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Monte Carlo methods are used to compute exact posterior probabilities for each cluster cho-

sen and thus avoid the problem of increasing the overall probability of errors that plagues
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1 Introduction

With increasing power of data storages and processors, several applications have found the chance

to store and keep data for a long time. Thus, data in many applications have been stored in the

form of time-series data. Generally, a time-series is classified as dynamic data because its feature

values change as a function of time, which means that the values of each point of a time-series

are one or more observations that are made chronologically (see, e.g., Keogh and Kasetty (2003)

and Rani and Sikka (2012)). The intrinsic nature of a time-series is usually that the observations

are dependent or correlated. The Auto-Regressive Integrated Moving Average (ARIMA) processes

are a very general class of parametric models useful for describing dynamic data and their cor-

relations. This amount of time-series data has provided the opportunity of analysing time-series

for many researchers in data mining communities in the last decades. Consequently, many re-

searches and projects relevant to analyze time-series have been performed in various areas for

different purposes such as: subsequence matching; clustering; identifying patterns; trend analy-

sis; and forecasting. It has carried the need to develop many on-going research projects aimed to

improve the existing techniques (see, for instance, Zakaria et al. (2012) and Rakthanmanon et al.

(2012)).

Time-series data are of interest because of its pervasiveness in various areas such as: business;

finance; economic; health care; and government. Given a set of unlabeled time series, it is of-

ten desirable to determine groups (or clusters) of similar time-series. These time-series could be

monitoring data collected during different periods from a particular process or from more than

one process. Generally, clusters are formed by grouping objects that have maximum similarity

with other objects within the group, and minimum similarity with objects in other groups. It is

a useful approach for exploratory data analysis as it identifies structures in an unlabelled dataset

by objectively organizing data into similar groups. The goal of clustering is to identify structure

in an unlabeled data set by grouping data objects into a tree of homogeneous clusters, where the

within-group-object similarity is minimize and the between-group-object dissimilarity is max-

imized. Nevertheless, works devoting to the cluster analysis of time-series are relatively scant

compared with those focusing on static data. In addition, a pure hierarchical clustering method

suffers from its inability to perform adjustment once a merge or split decision has been executed.

Thus, for improving the clustering quality of hierarchical methods, there is a trend of increased

activity to integrate hierarchical clustering with other clustering techniques.
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My approach and empirical application aim to give a valid contribution to such topics. More

precisely, when dealing with time-series, a suitable measure to evaluate the similarities and dis-

similarities within the data becomes necessary and subsequently it exhibits a significant impact

on the results of clustering. This selection should be based upon the nature of time-series and the

application itself. In this context, hierarchical fuzzy clustering tends to hold a relevant compet-

itive position. It is a data mining technique where similar data are placed into related or homo-

geneous groups without advanced knowledge of the groups’ definitions. Fuzzy clustering is one

of the widely used clustering techniques where one data object is allowed to be in more than one

cluster to a different degree. Fuzzy C-Means (FCM) and Fuzzy C-Medoids (FCMdd) are the two

well-known and representative fuzzy clustering methods (see, e.g., Kannan et al. (2012), Izakian

et al. (2015), Kaufman and Rousseeuw (2009), and Liao (2005)). In both techniques, the objective

is to form a number of cluster centers and a partition matrix so that a given performance index

becomes minimized. FCM generates a set of cluster centers using a weighted average of data,

whereas FCMdd selects the cluster centers as some of the existing data points (medoids). They

aim is to minimize a weighted sum of distances between data points and cluster centers. The em-

pirical analysis conducted in this paper focuses on the only FCM algorithm for effective clustering

of ARIMA time-series.

My methodological contribution is based on two lines of research. First, the study on compar-

ative aspects of time-series clustering experiments (see, e.g., Keogh and Kasetty (2003), Aghabo-

zorgi et al. (2015), Kavitha and Punithavalli (2010), Liao (2005), D’Urso and Maharaj (2009), Ra-

moni et al. (2002), and Rani and Sikka (2012)). Second, the use of measures of similarity/dissimilarity

between univariate linear models (see, e.g., Piccolo (1990), Corduas and Piccolo (2008), Maharaj

(1996), Martin (2000), and Triacca (2016)). Thus, the main thrust of this study is to provide an

updated investigation on the trend of improvements in efficiency, quality and complexity of fuzzy

clustering time-series approaches, and highlight new paths for future works. I adapt the frame-

work of Pacifico (2020b), who develops a Robust Open Bayesian procedure for implementing

Bayesian Model Averaging (BMA) strategy and Markov Chain Monte Carlo (MCMC) methods in or-

der to deal with endogeneity issues and functional form misspecification in multiple linear regres-

sion models. In particular, the paper has three specific objectives. First, I develop a computational

approach to improve hierarchical fuzzy clustering time-series analysis when accounting for high

dimensional and noise problems in dynamic data and jointly dealing with endogeneity issues and

misspecified dynamics in multicountry setups. Second, in order to make operative the notion of
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distance between finite sets of ARIMA models, a Robust Weighted Distance (RWD) measure be-

tween stationary and invertible ARIMA processes is performed. It is r obust because the Bayesian

Model Selection (BMS) is performed with a set of conjugate informative priors in order to discover

the most probable set of clusters capturing different dynamics and interconnections among time-

varying data and wei g hted because each unlabeled time-series is ’adjusted’, on average, by own

Posterior Model Size (PMS) distribution1 in order to group dynamic data objects into ’ad hoc’ ho-

mogenous clusters where the within-group-object similarity is minimize and the between-group-

object dissimilarity is maximized. Third, a MCMC approach is used to move through the model

space and the parameter space at the same time in order to obtain a reduced set containing best

(possible) model solutions and thus exact posterior probabilities for each cluster chosen, dealing

with the problem of increasing the overall probability of errors that plagues classical statistical

methods based on significance tests. Here, best stands for the clustering model providing the

most accurate group of homogeneous time-series over all (possible) candidate processes. In this

context, Bayesian methods are used to reduce the dimensionality of the model, structure the time

variations, evaluate issues of endogeneity and structured model uncertainty, with one or more

parameters posited as the source of model misspecification problems. In this way, policies de-

signed to protect the economy against the worst-case consequences of misspecified dynamics

are less aggressive and good approximations of the estimated rule. The dimensionality reduction

is greatly important in clustering of time-series because: (i ) it reduces memory requirements as

all time-series cannot fit in the main memory; (i i ) distance calculation among dynamic data is

computationally expensive and thus dimensionality reduction significantly speeds up clustering;

and (i i i ) one may cluster time-series which are similar in noise instead of clustering them based

on similarity in shape.

Empirical and simulated examples describe the functioning and the performance of the proce-

dure. More precisely, I perform an empirical application for moderate time-varying data (k ≤ 15)

and a simulated experiment for larger sets (k > 15) on a database of multiple ARIMA time-series

in order to display the performance and usefulness of BHFC procedure and RWD measure, with

k denoting the number of time-series. In addition, I extend and implement the BHFC procedure

in order to deal with endogeneity issues and functional form misspecifications when accounting

for dynamics of the economy in high dimensional time-varying multicountry data. In this con-

text, the RWD measure is used to group multiple data objects that are generated from different

1They correspond to the sum of Posterior Inclusion Probability between all the grouped time-series according to

their membership values.
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series among a pool of advanced European economies. I build on Pacifico (2019a) and estimate

a simplified version of the Structural Panel Bayesian VAR (SPBVAR) by defining hierarchical prior

specification strategy and MCMC implementations in order to extend variable selection proce-

dure for clustering time-series to a wide array of candidate models. A discussion with different

distance measures is also accounted for.

The outline of this paper is as follows. Section 2 reviews the proposed methods for cluster-

ing time-series. Section 3 displays a brief description of various concepts and definitions used

throughout the paper. Section 4 describes Bayesian framework and conjugate hierarchical setups

in ARIMA time-series. Section 5 illustrates MCMC algorithm and the proposed RWD measure for

clustering ARIMA time-series. Section 6 illustrates empirical and simulated examples by compar-

ing the performance of BHFC procedure with related works. Section 7 extends the methodology to

deal with endogeneity issues and misspecified dynamics in high dimensional time-varying mul-

ticountry setups. Finally, Section 8 contains some concluding remarks.

2 Literature Review on Distance Measures

When dealing with time-series data which are usually serially correlated, one needs to extract

the significant features from them. Thus, measuring the similarity and the dissimilarity between

models becomes crucial in many field of time-series analysis. An appropriate distance function

to evaluate similarities and dissimilarities of time-series has a significant impact on the clustering

algorithms and their final results produced by them. This selection may depend upon the nature

of the data and the specificity of the application.

In most partition-based time-series data fuzzy clustering techniques, the Euclidean Distance

(ED) is commonly used to quantify the similarities and dissimilarities of time-series. However,

it compares the points of time-series in a fixed order and cannot take into account existing time

shifts. In addition, the ED is applicable only when comparing equal-length time-series and, in

most feature-based clustering techniques, the representatives of clusters cannot be reconstructed

in the original time-series domain and in such a way they are not useful for data summarization.

Izakian et al. (2013) and Izakian and Pedrycz (2014) propose an augmented version of ED function

for fuzzy clustering of time-series data. The original time-series as well as different representation

techniques have been examined for clustering purpose. D’Urso and Maharaj (2009) transform the

time-series data through their autocorrelation representation, and use the Euclidean distance to
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compare data in the new feature space. Thus, a FCM technique has been employed to cluster the

transformed data. Keogh et al. (2001) propose a hierarchical clustering technique of time-series

data to quantify the dissimilarity of time-series.

Nevertheless, when clustering by dynamics and measuring the distance between multiple time-

series, highly unintuitive results may be obtained since some distance measures may be highly

sensitive to some distortions in the data and thus, by using raw time-series, one may cluster time-

series which are similar in noise instead of clustering them based on similarity in shape (see, e.g.,

Keogh and Ratanamahatana (2005) and Ratanamahatana et al. (2005)). High dimensional and

noise are characteristics of most time-series data and thus dimensionality reduction methods are

usually used in whole time-series clustering in order to address these issues and promote the per-

formance (see, e.g., Keogh and Kasetty (2003), Keogh and Ratanamahatana (2005), and Ghysels

et al. (2006)). Thus, the potential to group time-series into clusters so that the elements of each

cluster have similar dynamics is the reason why choosing the appropriate approach for dimen-

sion reduction (feature extraction), and an appropriate data representation method is a challeng-

ing task. In fact, it is a trade-off between speed and quality and all efforts must be made to obtain

a proper balance point between quality and execution time. Dimensionality reduction represents

the raw time-series in another space by transforming time-series to a lower dimensional space or

by feature extraction. Time-series dimensionality reduction techniques have progressed a long

way and are widely used with large scale time-series dataset and each has its own features and

drawbacks (see, e.g., Lin et al. (2007) and Keogh et al. (2001)).

In this context, a Bayesian approach is particularly well suited to cluster by dynamics and deal

with raw time-series since it provides a principled way to integrate prior and current evidence.

In addition, because the posterior probability of a partition is the scoring metric, it avoids the

problem of increasing the overall probability of errors that plagues classical statistical methods

based on significance tests. Bayesian clustering methods has been pioneered by Cheeseman et al.

(1996) for static databases, under the assumption that the data are independent and identically

distributed. Poulsen (1990), Cooper and Herskovits (1992), and Visser et al. (2000) extend the orig-

inal method to temporal data using an approximate mixture-model approach to cluster discrete

MCs within a pre-specified number of clusters. More recently, Ramoni et al. (2002) propose a

Bayesian method to cluster time-series through modelling the time-series as Markov chains and

using a symmetric Kullback-Libler2 distance between transition matrices. Here, the clustering

2It is a well-known statistical indicator useful in evaluating the similarity of time-series represented by their Markov

chains.
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has been considered as a Bayesian Model Selection (BMS) problem to find the most suitable set of

clusters. However, these studies only focus on standard clustering techniques of time-series and

thus they are unable to merge different dynamic data objects in more than one similar clusters

or split them in different groups correctly when dealing with endogeneity issues and unmodelled

dynamic interconnections.

This paper gives a valid contribution to that literature by performing a BHFC methodology with

RWD measure between stationary and invertible ARIMA processess. The proposed approach dis-

plays three important features which makes it ideal for clustering by dynamics and measuring the

distance between multiple time-series. First, hierarchical conjugate informative priors are able

to discover the most probable set of clusters capturing different dynamics and interconnections

among time-varying data. Second, full posterior distributions in fuzzy clustering of time-series

data are able to avoid the problem of increasing the overall probability of errors that plagues clas-

sical statistical methods based on significance tests. Third, by construction, the proposed proce-

dure is able to jointly deal with high dimensional and noise problems, especially in extending the

analysis to multicountry setups.

3 ARIMA Time-Series and Bayesian Framework

A stationary time-series is one whose probability distribution is time-invariant. On the contrary,

a non-stationary time-series may have its mean µt or variance σt varying with time. Normally,

a time-series has four components: (i ) a trend, (i i ) a cycle, (i i i ) a stochastic persistence com-

ponent, and (i v) a random element. ARIMA models constitute a broad class of parsimonious

time-series processes which are useful in describing a wide variety of time-series. For example,

the process xt is said to be an Auto-Regressive Integrated Moving Average process of order p,d , q ,

with mean µ, if it is generated by:

φ(B)(xt −µ) = θ(B)ǫt (1)

Letting yt = xt −µ, the ARIMA(p,d , q) model in (1) can be written as:

yt =α+

p∑

i=1

φi yt−i −

q∑

j=1

θ j ǫt− j +ǫt (2)
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The model in equation (2) is called ARIMA(p,d , q) model, where B is the backward shift op-

erator, ǫt ∼ W N (0,σ2) is a Gaussian white noise process, yt ∼ N (µ1N ,σ2
ǫCN ), with 1N is a k · 1

vector of ones and (CN )i j = cov(yi , y j ) = ρ(i − j ) = ρ(|i − j |), i = 1,2, . . . , p and j = 1,2, . . . , q denote

generic Auto-Regressive (AR) and Moving Average (MA) lag orders, respectively, d = 1, . . . ,D refers

to higher differentiation order to obtain a stationary time-series, t = 1,2, . . . ,n denote time peri-

ods, φi (B) = (1−φ1B −φ2B 2 − . . .−φp B p ) represents the correlation of xt on its preceding values,

and θ j (B) = (1−θ1B −θ2B 2 − . . .−θq B q ) represents the MA component.

Collecting the components φi and θ j in a coefficient vector δ, where δ= (φ1, . . . ,φp ,θ1, . . . ,θq )
′

,

two conditions need to be assessed. First, if the roots of φ(B) = 0 and θ(B) = 0 lie outside the unit

circle, the process in (1) is said to be stationary and invertible, respectively, and thus there is a

unique model corresponding to the likelihood function (see, for instance, Li and McLeod (1986)).

Second, if the stationarity and invertibility conditions hold, the parameter vector δ is constrained

to lie in regions Cp and Cq , respectively, corresponding to the polynomial operator root condi-

tions. Here, the region Cp ·Cq contains allowable values of (φ,θ) which are simple to identify for

p ≤ 2 and q ≤ 2. These identifiability conditions enforce a unique parameterization of the model

in terms of µ, σ2, and the ARMA components in δ.

In Bayesian framework, given a stationary and invertible ARIMA(p,d , q) time-series model of

the form (1), the region Cp ·Cq determines the ranges of integration for obtaining joint and marginal

distributions of the parameters and for evaluating posterior expected values. Generally, Bayesian

analysis of these models ignores this region in order to obtain convenient distributional results

for the posterior densities (see, e.g., Zellner (1983), Carlin et al. (1992b), and Carlin et al. (1992a)).

However, when p+q ≥ 4, with unknown µ and σ2, such techniques become unfeasible. Hereafter,

unless otherwise specified, I refer to ARIMA model simply as time-series.

In hierarchical models, many problems involve multiple parameters which can be regarded as

related in some way by the structure of the problem. A joint probability model for those param-

eters should reflect their mutual dependence. Typically, the dependence can be summarized by

viewing these parameters as a sample from a common population distribution. Thus, the prob-

lem can be modelled hierarchically, with observable outcomes (yt ) created conditionally on the

unknown parameters (ψ), which themselves are assigned a joint distribution in terms of further

(possibly common) parameters, hyperparameters, with ψ = (φ,θ,µ,σ2). In addition, ’common’

parameters would change meaning from one model to another, so that prior distributions must

change in a corresponding fashion. This hierarchical thinking may play an important role in de-
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veloping computational strategies.

Given a set of k time-series, a partitioning method constructs τ partitions of the dynamic ob-

ject data, where each partition represents a cluster containing at least one object and τ ≤ k. Let

{Mk ,k ∈K , Mk ∈M } be a countable collection of k time-series, where k = 1,2, . . . ,m and Mk con-

tains the vector of the unknown parameters δ, {∆k ,δk ∈∆k ,∆k ∈∆} be the set of all possible values

for the parameters of model Mk , and f (Mk ) be the prior probability of model Mk , the Posterior

Model Probability (PMP)3 is given by:

f (Mk |y) =
f (Mk ) · f (y |Mk )

∑

Mk∈M f (Mk ) · f (y |Mk )
wi th Mk ∈M (3)

where f (y |Mk ) is the marginal likelihood corresponding to f (y |Mk ) =
∫

f (y |Mk ,δk )· f (δk |Mk , y)dδk

and f (δk |Mk , y) is the conditional prior distribution of δk . The conditional likelihood is obtained

from the factorization:

f (y |δ) = f (y1|δ) f (y2|y1,δ) · · · f (yn |y1, y2, . . . , yn−1,δ) =

=

(

2πσ2
)− n

2
·exp

{

−
1

2σ2
·
∑

t=1

n(yt −µt )2
}

(4)

where

µt =







∑p

i=1
φi yt−i −

∑p

i=1
δi (yt−i −µt−i )−

∑q

j=1
θ j ǫt− j for t = 2, . . . , q

∑p

i=1
φi yt−i −

∑p

i=1
δi (yt−i −µt−i ) for t = q +1, . . . ,n

(5)

Finally, the natural parameter space and model space for (Mk ,δk ) are, respectively:

∆= ∪
Mk∈M

{Mk } ·∆k (6)

M = ∪
k∈K

{k} ·Mk (7)

When the size of the set of possible model solutions M is high dimensional, the calculation of

3See, for instance, Pacifico (2020b).
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the integral f (y |Mk ) becomes unfeasible. Thus, a MCMC method is required in order to generate

observations from the joint posterior distribution f (Mk ,δk |y) of (Mk ,δk ) for estimating f (Mk |y)

and f (δk |Mk , y).

4 Conjugate Hierarchical Priors and Posterior Distributions

The main thrust of the fuzzy clustering algorithm is to find the set of clusters that gives the best

partition according to some measure and assign each time-series to one or more homogeneous

clusters. A fuzzy partition is an assignment of MCs to cluster such that each time-series is grouped

on the basis of their dynamics. In this study, I regard the task of clustering Markov Chains (MCs) as

a BMS problem. More precisely, the selected model is the most probable way of partitioning MCs

according to their similarity, given the dynamic data. I use the PMP in (3) of the fuzzy partition

as a scoring metric and I select the model with maximum PMP. Formally, it is done by regarding

a fuzzy partition as a hidden discrete variable W . Each state Wτ of W represents a cluster of

time-series and thus determines a transition matrix. Each fuzzy partition identifies a clustering

model Mτ, with p(Mτ) being its prior probability. The directed link from the node W and the node

containing the MCs represents the dependence of the transition matrix yt |yt−l , with l denoting

the number of states of W . The latter is unknown, but the number ρ of available MCs imposes an

upper bound, as l ≤ ρ.

Given the model in equation (2), the full model class set is:

F =

{

Mk : Mk ⊂F , Mk ∈M ,k ∈K , α+

p∑

i=1

φi yt−i −

q∑

j=1

θ j ǫt− j +ǫt

}

(8)

where M = [{k} ·Mk ] represents the natural model space for each t .

By Bayes’ Theorem, the posterior probability of Mτ, given the sample F , is:

π(Mτ|F ) =
π(Mτ) ·π(F |Mτ)

π(F )
(9)

where, by construction, Mτ < Mk , τ≤ k, {1 ≤ τ≤ k}.

The quantity π(F ) is the marginal probability of the dynamic data and constant over time since

all models are compared over the same data objects. In addition, since I consider informative

proper priors, all models are a priori equally likely and thus the comparison can be based on the
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marginal likelihood π(F |Mτ), which is a measure of how likely the dynamic data are if a clustering

model Mτ is true. This quantity can be computed from the marginal distribution of W and the

conditional distribution of yt |yt−l . In this context, Wτ would correspond to the cluster member-

ship (see, for instance, Cooper and Herskovits (1992)).

The main thrust of the BHFC procedure is to identify time-series with similar dynamics. How-

ever, the variable selection problem arises when there is some unknown subset of k time-series

so small that it would be preferable to ignore them. Thus, I introduce an auxiliary indicator vari-

able β= (βk ), with β= (β1,β2, . . . ,βm)
′

, corresponding to the ARMA parameters δk , where βk = 1

if δk is sufficiently large (presence of the time-series yt in the clustering procedure). When βk = 0,

the variable δk would be sufficiently small so that the time-series yt should be ruled out from a

clustering model Mτ.

The BMS procedure entails estimating the parameters β and thus finding the best subset con-

taining the fuzzy partitions of dynamic data objects. Here, best stands for the clustering model

providing the most accurate group of homogeneous time-series over all (possible) candidate k

series. The posterior probability that a time-series yt is i n the BHFC procedure can be simply

calculated as the mean value of the indicator β. Since the appropriate value of β is unknown, one

could model the uncertainty underlying variable selection by a mixture prior:

π(β,µ,σ|yt ) = π(β|yt )
︸     ︷︷     ︸

con j ug ate

·π(µ|yt ) ·π(σ|yt ) ·π(β) (10)

Bayesian inference proceeds by obtaining marginal posterior distributions of the components

of δ as well as features of these distributions. In this context, the τ-th subset model is described

by modelling β as a realization from a multivariate normal prior:

π(β) = Nτ

(

0,Στ

)

(11)

where Στ = di ag (γ0Ip·p ,σ2Iq·q ) denotes the [(p + q) · (p + q)] covariance matrix, with γ0 be the

variance of the stationary ARIMA time-series and σ2 be the assumed error variance. It is a restric-

tion I assume to deal with computational problems, without loss of generality making inference

on ψ. In addition, let nτ,l s be the observed frequencies of transitions from l → s in cluster Wτ,

with {l , s} denoting generic states of W , the transition probability matrix of a cluster Wτ can be

estimated as:
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π̂(β) =
ψτ,l s +nτ,l s

ατ,l +nτ,l
(12)

whereψτ,l s are hyperparameters associated with the prior estimates ofπ(β), according to the non-

0 components of β, restricted to a benchmark prior max(N , |β|), with |β| denoting the model size4

and nτ,l =
∑

s nτ,l s referring to the number of transitions observed from state l in cluster Wτ.

The joint posterior density for the ARIMA parameters given the process yt in (2) is:

π(β|yt ) =
1

(σ2)
n+2

2

·exp
{

−
1

2σ2

n∑

t=1

(yt −µt )2
}

· π̂(β) (13)

where µt has been defined in (5). About the unknown parameters µ and σ2 contained in ψ, the

complete conditional distribution is:

π(µ|yt ) = Nτ

( 1

n

n∑

t=1

(yt −µt ),
σ2

n

)

(14)

π(σ|yt ) = IG
(n

2
,

1

2

n∑

t=1

(yt −µt )2
)

(15)

where the Inverse Gamma (IG) distribution is a two-parameter family of continuous probabil-

ity distributions denoting the distribution of the reciprocal of a variable distributed according to

the Gamma distribution, which provides the probabilities of occurrence of different possible out-

comes in an experiment.

The complete conditional densities for the φi ’s and θ j ’s are proportional to (13) and have to be

sampled subject to the restriction to Cp ·Cq . Finally, given the hierarchical setup, the marginal

posterior distribution π(β) contains the relevant information for variable selection. Based on the

data yt , the posterior density π(β|yt ) updates the prior probabilities on each of the Wτ possible

clusters. Identifying each β with a submodel via βk = 1 if and only if βk is included, the β’s with

higher posterior probability will identify the most accurate group of homogeneous time-series

and thus supported mainly by the data and the prior distributions. A reasonable choice might

have the βk ’s independent with marginal Posterior Model Size distribution:

4See, for instance, Pacifico (2020b).
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π(βk ) = w|β| ·

(

k

|β|

)−1

(16)

where w|β| denotes the model prior choice related to the Prior Inclusion Probability (PIP) with

respect to the model size |β|, through which theβk ’s will require a non-0 estimate or to be included

in the cluster. In this way, one would weight more according to model size and, by setting w|β|

large for smaller |β|, assign more weight to parsimonious models. Such priors would work well

when k is either moderate (e.g., equal to or less than 15) or large (e.g., more than 15), yielding

sensible results.

Finally, the exact and final solution will correspond to one of the submodels Mτ with higher log

natural Bayes Factor (lBF)5

lBFτ,k = log
{π(Mτ|Yt = yt )

π(Mk |Yt = yt )

}

(17)

where τ ≤ k. In this procedure, the lBF would also be called the log Weighted Likelihood Ratio

(lWLR) factor of Mτ to Mk with the priors being the weighting functions. The corresponding scale

of evidence6 is:







0 < lBξ,l < 2 no evidence for submodel Mξ

2 < lBξ,l < 6 moderate evidence for submodel Mξ

6 < lBξ,l < 10 strong evidence for submodel Mξ

l Bξ,l > 10 very strong evidence for submodel Mξ

(18)

5 MCMC Algorithm and RWD Measure

According to Pacifico (2020b), the factorization in µ and σ, given |β|, allows for the easy construc-

tion of MCMC algorithms for simulating a Markov chain:

ψ(0),ψ(1),ψ(2), . . . ,ψ(m)
|ψk , yt

d
−→ π(β|yt ) (19)

5See, for instance, Pacifico (2020b).
6See, for instance, Kass and Raftery (1995).
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where ψ(0) is automatically assigned to the model selection procedure in absence of any relation-

ship between the ARMA parameters. The sequence in equation (19) is converging in distribution

to π(β|yt ) in (13) and exactly contains the information relevant to variable selection. Thus, an

ergodic Markov chain in which it is embedded is:

β(0),µ(0),σ(0),β(1),µ(1),σ(1),β(2),µ(2),σ(2), . . . ,
d
−→ π(β,µ,σ|yt ) (20)

where β(0),µ(0),σ(0) are automatically assigned to the model selection procedure in absence of any

relationship between the ARMA parameters, where µ(0) denotes the mean of ARIMA processes yt

given α , 0 and σ(0) = Σφ̂,θ̂ corresponds to the asymptotic covariance matrix of Maximum Likeli-

hood Estimates (MLEs) for φ and θ. The sequence in equation (20) converges in distribution to

the full posterior π(β,µ,σ|yt ) and would correspond to an auxiliary Gibbs sequence.

In general variable selection problems, where the number of potential predictors k is small (e.g.,

equal to or less than 15), the sequence in equation (19) can be used to evaluate the full posterior

π(β|yt ) in (13). In large problems (e.g., when k is more than 15), it will still provide useful and

faster information, performing more with respect to model size and being more effective than a

per − i ter ati on basis for learning about π(β|yt ).

The main advantage of using the conjugate hierarchical prior is that it enables analytical marg-

ing out of β and σ from π(β,µ,σ|yt ). Combining the likelihood (equation (13)) with the marginal

(equation (11)) and conditional (equations (14) and (15)) distributions, it yields to the joint poste-

rior:

π(β,µ,σ|yt ) ∝|Σφ̂,θ̂|
−1/2

·exp
{

−
1

2σ2
· |ȳ − Z̄τβ|

2
}

·exp
{1

2

n∑

t=1

(yt −µt )2
}

· π̂(β) (21)

where ȳ = [y 0]
′

and Z̄τ =

[

Zτ (Σφ̂,θ̂)−1/2
]′

are 2 ·1 vectors, with Zτ being a n ·k matrix whose

columns correspond to the time-series components δ associated to the non-0 components of β.

Integrating out µ and σ yields:

π(β|yt ) ∝π(β) ≡ |Z̄
′

τZ̄τ|
−1/2

· |Σφ̂,θ̂|
−1/2

·

(

v +Σ
2
β

)−(n+k+1)/2
·π(β) (22)

where v = n−k −1 are the degrees of freedom, π(β) denotes the marginal distribution of the βk ’s,
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and S2
β

is the decomposition of the variance in the procedure selection and defined as:

S2
β = ȳ

′

ȳ − ȳ
′

Z̄τ

(

Z̄
′

τZ̄τ

)−1
Z̄

′

τ ȳ = y
′

y − y
′

Zτ

(

Z
′

τZτ+

(

Σφ̂,θ̂

)−1)−1

Z
′

τy (23)

The generation of the components in equation (19) in conjuction with π(β) in equation (22)

can be obtained trivially as simulations of Bernoulli draws (e.g., with δ = 0 for small β and δ , 0

otherwise). The required sequence of Bernoulli probabilities can be computed fast and efficiently

by exploiting the appropriate updating scheme forπ(β) in function of the time-series components

δ:

π
(

δk = 1,β(k)|y
)

π
(

δk = 0,β(k)|Y
) =

π
(

δk = 1,β(k)

)

π
(

δk = 0,β(k)

) (24)

At each step of the iterative simulation from (19), one of the values of π(β) in equation (24) will

be available from the previous component simulation.

The attractive feature of the conjugate prior is in the availability of the exact π(β) values, pro-

viding useful informations about π(β|yt ). For example, the exact relative probability of two time-

series, with one (δk=1) and two (δk=2) AR and MA lag orders, is obtained as
[

π(β1)/π(β2)
]

. This al-

lows for more accurate identification of the high probability models among those selected. Thus,

only minimal additional effort is required to obtain these relative probabilitites since π(β) must

be calculated for each of the visited Mτ models containing the allowable values of (φ,θ) in the

execution of the MCMC algorithm.

Finally, to complete the BHFC method, I need to evaluate all possible partitions and return the

one with the highest posterior probability. Since the number of possible partitions grows expo-

nentially with the number of MCs, a heuristic method is required to make the search feasible.

I use a measure of similarity between estimated transition probability matrices (π̂(β)) to guide

the search process. The resulting algorithm is called Robust Weighted Distance measure. The al-

gorithm performs a bottom-up search by recursively merging the closest MCs, denoting either a

cluster or a single time-series, and evaluating whether the resulting model is more probable than

the model where these MCs are kept distinct. The similarity measure that guides the process can

be any distance between probability distributions.

Let Q1 and Q2 be matrices of transition probabilities of two MCs, and q1,l s and q2,l s be the prob-

abilities of the transition l → s in Q1 and Q2, the RWD of these two transition probabilities from
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Q1 to Q2 is:

Dr wd (Q1||Q2) =
J∑

s=1

ω̄s

D(q1,l , q2,l )

J
wi th D(q1,l , q2,l ) =

[d(q1,l , q2,l )+d(q2,l , q1,l )]

2
(25)

where ω̄ is the PMS distribution, on average, between the two probabilities q1 and q2 obtained by

the transition probability matrix in equation (12). Here, the distance of the probability distribu-

tion d(q1,l , q2,l ) is not symmetric, d(q1,l , q2,l ), d(q2,l , q1,l ), and is:

d(q1,l , q2,l ) =
J∑

s=1

(

q1,l s · log2

( q1,l s

q2,l s

))

(26)

The distance in equation (25) is an implemented version of the symmetric Kullback-Leibler Dis-

tance (KLD)7. More precisely, since each of the two matrices (Q1 and Q2) is a collection of J prob-

ability distributions and rows with the same index are probability distributions conditional on the

same event, the measure of similarity that RWD uses is an average of their own PMS distribution

between corresponding rows. In addition, the distance in (25) is zero when Q1 = Q2 and greater

than zero otherwise. The main thrust behind the RWD measure is that merging more similar MCs,

more probable homogeneous models (Mτ) shoul be found sooner and the conditional likelihood

in (4) used as a scoring metric by the algorithm should increase.

6 Applications

This Section discusses an empirical application for moderate time-varying data (k ≤ 15) and a

simulated experiment for larger sets (k > 15) in order to display the performance and usefulness

of BHFC procedure and RWD measure defined in equation (25) for effective clustering of Multiple

ARIMA (MARIMA) time-series.

6.1 Real GDP Growth Rate Data

The empirical application consists of measuring the distance between MARIMA time-series by

means of the proposed RWD measure between the productivity – in terms of real GDP per capita

in logarithmic form – for G7 economies [Canada (CA), France (FR), Germany (DE), Italy (IT), Japan

7See, for instance, Do and Vetterli (2002).
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(JP), the United Kingdom (UK), and the United States (US)] and for two non-G7 European coun-

tries [Ireland (IE) and Spain (ES)], spanning the period 1995q1 to 2016q4. All the k series are ex-

pressed in quarters and seasonally adjusted. All data points are obtained from OECD data source.

I consider a process y = {yi t ; i ∈N , t ∈T } that admits an ARIMA representation:

yt −φ1 yt−1 − . . .−φp yt−p = ǫt +θ1ǫt−1 + . . .+θqǫt−q wi th ǫt ∼W N (0,σ2) (27)

All the series show an increasing trend and thus are not stationary over time (Figure 1). The re-

sults find confirmations in the corresponding highly significant and decreasing Auto-Correlation

Functions (ACFs) in Figure 2.

Figure 1: Time-series for the real GDP per capita for a pool of advanced European economies are

shown, spanning the period 1995q1 to 2016q4. They account for G7 economies (CA, FR, DE, IT,

JP, UK, and US) and for two non-G7 European countries (IE and ES). The Y and X axis represent

the series and sampling time, respectively. All the series are expressed in quarters and seasonally

adjusted. All data points are obtained from OECD data source.

A common model building strategy is to select the exact differentiation order and thus plau-

sible values of AR (p) and MA (q) lag orders on statistics calculated from the data to assess the

stationarity and invertibility of the process in (27) for each selected country. More precisely, I use

the Bayesian Information Criterion (BIC) in equation (28) to select the optimal lag lengths in AR

17



Figure 2: Sample Autocorrelation Functions for the real GDP per capita for a pool of advanced

European economies are shown, spanning the period 1995q1 to 2016q4. They account for G7

economies (CA, FR, DE, IT, JP, UK, and US) and for two non-G7 European countries (IE and ES).

The dashed lines display the Bartlett’s bands. The Y and X axis represent the ACFs values and

lags, respectively. All lags are expressed in quarters.

(p) component (see, for instance, Schwarz (1978)) and the Augmented Dickey-Fuller (ADF) test in

equation (29) to choose the order of integration to ensure stationarity (see, for instance, Dickey

and Fuller (1979)).

B IC (p, q) = log (σ̂2)+
(p +q) · log (T )

T
(28)

∆yt =α+βt +γyt−1 +δ1∆yt−1 + . . .+δp−1∆yt−p+1 +ǫt (29)

where σ̂2 denotes the MLE of σ2, α is a constant, β is the coefficient on a time trend, and p and q

denote the lag orders of the ARIMA process in (27).

By equations (28) and (29), I estimate 9 different ARIMA processes. In Table 1, I display the

ARIMA time-series, the ADF tests in terms of p-values, and Ljung-Box test statistics of the series

to jointly assess the robustness of the estimates and investigate linear dependencies among se-

ries. The maximum differencing order to test stationarity sets 3 in order to highlight (possible)
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endogeneity issues.

Table 1: Estimates, Stationarity, and Diagnostic Test

Country CA FR DE IT JP UK US IE ES

ARI M A(p,d , q) (3,3,1) (2,3,2) (2,3,3) (2,3,2) (2,3,3) (3,3,2) (3,3,2) (3,3,1) (3,3,2)

ADFd .018** .047 ** .030** .022** .013** .013** .018** .026** .096*

LGBπ1
.00*** .00*** .00*** .00*** .00*** .00*** .00*** .00*** .00***

LGBπ2
0.22 0.38 0.70 0.66 0.36 0.37 0.52 0.67 0.10

The Table is so split: the first row displays the country indices; the second row refers to ARIMA(p,d,q) models;

the third row stands for the ADF tests in terms of p-values and significant codes, with d = 3; and the last two

rows stand for Ljung-Box test statistics of the series (π1 = p) and residuals (π2 = q) in terms of p-values and

significant codes. The significant codes are: *** significance at 1%, ** significance at 5%, and * significance at

10%.

According to Bayesian inference, higher PMP distribution (equation (3)) and log Bayes Factor

(equation (17)) among series are obtained by performing a BHFC procedure with a maximum

of three clusters (c = 3). They are so split: (i ) CA, FR, DE, IT, UK, US, and ES; (i i ) IE; and (i i i )

JP. Table 2 shows the membership values and the corresponding cluster for each series8. The

findings address three important issues. First, when accounting for dynamics of the economy,

an accurate BMA strategy, as implied in BHFC procedure, is required in order to group dynamic

data objects into more probable homogenous clusters (Mτ). Second, the use of conjugate hier-

archical informative priors in fuzzy clustering algorithm is able to highlight similarity – in terms

of cross-country homogeneity – among series and thus group them in ’ad hoc’ clusters. Third,

membership values show the presence of relevant endogeneity issues (e.g., DE, FR, IT, CA, UK, SE,

and US) and heterogeneity (e.g., JP and IE) among countries when performing fuzzy clustering of

time-series (Table 2). Finally, given the ROB strategy implied in the procedure9, the Conditional

Posterior Sign (CPS)10 can be obtained by the Posterior Inclusion Probabilities11 in order to ob-

serve how the GDP time-series for each country evolve over time. Most countries tend to show

negative effects (except for FR, JP, and ES) that, in a context of economic interactions and interna-

tional spillover effects, would be interpreted as net receivers given an unexpected shock on GDP.

Conversely, FR, JP, and ES seem to be net senders12. Thus, it would be interesting to extend the

fuzzy clustering analysis in a multivariate context (Section 7).

8I use Fuzzy C-Means with 2 parameter of fuzziness, 100 random starts of the algorithm, and 100 iterations per each

random start.
9See, for instance, Pacifico (2020b) for further specifications on the econometric methodology.

10The CPS refers to the posterior probability of a positive coefficient expected value conditional on inclusion. It

indicates a positive effect on GDP whether it is close to 1 and a negative effect whether it is close to 0.
11They correspond to the sum of PMPs between all the series according to their membership values.
12See, for instance, Pacifico (2019a).
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Table 2: Membership Values and Clusters

Country MEMB1 MEMB2 MEMB3 Cluster CPS

CA 0.001 0.992 0.007 2 0.007

FR 0.000 1.000 0.000 2 1.000

DE 0.002 0.989 0.009 2 0.028

IE 0.000 0.003 0.997 3 0.000

IT 0.002 0.985 0.013 2 0.000

JP 0.998 0.001 0.001 1 1.000

ES 0.010 0.838 0.152 2 0.979

UK 0.001 0.994 0.005 2 0.043

US 0.236 0.626 0.138 2 0.057

The Table is so split: the first column refers to the countries; the fol-

lowing three columns display the membership values; the fifth col-

umn displays the corresponding cluster membership; and the sixth

column shows the CPSs.

The previous results are better highlighted graphically (Figure 3). Indeed, by focusing on the

first cluster13, it is clear the presence of consistent heterogeneity among series, but with some

common components (e.g., DE, FR, IT, CA, and UK). However, a persistent homogeneity matters

over time among European countries, including US (misspecified dynamics). These findings con-

firm the efficacy of the BMA strategy implied in the BHFC with endogeneity issues when grouping

multiple dynamic processes. The remaining two clusters highlight that JP and IE series tend to

evolve in a heterogeneous way over time with respect to the others.

Figure 3: The real GDP per capita series are drawn and grouped according to the RWD measure,

spanning the period 1995q1 to 2016q4. The three clusters are so split: (i ) CA, FR, DE, IT, UK, US,

and ES; (i i ) IE; and (i i i ) JP. The Y and X axis represent the series and sampling distribution in

quarters, respectively.

In Table 3, I compare the performance of the BHFC procedure with some related distance mea-

sures14 for effective clustering of ARIMA time-series: (i ) the most natural metric for computing

13Here, the series ES and US have been dropped to better scale the plot.
14Own computations.
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distance in most applications such as Euclidean Distance (ED)15; (i i ) Dynamic Time Warping

(DTW)16; (i i i ) Longest Common Sub-Sequence (LCSS)17; and (i v) Minimal Variance Matching

(MVM)18. Here, some considerations are in order. These clustering approaches would be classi-

fied as ’shaped-based similarity’ measures, suitable for short-length time-series and used to find

similar time-series in time and shape. More precisely, the ED measure is one of the most used

time-series dissimilarity measures, favored by its computational simplicity and indexing capabil-

ities. The DTW and LCSS approaches tend to be very appropriate in the case which the similarity

between time-series is based on ’similarity in shape’ or there are time-series with different length.

They focus on the averaging method for time-series clustering and thus define a cluster by their

combinations hierarchically or sequentially. However, their drawback is the strong dependency

on the ordering of choosing pairs which result in different final clusters. Finally, MVM measure

computes the distance value between different time-series directly based on the distances of cor-

responding elements, just as DTW, and allows the query sequence to match to only subsequence

of the target sequence, just as LCSS. The main difference between LCSS and MVM is that LCSS

requires the distance threshold to optimize over the length of the longest common subsequence,

while MVM directly optimizes the sum of distances of corresponding elements without any dis-

tance threshold. Instead, the main difference between DTW and MVM is that MVM is able to skip

some elements of the target series when computing the correspondence.

The main thrust of this example is to prove that RWD measure gets the higher cluster similarity

metric than the other related methods by dealing with either model uncertainty and overfitting

(implied in Bayesian framework) or endogeneity issues and misspecified dynamics (implied in

the BMA strategy) when clustering dynamic data. All approaches would perform better by choos-

ing two clusters. The JP series are grouped in a unique cluster with respect to the others (including

the IE series). By running the lBF (equation (17)) between the submodels Mτ and the submodels

related to the alternative approaches (M∗)19, I find moderate support with DTW and MVM mea-

sures and strong evidence with LCSS measure by supporting elastic distances and unequal size

time-series in fuzzy clustering approach. No evidence (or weak support) is found for ED measure

due to its inability in clustering data sets containing many time series.

15See, e.g., Chan et al. (2003).
16See, e.g., Chu et al. (2002).
17See, e.g., Vlachos et al. (2002) and Banerjee and Ghosh (2001).
18See, e.g., Latecki et al. (2005).
19In this context, the submodels would correspond to the subsequences – which result in different clusters – between

time-series having maximum similarity with other objects within that group and minimum similarity with objects in

other groups.
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Table 3: Performance Comparison

Distance Measure Cluster CSM lBF Evidence

RWD 3 0.923 - -

ED 2 0.424 1.84 weak

DTW 2 0.594 5.07 moderate

LCSS 2 0.763 7.13 strong

MVM 2 0.605 5.49 moderate

The Table is so split: the first column describes the distance

measure used; the second column displays the optimal num-

ber of clusters; the third column accounts for Cluster Similarity

Metric; and the last two columns refer to the log Bayes Factor

and the corresponding scale of evidence.

6.2 Simulated Example

I perform fuzzy clustering on a database of ARIMA(1,1,1) time-series and analyze the results. More

precisely, I generate four groups (A, B , C , and D), each with k = 75 ARIMA(1,1,1) time-series,

where t = 1,2, . . . ,200 and the parameter vectors (φ,θ) are uniformly distributed in the ranges

[(1.30,0.30)±0.01], [(1.34,0.34)±0.01], [(1.60,0.60)±0.01], and [(1.64,0.64)±0.01], respectively. The

white noise ǫt used has mean zero and variance 0.01. All the simulated time-series are stationary,

invertible, and integrated of order one, ARI M A(1,1,1) ∼ I (1). I construct 10 collections from

these series and run fuzzy clustering on each of the groups. Collections 1−5 have been built by

selecting 15 time-series, each from groups A and B . Similarly, collections 6−10 have been built

by selecting 15 time-series, each from groups C and D (Figure 4).

According to Bayesian inference, higher PMP distribution (equation (3)) and log Bayes Factor

(equation (17)) among series are obtained by performing a BHFC procedure with a maximum of

three clusters (c = 3).

In Table 4, I compare the cluster similarity metric obtained using RWD measure20 with four dif-

ferent traditional similarity measures21: (i ) the most popular multidimensional scaling method

such as Weighted Euclidean Distance (WED)22; (i i ) Discrete Wavelet Transform (DWT)23; (i i i )

Discrete Fourier Transform (DFT)24; and (i v) Principal Component Analysis (PCA)25. Here, some

considerations are in order. These clustering approaches would be classified as ’structural level’

20I use Fuzzy C-Means with 2 as parameter of fuzziness, 100 random starts of the algorithm, and 100 as maximum

iterations per each random start.
21Own computations.
22See, e.g., Horan (1969) and Carroll and Chang (1970).
23See, e.g., Struzik and Sibes (1999).
24See, e.g., Agrawal et al. (1993).
25See, e.g., Gavrilov et al. (2000).
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(a) Groups A and B

(b) Groups C and D

Figure 4: Simulated ARIMA(1,1,1) time-series, with k = 75 and t = 200, from the groups A, B , C ,

and D . The Y and X axis represent the series and sampling time, respectively.

similarity measures, based on global and high level structure and used for long-length time-series

data. More precisely, the WED depends on the combination of the weights used and the model

parameters. Thus, it tends to be more sensitive to the position of the AR coefficients and very

close to the cepstral distance for effective clustering of ARIMA time-series. The DWT technique is

used in wide range of applications from computer graphic to speech, image, and signal process-

ing. The advantage of using DWT is its ability of representation of time-series as multi-resolution.

Additionally, the location of time and frequency can be gained by means of the time-frequency

23



localization property of DWT. The DFT uses the Euclidean distance between time-series of equal

length as the measure of their similarity. Then, it reduces their sequences into points in low-

dimensional space. The approach tends to improve upon the measurement of similarity between

time-series since the effects of high frequency components, which usually correspond to noise,

are discarded. Finally, the PCA is a well-known data analysis technique widely used to measure

time-series similarity in multivariate analysis. The particular feature of PCA is the main tendency

of observed data compactly and thus the ability to be used as a method to follow up a clue when

any significant structure in the data is not obvious. However, when the data does not have a struc-

ture that PCA can capture, satisfactory results cannot be obtained due to the uniformity of the

data structure and thus any significant and accumulated proportion for the principal compo-

nents cannot be found.

The higher cluster similarity metric is found for the RWD measure (close to 1) and thus the

BHFC procedure is able to provide an accurate clustering for all of the ARIMA(1,1,1) collections,

by jointly dealing with endogeneity issues and structural model uncertainty, where one or more

parameters are posited as the source of model misspecification problems. The results also indi-

cate that the dynamic data objects are clustered with a high confidence level and thus the RWD

measure would be better that the other distance measures.

Table 4: Cluster Similarity Metric

Collection RWD WED DWT DFT PCA

1 0.980 0.813 0.596 0.561 0.533

2 0.989 0.817 0.599 0.553 0.578

3 0.990 0.835 0.598 0.595 0.583

4 0.960 0.807 0.565 0.547 0.521

5 0.969 0.821 0.583 0.556 0.569

6 0.969 0.823 0.553 0.537 0.534

7 0.985 0.817 0.579 0.603 0.606

8 0.964 0.825 0.589 0.621 0.625

9 0.978 0.871 0.632 0.650 0.633

10 0.998 0.853 0.661 0.669 0.665

lBF - 8.45 6.71 6.57 1.33

Evidence - strong moderate moderate weak

The Table shows the cluster similarity metric for five different distance

measures. The columns display all of the ARIMA(1,1,1) time-series

collections and the related distance measures used for the fuzzy clus-

tering analysis. The last two columns refer to the log Bayes Factor and

the corresponding scale of evidence, respectively.

In Appendix A, I draw the clustering plots accounting for all of the 10 collections from the

ARIMA(1,1,1) time-series (Figure 9). The first five collections (1− 5) have been built by select-

24



ing 15 time-series, each from groups A and B . The others (6−10) have been built by selecting 15

time-series, each from groups C and D . All the grouped series show a highly low average dissim-

ilarity within a cluster and a highly strong dissimilarity between clusters. Thus, the three clusters

are well defined and separated. In addition, given the BMA implied in the BHFC procedure, dy-

namics between series are well highlighted and grouped. By plotting all of the ARIMA(1,1,1) col-

lections within each cluster, these dynamics are better observed and, in a context of multicountry

setups, they would correspond to time-varying cross-country linkages such as interdependence,

heterogeneity, and commonality (Figure 10 in Appendix B).

7 RWD Measure in High Dimensional Time-Varying Multicountry Data

In this section, I extend the analysis to Vector Autoregressive (VAR) models in order to test the per-

formance of the BHFC procedure when investigating endogeneity issues, misspecified dynamics,

and linear interdependencies among multiple time-series.

The empirical application builds on Pacifico (2019a) and focuses on a simplified version of the

SPBVAR accounting for 9 advanced countries, the G7 economies [Canada (CA), France (FR), Ger-

many (DE), Italy (IT), Japan (JP), the United Kingdom (UK), and the United States (US)] and two

non-G7 European countries [Ireland (IE) and Spain (ES)], and some of the core variables of the

real [real GDP growth rate (r g d pg ) and general government spending (g ov)] and financial [gen-

eral government debt (debt ) and the current account balance (cur r )] business cycles. The overall

series are expressed in quarters and all data points are originated from the OECD database (Table

6).

The simplified version of the time-varying SPBVAR developed in Pacifico (2019a) takes the form:

Y m̈
i t = Am̈

i t , j (L)Y m̈
i ,t−1 + ε̈i t (30)

where i , j = 1,2, . . . ,9 are country indices, t = 1,2, . . . ,T denotes time, m̈ = 1, . . . ,4 denotes the set

of endogenous variables, Ai t , j is a 36 · 36 matrix of real and financial variables for each pair of

countries (i , j ) for a given m̈, Yi ,t−1 is a 36 ·1 vector of lagged variables of interest that accounts for

the real and financial dimensions for each i for a given m̈, and ε̈i t ∼ i .i .d .N (0, Σ̈) is an 36 ·1 vector

of disturbance terms. For convenience, I suppose one lag and no intercept.

The estimation sample covers the period from March 1995 to December 2016. It amounts, with-
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out restrictions, to 3,168 regression parameters. More precisely, each equation of the time-varying

SPBVAR in (30) has 36 coefficients and there are 88 equations in the system. According to the BMA

strategy implied in the BHFC procedure, there are 236 = 68,719,476,736 possible model solutions.

Thus, it is very costly to select subsets of clusters (Mτ) via MCMC algorithms since the number of

coefficients is increased by N M̈ factors, with M̈ denoting the set of the lagged endogenous vari-

ables accounted for. Moreover, all series vary over time and thus dynamic relationships, cross-unit

lagged interdependencies, and dynamic feedback matter. Then, in order to be able in applying the

specifications underlying the BHFC procedure (Section 4), I need to express the time-varying SP-

BVAR in (30) in terms of a multivariate normal distribution.

By adapting the framework of Pacifico (2019a) and following the Bayesian implementations in

Pacifico (2020b), I can able to express the time-varying SPBVAR in terms of multivariate normal

distribution:

Yt = (IN M̈ ⊗ Ẍ t )γ̈t + Ët (31)

where Yt = (Y m̈′

1t , . . . ,Y m̈′

N t
)
′

is an 36 ·1 vector containing the set of real and financial variables for

each i for a given m̈, Ẍ t = (Y
′m̈

i ,t−1
,Y

′m̈
i ,t−2

, . . . ,Y
′m̈

i ,t−l
)
′

is an 1 · k̈ vector containing all lagged vari-

ables for each i , with k̈ = N M̈ be the number of all matrix coefficients in each equation of the

model (30) for each pair of countries (i , j ), γ̈k̈
i t , j

= vec(g̈ k̈
i t , j

) is an N M̈k̈ · 1 vector containing all

columns, stacked into a vector26, of the matrix At (L) for each pair of countries (i , j ) for a given

k̈, and Ët = (ε̈
′

1t , . . . , ε̈
′

N t )
′

is an 36 ·1 vector containing the random disturbances of the model. In

model (31) there is no subscript i since all lagged variables in the system are stacked in Ẍ t .

In this study, the implementation is adapted to the thrust of the RWD measure in merging more

similar MCs and thus identifying – as fast as possible – more probable homogeneous models Mτ

among dynamic data. More precisely, the coefficient vectors in γ̈t represent all the model solu-

tions counted in the natural model space M (equation (7)), and each factor would correspond

to a clustering model Mτ identifying a distinct cluster of (potential) combination of the series m̈.

The underlying logic is to exploit the Bayesian hierarchical framework implied in the BHFC proce-

dure in order to extend the clustering analysis by dealing with misspecified dynamics (structural

uncertainty) and endogeneity issues when studying and conducting fuzzy clustering analysis in

26Here, the vec operator is used to transform a matrix into a vector by stacking the columns of the matrix one under-

neath the other, with g̈ k̈
i t , j

= (A1′

i t , j
, A2′

i t , j
, . . . , AM̈ ′

i t , j
)
′

and γ̈t = (γ̈
′

1t , γ̈
′

2t , . . . , γ̈
′

N t
)
′

denoting the time-varying coefficient

vectors, stacked for i , for each country–variable pair.
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time-varying multicountry setups. However, because the coefficient vectors in γ̈t vary in different

time periods for each country–variable pair and there are more coefficients than data points, to

avoid the dimensionality problem, I adapt the framework in Pacifico (2019a) and assume γ̈t has

the following factor structure:

γ̈t =

F̈∑

f =1

G̈ f ·β f̈ t + üt with üt ∼ N (0,Σü) (32)

where F̈ ≪ N M̈k̈ and di m(β f̈ t ) ≪ di m(γ̈t ) by construction, G̈ f̈ = [G̈1,G̈2, . . . ,G̈F̈ ] are N M̈k̈ · 1

matrices obtained by multiplying the matrix coefficients (g̈ k̈
i t , j

) stacked in the vector γ̈t by con-

formable matrices B f̈ with elements equal to zero and one27, ut is an N M̈k̈ ·1 vector of unmod-

elled variations present in γ̈t , and Σü = Σë ⊗ V̈ , where Σë is the covariance matrix of the vector

Ët and V̈ = (σ2Ik̈ ) as in Kadiyala and Karlsson (1997). The idea is to shrink γ̈t to a much smaller

dimensional vector βt , with βt = (β
′

1t ,β
′

2t , . . . ,β
′

F̈ t
)
′

denoting the adjusted auxiliary indicator de-

fined in Section 4 (β= {βk }), and containing all regression coefficients stacked into a vector.

Running equations (31) and (32) for the model described in (30), I assume that the coefficient

vectors in γ̈t depends on three factors:

G̈ f̈ β f̈ t = G̈1β1t +G̈2β2t +G̈3β3t + üt (33)

where, stacking for t , β f̈ = (β1,β2,β3)
′

contains all the series to be estimated and grouped in dis-

tinct clusters for each clustering model Mτ. Given the factorization in equation (33), the reduced-

form SPBVAR model in equation (31) can be transformed into a Structural Normal Linear Regres-

sion (SNLR) model28 written as

Yt = Θ̈t

( 3∑

f̈ =1

G̈ f̈ β f̈ t + üt

)

+ Ët ≡ χ̈ f̈ tβ f̈ t + η̈t with Θ̈t =

(

IN M̈ ⊗ Ẍ t

)

(34)

where Θ̈t contains all the lagged series in the system by construction, χ̈ f̈ t ≡ Θ̈ f̈ tG̈ f̈ t is an N M̈ ·1

matrix that stacks all coefficients of the system, and η̈t ≡ Θ̈ f̈ t üt + Ët ∼ N (0,σt ·Σü), with σt =

(IN +σ2
Θ̈

′

t Θ̈t ).

27Here,B f̈ would correspond to the auxiliary indicator β= (βk ) in matrix form.
28See, for instance, Pacifico (2019b) for an illustration of the conformation of the time-varying multicountry SPBVAR

model and the exact form of the β f̈ t ’s, χ̈ f̈ t ’s, and the G̈ f̈ ’s.
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Let M̈v̈ = M̈v̈1, M̈v̈2, M̈v̈3 be the number of variable-specific factors. The specified factors in

equation (33) I assume for the empirical analysis are: (i ) χ̈1tβ1t is a N M̈ · M̈v̈1 observable cross-

country variable-specific indicator for Yt that accounts for all the series with close similarity met-

ric in order to highlight cross-country commonality among real and financial variables, with χ̈1t =

∑

i

∑

M̈v̈1
yi M̈v̈1t−1; (i i ) χ̈2tβ2t is a N M̈ · M̈v̈2 observable cross-country variable-specific indicator

for Yt that accounts for all the series with higher and similar membership values in order to

investigate interdependence and endogeneity issues among countries and sectors, with χ̈2t =

∑

i

∑

M̈v̈2
yi M̈v̈2t−1; and (i i i ) χ̈3tβ3t is a N M̈ · M̈v̈3 observable cross-country variable-specific in-

dicator for Yt that accounts for all the series with similar MCs and higher log BF in order to deal

with endogeneity issues and misspecified dynamics, with χ̈3t =
∑

i

∑

M̈c̈
yi M̈c̈ t−1.

By construction, conjugate hierarchical informative priors (Section 4) and MCMC simulations

(Section 5) can be used without loss of estimation efficiency. Nevertheless, further specifications

and MCs implementations need to be done. For example, since the coefficient vectors βt vary

over time, I suppose the following state-space structure:

βt =βt−1 + ϋt with ϋt ∼ N (0, Ḧt ) (35)

where βt = (β1t ,β2t , . . .)
′

, Ḧt = di ag ( ¨̄H1t , ¨̄H2t , ¨̄H3t ) is a block diagonal matrix, and ¨̄H f̈ t = (ḧ f̈ t · I ),

where ḧ f̈ t controls the tightness (stringent conditions) of the factorization ( f̈ ) of the time-varying

parameters (βt ) in order to make it estimable29. The errors Ët , üt , and ϋt are mutually indepen-

dent.

Supposing exact factorization30, mixture prior distributions in (12) need to be improved. Thus,

let φ̈0 = (Σ−1
ë , ḧ f̈ 0,β0) be a vector containing mixture density of all the conjugate priors, the likeli-

hood function can be derived from the sampling density p(Y |φ̈0) by using a mixture hierarchical

distribution31. The posterior distributions for φ̈ = (Σ−1
ë , ḧ f̈ t , {βt }T

t=1) are calculated by combin-

ing the prior with the (conditional) likelihood for the initial conditions of the data. The resulting

function for the full model Mk , containing all coefficient vectors γ̈t in (32), is then proportional

to

29The random-walk assumption in (35) is very common in the time-varying VAR literature and has the advantage of

focusing on permanent shifts and reducing the number of parameters in the estimation procedure.
30The factorization of γt becomes exact as long as σ2 converges to zero.
31See, for instance, Pacifico (2020b) fur further specifications on prior and posterior computations.
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L(Y T
|φ̈, Mk ) ∝ (Σë )−

T
2 exp

{

−
1

2

[

Σt (Yt − (Θ̈tG̈)βt )
′
]

Σ
−1
ë

[

Σt (Yt − (Θ̈tG̈)βt )
]}

(36)

where Y T = (Y1, . . . ,YT ) denotes the data, and φ̈ refers to the unknowns whose joint probability

distribution needs to be found. According to equations (34) and (35), dynamic analysis in BHFC

procedure can be conducted by MCs implementations32 in order to construct exact mixed poste-

rior distributions of the time-varying βt . More precisely, a variant of the Gibbs sampler approach

is used in this analysis by making use of the Kalman filter33, so it only requires knowledge of the

conditional posterior of (β1, . . . ,βT |Y
T , φ̈−βt

). The result would correspond to a Bayesian Model

Averaging implied in the BHFC procedure.

In this framework, dynamic feedbacks are obtained by recursively calculating the first two mo-

ments of posterior distributions on a set of 1,000 until 5,000 draws. The total number of draws

has been 1,000+ 4,000 = 5,000, which corresponds to the sum of the final number of draws to

discard and save, respectively. A total of 4,000 retained replications have been used to conduct

posterior inference at each t and the convergence is obtained at about 1,000 draws. In addition,

let δ̈ = (z̈1, ¨̄ω0, S̈0, β̈1) be a vector collecting all the known hyperparameters used in the empirical

analysis34, these latter are treated as fixed and are either obtained from the data to tune the prior

to the specific applications (this is the case for ¨̄ω0 and β̈1) or selected a priori to produce relatively

loose priors (this is the case for z̈1 and S̈0). The values are: z̈1 = N M = 36, ¨̄ω0 = 90, S̈0 = 0.91, and

β̈1 = di ag (Q̈11, . . . ,Q̈1N ), where Q̈1i is the estimated covariance matrix for each i .

Given the above specifications, I am able to discriminate among all the series in Mk by directly

choosing a pool of best submodels (Mτ) that contain the only regression parameters with higher

posterior means (β̂ f̈ t ’s) and different from zero. Thus, I can jointly deal with overestimation of

effect sizes (or individual contributions) and structured model uncertainty (implied in the proce-

dure) without loss of estimation efficiency. The log Bayes Factor in (17) is computed as:

lBFk,τ = log
(L(YT |Mk )

L(YT |Mτ)

)

(37)

where YT denotes the data and L(YT |Mk ) refers to the (conditional) likelihood function conducted

on submodels Mτ by MCs implementations. Support for discovering the most probable set of

32See, for instance, Kaufman and Gupta (1991), Heilpern (1997), and Chen and Hsieh (2000) for interesting MC meth-

ods for fuzzy clustering analysis.
33See, e.g., Chib and Greenberg (1995).
34Own computations.
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clusters capturing different dynamics and interconnections among time-varying data is obtained

by comparing the marginal likelihoods of the unrestricted model (Mk ) and a vector of the sub-

models (Mτ).

Let Qi m and Q j m be matrices of transition probabilities between distinct MCs among countries

and sectors, and qi m,l s and q j m,l s be the probabilities of the transition l → s in Qi m and Q j m , the

RWD from Qi m to Q j m is:

Dr wd (Q
f

i m
||Q

f

j m
) =

J∑

s=1

¨̄ω
f
s

D(q
f

i m,l
, q

f

j m,l
)

J
(38)

where D(q
f

i m,l
, q

f

j m,l
) =

[d(q
f

i m,l
,q

f

j m,l
)+d(q

f

j m,l
,q

f

i m,l
)]

2
and ¨̄ω f is the PMS distribution, on average, be-

tween the probabilities q
f

i m,l
and q

f

j m,l
obtained by the transition probability matrices in equation

(33), with f denoting the factorization according to the needs of the investigation.

7.1 Empirical Results

By focusing on the main time-series components, a highly persistent cyclical or seasonal changes

are observed among real and financial variables (Figure 5). Same results are found accounting for

the ACFs for both real and financial series (Figure 6).

In Table 5, I show the membership values and clusters, and the CPS for each country and vari-

able35. The optimal number of clusters in order to achieve higher PMP distribution and log Bayes

Factor among series is three (c = 3). Three main considerations are in order. First, the results

find confirmation with the preliminary findings in Pacifico (2019a), focusing on the only real and

financial variables. More precisely, most countries tend to show negative and positive posterior

probability signs in real economy and financial dimension, respectively. In a context of interna-

tional business cycles, it would correspond to net receivers (negative CPS) and net senders (pos-

itive CPS). Second, according to the cluster membership, there is a consistent degree of hetero-

geneity among countries in the financial dimension and even more in the real economy. Third,

the membership values are close to 1 and thus the RWD measure provides an accurate clustering

among multiple series by jointly dealing with endogeneity issues and structural model uncer-

tainty.

35I use Fuzzy C-Means with 2 parameter of fuzziness, 500 random starts of the algorithm, and 500 iterations per each

random start.
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Figure 5: Time-series for the real and financial variables among a pool of advanced European

economies are shown, spanning the period 1995q1 to 2016q4. They account for real GDP growth

rate (r g d pg ), general government spending (g ov), general government debt (debt ), and the cur-

rent account balance (cur r ). The Y and X axis represent the series and sampling time, respec-

tively. All the series are expressed in quarters and seasonally adjusted. All data points are obtained

from OECD data source.

Figure 6: Sample Autocorrelation Functions for the real and financial variables among a pool of

advanced European economies are shown, spanning the period 1995q1 to 2016q4. They account

for real GDP growth rate (r g d pg ), general government spending (g ov), general government debt

(debt ), and the current account balance (cur r ). The dashed lines display the Bartlett’s bands. The

Y and X axis represent the ACFs values and lags, respectively. All lags are expressed in quarters.

The previous results are highlighted and enhanced by drawing the clustering plots (Figure 7). A

relevant common component matters more in the real economy, but with stronger heterogeneity
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Table 5: Membership Values and Clusters

Series Country CA FR DE IE IT JP ES UK US

r g d pg

Memb 0.99 0.89 0.96 0.99 0.90 0.91 0.97 0.93 0.99

C l uster 1 1 3 2 1 3 1 1 1

C PS 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00

g ov

Memb 0.92 0.98 0.90 0.92 0.96 0.93 0.99 0.97 0.94

C l uster 3 1 3 2 3 1 3 2 2

C PS 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00

debt

Memb 0.98 0.96 0.93 0.95 0.94 0.99 0.99 0.95 0.98

C l uster 1 1 2 2 1 3 2 2 1

C PS 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

cur r

Memb 0.99 0.93 0.96 0.94 0.98 0.95 0.98 0.97 0.92

C l uster 2 2 1 3 2 1 3 3 3

C PS 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Here, Memb refers to the membership values for each country and variable, C l uster

denotes the membership cluster for each country, and C PS stands for the Conditional

Posterior Sign according to the posterior probability for each pair of country and vari-

able.

among series between clusters (Figures 7a and 7b). Larger cross-country homogeneity and inter-

dependence are found among financial variables within and between clusters, respectively (Fig-

ures 7c and 7d). Moreover, according to Bayesian inference, some drawbacks of robust policies

designed to protect the economy against the worst-case consequences of misspecified dynamics

can be assessed. For example, stronger homogeneity is found among countries, except for Japan

and Ireland. Then, the fuzzy clustering analysis shows two area-specific common groups and two

specific clusters: (i ) North American area (US, Canada); (i i ) continental European area (France,

Germany, Italy); (i i i ) Ireland; and (i v) Japan. These last two countries tend to be separate from

the two areas in most cases, possibly due to different economic dynamics.

These findings are robust and consistent with the more recent business cycle studies, which

recognize the importance of accounting for additional time-varying factors when jointly studying

and quantifying a large set of series in dynamic multicountry setups (see, for instance, Pacifico

(2019a,b) and Pacifico (2020a)). Thus, possible implementations of the BHFC procedure would

be to group real and financial variables by dealing with not directly observed endogenous time-

variant factors, such as transmission channels and economic–institutional linkages.

Finally, in Figure 8, I draw the clustering plots according to both real and financial variables for

each of the cross-country indicators (χ̈ f̈ t β̂ f̈ t ). They are so split: (i ) the first cluster (c = 1) contains

all the real variables and the current account balance for all countries; (i i ) the second (c = 2)
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(a) Real GDP Growth Rate

(b) Government Spending

(c) Government Debt

(d) Current Account Balance

Figure 7: Clustering plots accounting for both real (plots a and b) and financial (plots c and d)

variables among a pool of advanced European economies are drawn and grouped according to the

RWD measure, spanning the period 1995q1 to 2016q4. The cluster membership for each series is

displayed in Table 5. The Y and X axis represent the series and sampling distribution in quarters,

respectively.

cluster contains the government debt for Japan, North American area, and continental European

area; and (i i i ) the third cluster (c = 3) contains the government debt for the other countries. The

findings can be summarized in three main results. First, larger commonality and heterogeneity

matter in real economy among countries (cluster 1). Second, there are stronger cross-country

interdependencies among real and financial dimension (cluster 1). It finds confirmation with the

more recent literature on business cycles highlighting that an unexpected country-specific shock
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directly affects a country in the financial dimension and then in the real economy. Third, although

relevant cross-country interdependencies among sectors, mainly in the financial dimension, the

empirical analysis suggests that area-specific common factors play an important role, separating

the sample into North American and continental European area, including Japan (cluster 2), with

other developed economies (cluster 3).

Overall, the persistent heterogeneity observed in the real and financial dimensions highlights

the relevant impact of significant endogeneity issues and misspecified dynamics among countries

and sectors and thus the need for forecasters and policymakers to conduct a deeper analysis by

accounting for both group-specific and global factors when formulating policy implications and

feedback effects associated with temporary or persistent long-run effects36.

Figure 8: Clustering plots according to both real and financial variables for each of the cross-

country indicators (χ̈ f̈ t β̂ f̈ t ) are drawn. They account for clustering models Mτ identifying three

distinct cluster of (potential) combination of the series m̈. The Y and X axis represent the series

and sampling distribution in quarters, respectively.

36See, for instance, Pacifico (2020a), Koop and Korobilis (2012), and Raftery et al. (2010) for interesting implementa-

tions when studying macroeconomic-financial linkages in multicountry setups.
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8 Concluding Remarks

The paper develops a computational approach to improve hierarchical fuzzy clustering time-

series analysis when accounting for high dimensional and noise problems in dynamic data and

jointly dealing with endogeneity issues and misspecified dynamics. A Robust Weighted Distance

measure between stationary and invertible ARIMA processes is performed in order to make op-

erative the notion of distance between finite sets of ARIMA models. It is r obust because the

Bayesian Model Selection is performed with a set of conjugate informative priors in order to dis-

cover the most probable set of clusters capturing different dynamics and interconnections among

time-varying data and wei g hted because each unlabeled time-series is ’adjusted’, on average, by

own Posterior Model Size distribution in order to group dynamic data objects into ’ad hoc’ ho-

mogenous clusters where the within-group-object similarity is minimize and the between-group-

object dissimilarity is maximized.

The main thrust of the BHFC procedure is the use of conjugate hierarchical informative priors

in order to discover the most probable set of clusters capturing different dynamics and intercon-

nections among time-varying data. Full posterior distributions for effective clustering of ARIMA

time-series are obtained by MCMC algorithms in order to avoid the problem of increasing the

overall probability of errors that plagues classical statistical methods based on significance tests.

In this context, Bayesian methods are used to reduce the dimensionality of the model, structure

the time variations, evaluate issues of endogeneity and structured model uncertainty, with one or

more parameters posited as the source of model misspecification problems.

In this study, empirical and simulated examples describe the functioning and the performance

of the procedure. More precisely, I perform an empirical application for moderate time-varying

data (k ≤ 15) and a simulated experiment for larger setups (k > 15) on a database of multiple

ARIMA time-series in order to display the performance and usefulness of BHFC procedure and

RWD measure, with k denoting the number of time-series. In addition, I extend and implement

the BHFC procedure in order to deal with endogeneity issues and functional form misspecifica-

tions when accounting for dynamics of the economy in high dimensional time-varying multi-

country data. In this context, the RWD measure is used in order to group multiple data objects

that are generated from different series among a pool of advanced European economies. I build

on Pacifico (2019a) and estimate a simplified version of the Structural Panel Bayesian VAR (SPB-

VAR) by defining hierarchical prior specification strategy and MCMC implementations in order to
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extend variable selection procedure for clustering time-series to a wide array of candidate mod-

els.
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A Clustering Plot for ARIMA(1,1,1) - Cluster Membership

(a) Collection 1 (b) Collection 2

(c) Collection 3 (d) Collection 4

(e) Collection 5 (f) Collection 6

(g) Collection 7 (h) Collection 8

(i) Collection 9 (j) Collection 10

Figure 9: Clustering plots accounting for all of the 10 collections from ARIMA(1,1,1) time-series.

Collections 1−5 have been built by selecting 15 time-series, each from groups A and B . Collections

6−10 have been built by selecting 15 time-series, each from groups C and D . The Y and X axis

represent the membership clusters and values for each series, respectively.
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B Clustering Plot for ARIMA(1,1,1) - Series Collection

(a) Collection 1 (b) Collection 2

(c) Collection 3 (d) Collection 4

(e) Collection 5 (f) Collection 6

(g) Collection 7 (h) Collection 8

(i) Collection 9 (j) Collection 10

Figure 10: Clustering plots accounting for all of the 10 collections from ARIMA(1,1,1) time-series.

Collections 1−5 have been built by selecting 15 time-series, each from groups A and B . Collections

6−10 have been built by selecting 15 time-series, each from groups C and D . The Y and X axis

represent the series and sampling time, respectively.
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C Data Description

Table 6: Data

VARIABLES DESCRIPTION

GDP Growth Rate It is calculated as: Log
(

GDPi t , j

GDPi t−1, j

)

.

General Government Spending Financial accounts for general government spending.

General Government Debt Non-financial accounts for general government debt.

Current Account Balance Non-financial accounts for general government net.

Here, government spending and debt, and current account balance are weighted for the GDP.
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