Nartikoev, Alan and Peresetsky, Anatoly (2020): Эндогенная классификация домохозяйств в регионах России. Published in: Voprosy Ekonomiki No. 5 (2021): pp. 107-128.
Preview |
PDF
MPRA_paper_104351.pdf Download (1MB) | Preview |
Abstract
In order to study the structure of society, sociologists usually distinguish several homogeneous social groups, or classes. The most common division consists of three groups: upper, middle and lower classes. Such a partition is traditionally based on a subjective (exogenous) criteria adopted by a particular re-searcher. In this paper, the distribution of households in Russian federal districts is modeled as a mixture of three lognormal distributions. The mixing proportions (probabilities) of the mixture components and the corresponding distribution parameters are modeled as functions of the individual characteristics of households. The result is an endogenous decomposition of household sample into three clusters (lower, middle, upper). This classification allows to analyze the difference between regions and the patterns of intergroup dynamics in the period 2014–2018. The approach used in this work demonstrated great flexi-bility in analyzing the distribution of income, the dynamics of this distribution over time, as well as a migration between relatively homogeneous clusters. The use of mixture density function with endogenously determined probabilities allows for precise detection of the effects of the income heterogeneity determinants within each cluster.
Item Type: | MPRA Paper |
---|---|
Original Title: | Эндогенная классификация домохозяйств в регионах России |
English Title: | Endogenous household classification: Russian regions |
Language: | Russian |
Keywords: | mixture models; Russia; income distribution; middle class |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics D - Microeconomics > D3 - Distribution > D31 - Personal Income, Wealth, and Their Distributions I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty > I32 - Measurement and Analysis of Poverty R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R2 - Household Analysis > R20 - General |
Item ID: | 104351 |
Depositing User: | Anatoly A. Peresetsky |
Date Deposited: | 26 Nov 2020 07:58 |
Last Modified: | 14 Aug 2022 14:34 |
References: | Aivazian S. A. (2012). Analiz kachestva i obraza zhizni naselenija. Moscow: Nauka. (in Russian). Anikin V. A. (2020). Social classes of the new Russia: Unequal and different. Sociological Studies, 2020. 2.31–42. DOI: 10.31857/S013216250008492-4. (in Russian). Didé E. (1985). Metody analiza dannyh. Podhod, osnovannyj na metode dinamicheskih sgushhenij. M.: Finansy i statistika. (in Russian). Russia economic report (2014). The World Bank in the Russian Federation. №31, March 2014. Maleva T. M. (2008). Formirovanie massovogo srednego klassa: zhelaemoe i dejstvitel'noe: Doklad na III Vserossijskom sociologicheskom kongresse. M.: HSE, October, 22, 2008. (in Russian). Nartikoev A. R., Peresetsky A. A. (2019). Modeling the dynamics of income distribution in Russia. Applied Econometrics, 54, 105–126. Srednij klass v sovremennoj Rossii: 10 let spustja. (2014). Analiticheskij doklad. Institute of Sociology of the Russian Academy of Sciences (ISRAS). (in Russian). Tikhonova N. E. (2016). The impact of crisis on the life of Russian middle class. Social Sciences and Contemporary World, 2016, (4), 48–54. (in Russian). Tikhоnova N. E., Mareeva S. V. (2009). Srednij klass: teorija i real'nost'. М.: Alpha-M. Tikhоnova N. E. (2020). The worldviews and identities of the mass strata of modern Russian society. Mir Rossii, 29 (1), 6–30 (in Russian). DOI: 10.17323/1811-038X-2020-29-1-6-30 Chotikapanich D., Griffiths W. (2008). Estimating income distributions using a mixture of gamma densities. In: Chotikapanich, D. (Ed.), Modelling Income Distributions and Lorenz Curves. Springer, New York, Chapter 16, pp. 285–302. Cowell F. A., Flachaire E. (2015). Statistical Methods for Distributional Analysis. In Handbook of Income Distribution, Volume 2A, Ch. 6., pp. 359-465. http://dx.doi.org/10.1016/B978-0-444-59428-0.00007-2. Cowell F. A., van Kerm P. (2015). Wealth inequality: A survey. Journal of Economic Surveys, 29 (4), 671–710. Dempster A. P., Laird N. M., Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B. 39 (1), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x. Flachaire E., Nunez O. (2007). Estimation of income distribution and detection of subpopulations: an explanatory model. Computational Statistics and Data Analysis, 51 (7), 3368–3380. Fourrier-Nicolai E.,·Lubrano M. (2020). Bayesian inference for TIP curves: an application to child poverty in Germany. The Journal of Economic Inequality. 18 (1), 91–111. https://doi.org/10.1007/s10888-019-09426-6. García-Fernández R. M., Gottlieb G., Palacios-González F. (2013). Polarization, growth and social policy in the case of Israel, 1997–2008. Economics: The Open-Access, Open-Assessment E-Journal, 7 (2013–15). http://dx.doi.org/10.5018/economics-ejournal.ja.2013-15. Hagenaars A. J. M., de Vos K., Zaidi M. A. (1994), Poverty statistics in the late 1980s: Research based on micro-data. Office for official publications of the European Communities. Luxembourg. López Rodríguez M. I., Barac M. (2019). Inequality of Spanish household expenditure for the 2006–2016 period — Are we converging? Economy of Region, 15 (3), 780–790. Lubrano M., Ndoye A. A. J. (2016) Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach. Computational Statistics and Data Analysis, 100, 830–846. Pittau M. G., Zelli R. (2006). Empirical evidence of income dynamics across EU regions. Journal of Applied Econometrics, 21 (5), 605–628. Pittau M. G., Zelli R., Johnson P. A. (2010). Mixture models, convergence clubs and polarization. Review of Income Wealth, 56 (1), 102–122. Pittau M. G., Zelli R., Massari R. (2016). Evidence of convergence clubs using mixture models. Econometric Reviews, 35 (7), 1317–1342. Winkelried D., Torres J. (2019) Economic mobility along the business cycle. The case of Peru, Applied Economics, 51 (18), 1894-1906. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/104351 |