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Abstract: We elicited incentivized and stated measures of risk and time preferences from

a sample of undergraduate students in Athens, Greece, as part of a battery of psychological,

behavioral and economic measures and traits that could be later matched with data from labo-

ratory experiments. Data collection for these measures was first initiated in 2017 and the exact

same battery of measures was administered in 2019 and early 2020 to students of the university

that had voluntarily enrolled to participate in surveys/experiments. About halfway through

the 2020 wave, our study was re-designed because of the COVID-19 pandemic. We re-launched

our study on March 23, 2020, coinciding with a general curfew imposed by the government, and

invited back all subjects that had participated in the 2019 and the early 2020 wave. The exact

same sets of incentivized and stated measures of risk and time preferences were administered

to the invited subjects and the wave duration was extended until a few weeks after the opening

up of the economy and restart of business activity that followed the curfew. We then estimated

structural parameters for various theories of risk and time preferences from the incentivized

tasks and find no effect between the different waves or other key events of the pandemic, despite

the fact that we have about 1,000 responses across all waves. Similar conclusions come out of

the stated preferences measures. Overall, our subjects exhibit intertemporal stability of risk

and time preferences despite the very disruptive effect of the COVID-19 pandemic on the global

economy.
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1 Introduction

Economic theory suggests that a broad set of decisions relating to important outcomes such

as savings, investments, insurance, retirement plans, occupational choices, labor supply, health

services purchase, health behaviors and other aspects of everyday life, can be explained by

differences in agents’ budget constraints as well as Risk and Time Preferences (RTPs). RTPs

are at the crux of consumer behavior and in standard economic analysis, individual preferences

are considered to be stable over time. Andersen et al. (2008b) argue that the assumption of

stable preferences lies in the ability to assign causation between changing opportunity sets and

choices in comparative statics exercises or, in Stigler and Becker’s (1977) words, ‘no significant

behavior has been illuminated by assumptions of differences in tastes’.

The assumption of stability of RTPs has been challenged however by the empirical literature.

For example, Chuang and Schechter (2015) find weak evidence of stability in experimental

measures of time preferences, although they find strong evidence of non-stability of experimental

measures of risk preferences over time. Schildberg-Hörisch (2018) take the view that the extent

to which preferences are stable is ultimately an empirical question. It is therefore of great

importance for the study of economic outcomes to understand whether RTPs are a stable

individual characteristic, change over time, or whether they are affected by various negative

shocks, such as financial crises, trauma from conflict, natural disasters or a pandemic.

Our study adds to a stream of literature that examines the effect of major negative shocks

on peoples preferences.1 A large portion of the studies we are aware of examine the effect

of natural disasters on RTPs. Results from these studies point to contradictory results with

respect to risk. Some studies find an increase in risk seeking behavior due to a natural disaster.

For example, Eckel et al. (2009) investigated risk preferences of a sample of hurricane Katrina

evacuees shortly after evacuation, another sample of evacuees a year later, and a third sample

of residents with demographics similar to the Katrina evacuees. Women in the Katrina sample

shortly after evacuation were found to be significantly more risk loving than other samples.

Page et al. (2014) found that homeowners, who were victims of the 2011 Australian floods in

Brisbane and faced large losses in property values, were more likely to opt for risky gambles.

Hanaoka et al. (2018) investigated individuals’ risk preferences after experiencing the 2011 Great

East Japan Earthquake and found no effect for females, while males that were exposed to higher

intensities of the earthquake become more risk tolerant one year after the earthquake. Moreover,

this effect was persistent even five years after the earthquake.

1Our study is also related to the stream of research that examines the intertemporal stability of RTPs. A
literature review of this research stream can be found in Drichoutis and Vassilopoulos (2016). Moreover, there
is a strand of research that examines the effect of major early life experiences on risk preferences. For example,
Bellucci et al. (2020) show that warfare exposure during childhood in the World War II was associated with
lower financial risk taking in later life. Moreover, Bellucci et al. (2020) review the literature on similar studies
that track and associate major early life experiences with preferences.
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On the other hand, Cameron and Shah (2015) found that individuals who suffered a flood

or earthquake in rural Indonesia exhibited more risk-aversion as a consequence of increased

background risk perception of a future disaster. Similarly, Cassar et al. (2017) found that the

2004 tsunami in Thailand led to substantial and long-lasting increases in risk aversion as well

as in impatience. More recently, Beine et al. (2020) examined how two large earthquakes that

shook the Tirana area in Albania affected RTPs and found unambiguous effects towards more

risk aversion and impatience for affected individuals. Moreover, the second earthquake amplified

the effect of the first one, suggesting that experiences accumulate in their influence on RTPs.

Finally, Callen (2015) found that exposure to the Indian Ocean Earthquake tsunami increased

patience in a sample of Sri Lankan wage workers.

A related stream of research examines the effect of conflict and violence on RTPs. Voors

et al. (2012) used a series of field experiments in rural Burundi to examine the impact of exposure

to conflict on RTPs. They found that individuals exposed to violence were more risk-seeking

and had higher discount rates. Callen et al. (2014) studied preferences in Afghanistan and

found that individuals exposed to violence, when primed to recall fear, exhibited an increased

preference for certainty. We are aware of only one study that examined the effect of a financial

crisis on RTPs. Jetter et al. (2020) found that males (but not females) were systematically more

sensitive to local economic conditions (e.g., their region’s unemployment rate) since the global

financial crisis of 2008.

Our study focuses on the negative shock of the COVID-19 pandemic (caused by SARS-CoV-

2) which has been extremely disruptive to public health and the global economy. We originally

set up our study in 2017 with the purpose of administering, on an annual basis, a battery of in-

centivized and unincentivized measures to the student population of the Agricultural University

of Athens, Greece. Each year since 2017, we administered the exact same battery of measures to

students of the university that had voluntarily enrolled to participate in surveys/experiments.

Students were invited to participate online via Qualtrics and were invited to participate in

batches in order to achieve a good spread of responses across the one and a half month that the

elicitation took place. The original purpose of the study was to elicit a battery of psychologi-

cal, behavioral and economic measures and traits that could be later matched with data from

laboratory experiments conducted at the premises of the university. The study was initiated

in 2017 and was then repeated annually at similar dates every year. About halfway the 2020

wave, our study was re-designed due to the COVID-19 pandemic. The first case of COVID-19

was confirmed on February 26 in the country and on March 12 the first death occurred which

coincided with the end of the originally planned study for 2020.

We decided to re-launch our study and invite back all subjects that had participated in the

2019 and the early 2020 wave. The re-launch of the study on March 23, 2020 coincided with

a general curfew imposed by the government banning all nonessential transport and movement
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across the country. We extended the duration of the study until a few weeks after the opening

up of the economy and restart of business activity. Thus, for a considerable number of subjects

(we have more than 1,000 responses over the three waves), we have their response before the

pandemic, during the pandemic, and after successfully flattening the curve of cases/deaths.

Our study adds to the emerging stream of studies that examine how risk or time preferences

have evolved over the course of the pandemic. Angrisani et al. (2020) study the stability of risk

preferences by comparing choices in the Bomb Risk Elicitation Task (Crosetto and Filippin,

2012) from undergraduate students (60 subjects) as well as professional traders and portfolio

managers (48 subjects) in London. They elicited subjects’ choices before the pandemic in 2019

as well as on a specific 13-day time window in April 2020 when London was in a lock-down.

They find no change in risk preferences during the pandemic.

Bu et al. (2020) recruited 257 graduate students from Wuhan University of Science and

Technology in China (which was ground zero of the COVID-19 pandemic) before the pandemic.

They then administered a follow up online survey, and captured precise geolocation information

from subjects. Out of 225 subjects that responded in the follow up study, 106 were in provinces

outside of Hubei, with lower infection cases than Hubei. Subjects in all waves responded to

two general (hypothetical) risk preferences questions (that were used to form a composite scale)

while subjects amidst the pandemic were asked to answer a different (hypothetical) question

about how to allocate money to a hypothetical risky investment that had an equal probability of

higher returns or a loss. They found that subjects who were quarantined in Wuhan, with greater

exposure to the virus, allocated significantly less money to the risky investment option relative

to those in other cities within the Hubei province and those in other provinces of China. With

respect to the pre-pandemic period, subjects showed a large decrease in general preferences

for risk albeit there was no difference between areas with different intensity of exposure to the

pandemic.

Ikeda et al. (2020) administered a five-wave internet panel survey to Japanese respondents

from March 13 to June 15, 2020 ( 4000 subjects/wave; N=14,470 for the balanced panel;

N=19,737 across the five waves). In the same time period the number of infected individuals rose

sharply in Japan. They elicited responses from two hypothetical questions where participants

were asked to choose the highest acceptable insurance premium from a given multiple price list

to cover the probabilistic risk of losing an amount of money. They used the stated insurance

premiums to calculate two prospect theory parameters for risk and the probability weighting

function and found that risk premiums decreased almost monotonically, implying that subjects

became more risk tolerant on average.

Shachat et al. (2020) administered incentivized lottery choice tasks in the gain and loss

domain in 396 students from the Wuhan University, that were equally split among five waves

(79 subjects/wave). Data for each wave were collected right after key events starting in January
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2020 and up to March 2020 (when WHO declared it a global pandemic) and were also contrasted

to pre-pandemic data from May, 2019. They observed significant increases in risk tolerance (risk

is measured based on the switching point) during the early stages of the COVID-19 crisis.

Lohmann et al. (2020) administered incentivized lottery choice tasks, incentivized convex

time budgets and hypothetical investment games (investments that offered higher returns as

well as chances of losing the investment) to student subjects from Beijing universities. Subjects

participated in online surveys in October 2019 (wave 1), December 2019 (wave 2) and March

2020 (wave 3). In the third wave, subjects had been geographically scattered in various areas of

China and Lohmann et al. (2020) use the balanced sample of 539 subjects along with information

about virus exposure in the geographical region of subjects’ area to examine potential effects

on preferences. They find no significant changes in either risk or time preferences across waves.

Table 1 summarizes the attributes of the various studies in this literature and compares these

with our study. One unique feature of our study is that in each wave, we collected responses

for a period longer than one and a half months, allowing us to record multiple key events in

the timeline of the pandemic. Moreover, our study is unique in that we jointly estimate the

structural parameters for various theories of risk and time preferences. Given that most studies

are focused on samples from China and only one of them measures time preferences, our study

is the only one providing structural estimates for time preferences for subjects from Europe.

Furthermore, our sample size is fairly large for an incentivized study, and using students as our

workhorse is not at odds with what almost all other studies cited in Table 1 did. Snowberg

and Yariv (2020) compare a sample from almost the entire undergraduate population of the

California Institute of Technology with a representative sample of the U.S. population and an

Amazon Mechanical Turk sample. They find that the student population exhibits less noise

as compared to the other samples and while large differences in behaviors are observed, these

differences had limited impacts on comparative statics and correlations between behaviors.
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Table 1: Literature on risk and time preferences in relation to the COVID-19 pandemic

Risk elicitation Measure for risk Incentives Type of subjects Sample size Subjects’ location When and how Results

Angrisani et al. (2020) Bomb Risk Elicitation
Task

Number of boxes opened
in the BRET

Real incentives Undergraduate stu-
dents
Professional
traders/managers

Pre-pandemic: 79 students,
56 traders/managers
Amidst pandemic: 60 stu-
dents, 48 traders/managers
(sub-sample of pre-
pandemic subejcts)

London, UK Pre-pandemic (February-
March 2019; lab experi-
ment)
April 9-21, 2020 (online)

No change in risk preferences

Bu et al. (2020) General Risk taking
questions
Allocate money in
a 50:50 lottery with
higher returns or
losses

Weighted scale of two
general risk taking mea-
sures (range from 1 to 5)
Amount of money allo-
cated to the investment

Hypothetical Graduate students Pre-pandemic: 257 students
Amidst pandemic: 225 stu-
dents (sub-sample of pre-
pandemic sample)

Pre-pandemic:
Wuhan, China
Amidst pandemic:
47% of subjects are
outside of Hubei

Pre-pandemic in 2019 (Oc-
tober 16- 18, 2019; paper
and pencil)
February 28 - March 3, 2020
(online)

Subjects reduce risk taking in the
pandemic but no effect between
areas with different intensity of
exposure to the pandemic
Subjects in Wuhan (vs. Subjects
outside of Wuahn vs. Subjects
outside of Hubei), with greater
exposure to the pandemic, allo-
cate significantly less to the risky
gamble

Ikeda et al. (2020) Choose the highest in-
surance premium that
covers the probabilis-
tic risk of losing an
amount of money

Prospect theory parame-
ters are calculated

Hypothetical Stratified random
sampling according
to age and gender
distribution of the
Japanese census

4000 subjects/wave
(N=14,470 for the balanced
panel; N=19,737 across the
five waves)

Japan Five waves: March 13-16;
March 27-30; April 10-13;
May 8-11; June 12-15, 2020
(online)

As COVID-19 spreads, risk pre-
miums decreased almost mono-
tonically, implying that subjects
became more risk tolerant on av-
erage

Shachat et al. (2020) Lottery choice tasks in
the gain and loss do-
main

The switching point
for the pairwise lottery
ranges

Real incentives Students Pre-pandemic: 206 subjects
Amidst pandemic: 79 sub-
jects/wave (N=396 subjects
in total)

Wuhan, China Pre-pandemic: 206 sub-
jects, May 2019 (online)
January 24-26; February 4-
6; February 7-8; February
21-22; March 6-7, 2020 (on-
line)

Increase in risk tolerance during
the early stages of the pandemic

Lohmann et al. (2020) Lottery choice task
Convex time budget
Investment game

Coefficient of relative
risk aversion midpoints
(CRRA)
Percentage invested into
a lottery
Dummy for present bi-
asedness parameter beta
being greater than 1
Discount rate (parameter
delta)

Real incentives ex-
cept for the Invest-
ment game

Students Pre-pandemic: 793 sub-
jects (wave 1); 650 subjects
(wave 2)
Amidst pandemic: 539 sub-
jects (wave 3)

Pre-pandemic: Bei-
jing universities
Amidst pandemic: ge-
ographically dispersed
across country

Pre-pandemic: October
2019; December 2019
(online)
Amidst pandemic: March
2020 (online)

No significant changes in either
risk or time preferences across
waves

This study Lottery choice tasks
Choices over time
dated monetary
amounts

Structural estimates of
risk and time preferences

Real incentives Students Pre-pandemic: 304 subjects
(wave 1)
Amidst pandemic: 309 sub-
jects (wave 2); 343 subjects
(wave 3); N=359 for the bal-
anced panel

Greece Pre-pandemic: January 30 -
March 20, 2019 (online)
Amidst pandemic: January
29 - March 16, 2020; March
23 - May 28, 2020 (online)

No significant changes in risk or
time preferences
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Our paper is structured as follows. In Section 2 we provide details about the design of

the study and elicitation of risk and time preferences. In the same section, we also provide

information about how the COVID-19 pandemic evolved in the country of our study (Greece)

as well as present how we go about with our structural econometric methods to model key

parameters from the theory of RTPs. Results and various robustness checks specifications are

presented in Section 3. We conclude and discuss our results in the last section.

2 Survey design

2.1 Sample and quality control

An online questionnaire was administered annually to the population of students registered in

the online recruitment software (ORSEE) of the university (Greiner, 2015), using the Qualtrics

platform. The first wave started in 2017 and invitations were sent out gradually on a rolling

basis, starting from late January to mid March. Similar days and dates were selected for the

next waves administered in years 2018, 2019 and 2020.2

Subjects could take the survey anytime they wanted once they received an invitation to

participate, but had a limited time window to complete the survey once they started. Figure 1a

shows the number of responses per day in the 2019 wave—one year before the outbreak of the

pandemic in the country. Similarly, Figure 1b shows responses per day for the 2020A wave

which was planned to conclude by March 17, 2020. As can be seen, halfway through the 2020A

wave, the first case of COVID-19 was confirmed (February 26, 2020) and the first death occurred

(March 12, 2020). Given the rapid development of subsequent cases and deaths, we decided

to launch an additional wave (2020B wave) where we invited the union of subjects that had

participated in the 2019 and 2020A waves to participate again. Our study was preregistered in

AsPredicted and a copy of the publicly available file can be found in the Electronic Supplemen-

tary Material. The start of the 2020B wave coincided with the enactment of a general curfew

(March 23, 2020) banning all nonessential transport and movement across the country. Invi-

tations to participate in the 2020B wave were distributed throughout the period of the curfew

(where cases and deaths increased) as well as for almost a month after the curfew was relaxed

(relaxation started on May 4, 2020) when the curve of cases and deaths had been flattened.

The recruiting procedure was similar for every wave and worked as follows. First, a list of

valid email addresses was compiled (along with names and surnames) using as source the list

of the universe of active students that are voluntarily registered through the ORSEE recruiting

system (Greiner, 2015). Email invitations were then sent in batches, scheduled for two times

2The start of the survey was selected to be exactly 50 days from the payment of the sooner option of the
time preferences tasks that was always selected to be a working day (a Thursday) so that payments could be
delivered.
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a week, covering a period of approximately one and a half months. A reminder email was

sent two days after a batch of emails was first sent. Students are identified by their unique

student ID number and at the conclusion of the survey, they were asked to upload a picture of

their student ID for verification. Given that all waves included incentivized tasks of risk and

time preferences (described momentarily), money transactions were ordered only when their

ID was confirmed following a manual cross verification procedure by one of the investigators.

Moreover, the invitation email emphasized several times that the invitation link is unique and

that subjects must not forward their participation link to other subjects.3 Given that the

risk/time preferences tasks were part of a larger battery of questions and that subjects knew

they would be asked for verifiable data in order to be paid, it is unlikely that other subjects but

the intended recipients would answer a given questionnaire. Thus, we can be very confident that

subjects with a given ID number are the same subjects answering the questionnaire throughout

the different waves of the survey.

In total, we were able to collect 1103 responses over the three waves (2019, 2020A and 2020B).

Two responses were excluded because they were from a different person than the intended

recipient of the invitation email. Ninety responses were excluded because subjects stopped

the questionnaire before reaching the risk/time preferences elicitation tasks which renders them

useless for the purpose of the present paper. Three more persons were excluded because their age

or household size contained implausible values and their responses were deemed of ambiguous

quality. Table 2 shows the number of responses per wave as well as the number of unique

subjects that participated across one, two or all three waves. In all, we have 1008 response that

come from 495 unique subjects.

3The general principle was that we excluded and did not pay a subject if their ID listed a different person
than the name we had sent the email to.
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Figure 1: Number of subjects per wave and day of the waves

(a) 2019 wave

(b) 2020 waves

Notes: The number of cases/deaths from COVID-19 are depicted in log scale.
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Table 2: Number of subjects per wave

Wave
Participated in . . . 2019 2020A 2020B Total
one wave 69 36 3 108

two waves 117 169 236 522

all three waves 126 126 126 378
Total 312 331 365 1,008

Notes: The numbers below the brackets indicate how subjects that participated in two waves are allocated
to the waves. For example, while 117 subjects from the 2019 wave participated in two waves, 25 of them also
responded in the 2020A wave. Similarly, of the 169 subjects that responded in two waves in the 2020A wave,
144 of them responded in the 2020B wave as well. It is implied that 92 subjects (=117-25 or =236-144)
participated in both the 2019 and 2020B waves.

25 144

2.2 The COVID-19 pandemic in Greece

The COVID-19 pandemic in Greece started with the first confirmed case on February 26,

2020, when a 38-year-old woman who had recently visited Milan, Italy, was confirmed to be

infected.4 Subsequent cases in late February and early March were related to a group of pilgrims

who had traveled to Israel and Egypt (and their contacts) as well as to persons who had traveled

to Italy.

The first death from COVID-19 occurred on March 12 in Greece. With subsequent cases

and deaths occurring at a faster rate, the government started imposing gradual restrictions

on movements and gatherings: all educational institutions were closed starting on March 11,

flights from Northern Italy (March 9) and the whole of Italy (March 14) were banned, borders

with Albania and North Macedonia were closed (March 16), and nonessential transport and

movement across the country was banned (March 23).5 During this period many businesses

and workplaces were also shutdown: theatres, hotels, courthouses, cinemas, shopping centres,

cafes, restaurants, bars, museums and archaeological sites, with the exception of supermarkets,

pharmacies and food outlets that were allowed to offer take-away and delivery only.

Following a successful flattening of the curve (see Figure 1b), the government announced on

April 27 a plan for the gradual lifting of the restrictive measures and the restart of business

activity. Starting on May 4, the curfew was relaxed and subjects did not need a special permit

to commute within their regional unit while retail-shops, coffee-places and restaurants gradually

4The virus in Milan had spread through the Lombardy cluster of cases. The first cases were confirmed on
February 21 (Anzolin and Amante, 2020), but had been circulating undetected much earlier. It was subsequently
reported that the origin of these cases were connected to the first European local transmission that occurred in
Munich, Germany as early as January 19, 2020 (Luna, 2020).

5Movement was permitted only for a pre-specified set of reasons: moving to and from work, grocery shopping,
visiting a doctor or assisting a person in need of help, exercising etc.
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Table 3: The Holt and Laury (2002) risk preference task

Lottery A Lottery B EVA e EVB e EV difference
p e p e p e p e

0.1 2 0.9 1.6 0.1 3.85 0.9 0.1 1.640 0.475 1.165
0.2 2 0.8 1.6 0.2 3.85 0.8 0.1 1.680 0.850 0.830
0.3 2 0.7 1.6 0.3 3.85 0.7 0.1 1.720 1.225 0.495
0.4 2 0.6 1.6 0.4 3.85 0.6 0.1 1.760 1.600 0.160
0.5 2 0.5 1.6 0.5 3.85 0.5 0.1 1.800 1.975 -0.175
0.6 2 0.4 1.6 0.6 3.85 0.4 0.1 1.840 2.350 -0.510
0.7 2 0.3 1.6 0.7 3.85 0.3 0.1 1.880 2.725 -0.845
0.8 2 0.2 1.6 0.8 3.85 0.2 0.1 1.920 3.100 -1.180
0.9 2 0.1 1.6 0.9 3.85 0.1 0.1 1.960 3.475 -1.515
1 2 0 1.6 1 3.85 0 0.1 2.000 3.850 -1.850

Notes: EV stands for Expected Value.

re-opened for business but with specific rules in place that they had to abide upon.

2.3 Incentivized elicitation of risk preferences

Subjects’ risk preferences were elicited using the Holt and Laury (2002) task (HL) as well

as a payoff varying task (PV). Drichoutis and Lusk (2016) have shown that greater predictive

performance of choices from a hold-out task can be achieved by combining information from the

HL task and a PV task. This is because the HL task varies the probabilities of the lottery choices

and provides a better approximation of the curvature of the probability weighting function (given

that subjects weigh probabilities non-linearly), while the PV task varies the monetary amounts

and is better in approximating the curvature of the utility function. In the HL task, individuals

are asked to make a series of 10 decisions between two lottery options (see Table 3). Table 4

shows a payoff varying task that keeps the probabilities constant across the 10 decision tasks

and instead changes the monetary payoffs across the 10 tasks. Both tasks are constructed in a

way that the expected value of lottery A exceeds the expected value of lottery B for the first

four decision tasks. Thus, a risk neutral person under Expected Utilty Theory (EUT) should

prefer lottery A for the first four decision tasks and then switch to lottery B for the remainder

of the decision tasks.

Choices were not presented all together in a table form, but each choice was presented

separately showing the probabilities and prizes as in Andersen et al. (2014).6 Subjects could

indicate whether they preferred lottery A, lottery B or whether they are indifferent between the

lotteries, in which case they were told that the computer would randomly decide the binding

6It is likely that by presenting each pair of lotteries in a single screen allows subjects to focus more on a
specific pair of lotteries while when presenting all pairs of lotteries arrayed in a table makes subjects to think
the whole choice set as a single task.
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Table 4: The payoff varying risk preference task

Lottery A Lottery B EVA e EVB e EV difference
p e p e p e p e

0.5 1 0.5 1 0.5 1.2 0.5 0.2 1.00 0.70 0.300
0.5 1.2 0.5 1 0.5 1.5 0.5 0.2 1.10 0.85 0.250
0.5 1.4 0.5 1 0.5 1.8 0.5 0.2 1.20 1.00 0.200
0.5 1.6 0.5 1 0.5 2.2 0.5 0.2 1.30 1.20 0.100
0.5 1.8 0.5 1 0.5 2.9 0.5 0.2 1.40 1.55 -0.150
0.5 2.0 0.5 1 0.5 3.5 0.5 0.2 1.50 1.85 -0.350
0.5 2.2 0.5 1 0.5 4.6 0.5 0.2 1.60 2.40 -0.800
0.5 2.4 0.5 1 0.5 6.8 0.5 0.2 1.70 3.50 -1.800
0.5 2.6 0.5 1 0.5 9.2 0.5 0.2 1.80 4.70 -2.900
0.5 2.8 0.5 1 0.5 15 0.5 0.2 1.90 7.60 -5.700

Notes: EV stands for Expected Value.

lottery to determine their payouts. The order of appearance of the HL and PV tasks were

randomized across the subjects. An example of one of the decision tasks for the HL task is

shown in Figure 2 and the instructions for this task can be found in the Electronic Supplementary

Material in Section A.

For each subject, one of the choices was randomly chosen and paid out after we added a

e2 participation fee and we cross validated their student ID. Monetary payouts were paid via

bank transfer to subject’s preferred bank account.7 All transactions were ordered after cross

validation of their IDs was performed, which was normally within a few minutes after they

completed the questionnaire.

For a subset of observations (49 observations from 45 subjects), payments could not be

completed because subjects failed to complete the questionnaire and provide us with a valid

mobile phone number, although we do have their complete responses from the risk and time

preferences tasks.8 In addition, if a transaction would not go through, we would try to resend

the money for a maximum of two times or until we resolved the problem with the transaction

(in case the person would contact us to indicate there was a problem with the transaction).

For 82 observations coming from 76 subjects, transactions were not completed even though we

tried repeatedly to send the money. Finally, 877 transactions (87% of all observations) from 442

subjects were completed. Based on the 877 transactions, subjects were paid on average e4.4

(S.D.=2.62, min=2.1, max=17).9 We should note beforehand that our results are invariant

7We used the ‘Pay a friend’ service of the bank ‘Eurobank’ which allows transferring money to subject’s
preferred bank account without knowing subject’s account number, only by using an email address or a mobile
phone number. The service is similar to the Zelle service operated by the Wells Fargo bank in the United States.

8For the same reason, we don’t have complete demographic and attitudinal information for all subjects.
9Note that because subjects repeatedly participated in the three waves, many of them were paid for more

than one time.
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Figure 2: Example screen for lottery choices

when using the full sample or just the constrained sample of subjects that accepted the payment.

Thus, this should alleviate any concerns that the subjects who did not accept the payment may

have treated the tasks as hypothetical and thus behaved differently.

2.4 Incentivized elicitation of time preferences

The experimental design for eliciting time preferences is based on the experiments of Coller

and Williams (1999), Harrison et al. (2002) and Andersen et al. (2008a). Subjects were con-

fronted with the payoff options listed in Table 5. In Table 5, option A (the principal) offers

either a e60 or a e90 sooner option. Option B offers an amount x 190 days later, where x

ranged from annual interests rates of 5% to 50% on the principal, compounded semi-annualy.

The sooner option (option A) was delivered on March 21 in the 2019 wave, March 19 in the

2020A wave, and June 1 on the 2020B wave.10 The later option (option B) was delivered 190

days later. These choices also offered the option of stating indifference between options, in which

case subjects knew that a random draw would decide the binding option. Another set of choices

also included a middle option which split the 190 days interval in two halves. Consequently, the

middle option was delivered 95 days later than option A. The purpose of the latter task was to

construct a choice set with fewer choices (choices 21 to 30 in Table 5) that is similar to choice

tasks 1 to 20 in Table 5. Comparison of these tasks is relegated to a different paper.

10All dates and days were carefully pre-selected to be working days so that the payments could be physically
delivered to subjects.
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The tasks always impose a front-end delay on the early payment (option A) which comes

with two advantages. First, it avoids the passion for the present that decision makers exhibit

when offered monetary amounts today or in the future by holding the transaction costs of

future options constant (see Coller and Williams, 1999, for a discussion). Second, it allows us

to equalize the credibility of future payments because of the uncertainty associated with the

receipt of later rewards. Payments were promised to be paid with meal vouchers issued by

an international company, redeemable in a wide network of supermarkets, restaurants, coffees

shops etc in the country and all payments were guaranteed by a permanent faculty member (one

of the authors). Moreover, the faculty member has a long history of performing experiments in

this particular institution and is well known for paying students to participate in experiments.

Therefore, mistrust issues are expected to be minimal, if any. Subjects knew beforehand how

to contact the experimenter through telephone and email and where his office is located in the

campus. In all, subjects provided 30 choices for the time preference task that are used to infer

time preferences.

Financial constraints precluded us from paying every single subject; hence, subjects were

given a 5% chance of receiving any money from this task and they knew this beforehand. If a

subject was selected to receive money from this task, only one of their choices was selected as

binding and their choice was realized. Subjects were subsequently contacted by the experimenter

and were provided with details about when to receive their payment. All vouchers with the

corresponding amount that they had won, were delivered to subjects on exactly the date the

subject had selected for her respective choice.

Experimental instructions for this task can be found in the Electronic Supplementary Mate-

rial in Section A. Figure 3 shows example screens for the times preferences choice task. Because

Read et al. (2005) document a date/delay effect; i.e., choices to be more patient when they are

described using calendar dates than when choices are characterized in terms of time delay from

the current moment, we used both dates and time delay to frame choices. Each choice always

displayed a calendar to illustrate the time delay and choices listed the delivery calendar dates

along with the monetary amount.
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Table 5: Payoff table in discount rate tasks

Payoff
alternative

Payment option A
Middle

payment option
Payment option B

Annual
interest rate

1 60 A ∼ B 61.58 0.05
2 60 A ∼ B 63.17 0.10
3 60 A ∼ B 64.76 0.15
4 60 A ∼ B 66.35 0.20
5 60 A ∼ B 67.94 0.25
6 60 A ∼ B 69.54 0.30
7 60 A ∼ B 71.13 0.35
8 60 A ∼ B 72.73 0.40
9 60 A ∼ B 74.33 0.45
10 60 A ∼ B 75.94 0.50
11 90 A ∼ B 92.38 0.05
12 90 A ∼ B 94.76 0.10
13 90 A ∼ B 97.14 0.15
14 90 A ∼ B 99.53 0.20
15 90 A ∼ B 101.91 0.25
16 90 A ∼ B 104.31 0.30
17 90 A ∼ B 106.70 0.35
18 90 A ∼ B 109.10 0.40
19 90 A ∼ B 111.50 0.45
20 90 A ∼ B 113.90 0.50
21 60 60.79 63.17 0.05, 0.10
22 60 62.33 66.35 0.15, 0.20
23 60 63.85 69.54 0.25, 0.30
24 60 65.33 72.73 0.35, 0.40
25 60 66.78 75.94 0.45, 0.50
26 90 91.18 94.76 0.05, 0.10
27 90 93.50 99.53 0.15, 0.20
28 90 95.77 104.31 0.25, 0.30
29 90 98.00 109.10 0.35, 0.40
30 90 100.17 113.90 0.45, 0.50

Notes: The sooner option (option A) was delivered on March 21 in the 2019 wave, March 19 in the 2020A
wave and June 1 on the 2020B wave. The latter option (option B) was delivered 190 days later. The middle
option for the payoff alternatives 1 to 20 was an option of stating indifference between payment option A and
payment option B. The middle option monetary amount for the payoff alternatives 21 to 30, was delivered
95 days later than option A. In choices 21 to 30, the middle option is compounded with the smaller interest
rate of the two rates listed in the last column and the latter option is compounded with the largest interest
rate of the two rates listed in the last column.
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Figure 3: Example screen for time dated monetary choices

(a) Two options

(b) Three options
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2.5 Theory and econometrics of risk and time preferences

Let the utility function be the constant relative risk aversion (CRRA) specification:

U(M) =
M1−r

1− r
(1)

where r is the relative risk aversion (RRA) coefficient, r = 0 denotes risk neutral behavior,

r > 0 denotes risk averse behavior and r < 0 denotes risk loving behavior. If we assume that

Expected Utility Theory (EUT) describes subjects’ risk preferences, then the expected utility

of lottery i can be written as:

EUi =
∑

j=1,2

pi(Mj)U(Mj) (2)

where p(Mj) are the probabilities for each outcome Mj that are induced by the experimenter

(shown in Tables 3 and 4). A popular alternative is Rank Dependent Utility (RDU) developed by

Quiggin (1982). RDU extends the EUT model by allowing for non-linear probability weighting

associated with lottery outcomes.11 To calculate decision weights under RDU, we can replace

expected utility in equation (2) with:

RDUi =
∑

j=1,2

wi[p(Mj)]U(Mj) =
∑

j=1,2

wijU(Mj) (3)

where wi2 = wi(p2 + p1)−wi(p1) = 1−wi(p1) and wi1 = wi(p1) with outcomes ranked from

worst to best and w(·) is the probability weighting function.

There are many probability weighting functions that have been used in the literature and

here we consider two of the more popular ones that nest linear probabilities: a) Tversky and

Kahneman’s (1992) (TK) function w(p) = pγ

(pγ+(1−p)γ)
1
γ
(if γ = 1 it collapses to w(p) = p) and b)

Prelec’s (1998) probability weighting function w(p) = exp(−(−lnp)ar) where 0 < ar, 0 < p < 1

(if ar = 1 it collapses to w(p) = p).12

We assume subjects have some latent preferences over risk which are linked to observed

11As in most experiments of choice under risk, our experiment involved multiple choices over lotteries for
which subjects where randomly paid for one of these choices. This payoff mechanism, known as the Random
Lottery Incentive Mechanism (RLIM), is incentive compatible if and only if the Independence Axiom holds
(Holt, 1986). Given that RDU does not include the independence axiom, then RLIM is inappropriate for non-
EUT theories on theoretical grounds. The use of the RLIM under non-EUT specifications either invokes the
assumption of the isolation effect i.e., that a subject views each choice in an experiment as independent of other
choices in the experiment or assumes two independence axioms as in Harrison and Swarthout (2021): one axiom
that applies to the evaluation of a given prospect which is assumed to be violated by RDU, and another axiom
that applies to the evaluation of the experimental payment protocol. Only the validity of the latter axiom is
required to ensure incentive compatibility of the RLIM.

12Note, that the Prelec function is often applied with the constraint 0 < ar < 1 which requires that the
probability weighting function exhibits subproportionality (weighting function exhibits an inverse-S shape form).
We follow Andersen et al. (2018, 2014) and Harrison and Ng (2016) and use the more general specification from
Prelec (1998, Proposition 1: (C)), which only requires ar > 0 and nests the case where 0 < ar < 1.
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choices via a probabilistic model function of the general form:

PrRA
B = Λ

(

(VB−VA)
C

µ

)

(4)

where Pr(B) is the probability of choosing lottery B (the right hand side lottery), µ is a

structural ‘noise parameter’ associated with the Fechner error story (sometimes called a scale or

precision parameter) used to allow some errors from the perspective of the deterministic model

and VA, VB are the decision-theoretic representations of values associated with lotteries A and

B i.e., Vk = EUk for k = A, B if the theory is EU or Vk = RDUk for k = A, B if the theory is

RDU. Λ(·) : R → [0, 1] is the standard logistic distribution function with Λ(ζ) = 1/(1 + e−ζ),

Λ(0) = 0.5 and Λ(x) = 1− Λ(−x), that is, Λ takes any argument between ±∞ and transforms

it to a number between 0 and 1 i.e., a probability.

C is a normalizing term that defines the heteroskedastic class of models.13 Wilcox (2008,

2011) proposed a ‘contextual utility’ error specification which adjusts the scale parameter by

C = Vmax − Vmin to account for the range of possible outcome utilities. C is defined as the

maximum utility Vmax over all prizes in a lottery pair minus the minimum utility Vmin over all

prizes in the same lottery pair. It changes from lottery pair to lottery pair, and thus it is said

to be contextual. Contextual utility maintains that the error specification is mediated by the

range of possible outcome utilities in a pair, so that Pr(B) = Λ

(

(VB−VA)

Vmax−Vmin

µ

)

.

With respect to time preferences, assume that EUT holds for choices over risky alternatives

and that discounting is exponential. Then a subject is indifferent between two income options

Mt and Mt+τ if and only if:

U(Mt) =
1

(1 + δ)τ
U(Mt+τ ) (5)

where DE(τ) = 1
(1+δ)τ

is the discount factor for τ ≥ 0 and where the discount rate is

dE(τ) = δ. The discount rate equalizes the present value of the two monetary outcomes in the

indifference condition (5). Under exponential discounting, the discount rate is stable over time.

Another class of discounting models is the family of hyperbolic specifications. A popular

hyperbolic specification is due to Mazur (1984) which specifies the discount factor as DH(τ) =
1

(1+Kτ)
for some parameter K > 0 and discount rates dH(τ) = (1 +Kτ)(1/τ) − 1.

We can write the discounted utility of each option as:

PVA =
M1−r

A

1− r
and PVB = D

M1−r
B

1− r
(6)

13Note that this form of heteroskedasticity, refers to models where the standard deviation of utility dif-
ferences is conditioned on lottery pairs. Econometrically this can be considered as pair- and subject-specific
heteroskedasticity but one that requires no extra parameters into the model since the form of the heteroscedas-
ticity is determined by outcome utilities. See Wilcox (2008) for a related discussion.
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whereD can be either the exponentialDE or the hyperbolic discount factorDH . The probability

of choosing one of the options is given by:

PrDB = Λ

(

PVB − PVA

ν

)

(7)

Given that some choice sets in the time preferences task presented subjects with choices

between three options i.e., a payment option A, a payment option B and a middle option C (see

Table 5), we can model the probability of choosing any of the three options using a multinomial

logit setup:

PrDJ =
exp(PVJ/ν)

∑C
j=A exp(PVj/ν)

for J = A,B,C (8)

This is a particularly attractive form as it is comparable with Equation 7 since for the case

of two options it can easily be shown that PrDB = Λ
(

PVB−PVA

ν

)

= exp(PVB/ν)
exp(PVA/ν)+exp(PVB/ν)

given

that Λ(ζ) = 1
1+e−ζ .

We can write the conditional log-likelihood for the risk preferences tasks as:

lnLRA(r, µ; y,X) =
N
∑

i=1

[

(ln(PrRA
B )|yi = 1) + (ln(1− PrRA

B )|yi = 0)

+(
1

2
ln(PrRA

B ) +
1

2
ln(1− PrRA

B )|yi = −1)
]

(9)

where yi = 1, 0 denotes the choice of lottery B or A in the ith risk preference task, respectively,

and yi = −1 denotes the choice of indifference. X is a vector of variables that are assumed to

affect the estimated parameters. The conditional log-likelihood for the time preferences task

can be written as:

lnLD(T, ν; y,X) =
N
∑

i=1

[

(ln(PrDB )|yi = 1) + (ln(PrDA )|yi = 0)

+(
1

2
ln(PrDA ) +

1

2
ln(PrDB )|yi = −1) + (ln(PrDC )|yi = 2)

]

(10)

where yi = 1, 0 denotes the choice of option B (the later option) or A (the sooner option) in

the ith time preference task, respectively, yi = −1 denotes the choice of indifference and yi = 2

denotes the choice of the middle option C.14 X is a vector of variables that are assumed to

affect the estimated parameters. T is either δ under exponential discounting or K under the

hyperbolic specification.

14It is implied that for choice tasks 21 to 30, PrD
A

and PrD
B

are calculated based on Equation 8 and not
Equation 7.
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The joint likelihood of the risk aversion and discount rate responses can then be written as:

lnL(r, T, µ, ν; y,X) = lnLRA + lnLD (11)

Equation (11) is maximized using standard numerical methods. The statistical specifica-

tion also takes into account the multiple responses given by the same subject and allows for

correlation between responses by clustering standard errors; i.e., it relaxes the independence as-

sumption and requires only that the observations be independent across the clusters. The robust

estimator of variance that relaxes the assumption of independent observations involves a slight

modification of the robust (or sandwich) estimator of variance which requires independence

across all observations (StataCorp, 2013, pp. 312).

3 Results

Given competing theories of risk (EUT vs. RDU), the various probability weighting func-

tions, and discount factors, we utilize a model selection criteria that allow us to select one model

over another. We therefore estimated all possible combinations of risk and discount factors and

calculated the associated information criteria such as Akaike’s and Bayesian information crite-

ria (AIC and BIC). AIC and BIC do not reveal how well a model fits the data in an absolute

sense; i.e., there is no null hypothesis being tested. Nevertheless, these measures offer relative

comparisons between models on the basis of information lost from using a model to represent

the (unknown) true model.15

In order to explore the effect of the pandemic on risk and time preferences, we modeled the

structural parameters as a function of either a) wave dummies defined as dummies for the waves

2019 (pre-pandemic wave), 2020A and 2020B (see also Table 2) or b) event dummies defined as

key events that occurred in the timeline of the pandemic in the country. These events are: i)

first reported case in the country (February 26; overlaps with the 2020A wave), ii) first reported

death in the country (March 12; overlaps with the 2020A wave) iii) onset of curfew when all

nonessential transport and movements across the country were banned (March 23; coincides

with the beginning of the 2020B wave) iv) announcement of a plan for the gradual lifting of

the restrictive measures and the restart of business activity (April 27; overlaps with the 2020B

wave) and curfew relaxation and business re-openning (May 4; overlaps with the 2020B wave).16

Figure 1b shows a timeline of these events as well.

15Drichoutis and Lusk (2016) have shown that AIC and BIC are in agreement in terms of model selection
with more complex selection criteria such as Vuong’s test (Vuong, 1989), Clarke’s test (Clarke, 2003) or the
out-of-sample log likelihood (OSLLF) criterion (Norwood et al., 2004).

16Because the time between announcement of relaxation of the restrictive measures and the actual relaxation
was very short, we merged these two key events in one.
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Table 6 shows the AIC and BIC values for the various estimated models combining the

different risk and discount factor functions. The models are estimated with two different sets

of dummies as described above; i.e., wave dummies and event dummies.17 The two information

criteria do not fully agree with each other but do point that the hyperbolic discount factor

function performs better than the exponential. The disagreement between AIC and BIC is

whether a model with linear probabilities for risk fits the data better than a model with Prelec’s

(1998) probability weighting function. In what follows, we present both EUT and RDU models

(with Prelec’s (1998) probability weighting function) with a hyperbolic discount function, since

these are favored by the information criteria.

Table 6: Akaike’s and Bayesian Information criteria

with Wave dummies with Event dummies
Risk Discount Log-L AIC BIC Log-L AIC BIC
Linear Exponential -28472.86 56961.73 57031.93 -28461.96 56951.92 57074.77
Linear Hyperbolic -28423.46 56862.93 56933.13 -28412.41 56852.81 56975.66

T&K Exponential -28469.95 56961.89 57058.41 -28457.31 56954.63 57130.12
T&K Hyperbolic -28419.24 56860.49 56957.01 -28406.23 56852.45 57027.95
Prelec Exponential -28467.34 56956.69 57053.21 -28455.01 56950.01 57125.51
Prelec Hyperbolic -28414.37 56850.75 56947.27 -28401.50 56842.99 57018.49

Notes: Linear stands for linear probabilities which is equivalent to EUT; T&K stands for Tversky and
Kahneman’s (1992) probability weighting function; Prelec stands for Prelec’s (1998) probability weighting
function; Bold numbers indicate the lowest number column-wise, highlighting which model performs better
than other.

Table 7 shows the estimates of the structural parameters for EUT and RDU that are modeled

as a function of two sets of dummy variables. Models (1) and (2) use the wave dummies while

models (3) and (4) use the event dummies. As evident, none of the wave or event dummies are

statistically significant, indicating remarkable stability of estimated risk and time preference

parameters across time. The estimated parameters also allow us to test the RDU model versus

the EUT by testing whether the parameter ar in the probability weighting function w(p) =

exp(−(−lnp)ar) is statistically different from 1.18 A joint significance test with respect to the

regressors of the ar parameter that a) the wave dummies in model (2) are 0 and the constant is

equal to 1, does not reject the null (χ2 = 3.50, p-value = 0.321), b) the event dummies in model

(4) are 0 and the constant is equal to 1, does not reject the null (χ2 = 4.97, p-value = 0.548),

indicating that EUT is a better descriptive model of subjects’ risk preferences.

17Note that in the estimations of Table 6, we removed choices of 35 cases where subjects chose the dominated
option (i.e., the lottery offering a lower amount of money over certainties) in the last choice of the Holt and Laury
(2002) task. We also removed choices from 17 cases (associated with 11 unique subjects) where after geolocating
their IP addresses, we found they responded in the 2020A or the 2020B wave from abroad. This is because
living abroad at the time of the pandemic likely disassociates behavior with the key events that happened in
this period inside the country.

18When ar = 1 then w(p) = p.
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Table 7: Structural estimates

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.542∗∗∗ (0.026) 0.506∗∗∗ (0.034) 0.542∗∗∗ (0.026) 0.506∗∗∗ (0.034)
2020A wave 0.032 (0.038) 0.016 (0.049)
2020B wave -0.023 (0.039) -0.027 (0.051)

2020 events:

Before first case 0.052 (0.045) 0.047 (0.057)
Before first death 0.024 (0.055) -0.000 (0.069)
Before curfew -0.056 (0.093) -0.105 (0.123)
Curfew starts 0.016 (0.048) -0.009 (0.061)
Curfew announced relaxation -0.069 (0.049) -0.050 (0.067)

αr

Constant 0.902∗∗∗ (0.055) 0.901∗∗∗ (0.055)
2020A wave -0.044 (0.078)
2020B wave -0.011 (0.083)

2020 events:

Before first case -0.013 (0.092)
Before first death -0.064 (0.105)
Before curfew -0.135 (0.179)
Curfew starts -0.070 (0.095)
Curfew announced relaxation 0.052 (0.113)

K
Constant 0.208∗∗∗ (0.015) 0.225∗∗∗ (0.018) 0.208∗∗∗ (0.015) 0.225∗∗∗ (0.018)
2020A wave -0.016 (0.021) -0.008 (0.026)
2020B wave 0.030 (0.023) 0.034 (0.029)

2020 events:

Before first case -0.028 (0.024) -0.025 (0.029)
Before first death -0.008 (0.030) 0.004 (0.037)
Before curfew 0.027 (0.053) 0.052 (0.074)
Curfew starts 0.011 (0.029) 0.028 (0.036)
Curfew announced relaxation 0.052∗ (0.029) 0.043 (0.036)

µ 0.131∗∗∗ (0.003) 0.128∗∗∗ (0.003) 0.131∗∗∗ (0.003) 0.128∗∗∗ (0.003)
ν 0.067∗∗∗ (0.002) 0.066∗∗∗ (0.002) 0.067∗∗∗ (0.002) 0.066∗∗∗ (0.002)
N 47800 47800 47800 47800
Log-likelihood -28423.46 -28414.37 -28412.41 -28401.50
AIC 56862.927 56850.745 56852.811 56842.994
BIC 56933.125 56947.268 56975.658 57018.490

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category
is the 2019 wave which is captured by the constant for each parameter.
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The results are similar if we constrain the sample to only those for which we have their data

for at least two waves (see Table A1 in the Electronic Supplementary Material) or to only those

for which we have their data for all three waves (see Table A2 in the Electronic Supplementary

Material) or to only those that the electronic payment transaction went through after the end

of the experiment (see Table A3 in the Electronic Supplementary Material).

Another way to augment the models of Table 7 is by including variables related to the

perception of the pandemic or attitudes, and coping with it. We first constructed measures of

the number of deaths and cases at the level of administrative regions of the country, adjusted

for the population size (i.e., number of deaths and cases were divided by the population size of

the respective region). We achieved this by matching IP (Internet Protocol) address geolocation

data with the number of recorded deaths and cases in the respective administrative region the

day each subject responded.19 Naturally, these measures take a value of zero for dates before the

onset of the pandemic. Table A4 in the Electronic Supplementary Material shows that the vast

majority of responses (> 90%) originated from the cities of Athens/Piraeus and Thessaloniki

which account for roughly 40% of the population in the country.

Models (1) and (2) in Table 8 show the structural parameter estimates when adding a gender

dummy and the cases/deaths variables in the models for EUT and RDU, respectively. Models

(3) and (4) constrain the sample to the 2020B wave and augment the set of regressors for the

structural parameters with a set of variables from questions that where included in the last

wave, in order to capture attitudes and behavior with respect to the pandemic.20

As evident in Table 8, none of the variables of interest has a statistically significant effect.

Although some variables are shown to be statistically significant in the RDU models, note that

19We queried the recorded IP addresses collected by Qualtrics with http://ip-api.com which is an appli-
cation programming interface that allows to query IP addresses and returns back location data at the level of
region/city in the country. The number of deaths/cases per day and per region is maintained and curated by
iMEdD’s (Incubator for Media Education and Development) content production division. iMEdD is a non profit
organization founded with a donation of Stavros Niarchos Foundation with a mission to support and promote the
transparency, credibility and independence in journalism on the grounds of securing meritocracy and excellence in
the field. The data can be found in iMEdD’s GitHub repository: https://github.com/iMEdD-Lab/open-data.

20The set of variables includes: a) dummies about perception of how effective social distancing is with possible
answers being i) very inefficient or inefficient, ii) neither inefficient, nor efficient, iii) efficient iv) very efficient, b)
a dummy about whether the respondent has family members or others in their inner circle considered a high risk
group, c) a composite score variable capturing whether respondents are stressed about the pandemic situation.
This composite score variable was constructed as the sum of five variables that respondents answered on a five
Likert scale ranging from ‘highly disagree’ to ‘highly agree’: i) I’m nervous/stressed ii) I’m calm/relaxed (reverse
coded) iii) I worry about my health iv) I worry about the health of members of my family v) I feel stressed
when I have to leave home, d) a composite variable capturing whether respondents’ tendency to attribute the
virus or the pandemic in conspiracy theories or misconceptions about the virus. This composite score variable
was constructed as the sum of five variables that respondents answered on a five Likert scale ranging from ‘very
unlikely’ to ‘very likely’: i) Coronavirus was made in a lab in China, got out of control and transmitted to
the population ii) Coronavirus was made in a US lab and US soldiers then infected the population in China
iii) Coronavirus is a zoonosis that spread from animals to humans (reverse coded) iv) Coronavirus is no more
dangerous than common flu v) Coronavirus was invented as a pretense for limiting personal liberties.
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Table 8: Structural estimates with number of cases/deaths and other coronavirus related
control variables

All waves Constrained to 3rd wave
EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.573∗∗∗ (0.033) 0.502∗∗∗ (0.056) 0.139 (0.559) 0.259 (0.192)
Before first case 0.037 (0.049) 0.052 (0.080)
Before first death 0.014 (0.055) -0.007 (0.071)
Before curfew -0.066 (0.096) -0.097 (0.134)
Curfew starts -0.037 (0.078) -0.146 (0.115)
Curfew announced relaxation -0.192 (0.125) -0.358∗ (0.203)
Males -0.064 (0.045) 0.015 (0.084) 0.133 (0.383) 0.027 (0.059)
N of cases/100K population 0.000 (0.005) 0.001 (0.005) 0.001 (0.015) -0.000 (0.002)
N of deaths/100K population 0.048 (0.137) 0.146 (0.188) -0.008 (0.342) 0.212∗∗∗ (0.068)

Is social distancing effective?

Neither inefficient, nor efficient 0.074 (0.898) 0.077 (0.174)
Efficient 0.088 (0.785) 0.006 (0.209)
Very efficient 0.026 (0.741) 0.069 (0.195)
Close ones in high risk group 0.012 (0.301) 0.149 (0.114)
Coronavirus stress score 0.009 (0.025) -0.006 (0.008)
Conspiracy theories score 0.012 (0.035) -0.006 (0.010)

αr

Constant 0.825∗∗∗ (0.079) 1.167∗∗ (0.485)
Before first case 0.011 (0.114)
Before first death -0.067 (0.097)
Before curfew -0.109 (0.182)
Curfew starts -0.252∗∗ (0.127)
Curfew announced relaxation -0.328∗ (0.189)
Males 0.214 (0.130) -0.031 (0.164)
N of cases/100K population 0.006 (0.008) 0.002 (0.009)
N of deaths/100K population 0.137 (0.328) 0.589 (0.381)

Is social distancing effective?

Neither inefficient, nor efficient -0.248 (0.354)
Efficient -0.355 (0.350)
Very efficient -0.422 (0.358)
Close ones in high risk group 0.359 (0.311)
Coronavirus stress score -0.034 (0.032)
Conspiracy theories score -0.024 (0.027)

K
Constant 0.191∗∗∗ (0.020) 0.228∗∗∗ (0.035) 0.390 (0.323) 0.363∗∗∗ (0.089)
Before first case -0.017 (0.027) -0.028 (0.044)
Before first death -0.003 (0.030) 0.007 (0.039)
Before curfew 0.025 (0.054) 0.039 (0.081)
Curfew starts 0.004 (0.047) 0.068 (0.075)
Curfew announced relaxation 0.072 (0.079) 0.176 (0.145)
Males 0.033 (0.028) -0.011 (0.050) -0.079 (0.204) -0.011 (0.023)
N of cases/100K population 0.002 (0.003) 0.003 (0.002) 0.002 (0.007) 0.002∗∗ (0.001)
N of deaths/100K population -0.060 (0.087) -0.132 (0.108) -0.039 (0.203) -0.146∗∗∗ (0.020)

Is social distancing effective?

Neither inefficient, nor efficient -0.011 (0.470) -0.031 (0.063)
Efficient -0.015 (0.407) 0.013 (0.081)
Very efficient 0.007 (0.382) -0.027 (0.071)
Close ones in high risk group 0.006 (0.181) -0.085 (0.054)
Coronavirus stress score -0.007 (0.014) 0.001 (0.003)
Conspiracy theories score -0.005 (0.021) 0.004 (0.005)

µ 0.130∗∗∗ (0.003) 0.127∗∗∗ (0.003) 0.133∗∗∗ (0.012) 0.131∗∗∗ (0.006)
ν 0.067∗∗∗ (0.002) 0.066∗∗∗ (0.002) 0.064∗∗∗ (0.004) 0.063∗∗∗ (0.004)
N 47250 47250 16650 16650
Log-likelihood -27998.79 -27973.346 -9658.032 -9590.938
AIC 56037.587 56004.692 19360.064 19245.876
BIC 56212.852 56258.825 19529.908 19492.921

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
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a joint significance test that the coefficients of the regressors of the ar parameter are equal to 0

and the constant equal to 1, fails to reject the null for model (2) (χ2 = 4.97, p-value = 0.548)

and model (4) (χ2 = 8.69, p-value = 0.562).

One could also be tempted to use the cases/deaths variables as an intensity of exposure

to treatment variable by exploiting the geographical dispersion of students after the curfew.

Although the strategy of exploiting the geographical dispersion of students after a lockdown has

been used in the literature (Lohmann et al., 2020), the vast majority of our sample of students

are located inside the Athens/Piraeus metropolitan area and the percentage of them are virtually

similar in the pre-pandemic wave in 2019 and in the 2020B wave after the curfew (82.3% vs

83.2%). Thus, we don’t observe widespread dispersion of students out of the university’s region

after the lockdown. Nevertheless, we also estimated a generalized difference-in-difference model

(DID) where the continuous treatment variable is the number of coronavirus cases in the area

where the subject is taking the survey and interacted this treatment intensity variable with the

wave dummies. However, none of the interaction terms was statistically significant and did not

pursue this strategy further.

4 Stated preferences measures for risk and time prefer-

ences

In this section, we examine the potential effects of the pandemic on stated measures of risk

and time preferences. Economists are typically skeptical about whether self-reported measures of

attitudes and traits are meaningful measures of preferences. However, due to budget constrains

(as well as due to unforeseen obstacles posed by a pandemic), conducting large scale laboratory

experiments to elicit preferences from representative samples is usually infeasible. Furthermore,

although incentivized measures of risk and time preferences have been found to perform fairly

well in predicting real life financial decisions, there is doubt on whether they can be generalized

to important domains of life other than financial decision-making (see discussions in Arslan et al.,

2020; Drichoutis and Vassilopoulos, 2016). Therefore, it may be important for completeness to

examine popular stated risk and time preference measures along side incentivized measures.

We included a battery of questions across all waves that elicited three measures of risk

preferences and three measures of time preferences. For time preferences, we included self-

reported general purpose measures for patience and impulsivity (Vischer et al., 2013) as well as

the 15-item abbreviated form (Spinella, 2007) of the Barratt Impulsiveness Scale (BIS), designed

to assess the personality trait of impulsiveness (Patton et al., 1995).

For risk preferences, we elicited a general measure of risk-taking propensity, asking respon-

dents to state their risk perception of themselves on a 0-10 scale (‘Are you generally a person
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who is fully prepared to take risks or do you try to avoid taking risks?’, anchored by ‘Not willing

at all to take risk’ and ‘Very willing to take risk’) (Dohmen et al., 2011). We also included a

risk investment question that asks respondents to place themselves in a situation where they

have won e100,000 in a lottery and they have to decide how much to invest in a 50/50 lot-

tery with the potential to double the money or lose the investment.21 Possible answers range

from nothing to the full amount with steps of e20,000. A final measure of risk that we utilize

is a 15-item version of Weber et al.’s (2002) Domain-Specific Risk-Taking (DOSPERT) scale

(Drichoutis and Vassilopoulos, 2016).

Table 9: OLS and ordered logit regressions

Time preferences Risk preferences
Patience Impulsiveness BIS General risk taking Risk investment DOSPERT

(1) (2) (3) (4) (5) (6)
Constant - - 29.743∗∗∗ - 26.648∗∗∗ 49.772∗∗∗

- - (0.359) - (1.436) (0.928)
2020A wave -0.005 0.106 0.407 -0.051 -1.525 -1.527

(0.154) (0.155) (0.448) (0.142) (1.874) (1.205)
2020B wave -0.204 -0.103 0.739 -0.266 0.744 -0.074

(0.209) (0.202) (0.720) (0.237) (3.153) (1.927)
Males 0.362∗∗∗ 0.201 -0.745∗∗ 0.505∗∗∗ 5.327∗∗∗ 5.437∗∗∗

(0.124) (0.122) (0.376) (0.128) (1.674) (1.047)
N of cases/100K
population

0.005 0.005 -0.048 0.014 -0.149 -0.036

(0.012) (0.009) (0.039) (0.012) (0.164) (0.084)
N of deaths/100K
population

0.061 0.088 0.764 -0.336 2.427 -0.752

(0.241) (0.186) (0.812) (0.243) (3.307) (1.818)
N 986 986 986 986 986 986
Log-likelihood -2196.566 -2184.522 - -1982.754 - -
AIC 4423.132 4399.044 - 3995.508 - -
BIC 4496.537 4472.449 - 4068.913 - -
R2 - - 0.007 - 0.013 0.035
R2-adjusted - - 0.002 - 0.008 0.030

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).

Table 9 and Table 10 show the ordered logit coefficients for models (1), (2) and (4) that

account for the ordinal nature of the dependent variables and OLS regressions for all other

models. Table 9 uses the wave dummies and Table 10 uses the event dummies. Reported

standard errors are clustered standard errors.22 As evident, the only robust effect across all

21The risk investment measure has been found to be a strong predictor for decisions in the financial domain
(Dohmen et al., 2011) and has been reported to have a significant relationship with the incentivized Holt and
Laury (2002) risk preferences elicitation task (Leuermann and Roth, 2012).

22We report only the coefficient estimates for ordered logit models instead of the marginal effects (which
would take considerably more space to show) since statistical significance of marginal effects follows statistical
significance of the raw coefficients and the sign of the marginal effects changes exactly once when one moves
from the smallest to the highest category, a property known as the single crossing property (Drichoutis et al.,
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specifications is the gender dummy. With respect to time preferences, males are more likely

to be patient than females and they tend to have lower scores on the BIS, indicating lower

impulsiveness. With respect to risk preferences, males are more likely to state they are willing

to take risks, invest a higher amount in the risky investment and score higher in the DOSPERT

scale. Note that, despite the statistically significant effect of gender on stated measures of

risk and time preferences, gender did not statistically significantly affect any of the structural

parameters reported in the previous section.

Table 10: OLS and ordered logit regressions with event dummies

Patience Impulsiveness BIS General risk taking Risk investment DOSPERT
(1) (2) (3) (4) (5) (6)

Constant - - 29.739∗∗∗ - 26.614∗∗∗ 49.766∗∗∗

- - (0.359) - (1.438) (0.929)
Before first case 0.101 0.153 0.677 0.030 -0.093 -0.758

(0.181) (0.192) (0.524) (0.164) (2.216) (1.425)
Before first death -0.306 0.147 0.048 -0.220 -5.151∗∗ -2.009

(0.210) (0.205) (0.598) (0.206) (2.520) (1.730)
Before curfew 0.526 -0.342 0.146 0.059 3.677 -4.302∗

(0.371) (0.363) (1.279) (0.270) (4.900) (2.300)
Curfew starts -0.193 -0.114 0.740 -0.261 0.823 -0.072

(0.211) (0.203) (0.727) (0.239) (3.145) (1.946)
Curfew announced
relaxation

-0.213 -0.110 0.242 -0.366 1.826 -3.428

(0.278) (0.287) (0.961) (0.339) (4.909) (3.182)
Males 0.370∗∗∗ 0.203∗ -0.734∗ 0.511∗∗∗ 5.422∗∗∗ 5.454∗∗∗

(0.124) (0.122) (0.376) (0.128) (1.675) (1.046)
N of cases/100K
population

0.003 0.007 -0.052 0.013 -0.151 -0.060

(0.012) (0.009) (0.040) (0.012) (0.162) (0.087)
N of deaths/100K
population

0.099 0.063 1.027 -0.273 2.061 1.018

(0.274) (0.217) (0.908) (0.277) (3.668) (2.295)
N 986 986 986 986 986 986
Log-likelihood -2193.420 -2183.530 - -1981.908 - -
AIC 4422.840 4403.060 - 3999.817 - -
BIC 4510.926 4491.146 - 4087.903 - -
R2 - - 0.008 - 0.018 0.039
R2-adjusted - - -0.000 - 0.010 0.031

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).

Lastly, Table 11 shows estimates when the sample is constrained to the 2020B wave (robust

standard errors are reported) and includes the same set of coronavirus related variables as in

Table 8. An additional result that comes out of this table is that perceiving social distancing

measures as more efficient, is related to a higher likelihood of the subject being patient and

a lower score in the BIS, showing lower impulsivity. In addition, the stress score variable

2006; Greene and Hensher, 2010).
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related to coronavirus is associated with a lower BIS score (indicating lower impulsivity), a

lower likelihood of willingness to take risks and a lower score in the DOSPERT scale (indicating

lower risk taking).

Table 11: OLS and ordered logit regressions with coronavirus related control variables (sample
constrained to the 2020B wave)

Patience Impulsiveness BIS General risk taking Risk investment DOSPERT
(1) (2) (3) (4) (5) (6)

Constant - - 33.983∗∗∗ - 33.633∗∗∗ 61.431∗∗∗

- - (2.069) - (8.159) (4.853)
Males 0.285 0.233 -0.724 0.414∗ 2.904 5.356∗∗∗

(0.230) (0.256) (0.675) (0.240) (2.919) (1.775)
N of cases/100K popula-
tion

0.006 0.007 -0.047 0.014 -0.161 -0.006

(0.015) (0.011) (0.038) (0.012) (0.166) (0.080)
N of deaths/100K popu-
lation

0.181 0.130 0.573 -0.362 2.132 -1.120

(0.300) (0.234) (0.790) (0.250) (3.311) (1.698)
Neither inefficient, nor
efficient

0.253 0.315 -0.013 0.356 -1.250 0.902

(0.387) (0.395) (1.136) (0.385) (4.338) (3.012)
Efficient 0.469 0.611∗ -1.722∗ -0.379 -1.289 -2.008

(0.349) (0.325) (1.016) (0.344) (3.316) (2.559)
Very efficient 1.351∗∗∗ 0.627 -2.541∗∗ -0.054 -1.386 -1.751

(0.421) (0.391) (1.231) (0.407) (4.335) (2.953)
Close ones in high risk
group

-0.242 -0.290 1.214 0.488∗ 4.133 1.541

(0.265) (0.243) (0.776) (0.257) (3.055) (1.934)
Coronavirus stress score -0.034 0.057∗ -0.175∗∗ -0.070∗∗∗ -0.358 -1.151∗∗∗

(0.029) (0.029) (0.086) (0.027) (0.350) (0.206)
Conspiracy theories score -0.002 -0.015 -0.045 0.035 -0.177 0.272

(0.025) (0.027) (0.083) (0.026) (0.318) (0.203)
N 347 347 347 347 347 347
Log-likelihood -728.986 -710.426 - -678.238 - -
AIC 1495.972 1458.852 - 1392.475 - -
BIC 1569.109 1531.989 - 1461.763 - -
R2 - - 0.054 - 0.018 0.154
R2-adjusted - - 0.029 - -0.009 0.131

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).

Overall, we conclude that the stated measures of risk and time preferences reported in this

section also show stability across time and during the pandemic period. This corroborates well

with the null effect reported on the structural parameters of risk and time preferences from the

incentivized tasks.

28



5 Conclusions

Risk and time preferences are key factors considered in many economic models since they

have important impacts on a variety of outcomes. A growing debate in the literature is about

the assumption of stability of RTPs. This is an important issue since it can have significant

implications and consequences for human behavior and economic decision making. For example,

RTPs can affect an individual’s valuation of the future and willingness to take risks, which can

then influence, among others, health and labor outcomes. Our study adds to a stream of

literature that examines the effect of major negative shocks on peoples RTPs. We specifically

focus on undoubtedly one of the biggest negative shocks that the world has experienced, the

COVID-19 pandemic.

While there has been an emerging set of studies that examine how risk or time preferences

have evolved over the course of the pandemic (Angrisani et al., 2020; Bu et al., 2020; Ikeda et al.,

2020; Lohmann et al., 2020; Shachat et al., 2020), this study offers several advancements. First,

unlike other studies, we jointly elicited and estimated the structural parameters for various

theories of risk and time preferences from a fairly large sample of more than 300 subjects per

wave (for a total of about 1,000 responses). Given that most studies are focused on samples

from China and only one of them measures time preferences, our study is the only one providing

structural estimates for time preferences for subjects from Europe. Furthermore, our study is

unique in that we spread data collection in each wave over a relatively long period which allowed

us to record multiple key events in the timeline of the pandemic.

Using estimated structural parameters for various theories of risk and time preferences from

the incentivized tasks, our results clearly indicate that there are no significant differences in

RTPs across the different waves of our data, before and during the pandemic. We also get

similar conclusions coming out of the stated preferences measures. Overall, our subjects exhibit

intertemporal stability of risk and time preferences despite the very disruptive effect of the

COVID-19 pandemic on people’s lives and the global economy.

This finding is important since it suggests that RTPs may not be that malleable even amid

catastrophic events such as pandemics. This can significantly simplify and help policy and wel-

fare analyses given that these are typically conducted under the assumption that preferences

are stable. A worry among economists is that instability of preferences over time could de-

prive economics of a clean analytical foundation for welfare analysis and policy development

(Schildberg-Hörisch, 2018). Our study provides evidence about the stability of preferences that

will further help us in our understanding of individual decision-making and outcomes. At the

very least, it tells us that RTPs are critical characteristics of human beings that can be stable

over a period of time (e.g., few years) despite an exogenous shock in the form of a pandemic.

Future studies should examine, however, if this stability persists in the longer term, way after
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an exogenous shock. It is possible that the last wave of our data has not incorporated the full

impact of the financial crisis brought about by the pandemic. Hence, it is important to know

the longer term effect of an exogenous shock since it can help new policies predict behavioral

responses more adequately.
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Arslan, R. C., M. Brómmer, T. Dohmen, J. Drewelies, R. Hertwig, and G. G. Wagner (2020).

How people know their risk preference. CESifo Working Paper Series No. 8586 .

Beine, M., G. Charness, A. Dupuy, and M. Joxhe (2020). Shaking things up: On the stability

of risk and time preferences. IZA Discussion Papers No. 13084 .

Bellucci, D., G. Fuochi, and P. Conzo (2020). Childhood exposure to the second world war and

financial risk taking in adult life. Journal of Economic Psychology 79, 102196.

31



Bu, D., T. Hanspal, Y. Liao, and Y. Liu (2020). Risk taking during a global crisis: Evidence

from Wuhan. Available at SSRN: https: // ssrn .com/ abstract= 3559870 .

Callen, M. (2015). Catastrophes and time preference: Evidence from the indian ocean earth-

quake. Journal of Economic Behavior & Organization 118, 199 – 214.

Callen, M., M. Isaqzadeh, J. D. Long, and C. Sprenger (2014, January). Violence and risk

preference: Experimental evidence from afghanistan. American Economic Review 104 (1),

123–48.

Cameron, L. and M. Shah (2015). Risk-taking behavior in the wake of natural disasters. Journal

of Human Resources 50 (2), 484–515.

Cassar, A., A. Healy, and C. von Kessler (2017). Trust, risk, and time preferences after a natural

disaster: Experimental evidence from thailand. World Development 94, 90 – 105.

Chuang, Y. and L. Schechter (2015). Stability of experimental and survey measures of risk,

time, and social preferences: A review and some new results. Journal of Development Eco-

nomics 117, 151 – 170.

Clarke, K. A. (2003). Nonparametric model discrimination in international relations. Journal

of Conflict Resolution 47 (1), 72–93.

Coller, M. and M. Williams (1999). Eliciting individual discount rates. Experimental Eco-

nomics 2 (2), 107–127.

Crosetto, P. and A. Filippin (2012). The “bomb” risk elicitation task. SOEPpapers on Multi-

disciplinary Panel Data Research No 517 .

Dohmen, T., A. Falk, D. Huffman, U. Sunde, J. Schupp, and G. G. Wagner (2011). Individual

risk attitudes: Measurement, determinants, and behavioral consequences. Journal of the

European Economic Association 9 (3), 522–550.

32



Drichoutis, A. and A. Vassilopoulos (2016). Intertemporal stability of survey-based measures

of risk and time preferences over a three-year course. Working Papers 2016-3, Agricultural

University of Athens, Department Of Agricultural Economics.

Drichoutis, A. C., P. Lazaridis, and J. R. M. Nayga (2006). Heteroskedasticity, the single

crossing property and ordered response models. Economics Bulletin 3 (31), 1–6.

Drichoutis, A. C. and J. L. Lusk (2016). What can multiple price lists really tell us about risk

preferences? Journal of Risk and Uncertainty 53 (2), 89–106.

Eckel, C. C., M. A. El-Gamal, and R. K. Wilson (2009). Risk loving after the storm: A

bayesian-network study of hurricane Katrina evacuees. Journal of Economic Behavior &

Organization 69 (2), 110 – 124.

Greene, W. H. and D. A. Hensher (2010). Modeling ordered choices: A primer. Cambridge,

UK: Cambridge University Press.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE.

Journal of the Economic Science Association 1 (1), 114–125.

Hanaoka, C., H. Shigeoka, and Y. Watanabe (2018, April). Do risk preferences change? ev-

idence from the great east japan earthquake. American Economic Journal: Applied Eco-

nomics 10 (2), 298–330.

Harrison, G. W., M. I. Lau, and M. B. Williams (2002). Estimating individual discount rates

in denmark: A field experiment. The American Economic Review 92 (5), 1606–1617.

Harrison, G. W. and J. M. Ng (2016). Evaluating the expected welfare gain from insurance.

Journal of Risk and Insurance 83 (1), 91–120.

Harrison, G. W. and J. T. Swarthout (2021). Cumulative prospect theory in the laboratory: A

reconsideration. In G. W. Harrison and D. Ross (Eds.), Models of Risk Preferences: Descrip-

tive and Normative Challenges. Bingley, Emerald, UK.

33



Holt, C. A. (1986). Preference reversals and the independence axiom. The American Economic

Review 76 (3), 508–515.

Holt, C. A. and S. K. Laury (2002). Risk aversion and incentive effects. The American Economic

Review 92 (5), 1644–1655.

Ikeda, S., E. Yamamura, and Y. Tsutsui (2020). COVID-19 enhanced diminishing sensitivity in

prospect-theory risk preferences: A panel analysis. Discussion Paper No. 1106, The Institute

of Social and Economic Research, Osaka University .

Jetter, M., L. M. Magnusson, and S. Roth (2020). Becoming sensitive: Males risk and time

preferences after the 2008 financial crisis. European Economic Review 128, 103512.

Leuermann, A. and B. Roth (2012). Does good advice come cheap? - on the assessment of risk

preferences in the lab and the field. SOEPpapers on Multidisciplinary Panel Data Research

No 475 .

Lohmann, P., E. Gsottbauer, J. You, and A. Kontoleon (2020). Social preferences and economic

decision-making in the wake of COVID-19: Experimental evidence from China. Available at

SSRN: https: // ssrn .com/ abstract= 3705264 .

Luna, R. (2020, March 5). Coronavirus: il paziente tedesco. Available at

https://web.archive.org/web/20200816091422/https://rep.repubblica.it/pwa/

generale/2020/03/05/news/coronavirus-250377117/. Last accessed on August 16,

2020.

Mazur, J. E. (1984). Tests of an equivalence rule for fixed and variable reinforcer delays. Journal

of Experimental Psychology: Animal Behavior Processes 10 (4), 426–436.

Norwood, B. F., M. C. Roberts, and J. L. Lusk (2004). Ranking crop yield models using out-of-

sample likelihood functions. American Journal of Agricultural Economics 86 (4), 1032–1043.

Page, L., D. A. Savage, and B. Torgler (2014). Variation in risk seeking behaviour following

large losses: A natural experiment. European Economic Review 71, 121 – 131.

34



Patton, J. H., M. S. Stanford, and E. S. Barratt (1995). Factor structure of the barratt impul-

siveness scale. Journal of Clinical Psychology 51 (6), 768–774.

Prelec, D. (1998). The probability weighting function. Econometrica 66 (3), 497–528.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organiza-

tion 3 (4), 323–343.

Read, D., S. Frederick, B. Orsel, and J. Rahman (2005). Four score and seven years from now:

The date/delay effect in temporal discounting. Management Science 51 (9), 1326–1335.
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On the stability of risk and time preferences amid the
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A Experimental instructions

Instructions were provided in electronic form in Qualtrics. This is a translation of the original
instructions written in Greek.
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The effect of the coronavirus pandemic on risk and time preferences (#38063)
Created: 03/26/2020 03:53 PM (PT)

Public:    11/20/2020 12:06 PM (PT)Author(s)
Andreas Drichoutis (Agricultural University of Athens) - adrihout@gmail.com

Rodolfo Nayga (University of Arkansas) - rnayga@uark.edu

1) Have any data been collected for this study already?

It's complicated. We have already collected some data but explain in Question 8 why readers may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

We will examine whether risk/time preferences change during the outbreak of the coronavirus and at key points of the timeline of events as defined by

response measures to slow the spread taken by the government.

3) Describe the key dependent variable(s) specifying how they will be measured.

Subjects make incentivized discrete choices between lottery options and sooner vs later amounts of money. We use these discrete choices as the

dependent variable to estimate structural econometric models of risk and time preferences.

4) How many and which conditions will participants be assigned to?

Three conditions: 

Condition 1: Subjects choices are elicited until a couple of days later after the occurrence of the first death (in March 12) from the coronavirus in the

country in 2020 (January 29 - March 17). 

Condition 2: Subjects are then re-invited to participate in the survey eliciting their risk/time measures after the onset of the curfew in the country (March

23).

Condition 3: Data will be also compared with a wave of subjects from last year (where no pandemic occurred). Data collection was for the period

30/1/2019 to 20/3/2019.

5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

We will jointly estimate structural econometric models of risk and time preferences. We will try estimating competing models of EUT, RDU with various

errors stories and hyperbolic/exponential discounting functions. We will select the best fitting model based on information criteria. The models will also be

estimated with dummies indicating the major time events during the spread of the coronavirus epidemic (e.g., first reported case, first reported death,

curfew initiated etc.). Results will also be compared with risk/time preferences estimates from last year’s wave characterized by the absence of a

pandemic.

Additional basic demographic controls will be introduced in the models to compare with models without controls.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

We will exclude subjects that chose the dominated option in the Holt and Laury task and subjects with no variation in their choices.

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

We will invite 501 subjects to participate in the wave after the onset of the curfew in the country. This is the overlap of subjects that participated in the

2019 wave and subjects that participated in the wave before the onset of the curfew.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)

This study is pre-registered midway the data collection. This is because we had originally planned to collect data up to March 17, 2020 but then the

coronavirus pandemic occurred halfway the project. 

Data are collected annually for purposes of having a battery of measures for part of the student population in case these need to be matched later with

other experimental data. The idea came when the coronavirus pandemic started in Greece and we thought it would be a good opportunity to re-invite

subjects that had participated before the curfew due to the coronavirus. The start of the second wave in 2020, coincided with the curfew enforcement in

the country. We have already collected incentivized data for risk and time preferences for subjects that participated in the 2019 wave (where no pandemic

occurred) which will be used for comparison purposes.

Available at https://aspredicted.org/8aj68.pdf 
(Permanently  archived at http://web.archive.org/web/*/https://aspredicted.org/8aj68.pdf)

Version of AsPredicted Questions: 2.00
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C Additional Tables

Table A1: Structural estimates (sample restricted to those that participated to at least two
waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.537∗∗∗ (0.030) 0.497∗∗∗ (0.038) 0.537∗∗∗ (0.030) 0.496∗∗∗ (0.038)
2020A wave 0.031 (0.043) 0.016 (0.054)
2020B wave -0.022 (0.042) -0.027 (0.055)

2020 events:

Before first case 0.048 (0.050) 0.038 (0.063)
Before first death 0.034 (0.058) 0.016 (0.073)
Before curfew -0.089 (0.104) -0.132 (0.139)
Curfew starts 0.018 (0.050) 0.001 (0.065)
Curfew announced relaxation -0.070 (0.052) -0.064 (0.070)

αr

Constant 0.891∗∗∗ (0.062) 0.889∗∗∗ (0.062)
2020A wave -0.042 (0.087)
2020B wave -0.014 (0.089)

2020 events:

Before first case -0.026 (0.103)
Before first death -0.048 (0.113)
Before curfew -0.120 (0.199)
Curfew starts -0.048 (0.102)
Curfew announced relaxation 0.015 (0.116)

K
Constant 0.210∗∗∗ (0.017) 0.229∗∗∗ (0.020) 0.210∗∗∗ (0.017) 0.229∗∗∗ (0.020)
2020A wave -0.013 (0.023) -0.004 (0.029)
2020B wave 0.028 (0.024) 0.033 (0.030)

2020 events:

Before first case -0.020 (0.027) -0.015 (0.033)
Before first death -0.013 (0.031) -0.003 (0.038)
Before curfew 0.037 (0.061) 0.059 (0.083)
Curfew starts 0.012 (0.030) 0.024 (0.038)
Curfew announced relaxation 0.049 (0.031) 0.047 (0.038)

µ 0.129∗∗∗ (0.003) 0.126∗∗∗ (0.003) 0.129∗∗∗ (0.003) 0.126∗∗∗ (0.003)
ν 0.065∗∗∗ (0.002) 0.063∗∗∗ (0.002) 0.065∗∗∗ (0.002) 0.063∗∗∗ (0.002)
N 40700 40700 40700 40700
Log-likelihood -23924.699 -23915.255 -23909.657 -23899.064
AIC 47865.398 47852.510 47847.314 47838.128
BIC 47934.310 47947.264 47967.910 48010.408

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category
is the 2019 wave which is captured by the constant for each parameter.
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Table A2: Structural estimates (sample restricted to those that participated to all three waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.589∗∗∗ (0.038) 0.560∗∗∗ (0.050) 0.589∗∗∗ (0.038) 0.557∗∗∗ (0.050)
2020A wave -0.075 (0.061) -0.052 (0.075)
2020B wave -0.042 (0.064) -0.041 (0.084)

2020 events:

Before first case -0.013 (0.076) -0.007 (0.090)
Before first death -0.150∗ (0.086) -0.121 (0.108)
Before curfew -0.118 (0.130) -0.033 (0.172)
Curfew starts 0.026 (0.078) 0.030 (0.100)
Curfew announced relaxation -0.142 (0.088) -0.167 (0.114)

αr

Constant 0.919∗∗∗ (0.089) 0.913∗∗∗ (0.089)
2020A wave 0.067 (0.133)
2020B wave 0.001 (0.148)

2020 events:

Before first case 0.018 (0.157)
Before first death 0.083 (0.185)
Before curfew 0.253 (0.345)
Curfew starts 0.011 (0.173)
Curfew announced relaxation -0.076 (0.186)

K
Constant 0.184∗∗∗ (0.021) 0.198∗∗∗ (0.025) 0.184∗∗∗ (0.021) 0.199∗∗∗ (0.025)
2020A wave 0.026 (0.032) 0.015 (0.037)
2020B wave 0.028 (0.035) 0.028 (0.043)

2020 events:

Before first case 0.000 (0.041) -0.003 (0.047)
Before first death 0.055 (0.043) 0.040 (0.051)
Before curfew 0.052 (0.073) 0.010 (0.087)
Curfew starts 0.009 (0.046) 0.009 (0.057)
Curfew announced relaxation 0.053 (0.045) 0.065 (0.053)

µ 0.127∗∗∗ (0.005) 0.126∗∗∗ (0.005) 0.126∗∗∗ (0.005) 0.124∗∗∗ (0.005)
ν 0.061∗∗∗ (0.003) 0.060∗∗∗ (0.003) 0.060∗∗∗ (0.003) 0.060∗∗∗ (0.003)

N 16850 16850 16850 16850
Log-likelihood -9865.632 -9864.626 -9830.785 -9828.598
AIC 19747.265 19751.253 19689.570 19697.195
BIC 19809.121 19836.306 19797.820 19851.837

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category
is the 2019 wave which is captured by the constant for each parameter.
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Table A3: Structural estimates (sample constrained to only those that accepted electronic
bank transfer)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.546∗∗∗ (0.029) 0.508∗∗∗ (0.036) 0.546∗∗∗ (0.029) 0.507∗∗∗ (0.036)
2020A wave 0.027 (0.042) 0.013 (0.053)
2020B wave -0.026 (0.042) -0.028 (0.055)

2020 events:

Before first case 0.034 (0.050) 0.034 (0.063)
Before first death 0.047 (0.059) 0.018 (0.074)
Before curfew -0.088 (0.097) -0.122 (0.129)
Curfew starts 0.007 (0.052) -0.017 (0.066)
Curfew announced relaxation -0.067 (0.053) -0.047 (0.072)

αr

Constant 0.895∗∗∗ (0.060) 0.893∗∗∗ (0.060)
2020A wave -0.037 (0.085)
2020B wave -0.005 (0.090)

2020 events:

Before first case 0.002 (0.100)
Before first death -0.077 (0.111)
Before curfew -0.099 (0.187)
Curfew starts -0.068 (0.100)
Curfew announced relaxation 0.057 (0.123)

K
Constant 0.204∗∗∗ (0.016) 0.222∗∗∗ (0.019) 0.204∗∗∗ (0.016) 0.222∗∗∗ (0.019)
2020A wave -0.012 (0.022) -0.005 (0.028)
2020B wave 0.033 (0.024) 0.036 (0.030)

2020 events:

Before first case -0.017 (0.026) -0.017 (0.032)
Before first death -0.017 (0.030) -0.002 (0.038)
Before curfew 0.031 (0.054) 0.047 (0.074)
Curfew starts 0.020 (0.031) 0.038 (0.039)
Curfew announced relaxation 0.049 (0.030) 0.039 (0.038)

µ 0.133∗∗∗ (0.003) 0.130∗∗∗ (0.003) 0.132∗∗∗ (0.003) 0.130∗∗∗ (0.003)
ν 0.067∗∗∗ (0.003) 0.065∗∗∗ (0.003) 0.066∗∗∗ (0.003) 0.065∗∗∗ (0.003)
N 41850 41850 41850 41850
Log-likelihood -24922.902 -24914.645 -24908.082 -24897.777
AIC 49861.805 49851.291 49844.165 49835.555
BIC 49930.940 49946.351 49965.151 50008.392

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category
is the 2019 wave which is captured by the constant for each parameter.
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Table A4: Responses per region

Region N %
Athens 811 84.83

Thessaloniki 39 4.08
Piraeus 14 1.46
Achaea 8 0.84

Heraklion 7 0.73
West Attica 7 0.73

Cyclades 5 0.52
Dodecanese 5 0.52

Euboea 5 0.52
Argolis 4 0.42

Corinthia 4 0.42
Zakynthos 4 0.42
East Attica 3 0.31

Laconia 3 0.31
Larissa 3 0.31

Aetolia-Acarnania 2 0.21
Boeotia 2 0.21
Chania 2 0.21
Grevena 2 0.21
Imathia 2 0.21
Kozani 2 0.21

Magnesia 2 0.21
Messenia 2 0.21

Rethymno 2 0.21
Trikala 2 0.21
Arcadia 1 0.1
Chios 1 0.1

Karditsa 1 0.1
Kastoria 1 0.1
Lesbos 1 0.1

Phthiotis 1 0.1
Pieria 1 0.1

Abroad 7 0.73
Total 949
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