v]

8The proof makes use of pure BNE only.
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for all weakly increasing v and Ep′[ui]≥ Ep[ui] for all i ∈I .

A distribution dominates another one if the former first-order stochastically dominates

the latter and also weakly improves every player’s expected utility. Shaked and Shanthiku-

mar (2007) provides a familiar characterization of stochastic dominance. Let Â ⊆ A be an

upper set if a ∈ Â and a′ ≥ a imply a′ ∈ Â.9 Then, Ep′[v] ≥ Ep[v] for all weakly increasing v

if and only if p′
(

Â× {ω}
)

≥ p
(

Â× {ω}
)

for all upper sets Â and ω ∈Ω.

Let

ω=min
{

ω ∈Ω : ω′
≥ω ⇒ ui(1, . . . ,1;ω′)≥ 0 ∀i ∈I

}

(3)

and define Ψ= A×
{

ω<ω
}

.

Definition 2. Distribution p′ supermodular-dominates distribution p, denoted p′ ºsd p, if

Ep′[v] ≥ Ep[v] for all weakly increasing v that are supermodular on Ψ and Ep′[ui] ≥ Ep[ui]

for all i ∈I .10

Supermodular dominance does not guarantee a larger expected value for all weakly

increasing functions, but only for those that also value coordination between actions and

the state in the sense of supermodularity.

2.3 Organized Information

Given an information structure (S,P) and s ∈ S such that P(s)> 0, player i is (weakly)

more informed than j at s, denoted i ºs
Inf

j, if µi(ω, s′
−i
|si, s j) = µi(ω, s′

−i
|si) for all ω ∈

Ω and s′
−i

∈ S−i. This is the strongest definition of ‘being more informed,’ as i knows

everything that j knows, including j’s message. We say that i and j are equally informed

at s, denoted i =s
Inf

j, if i ºs
Inf

j and j ºs
Inf

i.

An information structure (S,P) allows horizontal transmission to i and j at s if

i =s
Inf

j. Since both players know each other’s message, they both know that they both

know it and so on, so that this fact is common knowledge among them; it is as if (si, s j)

were communicated simultaneously and overtly to both i and j. The ultimate example

of horizontal transmission is public information. An information structure (S,P) allows

vertical transmission from i to j at s if i ºs
Inf

j and i satisfies communication incentives

(see Section 4.1 for details).

9For example, {(0,1), (1,0), (1,1)} is an upper set of {0,1}× {0,1}.
10As standard, given a lattice (Y ,≥) and a sublattice (X ,≥), f : Y → R is supermodular on X if for all

x′, x′′ ∈ X , f (x′∨ x′′)+ f (x′∧ x′′)≥ f (x′)+ f (x′′).
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The set of organized information structures provides the backdrop for the analysis

O =
{(

(S,P) ,
(

Is
h, Is

v

)

s

)

: for all s ∈ S s.t. P(s)> 0, Is
h, Is

v ⊆I and
[

i =s
Inf j ∀i, j ∈ Is

h

]

and
[

i ºs
Inf j or j ºs

Inf i ∀i, j ∈ Is
v

]}

.

Information structures in this set organize the players into groups, Is
h

and Is
v, at each

message profile s, based on interactive knowledge that allows horizontal or vertical trans-

mission. All information structures belong to O , but many require Is
h
= Is

v = ; for all s,

and hence do not allow horizontal or vertical transmission between any i and j at any s.

Some may allow it only between a few players and at a few messages. Yet others may

allow horizontal transmission at some messages and vertical transmission at other mes-

sages, so that Is
h
= I for s ∈ S′ and Is

v = I (plus communication incentives) for s ∈ S\S′.

The information structures in this paper are special within O , because they capture either

horizontal or vertical transmission across all messages in their support.

3 Single-Meeting Schemes

Meetings are a ubiquitous form of information dissemination in society.11 When there

are costs associated with the transmission of private messages, due to the necessity of

creating and using separate communication channels, meetings are a cost-effective way of

communicating content, simultaneously and overtly (i.e., on one and the same channel) to

subsets of players. They embody horizontal transmission to those present at the meeting,

while allowing for informational asymmetries, because those who are absent are less in-

formed. While meetings can take many forms and serve many purposes, in this section we

introduce a family of information structures that require a single communication channel,

that is, only one meeting ever needs to be organized to communicate the content of any

message realization. We first provide optimality results and then characterize the set of

outcome distributions implementable by these information structures.

11For example, American businesses hold millions of meetings a day, a billion meetings a year, and the

average employee spends hours in meetings every week. See Rogelberg, Scott, and Kello (2007) for numbers.
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3.1 Definition

In communication contexts, a meeting is an assembly of individuals gathered for the

purpose of receiving information. In principle, the content of a meeting becomes common

knowledge among the participants, and the only information asymmetries between players

come from attending or not attending a meeting. Our definition formalizes these stylized

points by designating one message, s̃i, to represent i’s non-participation in any meeting,

and by building common knowledge between the participants in a meeting.

Definition 3. An information structure (S,P) is a single-meeting scheme if there exist a

collection {M(s)⊆I : s ∈ S s.t. P(s)> 0} and at most one s̃i ∈ Si for each i ∈ I such that

i ∉ M(s) implies si = s̃i and i ∈ M(s) implies i ºs
Inf

j for all j ∈I .

For each message profile s, the subset of players M(s) is invited to a meeting at which

s is announced. Although many different meetings may be possible ex-ante, as described

by the collection in the definition, at most one is ever realized in a single-meeting scheme,

which corresponds to the realized s. When i and j are in M(s), i =s
Inf

j. In addition, par-

ticipation in a meeting perfectly reveals, to those invited, the subset of non-participants

I \ M(s) and, therefore, their respective beliefs. Note that a player can have different

beliefs depending on the meeting he participates in, while there is only one way of not

participating in any meeting and, hence, from a player’s perspective, only one belief asso-

ciated with receiving message s̃i. This does not mean µi( · |s̃i)=µ j( · |s̃ j) for distinct i and j,

as non-participation may carry different information for different players.

Single-meeting schemes capture the practical appeal of real-life meetings. They can be

thought of as physical meetings or as emails, where one message is sent to a subgroup of

players listed in the “To:” field. Their practicality stems from sending one email instead of

having to send that same email individually to each recipient, or to use the blind carbon

copy (“Bcc:”) field to satisfy privacy requirements. (In this context, the message s̃i repre-

sents not receiving an email, while receiving an email is perfectly informative about who

else has received the email and who has not).

3.2 Optimality

In this section, we show that in binary-action environments with strategic complemen-

tarities single-meeting schemes promote welfare and activity enhancement.
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Assumption 1. (Weak Complementarities) For all i ∈ I and each ω ∈ Ω, ui(1,a−i;ω) is

weakly increasing in a−i.

Theorem 1. Under Assumption 1, if p ∈ BCE(µ), then there exists p′ ºd p such that p′ can

be implemented by a single-meeting scheme.

Given V ⊆ {v : A×Ω→R}, cone(V ) is the convex cone of V . Let V
M = {v : A×Ω→R : a′ ≥

a ⇒ v(a′;ω)≥ v(a;ω) ∀ω ∈Ω} be the family of action-wise weakly increasing functions.

Corollary 1. If {ui} satisfy Assumption 1 and v ∈ cone
(

V
M ∪ {ui}

)

, then there exists p∗ ∈

argmax
p∈BCE(µ)

Ep[v] that can be implemented by a single-meeting scheme.

Dominance of the outcome distribution in the theorem translates into optimality for

a large family of objective functions in the corollary. These functions include all action-

wise weakly increasing functions, weighted welfare functions, and their positive linear

combinations. The latter capture, for instance, the desire to maximize the probability that

a subset of players play action 1 while simultaneously maximizing the welfare of the rest

of the players.

It is worth pointing out that the theorem and its corollary hold regardless of the comple-

mentarities between each player’s action and the state. For example, if two players have

opposite relationships with the state, a higher state may incentivize player 1 to choose

the high action, but deter player 2. Hence, all else equal, a high action by player 2 is

interpreted as bad news about the state by player 1, who may then choose the low action

in response, even if actions are strategic complements. In these situations, Theorem 1

implies that single-meeting schemes can induce some players to choose the higher action

without depressing the beliefs about the state of the others, by not inviting them to the

same meetings.

These results readily apply to multidimensional states, i.e., Ω⊆R
m, where information

bears on multiple aspects of a decision problem. In organizations, for example, a manager

may have information about more than one project or about multiple attributes of a project.

We conclude this section with an illustrative example.

Example 1. (An optimal single-meeting scheme). Consider a team effort problem with

I = {1,2,3}, Ω = {0,1}, µ(ω = 0) = 4/5 and A i = {0,1}. Let u1(a;ω) = a1(2ω−1), u2(a;ω) =

a2(2ω−2+a1) and

u3(a;ω)= a3 ×

{

−2 if a1 = a2 =ω= 0

a1 +a2 otherwise.

12



Player 1 wants to exert effort only if the state is high; player 2 only if the state is high and

player 1 does so as well; and player 3’s utility from effort is given by 1 and 2’s total efforts,

except in the low state where exerting effort alone is detrimental. Clearly, all ui(1,a−i;ω)

are weakly increasing in a−i for each ω so that Assumption 1 holds.

Suppose the objective is to maximize Prob(a3 = 1) so that v(a) := a3. Then, the following

p∗ ∈ BCE(µ) uniquely maximizes Ep[v]:

p∗( · ;0) 0,0 1,0 0,1 1,1

0 3/20 0 7/20 1/10

1 0 0 1/5 0

p∗( · ;1) 0,0 1,0 0,1 1,1

0 0 0 0 0

1 0 0 0 1/5

The direct information structure (A, {p∗( · |ω)}), which implements p∗ by a standard argu-

ment, is not a single-meeting scheme. At recommendation profile (1,0,1), no player is more

informed than the others (player 1 does not know that a2 = 0; player 2 does not know that

a1 = 1 or that a3 = 1, and player 3 does not know that a1 = 1 or that a2 = 0). Thus, this

profile is played when no one is in a meeting. Similarly, at recommendation profile (0,0,1),

no player is more informed than the others, implying that it too should be played when

no one is in a meeting, a contradiction. In practice, the players’ interactive knowledge at

(1,0,1) and (0,0,1) requires each of them to receive his recommendation privately.

In line with Corollary 1 (since v ∈ V
M), p∗ is implemented by the following single-

meeting scheme: let Si =
{

s1
i
, s2

i
, s3

i
, s̃i

}

for i = 1,2, S3 =
{

s1
3, s̃3

}

, P(s̃1, s̃2, s̃3|1)= 1 and

P
(

s1
1, s1

2, s1
3

∣

∣0
)

= 3/16 P
(

s̃1, s3
2
, s̃3

∣

∣0
)

= 1/4

P
(

s2
1, s2

2, s̃3

∣

∣0
)

= 7/16 P
(

s3
1
, s̃2, s̃3

∣

∣0
)

= 1/8.

In this single-meeting scheme, where M(s̃) = ;, M(s1
1, s1

2, s1
3) = {1,2,3}, M(s̃1, s3

2
, s̃3) = {2},

M(s2
1, s2

2, s̃3) = {1,2}, and M(s3
1
, s̃2, s̃3) = {1}, an invitation to a meeting incentivizes action 0

as a response and the non-invitation s̃i incentivizes action 1.

3.3 Characterization

Our next result characterizes the outcome distributions that can be implemented by a

single-meeting scheme.
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Theorem 2. A distribution p ∈ BCE(µ) can be implemented by a single-meeting scheme, if

and only if, for all i ∈I , there is ãi ∈ A i such that for all ai ∈ A i \{ãi}

∑

ω∈Ω

p(ai,a−i,ω)
(

ui(ai,a−i;ω)−ui(a
′
i,a−i;ω)

)

≥ 0 (4)

for all a′
i
∈ A i and a−i ∈ A−i.

For any µ, denote by SMS(µ) the set of BCE distributions that satisfy these necessary

and sufficient conditions.

The theorem makes a clear connection between the organizational constraint on infor-

mation, namely that it comes from a single-meeting scheme, and the resulting constraints

on the strategic outcomes: Each player i has one action ãi that satisfies the BCE obe-

dience constraint (1), while every other action that i plays should be a best response to

any a−i against which it is played with positive probability. In comparison, the BCE con-

straints are summations over all a−i of the constraints specified separately for each a−i in

(4). Thus, the above incentive constraints are stronger than the obedience constraints of

a BCE, but weaker than (pure strategy) equilibrium play under public information, where

all constraints are of the form (4) without any exception.

The characterization provides a system of linear inequalities for each ã ∈ A, the so-

lutions of which form a convex polytope C (ã,µ) that represents a class of single-meeting

schemes. For each distribution in C (ã,µ), a realization a ∈ A can be interpreted as a meet-

ing amongst {i ∈ I : ai 6= ãi}, because by (4) each of these players would want to play his

action even if he knew the action profile of all other players. As a union of convex sets,

SMS(µ) = ∪ã∈AC (ã,µ) need not be convex (see Figure 1 (b) below). That is, the random-

ization between two single-meeting schemes need not be a single-meeting scheme. This

makes sense intuitively, as the randomization is effectively a public signal whose realiza-

tion has to be disclosed to all players, which in turn requires an additional meeting.

Theorem 2 holds for all finite action sets and utility functions. Computing the set

SMS(µ) involves solving
∏

i |A i| linear systems, one for each class of single-meeting schemes.

In Section 6.1 and in Online Appendix C.2, we discuss how organizing more than a single

meeting expands the set of implementable outcomes.

3.3.1 Structure. We next emphasize three properties of the structure of the set of single-

meeting schemes, illustrated in Battle of the Sexes where complete information simplifies

14



the graphical representations. The properties, however, apply more generally to incom-

plete information games.

0 1

0 3,2 0,0

1 0,0 2,3

Table 1: Battle of the Sexes

We first define important sets of outcome distributions. Given µ ∈∆(Ω), let

NE(µ)=

{

p ∈∆(A×Ω) : ∃ a∗
∈ A s.t. p(a∗, · )=µ and

∑

ω∈Ω

µ(ω)ui(a
∗;ω)≥

∑

ω∈Ω

µ(ω)ui(ai,a
∗
−i;ω) ∀i ∈I ,ai ∈ A i

}

be the set of pure strategy Nash outcomes in the ex-ante normal form game in which it is

common knowledge that all players have belief µ. Let

Public(µ)=
⋃

{

∑

µ̂

α(µ̂)Co(NE(µ̂)) : α ∈∆(∆(Ω)) s.t.
∑

µ̂

α(µ̂)µ̂=µ

}

be the set of pure strategy public information outcomes. In complete information games,

NE is just the set of pure Nash equilibria and Public is its convex hull.

Figure 1 (a) depicts BCE(µ), which is simply the set of correlated equilibria in Battle

of the Sexes. Part (b) of the figure depicts SMS(µ), which consists of four classes of single-

meeting schemes. Letting a = p(0,0), b = p(0,1), c = p(1,0) and d = p(1,1), the four classes

are:

C ((0,1),µ) = {p : a,b,d ≥ 0 and c = 0}

C ((1,0),µ) = {p : a, c,d ≥ 0 and b = 0}

C ((0,0),µ)=C ((1,1),µ) = {p : b = c = 0}.

In C ((0,1),µ), the row player plays 1 when invited to a meeting and 0 when not. The

opposite is true for the other player. This class corresponds to the bottom triangle in Figure

1 (b). C ((1,0),µ) is the mirror image of C ((0,1),µ), given by the top triangle. In C ((0,0),µ)

and C ((1,1),µ), the players are always together in a meeting and coordinate their actions.

By comparing the two panels of Figure 1, we can see that SMS(µ) consists of faces of

BCE(µ). This is a general property in coordination games with strict Nash equilibria.

15



Claim 1. (Face structure) Suppose there exist distinct a∗,a∗∗ ∈ A which are strict Nash

equilibria of (I , {A i,ui(·,ω)}) for all ω ∈Ω. Then, SMS(µ) is a union of faces of BCE(µ).

Furthermore, note that Public(µ) lies at the intersection of the two triangles, C ((0,0),µ)

and C ((1,1),µ). This property generalizes to all games: not only does public information

produce outcomes in SMS(µ), as it is a special kind of single-meeting schemes, but its

outcomes lie in the intersection of all classes of single-meeting schemes.

Claim 2. (Public intersection) Public(µ)⊆
⋂

ã∈A C (ã,µ)⊆ SMS(µ).

c

b
a

c

b
a

NE

Co(NE)

(a) Correlated Equilibria (b) SMS

Figure 1: Correlated Equilibria and SMS

Our last claim uses the fact that each class C (ã,µ) is structured around a profile ã that

a collection of meetings is meant to incentivize. In light of this, max{p(ã,ω) : p ∈C (ã,µ)} is

associated with the cheapest way of incentivizing ã at ω.

Claim 3. (Extreme Points) max{p(ã,ω) : p ∈ SMS(µ))}=max{p(ã,ω) : p ∈C (ã,µ)}.

In Battle of the Sexes, A = {(0,0), (1,1)} supports the incentive compatibility of ã1 = 1

and ã2 = 0 in C ((1,0),µ). The cheapest way of incentivizing ã is by setting a = d = 3/8,

which enables maxp∈C ((1,0),µ) c = 1/4 and corresponds to extreme point (3/8,0,1/4,3/8).

3.3.1 Existence. Well-known families of Bayesian games have a pure BNE for all infor-

mation structures, in particular all single-meeting schemes. If the ex-post game (I , {A i,
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ui(·,ω)}) is supermodular for all ω ∈ Ω (Milgrom and Roberts (1990)),12 then the ex-ante

Bayesian game is also supermodular for all priors and information structures. The same

is true for potential games (Monderer and Shapley (1996)): if the ex-post game admits a

potential φω : A →R for all ω ∈Ω, then the ex-ante Bayesian game is also a potential game

for all priors and information structures (Heumen et al. (1996)). In both families of games,

existence of a pure equilibrium is guaranteed for all single-meeting schemes.

The nonemptiness of SMS(µ) is a weaker form of existence than existence of a pure

BNE for every single-meeting scheme. As illustrated in Online Appendix C.1, Public(µ)

can be empty and yet SMS(µ) be nonempty. This speaks to the ability of certain forms

of organized information, in this case single-meeting schemes, to stabilize pure-strategy

behavior in games where other forms, in this case public information, may not.

4 Delegated Hierarchies

Vertical transmission, whereby information flows from one individual to another, is also

frequently observed in reality. Delegated hierarchies are a mode of vertical transmission in

which information is delivered directly to a single player, de facto the most informed one,

and subsequently gets (partially) transmitted from player to player down the hierarchy

in an incentive compatible way. Therefore, communication happens on one channel at a

time along a sequence of one-to-one transmissions. Delegated hierarchies are cost-effective

when the communication costs are convex in the size of the audience, that is, when the cost

of communicating directly with n individuals (privately or publicly) is larger than n times

the cost of communicating with one person.13 In general, delegated hierarchies can also

implement outcomes that are not implementable by single-meeting schemes, in which case

they offer an alternative implementation beyond cost considerations. As in Section 3, we

first provide optimality results and then characterize the outcome distributions that are

implementable by these information structures.

4.1 Definition

First, in order for players to be able to vertically transfer information to one another,

they must be ordered with respect to how informed they are. This suggests the notion of

12Assuming the partial orders on the action sets are the same across ω.
13In this case, the sender would prefer to delegate transmission and compensate each player for the cost

of transmission, rather than transmit the messages herself.
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an information hierarchy. Second, in order for players to be willing to transfer information

to one another, an information hierarchy must satisfy certain incentive constraints.

Definition 4. An information hierarchy ((S,P),≻) is an information structure (S,P) and a

total order ≻ on I such that i ≻ j implies i ºs
Inf

j for all s such that P(s)> 0.

Whether a single-meeting scheme is also an information hierarchy can be determined

in a straightforward way by comparing the invitees across different meetings, as formal-

ized in the next result.

Proposition 1. A single-meeting scheme (S,P) is an information hierarchy, if and only if,

there is a total order ≻ on I such that, for all s such that P(s)> 0, i ≻ j and j ∈ M(s) imply

i ∈ M(s).

In Example 1, no total order can make the optimal single-meeting scheme an informa-

tion hierarchy, as two distinct meetings have a different and unique invitee, hence no ≻

can rank them by informedness in the same way across all messages.

In an information hierarchy ((S,P),≻), although player i such that i ≻ j is able to

deliver s j to j, i may have an incentive to report something else. Therefore, truthful

information transmission down the hierarchy needs to be incentive compatible: not only

must all players have an incentive to play their equilibrium action, but also to pass down

the relevant information, for other players to do the same.

Given an information hierarchy ((S,P),≻), a player i ∈I and s ∈ S, let s≺i =
(

s j : j ≺ i
)

and s≻i =
(

s j : j ≻ i
)

and let the corresponding sets of profiles be denoted S≺i and S≻i,

respectively. Similarly, we use notation a≺i ∈ A≺i and a≻i ∈ A≻i to denote the action profiles

of i’s predecessors and i’s successors.

Definition 5. A distribution p ∈∆(A×Ω) can be implemented by a delegated hierarchy if

there exist an information hierarchy ((S,P) ,≻) and an equilibrium a∗ ∈ E (S,P) such that

p(a,ω)=
∑

s∈S

µ(ω)P({s : a∗(s)= a}|ω) ∀a ∈ A, ω ∈Ω

and for all i ∈I , si ∈ Si and s≺i ∈ S≺i such that P(si, s≺i)> 0,

E

[

ui

(

a∗
i (si),a

∗
≺i(s≺i),a

∗
≻i(s≻i);ω

)∣

∣si

]

≥ E

[

ui

(

a′
i,a

∗
≺i(s

′
≺i),a

∗
≻i(s≻i);ω

)∣

∣si

]

(5)

for all a′
i
∈ A i and s′

≺i
such that P(s′

≺i
)> 0.

18



Delegated hierarchies allow for direct communication with only the most informed

player, i∗ = max≻I , who gets informed according to (S,P). The definition describes a

truthful equilibrium of a sequential cheap talk game in which, starting with i∗, each player

is both a receiver choosing an action strategically and an (strategic) informed sender to his

immediate ≻-predecessor. Each player can deviate both from truthful information trans-

mission and from his equilibrium action. Condition (5) requires these deviations to not be

profitable in the desired equilibrium a∗. In this delegated process, each player must be

more informed in a strong sense than all of his ≻-predecessors, as he is their only source

of information. Hence, this process must build on an information hierarchy. Finally, since

((S,P),≻) is common knowledge among the players and chosen with commitment, no one

will believe a message s′
≺i

passed down by i that would have zero probability under P.14

The definition also builds in robustness to communication as a by-product. In the stan-

dard information design framework, players are assumed to receive all their information

from (S,P), and strategic communication between the players is assumed away. However,

once players are in possession of their messages, they could potentially want to share some

of their information with each other. If players have this ability, then by (5), they will be

happy with the actions played by less informed players and, therefore, will not have an in-

centive to induce them to change their actions by disclosing different information to them.

At the same time, no player can reveal anything to more informed players that the latter

do not already know and, therefore, cannot impact their actions. Overall, no communi-

cation would be an equilibrium in this extended game and a∗ would still be played, thus

being robust to inter-player communication.

4.2 Optimality

4.2.1 Lack of delegation under weak complementarities. To motivate our next as-

sumption, we first demonstrate the limitations of Assumption 1 in the perspective of dele-

gation. We go back to Example 1, where the objective v(a) = a3 is both weakly increasing

in a and supermodular on A×Ω. However, note that

u3(1,1,1;0)+u3(1,0,0;0)= 2−2= 0< u3(1,1,0;0)+u3(1,0,1;0)= 1+1= 2

14For the special case of a line network where information is seeded at i∗, the above definition can be

related to the framework of Galperti and Perego (2020), where information transmission between linked

players is full and mechanical. Here, in contrast, information transmission is partial and accounts for play-

ers’ incentives.

19



so that u3(a3,a−3;ω) is not supermodular in a (which violates Assumption 2 below).

In Example 1, the unique p∗ cannot be implemented by a delegated hierarchy. If player

1 were the most informed in the hierarchy, then he would not be willing to play 1 at a =

(1,0,1), as that would reveal to him that ω = 0 and he would prefer playing 0. If player

2 were the most informed, he would not be willing to play 1 at (0,1,1). Finally, if player

3 were the most informed in the hierarchy, then he would always have an incentive to

recommend action 1 to the others and switch to playing 1 himself. Thus, no total ordering

can satisfy (5).

4.2.2 Results. Recall that Ψ= A×
{

ω<ω
}

where ω is defined in (3).

Assumption 2. (Supermodularity) For all i ∈ I , (a) ui(1,a−i;ω) is weakly increasing in

a−i for each ω≥ω and (b) ui is supermodular on Ψ.

This assumption implies Assumption 1 and adds the requirement that ai and ω are

complements and that ui(1,a−i;ω) is supermodular in a−i. That is, every player is in-

centivized to choose action 1 by larger states and regards the other players’ actions as

complementary to each other in his own payoff. For example, for I = {1,2,3}, u1(a;ω) =

a1(ω+a2a3) is supermodular in a−1, which implies that, at each ω and a1, player 1 would

prefer a coin toss between a−1 = (1,1) and a′
−1 = (0,0) to a coin toss between (0,1) and (1,0).

Note also that the choice of Ψ is not arbitrary: there are important applications, such as

global games of regime change, in which players’ payoffs fail to be supermodular on A×Ω

and yet are supermodular on Ψ.

Theorem 3. Under Assumption 2, if p ∈ BCE(µ), then there exists p′ ºsd p such that p′ can

be implemented by a delegated hierarchy.

Let V
SM = {v : A×Ω→R : v is supermodular on Ψ}

⋂

V
M be the family of weakly increas-

ing supermodular functions.

Corollary 2. If {ui} satisfy Assumption 2 and v ∈ cone
(

V
SM ∪ {ui}

)

, then there is p∗ ∈

argmax
p∈BCE(µ)

Ep[v] that can be implemented by a delegated hierarchy.

In supermodular environments, delegated hierarchies are a welfare and activity en-

hancing mode of transmission. While the results are agnostic about the exact optimal

delegation order, Section 5.1 illustrates how the order may change with the objective v in a
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regime-change game. Moreover, note that the implementing information structure in the

theorem and its corollary is also a single-meeting scheme.

The proof of Theorem 3 establishes that for any BCE p (i) there is a distribution p̂ ºsd p

that can be implemented by a direct information structure satisfying an inclusion prop-

erty (Lemma 2); (ii) the direct information structure obtained in (i) can be turned into

an indirect structure which is an information hierarchy (perhaps many) implementing

p′ ºsd p̂ (Lemma 3); and (iii) at least one of the information hierarchies in (ii) allows del-

egated transmission (Lemma 4). Part (i) of the proof generalizes Lemma 5 of Arieli and

Babichenko (2019) to many states, state-dependent v such as weighted welfare, and to a

weaker supermodularity condition which, for instance, captures regime-change games.

Part (ii) is the information-enhancement phase which, due to complementarities, in-

creases overall activity and all expected equilibrium payoffs. This phase transforms a

baseline information structure into an information hierarchy by augmenting some action

recommendations. In doing so, the physical content of a player’s message is enriched with

the information of his predecessors. This contrasts with Theorem 1, where the transforma-

tion into a single-meeting scheme leaves the physical nature of the message unchanged,

but changes players’ interactive knowledge by sending it publicly to its receivers. Step (ii)

is interesting in its own right and its implications are especially striking in the network

interactions from Section 2: although the environment might display no hierarchical order-

ing of players (that is, their dependencies on the state and each other might be unordered

or only partially ordered), optimal design orders them totally by informedness.

Even if several total orders ≻ on I are consistent with ºInf, not all of them might

meet the incentive requirements of delegation, as shown in Section 5.3. Part (iii) ties the

existence of a total ordering that enables delegated transmission to the non-existence of

coalitional deviations of subgroups of equally informed players. Unless there is room for

welfare and activity enhancement, there cannot be room for such coalitional deviations.

This, in turn, implies that (5) must hold along some total order ≻ of the players that is

consistent with the informedness order ºInf obtained in (ii).

4.3 Characterization

The next result characterizes the outcome distributions that can be implemented by a

delegated hierarchy.
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Theorem 4. A distribution p ∈ ∆(A×Ω) can be implemented by a delegated hierarchy, if

and only if, p(A× {ω}) = µ(ω) for all ω ∈Ω and there exists a total order ≻ on I such that

for all ai ∈ A i, a≺i ∈ A≺i and i ∈I ,

∑

ω∈Ω

∑

a≻i

p(ai,a≺i,a≻i,ω)
(

ui(ai,a≺i,a≻i;ω)−ui(a
′
i,a

′
≺i,a≻i;ω)

)

≥ 0 (6)

for all a′
i
∈ A i and a′

≺i
such that p(a′

≺i
)> 0.

For any µ, denote by DH(µ) the set of outcome distributions that satisfy the above

necessary and sufficient conditions.

This theorem also makes a clear connection between the organizational constraint

on information, namely that it comes from a delegated hierarchy, and the resulting con-

straints on the strategic outcomes: Condition (6) requires that if player i knew the actions

of his predecessors a≺i, he would not want to deviate from his recommended action or

transmit any other recommendation a′
≺i

that has positive probability under the outcome

distribution. These incentive constraints are stronger than the BCE obedience constraints,

which sum (6) over all a≺i = a′
≺i

.

A simple comparison between Theorems 2 and 4 reveals that some outcome distribu-

tions which cannot be implemented by a single-meeting scheme can be implemented by a

delegated hierarchy, and vice versa. In other words, none of the sets SMS(µ) and DH(µ) is,

in general, a subset of the other.

In Battle of the Sexes of Section 3.3.1, the two pure Nash equilibrium distributions, p

and p′ defined as p(1,1)= 1 and p′(0,0)= 1, are the only outcome distributions that can be

implemented by a delegated hierarchy. Although each player prefers a different equilib-

rium, both p and p′ can be implemented under any total order. As no other action profile is

recommended with positive probability, the higher ranked player in the hierarchy cannot

credibly recommend to his predecessor the action played in the other equilibrium. For this

reason, (strict) public randomizations between the two pure Nash equilibria are not in the

set DH, as the higher ranked player would have the incentive to always recommend his

favorite equilibrium to the other player.

Theorem 4 provides a system of linear inequalities for each total order ≻ on I , the

solutions of which form a class of delegated hierarchies, denoted by C (≻,µ), with slight

abuse of notation. Each class consists of the distributions built on the same hierarchical

ordering of players, so that DH(µ) = ∪≻C (≻,µ). Each class also contains the pure Nash
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outcomes, as demonstrated next.

Claim 4. NE(µ) ⊆
⋂

≻

C (≻,µ)⊆ DH(µ).

We end this section with an example of a game with a dominance region, similar to

other classic games (Rubinstein (1989), Carlsson and van Damme (1993) and Morris and

Shin (2003)).

Example 2. Consider the following incomplete information game with two states Ω =

{ωℓ,ωh} and uniform prior µ, where Battle of the Sexes is played in the low state and

action 1 is strictly dominant in the high state:

ωℓ a2 = 0 a2 = 1

a1 = 0 3,2 0,0

a1 = 1 0,0 2,3

ωh a2 = 0 a2 = 1

a1 = 0 0,0 0,2

a1 = 1 2,0 2,2

Observe that NE(µ)= {p1, p2} such that p1(1,1, · )=µ and p2(0,0, · )=µ. In p1, both players

play action 1 with probability 1 and, in p2, both play 0 with probability 1.

In this game, C (1≻ 2,µ) consists of all distributions

p(·, ·,ωℓ) a2 = 0 a2 = 1

a1 = 0 x 0

a1 = 1 0 1/2− x

p( · , · ,ωh) a2 = 0 a2 = 1

a1 = 0 y 0

a1 = 1 z 1/2− y− z

such that x, y, z ≥ 0, and either x = y+ z = 1/2 or 1/2 ≥ x, 1/2 ≥ y+ z, and x ≥ max{y+

z,2y,2(y+ z)−1/2}. The class C (2≻ 1,µ) consists of p1 and all distributions

p( · , · ,ωℓ) a2 = 0 a2 = 1

a1 = 0 x 1/2− x

a1 = 1 0 0

p( · , · ,ωh) a2 = 0 a2 = 1

a1 = 0 y 1/2− y

a1 = 1 0 0

such that 2/5≥ x ≥ 1/2, 0≥ y≥ 1/2 and x ≥ y. By definition, DH(µ)=C (1≻ 2,µ)∪C (2≻ 1,µ),

while NE(µ)=C (1≻ 2,µ)∩C (2≻ 1,µ).

These characterizations delineate what outcomes can emerge if information is received

via delegated hierarchies. Hence, they can be used for information design purposes. For
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instance, if v(a)= a1−a2, the optimal value v∗ = 1/2 is achieved by x = 1/2, y= 0 and z = 1/2

in C (1≻ 2,µ). Although this scenario falls outside the scope of Theorem 3, because v is not

monotone in a, v∗ = 1/2 is the global maximum that a BCE can achieve.

5 Applications

5.1 Regime Change: Part I

Global games of regime change illustrate nicely the variety of optimal single-meeting

schemes and delegated hierarchies as a function of the objective.

Consider a situation, be it effort choice or investment decision, modeled à la Sakovics

and Steiner (2012) (see Section 2), where i gets utility 0 if ai = 0, and if ai = 1

ui(a−i;ω)=

{

bi − ci if κi +
∑

j 6=i κ ja j > 1−ω

−ci otherwise.

A designer wants to maximize the expected value of an objective function v : A×Ω→R by

optimally choosing an information structure, so that

max
(S,P)

Ev(S,P)

where Ev(S,P)= max
a∗∈E (S,P)

∑

ω∈Ω

∑

s∈S

v(a∗(s);ω)P(s|ω)µ(ω)
(7)

describes the design problem. In case there are multiple equilibria, (7) assumes favorable

selection, as a∗ is the equilibrium that yields the largest expected value of the objective.

Recall that ω=min{ω ∈Ω :
∑

i κi > 1−ω} is the lowest state at which success is possible.

Example 3. Suppose the designer wants to maximize the probability that the project suc-

ceeds:

v(a;ω)=

{

1 if
∑

i∈I κiai ≥ 1−ω

0 otherwise.

Note v is supermodular on Ψ (since v = 0 on Ψ) and weakly increasing in a. By Theorem 3

and Corollary 2, a delegated hierarchy ((S∗,P∗),≻), where (S∗,P∗) is also a single-meeting

scheme, solves (7).

It is trivial to see Ev is maximized by telling all players the truth about the state: let

S∗ =Ω and P∗(s|ω) = 1 iff s = ω. From the point of view of horizontal transmission, this
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means inviting all players to one meeting and revealing the state truthfully. From the

point of view of vertical transmission, ((S∗,P∗),≻) is an optimal delegated hierarchy for

any total order ≻ on I , because any player receiving ω ≥ ω will play 1 and be happy to

forward that information to his successor, whereas receiving ω<ω means that the project

will fail and so the player will play 0 and also be happy to forward his information.

Example 4. Monotone objectives are natural in this context, such as maximizing the total

probability of the high action or insisting on the participation of a key player i∗

v(a,ω)=
∑

i∈I

ai or v(a,ω)= ai∗
∑

i∈I

ai.

The reasoning below applies to all v that satisfy Assumption 2.

Fixing ω̂ < ω and β ∈ (0,1], suppose that the designer sends message “ω ≥ ω̂” to i with

probability 1 whenever ω> ω̂, with probability β at ω= ω̂, and with probability 0 otherwise.

Then,

µi

(

{ω≥ω}|ω≥ ω̂
)

=

∑

ω:ω≥ωµ(ω)
∑

ω:ω>ω̂µ(ω)+µ(ω̂)β

is i’s belief that the project succeeds given the message “ω ≥ ω̂”. Because i invests if and

only if

µi

(

{ω≥ω}|ω≥ ω̂
)

bi − ci ≥ 0, (8)

choose ω∗
i

and β∗
i

such that (8) holds with equality (recall bi > ci). That is,

µi

(

{ω≥ω}|ω≥ω∗
i

)

=
ci

bi

. (9)

For simplicity, let us assume
ci

bi
6=

c j

b j
whenever i 6= j. The optimal delegated hierarchy

((S∗,P∗),≻) is characterized by

1. S∗
i
= {minΩ, . . . ,ω∗

i
, {ω≥ω∗

i
}} for all i ∈I

2. The designer sends each i the message si = {ω ≥ ω∗
i
} as often as possible subject to

plausibility constraint. In particular, P∗({ω≥ω∗
i
}|ω∗

i
)=β∗

i
for all i and

ω>ω∗
i

⇒ si = {ω≥ω∗
i
}

ω<ω∗
i

⇒ si =ω

so that i’s belief given si = {ω≥ω∗
i
} satisfies (9).

3. i ≻ j if and only if
ci

bi
>

c j

b j
.
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From the point of view of horizontal transmission, (S∗,P∗) can be interpreted as a

single-meeting scheme which, at each ω, invites all i such that ω<ω∗
i

and reveals ω truth-

fully to them.

From the point of view of vertical transmission, players who have a lower cost-to-benefit

ratio from the project are given less information (both about the state and about the other

players’ messages); play the high action more often; and occupy a lower position in the

delegated hierarchy. Indeed,
ci

bi
>

c j

b j
implies that, upon observing si = {ω ≥ ω∗

i
}, player i

knows that s j = {ω≥ω∗
j
}, since ω∗

i
>ω∗

j
, and upon observing si =ω player i knows if ω≥ω∗

j

and s j = {ω ≥ ω∗
j
} or, alternatively, ω < ω∗

j
and s j = ω. Hence, i is more informed than

j. The incentive constraints for truthful transmission are also satisfied: upon observing

si = {ω ≥ ω∗
i
}, player i chooses a∗

i
= 1 and therefore would like all players below him in

the hierarchy to also play 1, which is achieved by truthfully transmitting si−1 = {ω≥ω∗
i−1

};

on the other hand, upon observing si = ω, player i chooses a∗
i
= 0 and, hence, truthful

transmission to his immediate predecessor is incentive compatible: si−1 = {ω ≥ ω∗
i−1

} if

ω≥ω∗
i−1

or si−1 =ω otherwise.

Example 5. A (weighted) welfare-maximizing / utilitarian designer

v =
∑

i∈I

λiui (for any λi ≥ 0)

is an example of an objective that may not be weakly increasing, because a player may

have a strictly negative utility from playing the high action. By revealing the true state to

the players, S∗ =Ω and P∗(s|ω)= 1 iff s =ω, the designer ensures that each player chooses

ai = 1 if and only if ω ≥ ω, which maximizes the expected utility of each player. For any

total order ≻ on I , ((S∗,P∗),≻) is an optimal delegated hierarchy, and (S∗,P∗) is also a

single-meeting scheme which organizes one truth-revealing meeting with all players.

Example 6. There is a rich class of objectives that represent designers who care (addi-

tively and separably) about the well-being of some players and about others playing the

high action. For example, assume n ≥ 3 and let

v(a;ω)= u1(a;ω)+u2(a;ω)+
∑

i 6=1,2

ai.

This describes benevolence toward 1 and 2 together with a desire to induce the rest of the

population to adopt the high action. Under the optimal information structure (S∗,P∗), 1

and 2 should receive full information while others obey the same hierarchy as in Example
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2. That is,

1≻ 2≻ i (or 2≻ 1≻ i) ∀i ∈I \{1,2}

and for all {i, j} ⊆I \{1,2}, i ≻ j if and only if
ci

bi
>

c j

b j
. From the point of view of horizontal

transmission, (S∗,P∗) invites 1 and 2 at each ω ∈ Ω as well as any i such that ω < ω∗
i
,

and the state is announced truthfully at the meeting. From the point of view of vertical

transmission, 1 and 2 are fully informed about the state. When ω≥ω, 1 and 2 play action

1 and forward si = {ω≥ω∗
i
} to the next player, who then forwards s j = {ω≥ω∗

j
} to the next

and so on. When ω<ω, 1 and 2 play action 0 and forward si = {ω≥ω∗
i
} as often as possible

as described in Example 4, forwarding si = ω the rest of the time, with each subsequent

player down the hierarchy doing the same with regards to his predecessor.

5.2 Regime Change: Part II

In the previous section, all players received a positive payoff as long as the project was

successful. Therefore, the only relevant question a player could ask himself was whether

ω≥ω, since all other players played action 1 if that is the case, and if ω<ω, their actions

did not matter because the project failed anyway. Hence strategic uncertainty was minimal

in the optimal information structures.15

However, we can enrich the strategic uncertainty and obtain an even greater variety

of optimal single-meeting schemes and delegated hierarchies by allowing the benefits to

depend on the state and the set of investors. That is, let bi : Ω× A−i → R
+ and allow

bi(ω,a−i) < ci for some (ω,a−i) such that
∑

i κiai > 1−ω. In this setup, a project can be

successful and yet not beneficial to a player, who might prefer action 0 even if he knew the

project would succeed.

To satisfy Assumption 2, suppose bi(ω
′∨ω′′,a′

−i
∨ a′′

−i
) ≥ bi(ω

′,a′
−i

)+ bi(ω
′′,a′′

−i
) for all

(ω′,a′
−i

) and (ω′′,a′′
−i

). Let us revisit Examples 3 and 5 where full information was uniquely

optimal and any ordering allowed delegation. The optimal information structure now de-

pends on the κi ’s. Let ωi = max{ω ∈Ω : bi(ω,1)− ci < 0} and let i† = argmaxi∈I ωi be the

most state-sensitive player. If
∑

i∈I κi > 1−ω but
∑

i 6=i† κi < 1−ω for all ω, then i† is critical

to success. In optimum, it may be worth giving partial information to i† to incentivize him

to invest at ω<ωi so that the project succeeds even when ω<ωi if this benefits some i 6= i†.

In general, it may be worth downgrading the critical investors within the delegated hier-

15In particular, the κi ’s played no role at all, unlike in Sakovics and Steiner (2012).
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archy, to keep them investing, while upgrading those whose welfare carries more weight

and who need full information to make the right decision.

5.3 Delegation Ordering

In some environments, optimization requires players to be treated equally, because

they should receive the same information, yet delegation requires them to be treated dif-

ferently, because they should be arranged hierarchically in one particular total order. The

next example illustrates this point.

Example 7. Consider a linear network with I = {1,2,3}, Ω = {−1/2,1/2}, µ(ω = 1/2) = µ,

u1(a;ω)= a1ω, u2(a;ω)= a2 (ω+a3), and u3(a;ω)= a3 (ω+a1).

Given a utilitarian objective v = λ1u1 +λ2(u2 +u3) with λ1 > 2λ2 > 0, the optimal BCE

distribution p∗ is p∗(1,1,1,1/2) = µ and p∗(0,0,0,−1/2) = 1−µ. The information structure

that implements p∗ gives all players full information about the state, so that all players

are equally informed: i ºInf j and j ºInf i for all i and j.

There are six possible total orders ≻ on I compatible with ºInf, one for each permu-

tation of the players. Nevertheless, only one of those, namely 1 ≻ 3 ≻ 2, allows delegated

transmission. Indeed, any total order with 3 ≻ 1 fails the incentive for truthful trans-

mission: upon receiving message 0, player 3 would not want to forward 0 to player 1 but

instead prefer to play 1 and tell player 1 to play 1, even though he knows that the state is

-1/2. For an analogous reason, any total order with 2≻ 3 fails to promote truthful transmis-

sion. Player 2 would want to misreport to player 3 and simultaneously deviate in action

given message 0.

6 Discussion

The concepts presented in this paper can be extended in various ways. Here we discuss

some of them, but leave their detailed exploration to future research.

6.1 Multiple Meetings

Organizing more than one parallel meetings allows for a greater diversity of incentives,

which is especially useful beyond binary actions. In Definition 3, there is only one way of

keeping a player imperfectly informed about others’ information, which is to not invite him
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to any meeting. With many simultaneous meetings, there are many ways of keeping play-

ers imperfectly informed, as participation to a meeting does not give perfect information

about what is said in another.

In Online Appendix C.2, we extend Definition 3 to m-meeting scheme, where m denotes

the maximal number of simultaneous meetings that can happen with positive probability.

Given an objective function v and n players having k actions and utility functions {ui}:

(i) what is the minimal m necessary to implement p∗ ∈ argmax
p∈BCE(µ)

Ep[v]?

(ii) given any m < n, what is the maximal Ep[v] that can be achieved subject to p being

implementable by an m-meeting scheme?

In Online Appendix C.2, we present an example with n = 4 and k = 3 and argue that un-

der monotone supermodular payoffs, max
p∈BCE(µ)

Ep[v] can be achieved by a 3-meeting scheme.

In the context of multiple parallel meetings, the average number of simultaneous meetings

rather than the maximal number16 could be used as an alternative indicator of organiza-

tional complexity, leading to a different analysis of (i) and (ii).

6.2 Random Delegated Hierarchies

In organizations, although it is simpler to have a fixed hierarchy, it is not unreasonable

to assume that an executive would be able to choose the order of managers and supervi-

sors, that is, the hierarchy, as function of the message she wants to transmit. In Online

Appendix C.3, we generalize Definition 5 to random delegated hierarchies, by allowing the

order of delegated transmission to change with the message profile, and characterize in

Proposition 2 the distributions that can be implemented by such information structures.

The extra flexibility allows some distributions, which cannot be implemented by a dele-

gated hierarchy, to be implemented by a random delegated hierarchy.

A Appendix: Proofs

A.1 Theorem 1

Proof. Suppose that p ∈ BCE(µ). Let p(a|ω) := p(a,ω) /µ(ω) be the conditional probability of

a given ω. For all i, define Si = {1}
⋃

A and si : A → Si such that

16This is the maximal number of meetings that can happen with positive probability.
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si(a)=

{

ai if ai = 1

a if ai = 0.

Consider information structure (S, P̂) such that S =
∏

i Si and P̂
(

(si(a))i|ω
)

= p(a|ω) for all

a and ω. Let a∗ be the strategy profile such that a∗
i
(si(a)) = ai for all a ∈ A and i ∈ I .

Given (S, P̂), i’s interim payoff when observing si = ai = 1 and choosing a∗
i
(si) = 1 while

others follow a∗
−i

is (proportional to):

∑

ω∈Ω

∑

a−i∈A−i

µ(ω)P̂(1, s−i(a)|ω)ui(1,a∗
−i(s−i(a));ω)=

∑

ω∈Ω

∑

a−i∈A−i

p(1,a−i;ω)ui(1,a−i;ω)≥ 0 (10)

by obedience of p. Thus, for all i, playing 1 is optimal conditional on si = 1.

Consider player i who observes message si = a and notice that P̂(a, s−i|ω) = 1 if s−i =

s−i(a) and 0 otherwise for all ω ∈Ω. Hence, (S, P̂) is a single-meeting scheme with s̃i = 1

for all i ∈ I . Moreover, player i’s interim payoff given si = a when choosing a′
i
= 1 and

others follow a∗
−i

is (proportional to):

∑

ω∈Ω

µ(ω)P̂(a, s−i(a)|ω)ui(1,a∗
−i(s−i(a));ω)=

∑

ω∈Ω

p(0,a−i;ω)ui(1,a−i;ω). (11)

If
∑

ω∈Ω p(0,a−i;ω)ui(1,a−i;ω)<0 for all i ∈ I and a−i ∈ A−i, then a∗
i
(si) = 0 is uniquely

optimal given si = a for any a−i ∈ A−i. Thus, a∗ is an equilibrium such that

p′(a,ω) =
∑

s∈S

µ(ω)P̂({s : a∗(s)= a}|ω) = p(a,ω) ∀a ∈ A,ω ∈Ω

which ensures that Ep′[v] = Ep[v] and Ep′[ui] = Ep[ui] for all i ∈ I . Hence, p′ is imple-

mented by a single-meeting scheme and p′ ºd p.

Alternatively, suppose
∑

ω p(0,a−i;ω)ui(1,a−i;ω)≥ 0 for some i ∈I and a−i ∈ A−i. Then

a∗∗
i

(si) = 1 is an optimal action at si = a. Denote by J ⊆I the subset of players such that

for each j ∈ J there is A′
− j

⊆ A− j such that
∑

ω p(0,a− j,ω)u j(1,a− j;ω)≥ 0 if and only if j ∈ J

and a− j ∈ A′
− j

. For every a ∈ A, let J′(a) = { j ∈ J : a j = 0 and a− j ∈ A′
− j

}, which must be

nonempty for some a. Denote by δ(a) the action profile such that δ j = 1 if and only if a j = 1

or j ∈ J′(a). Then, any i ∈I receiving si = 1 and choosing a∗
i
(si) = 1 experiences a change

in expected utility (proportional to):

∑

ω∈Ω

∑

a−i :J
′(1,a−i)6=;

µ(ω)P̂(1, s−i(a)|ω)
(

ui(1,δ−i(a);ω)−ui(1,a−i;ω)
)

≥ 0, (12)
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relative to (10), where the inequality follows by Assumption 1. Therefore, the incentive to

play a∗
i
(si) = 1 upon observing si = 1 is only strengthened if some player j 6= i decides to

deviate from 0 to 1 upon observing s j = a. Let

p′(a,ω) =
∑

s∈S

µ(ω)P̂({s : a∗∗(s)= a}|ω) ∀a ∈ A,ω ∈Ω

where a∗∗
i

(1) = 1, a∗∗
i

(a) = 1 if i ∈ J′(a), and a∗∗
i

(a) = 0 otherwise. Since a∗∗( · ) ≥ a∗( · ), it

holds that p′(Â× {ω})≥ p(Â× {ω}) for all upper sets Â and ω ∈Ω. Hence, (S, P̂) implements

p′ such that Ep′[v]≥ Ep[v] for all weakly increasing v.

Finally, we turn to the welfare implications. For any ai ∈ A i and p̂, let Ep̂ui(ai) =
∑

ω,a−i
p̂(ai,a−i,ω)ui(ai,a−i;ω). Consider first i playing 1 under p′:

Ep′ui(1) =
∑

ω∈Ω

∑

a−i∈A−i

µ(ω)P̂(1, s−i(a)|ω)ui(1,a∗∗
−i (s−i(a));ω)

+
∑

ω∈Ω

∑

a:i∈J′(a)

µ(ω)P̂(a, s−i(a)|ω)ui(1,a∗∗
−i (s−i(a));ω)

≥
∑

ω∈Ω

∑

a−i∈A−i

µ(ω)P̂(1, s−i(a)|ω)ui(1,a∗
−i(s−i(a));ω)= Epui(1),

by Assumption 1 (since a∗∗
−i

(·)≥ a∗
−i

(·)) and by definition of J′. Moreover, Ep′ui(0)= Epui(0)=

0 (which is the only other relevant comparison because a∗∗
i

(si) = 0 implies a∗
i
(si) = 0).

Therefore, for all i ∈I it holds that Ep′[ui]≥ Ep[ui]. Hence, p′ is implemented by a single-

meeting scheme and p′ ºd p.

A.2 Theorem 2

Proof. (Necessity). Suppose p ∈ BCE(µ) can be implemented by a single-meeting scheme

(S,P). Then, there is a∗ ∈ E (S,P) such that p(a,ω) =
∑

s∈S µ(ω)P({s : a∗(s) = a}|ω) for all

a ∈ A and ω ∈ Ω. By definition of a single-meeting scheme, for all i and all s such that

P(s)> 0 and si ∈ Si \{s̃i}, i ∈ M(s) and hence µi(s−i|si)= 1, implying

P(s|ω)µ(ω)=µi(ω|si)P(si). (13)

Let ãi = a∗
i
(s̃i). Then, for all ai ∈ A i \{ãi} and all s such that P(s)> 0 and a∗

i
(si)= ai (thus,

si 6= s̃i), we have

∑

ω∈Ω

µi(ω|si)
(

ui(ai,a
∗
−i(s−i);ω)−ui(a

′
i,a

∗
−i(s−i);ω)

)

≥ 0, (14)

for all a′
i
∈ A i in virtue of equilibrium. By (13) and (14), we obtain
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∑

ω∈Ω

µ(ω)P(s|ω)
(

ui(ai,a
∗
−i(s−i);ω)−ui(a

′
i,a

∗
−i(s−i);ω)

)

≥ 0,

for all si ∈ Si such that a∗
i
(si) = ai and all s−i ∈ S−i. Now, given arbitrary a−i ∈ A−i and

ai ∈ A i \{ãi}, let

S(ai,a−i)=
{

s ∈ S : a∗
i (si)= ai and a∗

−i(s−i)= a−i

}

.

For all a−i ∈ A−i and ai ∈ A i \{ãi},

∑

s∈S(ai ,a−i)

∑

ω∈Ω

µ(ω)P(s|ω)
(

ui(ai,a
∗
−i(s−i);ω)−ui(a

′
i,a

∗
−i(s−i);ω)

)

=
∑

ω∈Ω

µ(ω)P
(

{s : a∗
i (si)= ai,a

∗
−i(s−i)= a−i}|ω

)(

ui(ai,a−i;ω)−ui(a
′
i,a−i;ω)

)

=
∑

ω∈Ω

p(ai,a−i,ω)
(

ui(ai,a−i;ω)−ui(a
′
i,a−i;ω)

)

≥ 0.

(Sufficiency). Suppose now that p ∈ BCE(µ) and for all i ∈I , there is ãi ∈ A i such that for

all ai ∈ A i \ {ãi},
∑

ω p(ai,a−i,ω)
(

ui(ai,a−i;ω)−ui(a
′
i
,a−i;ω)

)

≥ 0 for all a′
i
∈ A i and a−i ∈

A−i. Then, define (S,P) as follows:

1. for each i ∈I , let Si = {ãi}
⋃

A and si : A → Si be si(a)=

{

ai if ai = ãi

a if ai 6= ãi

, and

2. let S =
∏

i Si and P
(

(si(a))i|ω
)

= p(a|ω) for all a ∈ A and ω ∈Ω.

Consider strategy profile a∗ such that a∗
i
(si(a)) = ai for all a ∈ A and i ∈ I . Since p ∈

BCE(µ), for all i ∈I and ai ∈ A i,

∑

ω∈Ω

∑

a−i∈A−i

p(ai,a−i,ω)
(

ui(ai,a−i,ω)−ui(a
′
i,a−i,ω)

)

=
∑

ω∈Ω

∑

a−i∈A−i

µ(ω)P
(

(si(a))i|ω
)(

ui(a
∗
i (si(a)),a∗

−i(s−i(a)),ω)−ui(a
′
i,a

∗
−i(s−i(a)),ω)

)

≥ 0,

which shows that a∗ is a BNE. Clearly, given that a∗
i
(si(a))= ai for all a ∈ A,

∑

s∈S µ(ω)P({s :

a∗(s) = a}|ω) = µ(ω)p(a|ω) = p(a,ω) for all a ∈ A and ω ∈ Ω, so that p is implemented by

(S,P). Finally, for each i ∈ I , let s̃i = ãi and note that µi(s−i(a)|si) = 1 for all si 6= s̃i.

Therefore, (S,P) is a single-meeting scheme.

A.3 Claims 1 and 2

Proof of Claim 1. Invoking Theorem 2, pick ai ∈ A i \{ãi} and without loss assume ai = a∗
i
.

(If ãi = a∗
i
, choose ai = a∗∗

i
). Since a∗∗ is a strict equilibrium for all ω ∈ Ω, it must be
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that ui(a
∗
i
,a∗∗

−i
;ω)−ui(a

∗∗
i

,a∗∗
−i

;ω) < 0 for all ω ∈Ω. Thus, the only way of satisfying (4) for

ai = a∗
i

and for all a−i ∈ A−i is by setting psms(a∗
i
,a∗∗

−i
,ω)= 0 for all ω ∈Ω.

To show psms lies on a face, we need to show that there exists p ∈ BCE(µ) such that,

for all ω ∈ Ω, psms(a,ω) > 0 implies p(a,ω) > 0, and, for some ω′ ∈ Ω, p(a∗
i
,a∗∗

−i
,ω′) > 0.

By assumption, both a∗ and a∗∗ are strict Nash equilibria at every state. Therefore,

there exists p̂ ∈ BCE(µ) and ω′ ∈Ω such that {(a∗∗,ω′), (a∗,ω′), (a∗
i
,a∗∗

−i
,ω′)} ⊆ supp p̂ where

p̂(a∗
i
,a∗∗

−i
,ω′) is small enough. Next, define p = (1−α)psms+αp̂ for any α ∈ (0,1). Given that

psms, p̂ ∈ BCE(µ) and BCE(µ) is convex, p ∈ BCE(µ). Moreover, by construction, p(a,ω) > 0

whenever psms(a,ω)> 0 and p(a∗
i
,a∗∗

−i
,ω′)> 0.

Proof of Claim 2. Take α ∈∆(∆(Ω)) such that
∑

µ̂α(µ̂)µ̂=µ, and for every µ̂ ∈ suppα, choose

pµ̂ ∈Co(NE(µ̂)). By definition of NE, for all µ̂ ∈ suppα, a ∈ supp pµ̂ and i ∈I ,

∑

ω∈Ω

µ̂(ω)ui(ai,a−i;ω)≥
∑

ω∈Ω

µ̂(ω)ui(a
′
i,a−i;ω)

for all a′
i
∈ A i. Multiplying both sides by pµ̂(a,ω)/µ̂(ω) gives

∑

ω∈Ω pµ̂(a,ω)ui(ai,a−i;ω) ≥
∑

ω∈Ω pµ̂(a,ω)ui(a
′
i
,a−i;ω) for all i ∈I , ai,a

′
i
∈ A i and a−i ∈ A−i. Multiplying both sides by

α(µ̂) and summing across all µ̂ gives

∑

ω∈Ω

∑

µ̂

α(µ̂)pµ̂(a,ω)ui(ai,a−i;ω)≥
∑

ω∈Ω

∑

µ̂

α(µ̂)pµ̂(a,ω)ui(a
′
i,a−i;ω) (15)

for all i ∈ I , ai,a
′
i
∈ A i and a−i ∈ A−i. By convexity of ∆(A×Ω), p :=

∑

µ̂
α(µ̂)pµ̂ ∈∆(A×Ω);

moreover,
∑

a∈A

p(a,ω)=
∑

µ̂

α(µ̂)
∑

a∈A

pµ̂(a,ω)=
∑

µ̂

α(µ̂)µ̂=µ. (16)

Using the definition of p and summing (15) across all a−i ∈ A−i implies p ∈ BCE(µ). This,

together with (15), gives p ∈C (ã,µ) for all ã ∈ A (because (15) ensures that (4) holds for all

ai ∈ A i). This proves that
∑

µ̂α(µ̂)Co(NE(µ̂))⊆C (ã,µ) for all ã ∈ A.

A.4 Theorem 3

Given an information structure (A,P), let (P ×µ)(a,ω) = P(a|ω)µ(ω) for all a ∈ A and

ω ∈Ω. For any (A,P) and f : A×Ω→R, let

E f (A,P)=
∑

ω∈Ω

∑

a∈A

f (a,ω)P(a|ω)µ(ω).
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Lemma 1. Sppose (A,P) is incentive compatible and implements p ∈ BCE(µ). If (A, P̂)

is such that P̂ ×µ ºsd p, then there is an incentive compatible (A,P∗) that implements

p∗ ºsd p.

Proof. Since Eui(A, P̂) ≥ Eui(A,P) ≥ 0 for all i ∈ I and playing action 0 gives zero payoff,

this implies that ai = 1 is incentive compatible under (A, P̂). If

∑

a−i

∑

ω

P̂(0,a−i|ω)µ(ω)ui(1,a−i;ω)≤ 0 (17)

then (A, P̂) is incentive compatible and p∗ = P̂ ×µºsd p. If (17) is violated for some i ∈I ,

then i plays 1 upon receiving ai = 0 under (A, P̂). This reinforces j’s incentives to play

1 by Assumption 2 for all j 6= i (and weakens j’s incentives to play 0) and it also weakly

increases everyone’s total expected utility. After all such deviations have occurred, we

obtain an incentive compatible (A,P∗) that implements p∗ := P∗×µºsd p.

For any a ∈ A, let I(a)= {i ∈I : ai = 1}.

Lemma 2. For any p ∈ BCE(µ), there exists p∗ ºsd p which can be implemented by an

incentive compatible information structure (A,P∗) such that:

1. For all ω, if P∗(a|ω)> 0 and P∗(a′|ω)> 0, then I(a′)⊆ I(a) or I(a)⊆ I(a′).

2. For all ω′ <ω′′, if P∗(a′|ω′)> 0 and P∗(a′′|ω′′)> 0, then I(a′)⊆ I(a′′).

Proof. (Part 1). Suppose that for some ω′, a′ and a′′, (A,P) is such that P(a′|ω′) > 0

and P(a′′|ω′) > 0, yet I(a′′) ( I(a′) and I(a′) ( I(a′′). Assume without loss that P(a′′|ω′) >

P(a′|ω′).

Case 1: If ω′ ≥ω, then define (A, P̂) as

P̂(a|ω)=















0 if a = a′ and ω=ω′

P(a|ω)+P(a′|ω′) if a = (1, . . . ,1) and ω=ω′

P(a|ω) otherwise.

If i ∈ I(a′), then Eui(A, P̂)−Eui(A,P) = µ(ω′)P(a′|ω′)(ui(1, . . . ,1;ω′)− ui(a
′;ω′)) ≥ 0, by As-

sumption 2(a). If i ∉ I(a′), then

Eui(A, P̂)−Eui(A,P)=µ(ω′)P(a′
|ω′)ui(1, . . . ,1;ω′)≥ 0,

which follows from ω′ ≥ω.
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Case 2: If ω′ <ω, then define (A, P̂) as

P̂(a|ω)=



































0 if a = a′ and ω=ω′

P(a|ω)−P(a′|ω′) if a = a′′ and ω=ω′

P(a|ω)+P(a′|ω′) if a = a′∨a′′ and ω=ω′

P(a|ω)+P(a′|ω′) if a = a′∧a′′ and ω=ω′

P(a|ω) otherwise.

If i ∈ I(a′) but i ∉ I(a′′), then

Eui(A, P̂)−Eui(A,P)=µ(ω′)P(a′
|ω′)(ui(a

′
∨a′′;ω′)−ui(a

′;ω′))≥ 0,

by Assumption 2(b). If i ∈ I(a′′) but i ∉ I(a′), then

Eui(A, P̂)−Eui(A,P)=µ(ω′)P(a′
|ω′)(ui(a

′
∨a′′;ω′)−ui(a

′′;ω′))≥ 0,

which follows by Assumption 2(b). If i ∈ I(a′)∩ I(a′′), then

Eui(A, P̂)−Eui(A,P)=µ(ω′)P(a′
|ω′)

(

[

ui(a
′
∨a′′;ω′)−ui(a

′;ω′)
]

−
[

ui(a
′′;ω′)−ui(a

′
∧a′′;ω′)

]

)

≥ 0,

which follows by Assumption 2(b). If i ∉ I(a′)∪ I(a′′), then Eui(A, P̂)= Eui(A,P).

Furthermore, by Assumption 2, for all v ∈ V
SM ∪ {ui}, we have, in Case 1

Ev(A, P̂)−Ev(A,P)=µ(ω′)P(a′
|ω′)

[

v(1, . . . ,1;ω′)−v(a′;ω′)
]

≥ 0,

and in Case 2,

Ev(A, P̂)−Ev(A,P)=µ(ω′)P(a′
|ω′)

(

[

v(a′
∨a′′;ω′)−v(a′;ω′)

]

−
[

v(a′′;ω′)−v(a′
∧a′′;ω′)

]

)

≥ 0.

Clearly, the same inequalities would hold for all positive linear combinations of functions

in V
SM ∪ {ui}, hence for all v ∈ cone(V SM ∪ {ui}). Hence, P̂ ×µºsd p. By Lemma 1, there is

an incentive compatible (A,P∗) that implements p∗ ºsd p. Moreover, (A,P∗) preserves the

inclusion property of (A, P̂), because if
∑

a−i

∑

ω P̂(0,a−i|ω)µ(ω)ui(1,a−i;ω) > 0, then ai = 1

for all a such that P∗(a)> 0.

By repeating this procedure, for all a, a′ and ω′ such that P(a|ω′) > 0, P(a′|ω′) > 0,

I(a′) ( I(a) and I(a) ( I(a′), we eventually obtain an incentive compatible (A,P∗) such
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that for any ω, P∗(a|ω) > 0 and P∗(a′|ω) > 0 imply I(a′) ⊆ I(a) or I(a) ⊆ I(a′), and (A,P∗)

induces p∗ ºsd p.

(Part 2). Now suppose that for some ω′ <ω′′, (A,P) is such that P(a′|ω′)> 0, P(a′′|ω′′)>

0 and yet I(a′)( I(a′′).

Case 1. If ω′′ ≥ω, then define (A, P̂) as

P̂(a|ω)=











0 if a = a′′ and ω=ω′′

P(a|ω)+P(a′′|ω′′) if a = (1, . . . ,1) and ω=ω′′

P(a|ω) otherwise.

If i ∈ I(a′′), then

Eui(A, P̂)−Eui(A,P)= P(a′′
|ω′′)µ(ω′′)

[

ui(1, . . . ,1;ω′′)−ui(a
′′;ω′′)

]

≥ 0,

by Assumption 2(a). If i ∉ I(a′′), then, because ω′′ ≥ω,

Eui(A, P̂)−Eui(A,P)= P(a′′
|ω′′)µ(ω′′)ui(1, . . . ,1;ω′′)≥ 0.

Case 2. Suppose ω′′ <ω.

Case 2.1. If P(a′|ω′)µ(ω′)≥ P(a′′|ω′′)µ(ω′′), then define (A, P̂) as

P̂(a|ω)=



































0 if a = a′′ and ω=ω′′

P(a|ω)−
µ(ω′′)

µ(ω′)
P(a′′|ω′′) if a = a′ and ω=ω′

P(a|ω)+P(a′′|ω′′) if a = a′∨a′′ and ω=ω′′

P(a|ω)+
µ(ω′′)

µ(ω′)
P(a′′|ω′′) if a = a′∧a′′ and ω=ω′

P(a|ω) otherwise.

If i ∈ I(a′) and i ∉ I(a′′), then

Eui(A, P̂)−Eui(A,P)= P(a′′
|ω′′)µ(ω′′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′;ω′)
]

≥ 0,

which follows by Assumption 2(b). If i ∈ I(a′′) and i ∉ I(a′), then

Eui(A, P̂)−Eui(A,P)= P(a′′
|ω′′)µ(ω′′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′′;ω′′)
]

≥ 0,

which follows by Assumption 2(b). If i ∈ I(a′)∩ I(a′′), then

Eui(A, P̂)−Eui(A,P)= P(a′′
|ω′′)µ(ω′′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′′;ω′′)

+ui(a
′
∧a′′;ω′)−ui(a

′;ω′)
]

≥ 0,
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by Assumption 2(b). If i ∉ I(a′)∪ I(a′′), then Eui(A, P̂)= Eui(A,P).

Case 2.2. If instead P(a′|ω′)µ(ω′)< P(a′′|ω′′)µ(ω′′), then define (A, P̂) as

P̂(a|ω)=







































0 if a = a′ and ω=ω′

P(a|ω)−
µ(ω′)

µ(ω′′)
P(a′|ω′) if a = a′′ and ω=ω′′

P(a|ω)+
µ(ω′)

µ(ω′′)
P(a′|ω′) if a = a′∨a′′ and ω=ω′′

P(a|ω)+P(a′|ω′) if a = a′∧a′′ and ω=ω′

P(a|ω) otherwise.

If i ∈ I(a′) and i ∉ I(a′′), then

Eui(A, P̂)−Eui(A,P)= P(a′
|ω′)µ(ω′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′;ω′)
]

≥ 0,

which follows by Assumption 2(b). If i ∈ I(a′′) and i ∉ I(a′), then

Eui(A, P̂)−Eui(A,P)= P(a′
|ω′)µ(ω′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′′;ω′′)
]

≥ 0,

also by Assumption 2(b). Finally, if i ∈ I(a′)∩ I(a′′), then

Eui(A, P̂)−Eui(A,P)= P(a′
|ω′)µ(ω′)

[

ui(a
′
∨a′′;ω′′)−ui(a

′′;ω′′)

+ui(a
′
∧a′′;ω′)−ui(a

′;ω′)
]

≥ 0

by Assumption 2(b). If i ∉ I(a′)∪ I(a′′), then Eui(A, P̂)= Eui(A,P).

Furthermore, by Assumption 2, for all v ∈ V
SM ∪ {ui}, we have, in Case 2.1,

Ev(A,P∗)−Ev(A,P)=µ(ω′′)P(a′′
|ω′′)

(

v(a′
∨a′′;ω′′)−v(a′′;ω′′)

+v(a′
∧a′′;ω′)−v(a′;ω′)

)

≥ 0

and in Case 2.2,

Ev(A,P∗)−Ev(A,P)=µ(ω′)P(a′
|ω′)

(

v(a′
∨a′′;ω′′)−v(a′′;ω′′)

+v(a′
∧a′′;ω′)−v(a′;ω′)

)

≥ 0.

Clearly, the same inequalities would hold for all positive linear combinations of functions

in V
SM ∪ {ui}, hence for all v ∈ cone(V SM ∪ {ui}). Hence, P̂ ×µºsd p. By Lemma 1, there is

an incentive compatible (A,P∗) that implements p∗ ºsd p. Moreover, (A,P∗) preserves the

inclusion property of (A, P̂), because if
∑

a−i

∑

ω P̂(0,a−i|ω)µ(ω)ui(1,a−i;ω) > 0, then ai = 1
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for all a such that P∗(a)> 0.

By repeating this procedure, for all ω′ < ω′′ such that P(a′|ω′) > 0, P(a′′|ω′′) > 0 and

I(a′) ( I(a′′), we eventually obtain an incentive compatible (A,P∗) such that for any ω′ <

ω′′, P∗(a′|ω′)> 0 and P∗(a′′|ω′′)> 0 imply I(a′)⊆ I(a′′), and (A,P∗) induces p∗ ºsd p.

Lemma 3. Let (A,P∗) be the incentive compatible information structure implementing p∗

from Lemma 2. For all i ∈I , define Si = {1}
⋃

A and si : A → Si such that si(a)= ai if ai = 1

and si(a) = a if ai = 0. Let S =
∏

i Si and P ′ be such that P ′
(

(si(a))i|ω
)

= P∗(a|ω) for all

a ∈ A and ω ∈Ω. Then, there exists a total order ≻ such that ((S,P ′),≻) is an information

hierarchy that implements p′ ºd p∗. Further, (S,P ′) is a single-meeting scheme.

Proof. Consider (S,P ′) as defined in the lemma. First, we show that there exists a total

order ≻ such that ((S,P ′),≻) is an information hierarchy. Let S =
⋃

a,ω:P∗(a|ω)>0 I(a) be

the collection of sets of players playing 1 in the action profiles occurring with positive

probability in (A,P∗). If |S| = 1, then (A,P∗) conveys no additional information to the

players beyond their prior belief; thus, for any total order ≻, ((A,P∗),≻) is an information

hierarchy. In what follows, suppose |S| ≥ 2. By Lemma 2, (S,⊆) is a totally ordered set, the

elements of which can be denoted {Ik}K
k=1

such that Ik′ ⊆ Ik′′ iff k′′ ≥ k′. Now, define Gk =

Ik\Ik−1 for all k (assuming I0 =;). Define ≻ such that i ≻ j iff [i ∈Gk′′ , j ∈Gk′ and k′′ > k′]

or [{i, j} ⊆ Gk, i > j]. By the inclusion property of (A,P∗) and by construction of (S,P ′),

si(a) = 1 if and only if a j = 1 for all j such that i ≻ j, which implies that µi({s j = 1}|1) = 1

for all j such that i ≻ j. Additionally, it holds that µi({s−i = s−i(a)}|a)= 1. Therefore,

µi(ω, s′
−i|s j)=µi(ω, s′

−i|si, s j) ∀ω ∈Ω, s′
−i ∈ S−i (18)

for all s j whenever i ≻ j. Equivalently, i ºInf j for all i ≻ j, making ((S,P ′),≻) an informa-

tion hierarchy. Further, since µi({s−i = s−i(a)}|a) = 1 (i.e., i ∈ M(s) iff si = a), (S,P ′) is a

single-meeting scheme where s̃i = 1 for all i ∈ I . The proof of Theorem 1 already shows

that such a transformation (here, of (A,P∗)) implements p′ ºd p∗.

Lemma 4. The distribution p′ from Lemma 3 can be implemented by a delegated hierarchy.

Proof. In the proof of Lemma 3, we obtained an information hierarchy ((S,P ′),≻) (imple-

menting p′) from an incentive compatible direct information structure (A,P∗) with groups

{Gk}K
k=1

. Suppose that for some Gk and â such that I(â)⊆
⋃

ℓ<k Gℓ and P ′(s(â))= P∗(â)> 0,

there exists G′
k
⊆ Gk such that E

[

u j(ã;ω)|s j = â
]

≥ 0 for all j ∈ G′
k
, where ã is defined by
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I(ã) = G′
k

⋃

I(â). That is, there exists a subgroup G′
k
, for which each j ∈ G′

k
finds the sub-

group’s joint deviation to action 1 weakly profitable upon receiving s j = â. Then, it must

be that u j(ã;ω̃)≥ 0 for all j ∈G′
k
, where ω̃=max

{

ω ∈Ω : P ′(s(â)|ω)> 0
}

.

Now define direct information structure (A, P̂1) as:

P̂1(a|ω)=















0 if a = â and ω= ω̃

P∗(a|ω)+P∗(â|ω̃) if a = ã and ω= ω̃

P∗(a|ω) otherwise.

Notice that Eui(A, P̂1) ≥ Eui(A,P∗) for all i ∈ I and Ev(A, P̂1) ≥ Ev(A,P∗) for all v ∈ V
M.

Therefore, by Lemma 1, there exists an incentive compatible (A,P∗
1 ) which implements

p∗
1 ºd p′. By applying Lemmas 2 and 3 to (A,P∗

1 ), we obtain an information hierarchy

((S,P ′
1),≻1) that implements p′

1 ºsd p∗
1 ºsd p′.

Performing this procedure recursively, we eventually obtain a direct information struc-

ture (A,P∗
M

) with groups
{

G∗
k

}

and an information hierarchy ((S,P ′
M

),≻M), such that no

subgroup of any G∗
k

would like to deviate jointly to action 1 upon receiving any message

a. Hence, for all G∗
k

and for â such that I(â) =
⋃

ℓ<k G∗
ℓ

and P ′
M

(s(â)) > 0, there is (at least

one) player j ∈ G∗
k

such that E
[

u j(ã;ω)|s j = â
]

< 0, where ã is defined by I(ã) = G∗
k

⋃

I(â).

Let that player (any one of them, if many) be indexed as the largest player in group G∗
k

and label him (k, |G∗
k
|). Next, there exists (at least one) player j ∈ G∗

k
\ (k, |G∗

k
|) such that

E
[

u j (ā;ω)
∣

∣s j = â
]

< 0 where ā is defined by I(ā)= (G∗
k
\(k, |G∗

k
|))

⋃

I(â). Let that player (any

one of them, if many) be labeled (k, |G∗
k
|−1). Proceeding in this manner, we obtain a total

order within each group G∗
k
, where (k,1) is the smallest indexed member of that group.

Hence, we obtain a total ordering of players ≻, such that i ≻ j if and only if i is labeled

(k,ℓ) and j is labeled (k′,ℓ′) such that k > k′ or k = k′ and ℓ> ℓ′.

Given ≻, we show that ((S,P ′
M

),≻) is a delegated hierarchy. Pick any s and i ∈ I

labeled (k,ℓ). First consider the case in which a∗
i
(si) = 0, which by Lemma 2 implies that

a∗
j
(s j)= 0 for all j ≻ i and j ≺ i that are labeled (k, · ). If i deviates in transmission only, his

expected payoff is still 0, which is not strictly profitable. Since i cannot influence a∗
j
= 0

for all j ≻ i, his most profitable deviation is to play ai = 1 and induce a′
j
= 1 for all j ≺ i

by transmission. Denote by ã the resulting action profile: ã j = 1 iff j = i or j ≺ i. The

most optimistic message about the state that i can receive given a∗
i
(si) = 0 is si = â where

â j = 1 iff j is labeled (k′, · ) and k′ < k. By definition of (S,P ′
M

) and construction of ≻,

E [ui(ã;ω)|si = â] < 0, and thus i prefers following a∗
i
(si) = 0 and transmitting messages

truthfully. Since the most profitable deviation is not profitable under the most optimistic

39



message about the state, E [ui(ã;ω)|si = a] < 0 for all a ∈ A such that ai = 0, so that the

deviation is never profitable.

Second, consider the case in which a∗
i
(si)= 1, which by Lemma 2 implies that a∗

j
(s j)= 1

for all j ≺ i. If i plays his equilibrium action and forwards a∗
j
= 1 to all j ≺ i, he gets a

weakly positive expected utility, because a∗
i
(si) = 1 is optimal. Thus, it cannot be strictly

profitable to deviate to action 0. The only deviation that can possibly be profitable is,

therefore, to deviate in transmission only and induce (a′
j
) j≺i < (1, . . . ,1). However, this

cannot possibly result in a strictly higher expected utility given Assumption 2. Hence,

truthful transmission is optimal.

Lemmas 2-4 prove Theorem 3.

A.5 Proposition 1

Proof. Suppose that (S,P) is a single-meeting scheme and that there exists a total order

≻ such that ((S,P),≻) is an information hierarchy. Then, for any players i and j such that

i ≻ j, it must be that i ∈ M(s) for all s ∈ S such that j ∈ M(s), for otherwise i ºs
Inf

j (and

hence i ≻ j) would be violated. Suppose now that all players in a single-meeting scheme

(S,P) can be totally ordered according to some ≻ such that i ∈ M(s) whenever j ∈ M(s) and

i ≻ j. Then, for all s ∈ S such that P(s) > 0, i ∈ M(s) and i ≻ j imply i ºs
Inf

j, and i ∉ M(s)

and i ≻ j imply that i knows j ∉ M(s). In the latter, i knows that s j = s̃ j, by definition of

a single-meeting scheme, and thus i ºs
Inf

j once again. This ensures that there is a total

order ≻ such that ((S,P),≻) is an information hierarchy.

A.6 Theorem 4

Proof. (Necessity). Suppose p ∈ ∆(A ×Ω) can be implemented by a delegated hierarchy

((S,P),≻). Then, there exists an equilibrium a∗ ∈ E (S,P) such that

p(a,ω)=
∑

s∈S

µ(ω)P({s : a∗(s)= a}|ω) ∀a ∈ A, ω ∈Ω (19)

and, by condition (5), for all i ∈I , si ∈ Si and s≺i ∈ S≺i such that P(si, s≺i)> 0,

∑

ω∈Ω

∑

s≻i

ui

(

a∗
i (si),a

∗
≺i(s≺i),a

∗
≻i(s≻i);ω

)

µi(ω, s≻i|si)≥

∑

ω∈Ω

∑

s≻i

ui

(

a′
i,a

∗
≺i(s

′
≺i),a

∗
≻i(s≻i);ω

)

µi(ω, s≻i|si)
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for all a′
i
∈ A i and s′

≺i
∈ S≺i such that P(s′

≺i
)> 0. Equivalently, for each si ∈ Si and s≺i ∈ S≺i

such that P(si, s≺i)> 0, we have

∑

ω∈Ω

∑

a≻i

∑

s≻i :a
∗
≻i

(s≻i)=a≻i

ui

(

a∗
i (si),a

∗
≺i(s≺i),a≻i;ω

)

µi(ω, s≻i|si)≥

∑

ω∈Ω

∑

a≻i

∑

s≻i :a
∗
≻i

(s≻i)=a≻i

ui

(

a′
i,a

∗
≺i(s

′
≺i),a≻i;ω

)

µi(ω, s≻i|si) (20)

for all a′
i
∈ A i and s′

≺i
∈ S≺i such that P(s′

≺i
) > 0. Since ((S,P),≻) is an information hi-

erarchy, for each si ∈ Si there is at most one s≺i ∈ S≺i such that P(si, s≺i) > 0, which im-

plies µi(s≺i|si) = 1. Hence, multiplying each side of (20) by P(si) and summing over all

si : a∗
i
(si)= ai yields the following inequalities for each s≺i ∈ S≺i:

∑

ω∈Ω

∑

si :a
∗
i
(si)=ai

∑

a≻i

∑

s≻i :a
∗
≻i

(s≻i)=a≻i

P(si, s≺i, s≻i|ω)µ(ω)ui

(

a∗
i (si),a

∗
≺i(s≺i),a≻i;ω

)

≥

∑

ω∈Ω

∑

si :a
∗
i
(si)=ai

∑

a≻i

∑

s≻i :a
∗
≻i

(s≻i)=a≻i

P(si, s≺i, s≻i|ω)µ(ω)ui

(

a′
i,a

∗
≺i(s

′
≺i),a≻i;ω

)

(21)

for all a′
i
∈ A i and s′

≺i
∈ S≺i such that P(s′

≺i
) > 0. Summing each side of (21) over all

s≺i : a∗
i
(s≺i) = a≺i, and using (19), we get for all i ∈ I , ai ∈ A i and a≺i ∈ A≺i such that

p(ai,a≺i)> 0,

∑

ω∈Ω

∑

a≻i

p(ai,a≺i,a≻i,ω)
(

ui(ai,a≺i,a≻i;ω)−ui(a
′
i,a

′
≺i,a≻i;ω)

)

≥ 0 (22)

for all a′
i
∈ A i and a′

≺i
such that p(a′

≺i
)> 0.

(Sufficiency). Suppose now that there exists a total order ≻ on I such that (6) holds.

Then, define (S,P) as follows:

1. for each i, define Si = A i
⋃

A≺i and si : A → Si such that si(a)= (ai,a≺i).

2. let S =
∏

i Si and P be such that P
(

(si(a))i|ω
)

= p(a|ω) for all a ∈ A and ω ∈Ω.

We first prove that (S,P) is a delegated hierarchy. By construction, si = (ai, s j) for all

i ∈I , j =max{ j′ : i ≻ j′} and s such that P(s)> 0. Therefore, i’s message contains the mes-

sages of all of j ≺ i. Hence, i ≻ j implies i ºInf j and so (S,P) is an information hierarchy.
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Furthermore, (6) implies that for all ai ∈ A i and a≺i ∈ A≺i such that p(ai,a≺i)> 0,

∑

ω∈Ω

∑

a≻i

p(ω,a≻i|ai,a≺i)
(

ui(ai,a≺i,a≻i;ω)−ui(a
′
i,a

′
≺i,a≻i;ω)

)

≥ 0 (23)

for all a′
i
∈ A i and a′

≺i
such that p(a′

≺i
)> 0. Given strategy profile a∗ defined as a∗

i
(si(a))=

ai for all a ∈ A and i ∈I , (23) implies that for all si ∈ Si and s≺i ∈ S≺i such that P(si, s≺i)>

0
∑

ω∈Ω

∑

s≻i

µi(ω, s≻i|si)
(

ui(a
∗
i (si),a

∗
≺i(s≺i),a

∗
≻i(s≻i);ω)−ui(a

′
i,a

′
≺i,a

∗
≻i(s≻i);ω)

)

≥ 0

for all a′
i
∈ A i and a′

≺i
such that p(a′

≺i
) > 0. Hence, for all i ∈I , si ∈ Si and s≺i ∈ S≺i such

that P(si, s≺i)> 0,

E
[

ui

(

a∗(s);ω
)∣

∣si

]

−E
[

ui

(

a′
i,a

∗
≺i(s

′
≺i),a

∗
≻i(s≻i);ω

)∣

∣si

]

=
∑

ω∈Ω

∑

s≻i

µi(ω, s≻i|si)
(

ui(a
∗
i (si),a

∗
≺i(s≺i),a

∗
≻i(s≻i);ω)

−ui(a
′
i,a

∗
≺i(s

′
≺i),a

∗
≻i(s≻i);ω)

)

≥ 0,

for all a′
i
∈ A i and s′

≺i
∈ S≺i such that P(s′

≺i
) > 0. This establishes the delegation property

and also that a∗ is a BNE. Clearly, by definition of a∗,

∑

s∈S

µ(ω)P({s : a∗(s)= a}|ω)=µ(ω)p(a|ω)= p(a,ω)

for all a ∈ A and ω ∈Ω, so that p is implemented by (S,P).

B Claim 4

Proof. By definition, if p ∈NE(µ), there exists a∗ ∈ A such that p(a∗,ω)=µ(ω) for all ω ∈Ω

and
∑

ω∈Ω

µ(ω)(ui(a
∗;ω)−ui(ai,a

∗
−i;ω))≥ 0 (24)

for all i ∈I and ai ∈ A i. Take any total order ≻ on I . Since p(a∗, ·)= µ, (24) is equivalent

to
∑

ω∈Ω

p(a∗
i ,a∗

≺i,a
∗
≻i,ω)

(

ui(a
∗
i ,a∗

≺i,a
∗
≻i;ω)−ui(a

′
i,a

∗
≺i,a

∗
≻i;ω)

)

≥ 0 (25)

for all a′
i
∈ A i. Since a∗

≺i
is the only action profile a≺i ∈ A≺i such that p(a≺i)> 0, (25) holds

for all a≺i ∈ A≺i such that p(a≺i) > 0. Since a∗
≻i

is the only action profile a≻i ∈ A≻i such

that p(a≻i)> 0, summing up (25) across all a≻i maintains the inequality.
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C Online Appendix to Organized Information Trans-

mission

In this online appendix, we first show by example that the set of single-meeting scheme

(pure strategy) outcomes can be nonempty even though there is no (pure strategy) public-

information BNE. Then, we define the notion of multiple-meeting scheme, provide a sim-

ple example of it, define the notion of a random delegated hierarchy, where the order of

delegation can depend on the message realization, and characterize the corresponding im-

plementable distributions.

C.1 Single-meeting Scheme Despite No Public Outcome

Consider an incomplete information game with ω = {1,2} and a uniform prior µ(1) =

µ(2)= 1/2. The state-dependent payoffs are given in Table 2. Notice that for each ω ∈ {1,2},

the corresponding (complete information) game has no pure NE. In fact, the set NE(µ̃) is

empty for all µ̃ ∈∆({1,2}). Yet, the distribution in Table 3 (defined for each ω) is in SMS(µ)

for all µ with ã = (1,0,1).

a3 = 0 a2 = 0 a2 = 1

a1 = 0 0,0,0 0,ω,0

a1 = 1 −ω,0,0 ω,−ω,0

a3 = 1 a2 = 0 a2 = 1

a1 = 0 0,0,−ω 0,−3ω,ω

a1 = 1 −ω,0,3ω 2ω,ω,−ω

Table 2: Joint Payoffs

p( ·, ·, 0;ω) a2 = 0 a2 = 1

a1 = 0 1/8 0

a1 = 1 0 0

p( · , ·, 1;ω) a2 = 0 a2 = 1

a1 = 0 1/8 0

a1 = 1 1/8 1/8

Table 3: Implementable Distribution

In the distribution of Table 3, the incentive constraints for player 1 are:

1

8
u1(0,0,0;1)+

1

8
u1(0,0,0;2)= 0≥

1

8
u1(1,0,0;1)+

1

8
u1(1,0,0;2)=−

3

8
(26)
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1

8
u1(0,0,1;1)+

1

8
u1(0,0,1;2)= 0≥

1

8
u1(1,0,1;1)+

1

8
u1(1,0,1;2)=−

3

8
(27)

and

1

8
u1(1,0,1;1)+

1

8
u1(1,1,1;1)+

1

8
u1(1,0,1;2)+

1

8
u1(1,1,1;2)=

3

8
≥

1

8
u1(0,0,1;1)+

1

8
u1(0,1,1;1)+

1

8
u1(0,0,1;2)+

1

8
u1(0,1,1;2)= 0. (28)

It is easy to check that the corresponding constraints for players 2 and 3 are satisfied as

well. It also holds that
∑

a p(a;0)= µ(0)= 1/2. Thus, the given outcome distribution can be

implemented by a single-meeting scheme despite the absence of a pure NE for any µ.

C.2 m-Meeting Schemes

Organizing multiple meetings in parallel offers extra flexibility.

Definition 6. An m-meeting scheme is an information structure (S,P) such that, for all s

with P(s)> 0, I is partitioned in at most m+1 groups {G1(s), . . . ,Gm+1(s)} such that i =s
Inf

j

for all i, j ∈Gk(s) and k ≤ m, and si = s′
i

whenever i ∈Gm+1(s)∩Gm+1(s′).

An m-meeting scheme organizes at most m simultaneous meetings, {G1(s), . . . , Gm(s)},

each of which makes its content common knowledge among the participants. The players

who are not invited to any meeting at message profile s are contained in Gm+1(s). There is

an important distinction between the uncertainty from participation in a meeting (about

what is said in other meetings) and the uncertainty from participation in no meeting.

The latter must be the same across all messages, because if i is not present in any of

{G1(s), . . . ,Gm(s)} or {G1(s′), . . . ,Gm(s′)}, then i must have the same belief given si as he

does given s′
i
.

Recall I = {1, . . . ,n}, let A i = {0, . . . ,k} and fix the payoffs {ui}. Given (n,k) ∈N
2 and v:

(i) what is the minimal m such that an outcome distribution p ∈∆(A×Ω) can be imple-

mented by an m-meeting scheme?

(ii) Given m′ < n, what is the set of outcome distributions p that can be implemented by

an m′-meeting scheme?

(iii) Let m(s)+1 be the cardinality of the partition of I at s in Definition 6 (m(s) is number

of meetings plus 1 for the non-invited players). The maximal number of meetings

47



that can occur with positive probability given an information structure (S,P) is

m̄(S,P)= max
s∈S:P(s)>0

m(s)

which is the measure of organizational complexity used in (i) and (ii). The average

number of meetings is another possible measure of complexity

Em(S,P)=
∑

s∈S

m(s)P(s|ω)µ(ω)

which would lead to different answers in (i) and (ii).

Both questions (i) and (ii) are combinatorial problems. Of course, an n-meeting scheme

imposes no restriction at all, because any message profile can be transmitted through

individual meetings with each player. Therefore, the answer to (i) is at most n, making it

especially interesting to identify problems for which the answer is strictly less than n. The

reality of information transmission may impose an upper bound m′ < n on the maximal or

the average number of meetings that can possibly be organized. Hence, (i) is a constrained

optimization exercise and (ii) a characterization exercise.

As an example, assume n = 4; k = 2; ui exhibits increasing differences in (ai,a−i) for

each ω and in (ai,ω) for each a−i; and v : A →R is strictly increasing, for example v =
∑

i ai.

In an optimal BCE, it follows from state monotonicity that each i must have two cutoff

beliefs: one marking the transition from action 1 to 2, and the other from action 0 to 1. De

facto, p∗ induces at most 9 action profiles and it is always possible to implement it by a

3-meeting scheme. Here is an illustration (each {·} represents a meeting):

Meetings (a1 a2 a3 a4)

{s1} ; {s3} ; ⇐⇒ 2 2 2 2

; ; {s3} ; ⇐⇒ 1 2 2 2

; {s2} {s3} ; ⇐⇒ 1 1 2 2

; {s2} ; ; ⇐⇒ 1 1 1 2

; {s2} ; {s4} ⇐⇒ 1 1 1 1

{s′1} {s2} ; {s4} ⇐⇒ 0 1 1 1

{ŝ12 ŝ12} ; {s4} ⇐⇒ 0 0 1 1

{ŝ12 ŝ12} {s′3} {s4} ⇐⇒ 0 0 0 1

{ŝ12 ŝ12} {ŝ34 ŝ34} ⇐⇒ 0 0 0 0
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C.3 Random Delegated Hierarchies

We generalize Definition 5 and Theorem 4 by allowing the order of delegation to depend

on the message profile.

Definition 7. A distribution p ∈ ∆(A ×Ω) can be implemented by a random delegated

hierarchy if there is an information structure (S,P) and an equilibrium a∗ ∈ E (S,P) such

that

p(a,ω)=
∑

s∈S

µ(ω)P({s : a∗(s)= a}|ω) ∀a ∈ A, ω ∈Ω

and if, for every s such that P(s) > 0, there exists a total order ≻s on I such that for all

i ∈I ,

µi(s
′
−i,ω|si, s≺s i)=µi(s

′
−i,ω|si) ∀s′

−i ∈ S−i, ω ∈Ω (29)

and

E

[

ui

(

a∗
i (si),a

∗
≺s i(s≺s i),a

∗
≻s i(s≻s i);ω

)

∣

∣si

]

≥ E

[

ui

(

a′
i,a

∗
≺s′ i

(s′
≺s′ i

),a∗
≻s i(s≻s i);ω

)

∣

∣si

]

(30)

for all a′
i
∈ A i and s′ ∈ S such that P(s′)> 0 and { j : j ≺s′ i}= { j : j ≺s i}.

The definition assigns to each message profile realization s a total order ≻s such that

two conditions hold. First, each s corresponds to a “local information hierarchy” in which

every i knows the messages of his ≻s-predecessors in the information structure (S,P).

This condition, formalized in (29), is satisfied by all single-meeting schemes with a total

order that ranks the players invited to a meeting at s arbitrarily amongst each other but

above the non-invited players at s, who are also ranked arbitrarily amongst each other.

Single-meeting schemes, however, may not satisfy the second condition in the definition,

formalized in (30) and explained next.

In the expectations in (30), taken over (s≻s i,ω), player i can deviate to any a′
i

and also

misreport to all players ≻s-below him by switching to any positive probability message

profile s′
≺s′ i

= (s′
j
: j ≺s′ i) such that the set of i’s predecessors at s′ is the same as at s.17

One subtlety in (30) is that upon observing si, i learns his rank in the total order ≺s,

because he can infer it from { j : j ≺s i}, whose messages he is asked to forward and can

manipulate. Hence, unlike in Halac, Lipnowski, and Rappoport (2020) and Morris, Oyama,

17We abstract from deviations to message profiles where { j : j ≺s i} ⊆ { j : j ≺s′ i} as those may be detected

as misreports at some point in the hierarchy.
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and Takahashi (2020), there is no own-rank uncertainty in our definition, as the only rank

uncertainty pertains to players higher-up in the hierarchy.

In addition, we assume that for each message profile s, player i knows the identity of

his immediate successor, i+ = min{ j : j ≻s i}, from whom he receives his message. This

information is used in (30) to compute the expectation over all s≻i such that i+ is i’s im-

mediate successor. We could alternatively assume that i does not know the identity of i+,

in which case the expectation in (30) would be over all possible s≻i, rather than just those

that have i+ as i’s immediate predecessor.

The next proposition generalizes the characterization in Theorem 4 by letting the total

order depend on the action profile.

Proposition 2. A distribution p ∈ ∆(A ×Ω) can be implemented by a random delegated

hierarchy, if and only if, for each a ∈ A there exists a total order ≻a on I such that for all

i ∈I ,
∑

ω∈Ω

∑

a≻a i

p(ai,a≺a i,a≻a i,ω)
(

ui(ai,a≺a i,a≻a i;ω)−ui(a
′
i,a

′
≺a′ i

,a≻a i;ω)
)

≥ 0 (31)

for all a′
i
∈ A i and a′ ∈ A such that p(a′)> 0 and { j : j ≺a′ i}= { j : j ≺a i}.

For any µ, denote by RDH(µ) the set of outcome distributions that satisfy the above

necessary and sufficient conditions.

What distributions are in RDH(µ) but not in DH(µ)? Before giving a partial answer,

let us see if p∗ from Section 4.2.1 can be implemented by a random delegated hierarchy.

Start with a = (0,1,1). As discussed in Section 4.2.1, players 2 and 3 cannot be first in the

ordering and so the possible orderings are 1 ≻ 2 ≻ 3 or 1 ≻ 3 ≻ 2. Whichever one is chosen

should also apply to a′ = (1,1,1), for otherwise player 2 would infer from his rank that the

state is 0 at a and hence refuse to play 1. This, however, creates a problem at a′′ = (1,0,1),

where 2 has to be first and the possible orderings are 2 ≻ 1 ≻ 3 or 2 ≻ 3 ≻ 1. In either case,

player 1 will learn that ω= 0 at a′′ because, unlike at a′, he knows he is not first in rank.

Hence, 1 will refuse to play 1 at a′′. We conclude that p∗ is not implementable by a random

delegated hierarchy either.

From Claim 4 in Section 4.3 and the discussion that precedes it, we know that strict

randomizations between profiles in NE(µ) are in general not included in DH(µ). Yet ran-
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domizations between strong Nash equilibria are included in RDH(µ). Let

SNE(µ)=

{

p ∈∆(A×Ω) : ∃ a∗
∈ A s.t. p(a∗, · )=µ and

for all J ⊆I and aJ ∈× j∈J A j there exists i ∈ J s.t.

∑

ω∈Ω

µ(ω)ui(a
∗;ω)≥

∑

ω∈Ω

µ(ω)ui(aJ ,a∗
−J ;ω)

}

be the set of pure strategy strong-Nash outcomes in the ex-ante normal form game in which

it is common knowledge that all players share belief µ. Let

SPublic(µ)=
⋃

{

∑

µ̂

α(µ̂)Co(SNE(µ̂)) : α ∈∆(∆(Ω)) s.t.
∑

µ̂

α(µ̂)µ̂=µ

}

Claim 5. SPublic(µ)⊆ RDH(µ).
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