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Abstract

We consider a weaker notion of strategy-proofness called upper contour strategy-

proofness (UCSP) and investigate its relation with strategy-proofness (SP) for

random social choice functions (RSCFs). Apart from providing a simpler way

to check whether a given RSCF is SP or not, UCSP is useful in modeling the

incentive structures for certain behavioral agents. We show that SP is equivalent to

UCSP and elementary monotonicity on any domain satisfying the upper contour no

restoration (UCNR) property. To analyze UCSP on multi-dimensional domains, we

consider some block structure over the preferences. We show that SP is equivalent

to UCSP and block monotonicity on domains satisfying the block restricted upper

contour preservation property. Next, we analyze the relation between SP and UCSP

under unanimity and show that SP becomes equivalent to UCSP and multi-swap

monotonicity on any domain satisfying the multi-swap UCNR property. Finally,

we show that if there are two agents, then under unanimity, UCSP alone becomes

equivalent to SP on any domain satisfying the swap UCNR property. We provide

applications of our results on the unrestricted, single-peaked, single-crossing, single-

dipped, hybrid, and multi-dimensional domains such as lexicographically separable

domains with one component ordering and domains under committee formation.
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1. INTRODUCTION

We consider a society with n agents and m alternatives. Each agent has a preference

over the alternatives and a random social choice function (RSCF) selects a probability

distribution over the alternatives at every collection of preferences of the agents. An

RSCF is strategy-proof (SP) if no agent can increase the probability of any upper contour

set of his preference by misreporting his preference. It is upper contour strategy-proof

(UCSP) if no agent can increase the probability of an upper contour set by misreporting

his preference maintaining the same upper contour set. Clearly, UCSP is much weaker

than SP.

The main objective of this paper is to find conditions on a domain so that UCSP and SP

become equivalent (with or without unanimity). The question arises: why is it important

to explore such an equivalence? The most important reason is to provide a simpler way

to check if a given RSCF is strategy-proof. The fact that UCSP is a significant weakening

of SP is established in the literature; in fact, the proportion of the number of constraints

under UCSP to that under SP goes to zero as the number agents n goes to infinity (see

Chun and Yun (2019) for a detailed account of this). Another reason we study UCSP

is that it can be used to model behavioral agents. Even though agents have complete

preferences, they might have alternatives classified as acceptable, unacceptable, etc. Due

to behavioral reasons such as ethics, stigma, or self-guilt, they might be uncomfortable

to vouch for some candidate who they very much dislike. Consequently, they maintain

some upper contour sets of their sincere preference while manipulating and look for an

increase of the probability of these sets only.

Local strategy-proofness (LSP) is another well-studied weakening of SP (see Sato

(2013), Carroll (2012), Kumar et al. (2020) for details). LSP requires SP only for

profiles that are “neighbors” (or, close in some sense). The reason we work with UCSP

is that there is not much progress with the LSP approach for RSCFs, particularly for

multi-dimensional (separable) domains (in comparison with that for deterministic social

choice functions where necessary and sufficient conditions are known). Cho (2016)

shows that LSP is equivalent to SP (without unanimity) on any domain satisfying the

“swap no-restoration” property. Multi-dimensional separable domains are not “swap
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connected” and hence this result does not apply to these domains (among others). To our

understanding, it is “hard” to keep track of probabilities by LSP on a domain that is not

swap-connected, which is why the literature has not progressed much in this direction.

This motivates us to take the new approach of UCSP, which has its own importance as

well.

We provide a condition on a domain so that SP becomes equivalent to UCSP and a

property called elementary monotonicity (EM) (see Majumdar and Sen (2004), Mishra

(2016)). EM is an immediate consequence of SP and cannot be avoided in characterizing

SP. Our result applies to a large class of one-dimensional domains of practical importance

such as the unrestricted domain, single-peaked domain, single-crossing domain, single-

dipped domain, hybrid domain, etc. Next, we explore the equivalence of SP and UCSP

when there is a “block structure” over the preferences. We introduce a generalization

of EM called block monotonicity (BM) and show that if a domain satisfies the block

restricted upper contour preservation (BRUCP) property then SP becomes equivalent

with UCSP and BM. This result applies to many well-known multi-dimensional domains

like Lexicographically separable domains with one component ordering and domains

under committee formation. Finally, we investigate the equivalence of SP and UCSP

under unanimity. We introduce a restricted version of EM called multi-swap monotonicity

and show that if a domain satisfies the multi-swap upper contour no-restoration (multi-

swap UCNR) property, then a unanimous RSCF on it is SP if and only if it is UCSP and

satisfies multi-swap monotonicity. We further show that if there are two agents and the

domain satisfies the swap upper contour no-restoration (swap UCNR property), then a

unanimous RSCF on it is SP if and only if it is UCSP. In other words, when there are two

agents, UCSP alone becomes equivalent to SP on the mentioned class of domains. These

results apply to a large class of well-known domains such as the unrestricted domain,

single-peaked domain, single-crossing domain, single-dipped domain, hybrid domain.

It is worth mentioning that our results (for both with and without unanimity) apply to

many more domains relative to the domains on which the equivalence of LSP and SP is

known to hold for RSCFs. Moreover, we provide our analysis for both unanimous and

non-unanimous RSCFs on a common platform; to the best of our knowledge, these two
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cases are treated separately in the context of LSP.

1.1 RELATED LITERATURE

The literature on UCSP is quite limited: Chun and Yun (2019) introduces this notion in

the context of random assignment problems and ours is the first paper to explore it for

RSCFs. However, the literature on SP RSCFs is quite extensive. It dates back to Gibbard

(1977) where he shows that an RSCF on the unrestricted domain is unanimous and

strategy-proof if and only if it is a random dictatorial rule. For the case of continuous

alternatives, Ehlers et al. (2002) characterise unanimous and strategy-proof RSCFs on

maximal single-peaked domains, and Dutta et al. (2002) characterise unanimous and

strategy-proof RSCFs on multi-dimensional single-peaked domains. Later, Peters et al.

(2014) show that every unanimous and strategy-proof RSCF on maximal single-peaked

domain is a convex combination of min-max rules. Pycia and Ünver (2015) establish

a similar result by using the theory of totally unimodular matrices from combinato-

rial integer programming. Peters et al. (2017), Roy and Sadhukhan (2019), Roy and

Sadhukhan (2020), and Peters et al. (2020) characterize unanimous and strategy-proof

RSCFs on single-dipped domains, Euclidean domains, generalized intermediate domains,

and single-peaked domains on graphs, respectively.

The rest of the paper is organized as follows. Section 2 introduces the model and

basic definitions regarding domains and random social choice functions. Sections 3

and 4 present our results on the equivalence of SP and UCSP without unanimity and

with unanimity, respectively. Section 5 analyses the equivalence of SP and UCSP under

unanimity when there are two agents. Finally, Section 6 presents the applications of our

results.

2. PRELIMINARIES

Let N = {1, . . . ,n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2.

Let A be a finite set of alternatives. For notational convenience, whenever it is clear from

the context, we do not use braces for singleton sets, for instance, we denote the set {i}

by i.
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2.1 PREFERENCES, DOMAINS, AND THEIR PROPERTIES

A complete, reflexive, antisymmetric, and transitive binary relation over A (also called a

linear order) is called a preference. We denote by L(A) the set of all preferences over A.

Let P be a preference. For distinct a,b ∈ A, aPb is interpreted as “a is strictly preferred

to b according to P”. For k ∈ {1, . . . ,m}, by rk(P) we denote the k-th ranked alternative

in P, that is, rk(P) = a if and only if |{b ∈ A | bPa}|= k. For a ∈ A, the upper contour

set of a in P, denoted by U(a,P), is defined as the set of alternatives that are as good as

a in P, that is, U(a,P) = {b ∈ A | bPa}.1 We say that a set of alternatives U is an upper

contour set at P if U =U(a,P) for some a ∈ A.

A subset D of L(A) is called a domain (of admissible preferences). A domain D is

called unrestricted if it contains all preferences over A, that is, D = L(A). A preference

profile, denoted by PN is an element (P1, . . . ,Pn) of D
n = D ×·· ·×D .

A path is a sequence of preferences. A path (P(1), . . . ,P(k)) is said to have an

(a,b)-restoration for two distinct alternatives a and b if their relative ordering changes

more than once along the sequence, that is, there are 1 ≤ r < s < t ≤ k such that the

relative ordering of a and b in P(r) and P(s) are different, and that in P(s) and P(t)

are different. A path (P(1), . . . ,P(k)) is said to have no-restoration if it does not have

(a,b)-restoration for all distinct a,b ∈ A.

2.2 RANDOM SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

A Random Social Choice Function (RSCF) is a function ϕ : D
n → ∆A, where ∆A

denotes the set of probability distributions on A.

For B ⊆ A and PN ∈ D
n, we define ϕB(PN) = ∑

a∈B

ϕa(PN), where ϕa(PN) is the

probability of a at ϕ(PN).

Unanimity is a well-known property of an RSCF. Unanimity ensures that whenever

all the agents in a society agree on their top-ranked alternatives, that alternative is chosen

(with probability 1).

Definition 2.1. An RSCF ϕ : D
n → ∆A is called unanimous if for all a ∈ A and all

1Observe that a ∈U(a,P) by reflexivity.
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PN ∈ D
n, we have

[r1(Pi) = a for all i ∈ N]⇒ [ϕa(PN) = 1].

An RSCF is strategy-proof if no agent can increase the probability of any upper

contour set (in his/her sincere preference) by misreporting his/her (sincere) preferences.

Definition 2.2. An RSCF ϕ : D
n → ∆A is strategy-proof (SP) if for all i ∈ N, all

PN ∈ D
n, all P′

i ∈ D , and all upper contour sets U of P, we have

ϕU (Pi,P−i) ≥ ϕU (P
′
i ,P−i).

Next, we introduce the key notion of this paper. It is a weaker version of strategy-

proofness. It says that whenever an agent misreports his/her (sincere) preference P as

some preference P′, the probability of only those upper contour sets, that remain the

same in both these preferences, will not increase. For an example, suppose that the

alternatives are {a,b,c,d,e, f}, and P = abcde f and P′ = cabed f are two preferences

in D . Here, by P = abcde f , we mean r1(P) = a, r2(P) = b, r3(P) = c, and so on.

Note that {a,b,c} and {a,b,c,d,e} (and, trivially, {a,b,c,d,e, f}) are the sets that are

upper contour sets in both P and P′. Upper contour strategy-proofness says that when

an agent unilaterally misreports his/her sincere preference P as P′, probabilities of the

sets {a,b,c} and {a,b,c,d,e} will not increase. Note that this is much weaker than

strategy-proofness which requires that the probabilities of each upper contour set in

P, that is, each of the sets {a}, {a,b},{a,b,c},{a,b,c,d}, and {a,b,c,d,e}, will not

increase by the mentioned misreport.

Definition 2.3. An RSCF ϕ : D
n → ∆A is upper contour strategy-proof (UCSP) if

for all i ∈ N, all Pi,P
′
i ∈D , all P−i ∈D

n−1, and all U ⊆ A such that U is an upper contour

set in both Pi and P′
i , we have

ϕU (Pi,P−i) ≥ ϕU (P
′
i ,P−i).
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3. EQUIVALENCE OF UPPER CONTOUR STRATEGY-PROOFNESS AND

STRATEGY-PROOFNESS IN THE ABSENCE OF UNANIMITY

We have separate results for domains satisfying the “UCNR” property and domains satis-

fying the “BRUCP” property. The UCNR property majorly applies to one-dimensional

domains, whereas the BRUCP property applies to multi-dimensional domains. It is

worth mentioning that, as it seems, our results on UCNR domains do not follow from

those on BRUCP ones.

3.1 RESULTS ON DOMAINS SATISFYING THE UCNR PROPERTY

We begin with providing an example to show that UCSP alone cannot ensure SP on the

unrestricted domain. This example clarifies that the same happens on restricted domains

such as single-peaked, single-crossing, single-dipped, etc. (in fact, the same RSCF will

work).

Example 3.1. Suppose N = {1,2} and A = {a,b}. Consider the RSCF f : L
2(A)→ A

given in Table 1.

ab ba

ab b a

ba b a

Table 1

It is easy to check that this RSCF is upper contour strategy-proof but not strategy-

proof. This is because at (ab,ab) the outcome is b but at (ab,ba) the outcome is a,

which means agent 2 manipulates at (ab,ab) via ba.

In view of Example 3.1, we impose some additional restrictions on an RSCF to derive

an equivalence between UCSP and SP. To ease the presentation, we denote by U (P)

the set of all upper contour sets of a preference P, and by P ≡ ·· ·ab · · · a preference in

which a is ranked just above b.

Definition 3.1. An RSCF ϕ : D
n → ∆A is elementary monotonic (EM) if for all

i ∈ N, all a,b ∈ A, all Pi ≡ ·· ·ab · · · ,P′
i ≡ ·· ·ba · · · ∈D with U(b,Pi) =U(a,P′

i ), and all
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P−i ∈ D
n−1, we have ϕa(Pi,P−i) ≥ ϕa(P

′
i ,P−i).

Next, we define the notion of upper contour no-restoration. A path (P(1), . . . ,P(r))

satisfies the upper contour no-restoration (UCNR) property with respect to an upper

contour set U of P(1) if it has no (a,b)-restoration for every a ∈U and every b /∈ U . A

domain satisfies upper contour no-restoration (UCNR) if for every two preferences P

and P′ and every upper contour set U of P, there is a UCNR path from P to P′ such that

an alternative outside U can overtake an alternative in U along the path only through a

swap between the two maintaining the respective upper contour sets.

Definition 3.2. A domain D satisfies the upper contour no-restoration (UCNR) prop-

erty if for all P,P′ ∈ D and all U ∈ U (P), there exists a UCNR path (P = P(1), . . . ,

P(k) = P′) in D with respect to U such that for all l < k, aP(l)b and bP(l + 1)a for

some a ∈ U and b /∈ U implies P(l) ≡ ·· ·ab · · · and P(l + 1) = · · ·ba · · · with U(b,

P(l)) =U(a,P(l + 1)).

Remark 3.1. Let (P(1), . . . ,P(k)) be a UCNR path with respect to an upper contour set

U of P(1). The UCNR property implies that if aP(l)b and bP(l + 1)a for some l < k,

a ∈U , and b /∈ U , then

cP(l)d ⇐⇒ cP(l + 1)d for all c ∈ {a,b} and d /∈ {a,b}.

Note that in addition to the unrestricted domain, most restricted domains of practical

importance, such as single-peaked, single-crossing, single-dipped, etc., satisfy the UCNR

property.

Our next theorem says that SP is equivalent to the combination of UCSP and EM for

RSCFs on domains satisfying the UCNR property.

Theorem 3.1. An RSCF on a domain satisfying the UCNR property is SP if and only if

it is UCSP and EM.

The proof of the theorem is relegated to Appendix A.

9



3.2 RESULTS ON DOMAINS SATISFYING THE BRUCP PROPERTY

A block X ⊆A in a preference P is a set of contiguous (consecutively ranked) alternatives,

that is, a set of alternatives X is a block in P if there are 1 ≤ s ≤ t ≤ m such that

X = {rs(P), . . . ,rt(P)}. A pair of disjoint blocks (X ,Y ) in a preference P is called

adjacent if the alternatives in Y appear just below those in X in the preference P, that is,

if there are 1 ≤ s ≤ t < u ≤ m such that X = {rs(P), . . . ,rt(P)} and Y = {rt+1(P), . . . ,

ru(P)}. We call two preferences P and P′ block adjacent if multiple pairs of adjacent

blocks flip from P to P′ without changing the relative ordering of the alternatives within

a block.

Definition 3.3. Two preferences P and P′ are block adjacent if

(i) there exists a collection of adjacent blocks (X1,Y1), . . . , (Xk,Yk) in P such that

(Y1,X1), . . . , (Yk,Xk) are adjacent blocks in P′, and

(ii) aPb and bP′a if and only if a ∈ Xl and b ∈ Yl for some l = {1, . . . ,k}.

In such situation, we write P′ = P[(X1,Y1), . . . , (Xk,Yk)] and say P′ is (X1,Y1), . . . ,

(Xk,Yk) flip of P.

Block monotonicity imposes strategy-proofness restricted to swapping blocks: if

an agent i unilaterally swaps a pair of blocks (X ,Y ), then the probability of any upper

contour set of X ∪Y according to his sincere preference cannot increase.

Definition 3.4. An RSCF ϕ : D
n → ∆A satisfies block monotonicity (BM) if for all

i ∈ N, all block adjacent preferences Pi and P′
i of i with P′

i = Pi[(X1,Y1), . . . , (Xk,Yk)],

all P−i ∈ D
n−1, and all l ∈ {1, . . . ,k}, we have ϕU (Pi,P−i) ≥ ϕU (P

′
i ,P−i) for all upper

contour sets U of Pi|Xl∪Yl
.

The block restricted upper contour preservation property says that for any two

preferences P and P′, and any upper contour set U of P, there is a path from P to P′

such that (i) any two consecutive preferences in the path differ by the swaps of multiple

adjacent blocks, and (ii) whenever a pair of blocks (X ,Y ) swaps from a preference P̂ to

the next one in the path, it must be that the alternatives in U form an upper contour set in

P̂|{X∪Y}.
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Definition 3.5. A domain D satisfies the block restricted upper contour preservation

(BRUCP) property if for all P,P′ ∈ D and all U ∈ U (P), there exists a path (P(1) = P,

. . . ,P(v) = P′) in D such that for all u ≤ v, there exist (Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k ) such that

(i) P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k )], and

(ii) U ∩ (Xu
l ∪Y u

l ) is an upper contour set of P(u)|Xu
l
∪Y u

l
for all l ≤ k.

Theorem 3.2. An RSCF on a domain satisfying the BRUCP is SP if and only if it is

UCSP and BM.

The proof of this theorem is relegated to Appendix B.

4. EQUIVALENCE OF UPPER CONTOUR STRATEGY-PROOFNESS AND

STRATEGY-PROOFNESS IN THE PRESENCE OF UNANIMITY

Two preferences P and P′ are called swap-local, denoted by P ∼ P′, if they differ by a

swap of two consecutively ranked alternatives. For instance, the preferences abcde f and

abdce f are swap-local. Similarly, two preferences P and P′ are called multiple-swap-

local, denoted by P ≈ P′, if the differ by the swaps of multiple pairs of consecutively

ranked alternatives. For instance the preferences abcde f and abdc f e are multiple-swap-

local as they differ by the swaps of the pairs (c,d) and (e, f ). A path (P(1) = P, . . . ,

P(r) = P′) from a preference P to a preference P′ is a multiple-swap path if for all s < r,

τ(P(s)) = τ(P(s+ 1)) implies P(s) ∼ P(s+ 1), and τ(P(s)) 6= τ(P(s+ 1)) implies

P(s) ≈ P(s+ 1). It is a swap path if P(s) ∼ P(s+ 1) for all s ∈ {1, . . . ,r}. Clearly,

every swap path is a multi-swap path.

Definition 4.1. A domain D satisfies the multi-swap (or, swap) UCNR property if for

all P,P′ ∈ D and for all U ∈ U (P), there exists a multi-swap (or, swap) path from P to

P′ satisfying the UCNR property with respect to U .

A domain satisfies swap no-restoration (swap NR) if, between any two preferences

in it, there exists a swap path having no-restoration. It is easy to verify that if a domain

satisfies the swap NR property, then it also satisfies the multi-swap UCNR property. We

formally present this observation in the following remark for future reference.
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Remark 4.1. The swap NR property implies the swap UCNR property on any domain.

Let Pi and P′
i are multiple-swap-local preferences having different top-ranked alterna-

tives and suppose an agent unilaterally changes his preference from Pi to P′
i . Multi-swap

monotonicity says that an RSCF will assign (weakly) higher probabilities to the alterna-

tives whose ranks are strictly improved (that is, the alternatives that swap up from Pi to

P′
i .).

Definition 4.2. An RSCF ϕ : D
n → ∆A satisfies multi-swap monotonicity if for all

i ∈ N, all multiple-swap-local Pi ≡ ·· ·ab · · · , P′
i ≡ ·· ·ba · · · ∈D with τ(Pi) 6= τ(P′

i ), and

all P−i ∈ D
n−1, we have ϕb(P

′
i ,P−i) ≥ ϕb(Pi,P−i).

Theorem 4.1. A unanimous RSCF on a domain satisfying the multi-swap UCNR property

is SP if and only if it is UCSP and multi-swap monotonicity.

The proof is relegated to Appendix C.

Remark 4.2. Let us recall the definition of the UCNR property. Roughly speaking, it

says that for all preferences P and P′ in the domain and all upper contour sets U of

P, there exists a UCNR path such that whenever an alternative outside U overtakes

an alternative in U , it does this (i) through a swap between the two alternatives, and

(ii) without changing the upper contour set. Note that if the mentioned UCNR path is

multi-swap, then conditions (i) and (ii) will be automatically satisfied. This implies that

if a domain satisfies the multi-swap UCNR property, it also satisfies the UCNR property.

We obtain the following corollary from Remarks 4.1 and 4.2.

Corollary 4.1. If a domain satisfies the swap NR property, then it satisfies the UCNR

property.

It follows from Remark 4.1 and Corollary 4.1 that if a domain satisfies the swap

NR property, it satisfies both the multi-swap UCNR property and the UCNR property.

Therefore, we obtain the following corollary from Theorems 3.1 and 4.1.

Corollary 4.2. If a domain satisfies the swap NR property, then every RSCF satisfying

UCSP and EM on it is SP, and every unanimous RSCF satisfying UCSP and multi-swap

monotonicity on it is SP.
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5. THE CASE OF TWO AGENTS

We show in this section that if we strengthen the multi-swap UCNR property by requiring

the swap UCNR property, then under unanimity, UCSP alone becomes equivalent to SP

for the case of two agents.

Theorem 5.1. Let N = {1,2} and let D satisfy the swap UCNR property. Then, a

unanimous RSCF on D is SP if and only if it is UCSP.

The proof is relegated to Appendix D.

In view of Remark 4.1 and Theorem 5.1, we have the following corollary.

Corollary 5.1. Let N = {1,2}. If a domain satisfies the swap NR property, then every

unanimous RSCF is SP if and only if it is UCSP.

6. APPLICATIONS OF OUR RESULTS

In this section, we provide some applications of our results to well-known domains by

exploring the equivalence of UCSP and SP.

6.1 THE UNRESTRICTED DOMAIN

It is easy to verify that the unrestricted domain satisfies the swap NR property. Therefore,

by Corollary 4.2, we obtain Corollary 6.1 and Corollary 6.2; and Corollary 5.1, we

obtain Corollary 6.3.

Corollary 6.1. An RSCF on the unrestricted domain is SP if and only if it is UCSP and

EM.

Corollary 6.2. A unanimous RSCF on the unrestricted domain is SP if and only if it is

UCSP and multi-swap monotonicity.

Corollary 6.3. Let n = 2. A unanimous RSCF on the unrestricted domain is SP if and

only if it is UCSP.
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6.2 RESTRICTED DOMAINS

In this section, we apply our results to well-known restricted domains in the literature. Let

the set of alternatives be A = {a1, . . . ,am} with a prior ordering ≺ given by a1 ≺ ·· · ≺ am.

6.2.1 SINGLE-PEAKED DOMAINS

A preference is single-peaked if it decreases as one goes far from its peak (top-ranked

alternative) in any particular direction. More formally, A preference P is called single-

peaked if for all a,b ∈ A, [r1(P) � a ≺ b or b ≺ a � r1(P)] implies aPb. A domain is

called single-peaked if each preference in the domain is single-peaked.

Corollary 6.4 and Corollary 6.5 follow from Corollary 4.2; and Corollary 6.6 follows

from Corollary 5.1.

Corollary 6.4. An RSCF on a single-peaked domain satisfying swap NR is SP if and

only if it is UCSP and EM.

Corollary 6.5. A unanimous RSCF on a single-peaked domain satisfying swap NR is

SP if and only if it is UCSP and multi-swap monotonicity.

Corollary 6.6. Let n = 2. A unanimous RSCF on a single-peaked domain satisfying

swap NR is SP if and only if it is UCSP.

6.2.2 SINGLE-DIPPED DOMAINS

A preference is single-dipped if it declines as one goes far away from its worst (bottom-

ranked) alternative in any particular direction. Recall that for a preference P and some

k ∈ {1, . . . ,m}, we denote by rk(P) the k-th ranked alternative in P. A preference P is

called single-dipped if for all a,b ∈ A, [rm(P) � a ≺ b or b ≺ a � rm(P)] implies bPa.

A domain is called single-dipped if each preference in the domain is single-dipped, and

is called maximal single-dipped if it contains all single-dipped preferences.

Corollary 6.7 and Corollary 6.8 follow from Corollary 4.2; Corollary 6.9 follows

from Corollary 5.1.
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Corollary 6.7. An RSCF on a single-dipped domain satisfying swap NR is SP if and

only if it is UCSP and EM.

Corollary 6.8. A unanimous RSCF on a single-dipped domain satisfying swap NR is SP

if and only if it is UCSP and multi-swap monotonicity.

Corollary 6.9. Let n = 2. A unanimous RSCF on a single-peaked domain satisfying

swap NR is SP if and only if it is UCSP.

6.2.3 SINGLE-CROSSING DOMAINS

Single-crossing domains are studied in Saporiti (2009) in the context of strategic social

choice. A domain D is single-crossing if there is an ordering ⊳ over D such that for all

a,b ∈ A and all P,P′ ∈D , [a ≺ b,P⊳P′, and bPa] =⇒ bP′a. In words, a single-crossing

domain is one for which the preferences can be ordered in a way such that every pair of

alternatives switches their relative ranking at most once along that ordering. A single-

crossing domain D̄ is maximal if there does not exist another single-crossing domain that

is a strict superset of D̄ . Note that a maximal single-crossing domain with m alternatives

contains m(m− 1)/2+ 1 preferences.2 A domain D is successive single-crossing if

there is a maximal single-crossing domain D̄ with respect to some ordering ⊳ and two

preferences P′,P′′ ∈ D̄ with P′
E P′′ such that D = {P ∈ D̄ | P′

E P E P′′}.3

In the following example, we present a maximal single-crossing domain and a succes-

sive single-crossing domain with 5 alternatives.

Example 6.1. Let the set of alternatives be A = {a1,a2,a3,a4,a5} with the prior order

a1 ≺ ·· · ≺ a5. The domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5,

a2a4a3a1a5, a4a2a3a1a5, a4a2a3a5a1, a4a3a2a5a1,a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1}

is a maximal single-crossing domain with respect to the ordering ⊳ given by a1a2a3a4a5⊳

a2a1a3a4a5⊳a2a3a1a4a5⊳a2a3a4a1a5⊳a2a4a3a1a5⊳a4a2a3a1a5⊳a4a2a3a5a1⊳a4a3a2a5a1⊳

a4a3a5a2a1 ⊳a4a5a3a2a1 ⊳a5a4a3a2a1 since every pair of alternatives change their rela-

tive ordering at most once along this ordering. Note that the cardinality of A is 5 and that

2For details see Saporiti (2009).
3By P E P′, we mean either P = P′ or P⊳P′.
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of D̄ is 5(5−1)/2+ 1 = 11. The domain D = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5,

a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5} is a successive single-crossing domain since it

contains all the preferences in-between a1a2a3a4a5 and a4a2a3a1a5 in the maximal

single-crossing domain D̄ . �

Lemma 6.1. Every successive single-crossing domain satisfies swap NR property.

Proof: Let D ba a successive single-crossing domain. We show that D satisfies swap

NR property. Consider P,P′ ∈ D . Without loss of generality assume that P ⊳P′. Let

P = {P̂ ∈ D |P E P̂ E P′}. Construct a path (P(1) = P, . . . ,P(k) = P′) from P such

that for all s < t, P(s) ⊳P(t). Note that this path is a swap path as for all s < k, we have

P(s) ∼ P(s+ 1). We show that this path has no-restoration. Assume for contradiction

there exist a,b ∈ A such that the path has (a,b)-restoration. As aP(1)b, this means

there exists s < t such that bP(s)a and aP(t)b. Since 1 < s, by the construction, we

have P(1) ⊳P(s). This together with aP(1)b and bP(s)a imply a ≺ b. Again, as s < t

we have by the construction P(s) ⊳P(t). Therefore, a ≺ b and bP(s) imply bP(t)a, a

contradiction to our assumption that aP(t)b. This completes the proof of the lemma. �

In view of Lemma 6.1, Corollary 6.10 and Corollary 6.11 follow from Corollary 4.2;

Corollary 6.12 follows from Corollary 5.1.

Corollary 6.10. An RSCF on a successive single-crossing domain is SP if and only if it

is UCSP and EM.

Corollary 6.11. A unanimous RSCF on a successive single-crossing domain is SP if

and only if it is UCSP and multi-swap monotonicity.

Corollary 6.12. Let n = 2. A unanimous RSCF on a successive single-crossing domain

is SP if and only if it is UCSP.

6.2.4 HYBRID DOMAINS

Hybrid domains are introduced in Chatterji et al. (2020). These domains are, in a sense,

a mixture of the single-peaked domain and the unrestricted domain. Preferences in such

a domain satisfy single-peakedness only outside an interval of the alternatives.
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Definition 6.1. Let 1 ≤ k < k ≤ m. A preference Pi is called (k,k)-hybrid if the follow-

ing two conditions are satisfied:

(i) For all ar,as ∈ L or ar,as ∈ R, [ar ≺ as ≺ r1(Pi) or r1(Pi) ≺ as ≺ ar]⇒ [asPiar].

(ii) [r1(Pi) ∈ L]⇒ [akPiar for all ar ∈ M with ar 6= ak ] and

[r1(Pi) ∈ R]⇒ [akPias for all as ∈ M with as 6= ak ].

Let DH(k,k) denote the (k,k)-hybrid domain which contains all (k,k)-hybrid pref-

erences. Note that DH(k
′,k

′
) ⊆ DH(k,k) for all k ≤ k′ < k

′
≤ k.

Chatterji et al. (2020) show that every (k,k)-hybrid domain satisfies the swap NR

property. Therefore, by Corollary 4.2, we obtain Corollary 6.13; and Corollary 6.14; and

by Corollary 5.1, we obtain Corollary 6.15.

Corollary 6.13. An RSCF on DH(k,k) is SP if and only if it is UCSP and EM.

Corollary 6.14. A unanimous RSCF on DH(k,k) is SP if and only if it is UCSP and

multi-swap monotonicity.

Corollary 6.15. Let n = 2. A unanimous RSCF on DH(k,k) is SP if and only if it is

UCSP.

6.3 LEXICOGRAPHICALLY SEPARABLE DOMAINS

Let M = {1, . . . ,m} be a finite set of m components. For each component k, the compo-

nent set Ak contains finitely many alternatives available in component k and |Ak| ≥ 2.

For any K ⊆ M, AK = ∏
k∈K

Ak, denotes the set of alternatives available in components in

K. The set of (multi-dimensional) alternatives is given by AM. For ease of presentation,

we write A instead of AM.

We start the investigation from lexicographically separable preferences. First, a lexi-

cographic order, that is, a linear order over M, is fixed to characterize an agent’s attitude

towards all components. Second, on each component set, a linear order is independently

specified, which is referred to as a marginal preference. Last, a lexicographically separa-

ble preference over A is established such that given two distinct alternatives, according
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to the most important disagreed component, the alternative owning a better element is

always preferred.

Definition 6.2. A preference P is lexicographically separable, if there exists a (unique)

lexicographic order P0 and a (unique) marginal preference Pk for each k ∈ M such that

for all a,b ∈ A, we have [alP
lbl and ak = bk for all kP0l] =⇒ [aPb].

Evidently, a lexicographically separable preference P can be uniquely represented

by an m+ 1-tuple of the lexicographic order P0 and marginal preferences P1, . . . ,Pm,

that is, P = (P0,P1, . . . ,Pm). Let DLS = (D0,D1, . . . ,Dm) denote the lexicographically

separable domain containing all lexicographically separable preferences with D0 as the

set of lexicographic orders and marginals Dk, k ∈ M.

6.3.1 ONE COMPONENT ORDER LEXICOGRAPHIC DOMAIN

In this section we assume that D0 = {P0}. Without loss of generality assume that

1P0 . . .P0m.

Proposition 6.1. Let DLS be a lexicographic domain such that D0 = {P0} and each

marginal domain Dk satisfies the no-restoration property. Then DLS satisfies the BRUCP

property.

The proof is relegated to Appendix E.

6.3.2 DOMAIN UNDER COMMITTEE FORMATION

Consider the problem where a committee has to be formed by taking members from a

given set of candidates. For each candidate, the designer has to decide whether to take

him or not. The domain arising in this problem can be modeled as a multi-dimensional

lexicographic domain as follows. Let D0 = L(M), Ak = {0,1}, and Dk = L(Ak) for all

k ∈ M. We call DLS = (D0,D1, . . . ,Dm) the domain under committee formation.

Proposition 6.2. The domain under committee formation satisfies the BRUCP property.

The proof is relegated to Appendix F.
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A. PROOF OF THEOREM 3.1

Proof: Let D satisfy the UCNR property. We show that every unanimous RSCF

on D is SP if and only if it is UCSP and EM. The “only if” part of the theorem

follows from the definitions; we only prove the “if” part. Let ϕ be a unanimous RSCF

satisfying UCSP and EM. Since ϕ does not satisfy unanimity, it is enough to assume

that there is exactly one agent.4 Consider P,P′ ∈ D and an upper contour set U ⊆ A of

P. We show that ϕU (P) ≥ ϕU (P
′). Since D satisfies the UCNR property there exists

a UCNR path (P = P(1), . . . ,P(k) = P′) in D with respect to U such that for all l < k,
[
aP(l)b and bP(l + 1)a for some a ∈ U and b /∈ U

]
implies

[
P(l) ≡ ·· ·ab · · · and

P(l + 1) = · · ·ba · · · with U(b,P(l)) =U(a,P(l + 1))
]
.

To show ϕU (P) ≥ ϕU (P
′), it is enough to show that ϕU (P(l)) ≥ ϕU (P(l + 1)) for

all l < k. Consider P(l) such that l < k. Let us call a subset Û of U a block of U in the

preference P(l) if it is a maximal subset of U such that its elements are consecutively

ranked in P(l), that is, there is no alternative b /∈ U that is ranked (according to P(l))

between two elements of Û and there is no Ū with Û ( Ū ⊆U that satisfies the same

property. Let U = {U1, . . . ,Ur} be the collection of all blocks of U . Clearly, U forms a

partition of U . For each Us ∈U , let U ′
s = {a ∈Us | aP(l)b and bP(l+1)a for some b /∈

U}. In other words, U ′
s is the elements of Us that are overtaken by some alternative

outside U from P(l) to P(l + 1). Let U ′′
s =Us \U ′

s.

Consider Us ∈ U . Let a ∈Us be the worst alternative of Us according to P(l). We

claim that the set U ′
s is either empty or {a}. Assume for contradiction that a ∈U ′

s for

some a 6= a. By the definition of U ′
s, there is an alternative c /∈ U such that aP(l)c and

cP(l + 1)a. Since D satisfies the UCNR property, by Remark 3.1 we have xP(l)y ⇐⇒

xP(l + 1)y for all x ∈ {a,c} and all y /∈ {a,c}. Since aP(l)c, by the definition of Us

and a, it must be that aP(l)aP(l)c. This, together with the fact that cP(l + 1)a, implies

either aP(l + 1)a or cP(l + 1)a, each of which is a contradiction to the UCNR property.

To show ϕU (P(l))≥ϕU (P(l+1)), it is sufficient to show ϕUs
(P(l))≥ϕUs

(P(l+1))

for each Us ∈ U , which can be ensured by showing ϕU ′
s
(P(l)) ≥ ϕU ′

s
(P(l + 1)) and

ϕU ′′
s
(P(l)) ≥ ϕU ′′

s
(P(l + 1)). We show this in the following two claims.

4This fact is well-known in the literature.

19



Claim A.1. ϕU ′
s
(P(l)) ≥ ϕU ′

s
(P(l + 1)).

Proof of Claim A.1. If U ′
s = /0, then there is nothing to prove. Suppose U ′

s = {a}.

Let b /∈ U be such that aP(l)b and bP(l + 1)a. Since D satisfies the UCNR property,

by Remark 3.1 this means xP(l)y ⇐⇒ xP(l + 1)y for all x ∈ {a,b} and all y /∈ {a,

b}. This in turn implies U(b,P(l)) = U(a,P(l + 1)). Therefore, by EM, we have

ϕa(P(l)) ≥ ϕa(P(l + 1)). �

Claim A.2. ϕU ′′
s
(P(l)) ≥ ϕU ′′

s
(P(l + 1)).

Proof of Claim A.2. By the construction of Us, either the best alternative (according to

P(l)) of Us is the top-ranked alternative in P(l) or there is an alternative b /∈ U which is

ranked just above the best alternative of Us. Similarly, either the worst alternative of Us

is the bottom-ranked alternative in P(l) or there is some alternative c /∈ U that is ranked

just below the worst of alternative of Us. In the rest part of the prove, we prove certain

facts about b and c; if any of them does not exist, then these facts are vacuously true.

Note that by the UCNR property, bP(l)a for all a ∈Us implies bP(t)a for all a ∈Us, all

t ≥ l + 1, which in particular implies bP(l + 1)a for all a ∈Us.

Let z be the worst alternative according to P(l + 1) among the alternatives which

b overtakes from P(l) to P(l + 1). We claim zP(l + 1)a for all a ∈ U ′′
s . To see this,

consider a ∈U ′′
s . Suppose z ∈U . Since zP(l)b and bP(l + 1)z, by Remark 3.1, we have

bP(l)x ⇐⇒ zP(l + 1)x for all x /∈ {b,z}, which in turn implies zP(l + 1)a. Suppose

z /∈ U . As zP(l)bP(l)a, by the UCNR property, this means zP(l + 1)a. We now prove

the following fact.

Fact A.1. U(x,P(l)) =U(z,P(l + 1)).

Proof of Fact A.1. Assume for contradiction U(b,P(l)) 6=U(z,P(l + 1)). This means

either there exists x ∈ U(b,P(l)) such that x /∈ U(z,P(l + 1)) or there exists y ∈ U(z,

P(l + 1)) such that y /∈ U(b,P(l)). First assume that there there exists x ∈U(b,P(l))

such that x /∈ U(z,P(l + 1)). Note that x 6= b as by the definition of z, bP(l + 1)z. Thus

xP(l)b. This, together with the fact that bP(l + 1)zP(l + 1)x, implies z is not the worst

alternative according to P(l + 1) among the alternatives that overtake b from P(l) to

P(l + 1), a contradiction to our assumption on z.
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Now assume that there exists y /∈ U(b,P(l)) such that y ∈U(z,P(l + 1)). Note that

z 6= y, as by our assumption on z, zP(l)b. Suppose z ∈U . Since zP(l)b and bP(l + 1)z,

by the UCNR property this means yP(l + 1)z =⇒ yP(l)z. Moreover, as zP(l)b, we

have yP(l)zP(l)b, a contradiction to the fact that y /∈U(x,P(l)). Suppose z /∈U . By the

UCNR property, zP(l)bP(l)y and yP(l + 1)z together imply y /∈ U . Consider a ∈U ′′
s .

As zP(l + 1)a and yP(l + 1)z, we have yP(l + 1)a. Note that by the definition of Us,

bP(l)y and y /∈ U together imply aP(l)y. But this is a contradiction to a ∈U ′′
s as aP(l)y

and yP(l + 1)a. This completes the proof of Fact A.1. �

Using Fact A.1 and UCSP together, we have

ϕU(x,P(l))(P(l)) = ϕU(x,P(l))(P(l + 1)). (1)

Suppose a ∈U ′
s . By the UCNR property, this means c overtakes a from P(l) to P(l + 1)

and U(a,P(l)) \a is an upper-contour set of P(l + 1). Thus, by UCSP,

ϕU(a,P(l))\a(P(l)) = ϕU(a,P(l))\a(P(l + 1)). (2)

Note that by the definition of U ′′
s , a ∈ U ′

s implies U ′′
s = U(a,P(l)) \ (U(b,P(l))∪ a).

Therefore, subtracting (1) from (2) we get ϕU ′′
s
(P(l)) = ϕU ′′

s
(P(l+1)). Suppose a /∈U ′

s .

That means U ′
s = /0 and hence, Us =U ′′

s . Let d /∈ U be the most preferred alternative in

P(l + 1) among the alternatives which overtake c from P(l) to P(l + 1). Using similar

arguments as in the proof of Fact A.1, we can show that U(a,Pl) =U(d,P(l + 1)) \d.

By upper contour strategy-proofness, this implies

ϕU(a,P(l))(P(l)) = ϕU(a,P(l))(P(l + 1)). (3)

Subtracting (1) from (3), we have ϕU ′′
s
(P(l)) = ϕU ′′

s
(P(l+1)). This completes the proof

of Claim A.2. �

Claim A.1 and Claim A.2 complete the proof of the theorem. �
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B. PROOF OF THEOREM 3.2

Proof: Let D be a domain satisfying the BRUCP property and ϕ be an RSCF on D . We

show that ϕ is SP if and only if it is UCSP and BM. The “only if” part of the theorem

follows from the definitions; we only prove the “if” part. Suppose ϕ is UCSP and BM.

As we have argued in the proof of Theorem 3.1, because ϕ does not satisfy unanimity, it

is enough to assume that there is exactly one agent. Consider P,P′ ∈ D . We show that

for all U ∈ U (P), ϕU (P)≥ ϕU (P
′). Since D satisfies the BRUCP property, there exists

a path (P(1) = P, . . . ,P(v) = P′) in D such that P(u+ 1) = P(u)[(X1,Y1), . . . , (Xk,Yk)]

and U |Xl∪Yl
is an upper contour set of P(u)|Xl∪Yl

for all l ≤ k and all u < v.

Take u < v. In order to prove the theorem it is sufficient to show that ϕU (P(u)) ≥

ϕU (P(u+ 1)). By the definition of π , P(u+ 1) is a flip of P(u), that is, P(u+ 1) =

P(u)[(X1,Y1), . . . , (Xk,Yk)] where (X1,Y1), . . . , (Xk,Yk) is a collection of adjacent blocks.

Without loss of generality assume that X1P(u)Y1P(u)X2P(u) · · ·P(u)Yk. Let l ∈ {0,

. . . ,k} and z ∈ A be such that YlP(u)zP(u)Xl+1 where Y0 = Xk+1 = /0. Since P(u) and

P(u+1) are adjacent and z /∈ ∪k
l=1(Xl ∪Yl), we have aP(u)z if and only if aP(u+1)z for

all a ∈ A\z. This implies U(z,P(u)) =U(z,P(u+1)) and hence by UCSP, ϕz(P(u)) =

ϕz(P(u+ 1)). Since l and z are arbitrary, we have for all l ∈ {0, . . . ,k},

ϕz(P(u)) = ϕz(P(u+ 1)) for all z with YlP(u)zP(u)Xl+1. (4)

For l ∈ {0, . . . ,k}, let Ul ⊆U be such that YlP(u)UlP(u)Xl+1. Therefore, by (4) we have

ϕUl
(P(u)) = ϕUl

(P(u+ 1)) for all l ∈ {0, . . . ,k}. (5)

For l ∈ {1, . . . ,k}, let Ûl =U ∩ (Xl ∪Yl). We claim ϕÛl
(P(u)) ≥ ϕÛl

(P(u+ 1)) for all

l ∈ {1, . . . ,k}. Take l ∈ {1, . . . ,k}. Since U |Xl∪Yl
is an upper contour set of P(u)|Xl∪Yl

,

Ûl is an upper contour set of P(u)|Xl∪Yl
, and hence by BM, ϕÛr

(P(u))≥ ϕÛr
(P(u+ 1)).

Since U = (∪k
l=0Ul)∪ (∪k

l=1Ûl), it follows that ϕU (P(u)) ≥ ϕU (P(u+ 1)). This

completes the proof of the theorem. �
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C. PROOF OF THEOREM 4.1

Proof: Let D satisfy the multi-swap UCNR property. We show that every unanimous

RSCF on D is SP if and only if it is UCSP and multi-swap monotonicity. The “only

if” part of the theorem follows from the definitions; we only prove the “if” part. Let ϕ

be a unanimous RSCF satisfying UCSP and multi-swap monotonicity. We first prove a

lemma.5

Lemma C.1. Let Pi,P
′
i ∈ D be such that Pi ∼ P′

i with aPib and bP′
i a for some a,b ∈ A.

Further let Pj,P
′
j ∈ D be such that Pj|{a,b} = P′

j|{a,b}. Then for all P−{i, j} ∈ D
n−2,

[ϕ(Pi,Pj,P−{i, j}) = ϕ(P′
i ,Pj,P−{i, j})] =⇒ [ϕ(Pi,P

′
j,P−{i, j}) = ϕ(P′

i ,P′
j,P−{i, j})].

Proof: By UCSP,

ϕx(Pi,P
′
j,P−{i, j}) = ϕx(P

′
i ,P′

j,P−{i, j}) for all x /∈ {a,b}. (6)

Therefore, to show ϕ(Pi,P
′
j,P−{i, j}) = ϕ(P′

i ,P′
j,P−{i, j}), it is enough to show ϕa(Pi,P

′
j,

P−{i, j}) = ϕa(P
′
i ,P′

j,P−{i, j}). Without loss of generality assume that aPjb and aP′
jb. We

first prove the lemma for Pj,P
′
j such that Pj ≈ P′

j. Since aPjb and aP′
jb, there exists an

upper contour set U ∈ U (Pj) such that U ∈ U (P′
j), a ∈U , and b /∈ U . By UCSP this

means

ϕU (Pi,Pj,P−{i, j}) = ϕU (Pi,P
′
j,P−{i, j}), and (7)

ϕU (P
′
i ,Pj,P−{i, j}) = ϕU (P

′
i ,P′

j,P−{i, j}). (8)

5This lemma is similar to Lemma 1 of Theorem 1 in Chatterji and Zeng (2018).
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Now we have

ϕa(Pi,P
′
j,P−{i, j}) = ϕU (Pi,P

′
j,P−{i, j})−ϕU\a(Pi,P

′
j,P−{i, j})

= ϕU (Pi,Pj,P−{i, j})−ϕU\a(Pi,P
′
j,P−{i, j}) by (7)

= ϕU (P
′
i ,Pj,P−{i, j})−ϕU\a(Pi,P

′
j,P−{i, j}) by the hypothesis of the lemma

= ϕU (P
′
i ,Pj,P−{i, j})−ϕU\a(P

′
i ,P′

j,P−{i, j}) by (6)

= ϕU (P
′
i ,P′

j,P−{i, j})−ϕU\a(P
′
i ,P′

j,P−{i, j}) by (8)

= ϕa(P
′
i ,P′

j,P−{i, j}). (9)

This completes the proof of the lemma for Pj and P′
j with Pj ≈ P′

j.

Now, we prove the lemma for arbitrary Pj and P′
j in D with aPjb and aP′

jb. By the

definition of the domain, there exists a multi-swap path {P(s)}t
s=1 ∈ D connecting Pj

and P′
j such that aP(s)b for all s ∈ {1, . . . , t}. As P(s) ≈ P(s+ 1) for all s < t, applying

(9) repeatedly, we get

[ϕ(Pi,P(1),P−{i, j}) = ϕ(P′
i ,P(1),P−{i, j})] =⇒ [ϕ(Pi,P(2),P−{i, j}) = ϕ(P′

i ,P(2),P−{i, j})]

[ϕ(Pi,P(2),P−{i, j}) = ϕ(P′
i ,P(2),P−{i, j})] =⇒ [ϕ(Pi,P(3),P−{i, j}) = ϕ(P′

i ,P(3),P−{i, j})]

· · ·

[ϕ(Pi,P(t −1),P−{i, j}) = ϕ(P′
i ,P(t −1),P−{i, j})] =⇒ [ϕ(Pi,P(t),P−{i, j}) = ϕ(P′

i ,P(t),P−{i, j})].

This completes the proof of the lemma. �

Next, we prove a claim.

Claim C.1. ϕ(Pi,P−i) = ϕ(P′
i ,P−i) for all Pi ∼ P′

i with τ(Pi) = τ(P′
i ) and all P−i ∈

D
n−1.

Proof of Claim C.1. Suppose Pi ∼ P′
i , aPib, and bP′

i a, where τ(Pi) 6= a. Assume for

contradiction that the claim does not hold, that is, ϕ(Pi,P−i) 6= ϕ(P′
i ,P−i). Consider

j 6= i. Suppose aPjb. Since aPib, by Lemma C.1 and our assumption for contradiction,

we have ϕ(Pi, P̄j,P−{i, j}) 6= ϕ(P′
i , P̄j,P−{i, j}) where P̄j = Pi. Similarly, if bPja, then

ϕ(Pi, P̄j,P−{i, j}) 6= ϕ(P′
i , P̄j,P−{i, j}) where P̄j = P′

i . Continuing in this manner we have

ϕ(Pi, P̄−i) 6= ϕ(P′
i , P̄−i) where for all j 6= i, P̄j = Pi if aPjb, and P̄j = P′

i if bPja. But this
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is a contradiction to unanimity as τ(Pi) = τ(P′
i ). This completes the proof of the claim.

�

We are now ready to complete the proof of the theorem. Suppose Pi,P
′
i ∈ D , P−i ∈

D
n−1 and U ∈ U (P). We show that ϕU (Pi,P−i) ≥ ϕU (P

′
i ,P−i). Since D satisfies the

multi-swap UCNR property, there exists a multi-swap path {P(s)}t
s=1 connecting Pi to

P′
i such that for all x ∈ U and y /∈ U ,

[
xP(r)y and yP(r+ 1)x for some r < t

]
implies

[
yP(s)x for all s > r+ 1

]
.

Suppose τ(P(1)) = τ(P(2)). By Claim C.1, ϕ(P(1),P−i) = ϕ(P(2),P−i) and

hence, ϕU (P(1),P−i) = ϕU (P(2),P−i). Suppose τ(P(1)) 6= τ(P(2)). By the defi-

nition of multi-swap path, this means P(1) ≈ P(2), that is, there exist k1, . . . ,kp ∈ {1,

. . . ,m − 1} such that (i) rkq
(P(1)) = rkq+1(P(2)) and rkq+1(P(1)) = rkq

(P(2)) for

all q ∈ {1, . . . , p}, and (ii) rl(P(1)) = rl(P(2)) for all l /∈ ∪q∈{1,...,p}{kq,kq + 1}. By

UCSP, (i) ϕ{rkq (P(1)),rkq+1(P(1))}(P(1),P−i) = ϕ{rkq (P(1)),rkq+1(P(1))}(P(2),P−i) for all

q ∈ {1, . . . , p}, and (ii) ϕa(P(1),P−i) = ϕa(P(2),P−i) for all a /∈ ∪q∈{1,...,p}{rkq
(P(1)),

rkq+1(P(1))}, and by multi-swap monotonicity, ϕrkq (P(1))
(P(1),P−i)≥ ϕrkq (P(1))

(P(2),

P−i) for all q ∈ {1, . . . , p}.

Suppose for each q ∈ {1, . . . , p} either {rkq
(P(1)),rkq+1(P(1))} ⊆U or {rkq

(P(1)),

rkq+1(P(1))} 6⊆ U . This implies U is an upper contour set of both P(1) and P(2),

and hence by UCSP, ϕU (P(1),P−i) = ϕU (P(2),P−i). Now suppose that there exists

q ∈ {1, . . . , p} such that rkq
(P(1)) ∈ U but rkq+1(P(1)) /∈ U . This means for all w <

q, {rkw
(P(1)),rkw+1(P(1))} ⊆ U , and for all z > q, {rkz

(P(1)),rkz+1(P(1))}∩U =

/0. Therefore, ϕU (P(1),P−i) ≥ ϕU (P(2),P−i). Now we use induction to prove that

ϕU (P(1),P−i) ≥ ϕU (P(r),P−i) for all r ∈ {2, . . . , t}.

Induction Hypothesis: Suppose ϕU (P(1),P−i) ≥ ϕU (P(s),P−i) for all 2 ≤ s < r and

some 2 < r ≤ t.

We show ϕU (Pi,P−i) ≥ ϕU (P(r),P−i). Suppose τ(P(r−1)) = a and τ(P(r)) = b. If

a = b, then by Claim C.1, ϕ(P(r− 1),P−i) = ϕ(P(r),P−i) and hence, ϕU (Pi,P−i) ≥

ϕU (P(r),P−i). If a 6= b, then as P(r−1)≈ P(r), there exist k1, . . . ,kp ∈ {1, . . . ,m−1}

such that (i) rkq
(P(r−1)) = rkq+1(P(r)) and rkq+1(P(r−1)) = rkq

(P(r)) for all q∈ {1,

. . . , p}, and (ii) rl(P(r−1)) = rl(P(r)) for all l /∈ ∪q∈{1,...,p}{kq,kq +1}. Therefore, by
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UCSP,

ϕ{rkq (P(r−1)),rkq+1(P(r−1))}(P(r−1),P−i) = ϕ{rkq (P(r−1)),rkq+1(P(r−1))}(P(r),P−i) for all q ∈ {1, . . . , p}, and

(10)

ϕc(P(r−1),P−i) = ϕc(P(r),P−i) for all c /∈ ∪q∈{1,...,p}{rkq
(P(r−1)),rkq+1(P(r−1))},

(11)

and by multi-swap monotonicity,

ϕrkq (P(r−1))(P(r−1),P−i) ≥ ϕrkq (P(r−1))(P(r),P−i) for all q ∈ {1, . . . , p}. (12)

Suppose for all q ∈ {1, . . . , p} either rkq
(P(r−1)),rkq+1(P(r−1)) ∈U or rkq

(P(r−

1)),rkq+1(P(r−1)) /∈ U . This, together with (10), (11), and (12), implies ϕU (P(r−1),

P−i) = ϕU (P(r),P−i) and hence, by the induction hypothesis, ϕU (Pi,P−i) ≥ ϕU (P(r),

P−i). Suppose there exists q ∈ {1, . . . , p} such that |{rkq
(P(r−1)),rkq+1(P(r−1))}∩

U |= 1, that is, either rkq
(P(r−1)) ∈U or rkq+1(P(r−1)) ∈U . Let rkq

(P(r−1)) = x

and rkq+1(P(r − 1)) = y. Since xP(r − 1)y and yP(r)x, by the multi-swap UCNR

property, we must have xPiy, which in particular implies x ∈U and y /∈ U . Therefore,

by (10), (11), and (12), we have ϕU (P(r−1),P−i) ≥ ϕU (P(r),P−i), and hence by the

induction hypothesis, ϕU (Pi,P−i) ≥ ϕU (P(r),P−i). This completes the proof of the

theorem by induction. �

D. PROOF OF THEOREM 5.1

Proof: Let n = 2 and let D satisfy the swap UCNR property. We show that every

unanimous RSCF on D is SP if and only if it is UCSP. The “only if” part of the theorem

follows from the definitions; we only prove the “if” part. Let ϕ be a unanimous and

UCSP RSCF. In view of Theorem 4.1, it is sufficient to show that ϕ satisfies multi-swap

monotonicity. We first prove a claim.

Claim D.1. Let Pi,Pj ∈ D be such that aPib and aPjb for some a,b ∈ A. Then, ϕb(Pi,

Pj) = 0.
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Proof of Claim D.1. Consider an upper contour set U of Pi such that a ∈U but b /∈ U .

Since Pi,Pj ∈ D , there exists a swap path (P(1) = Pi, . . . ,P(k) = Pj) in D satisfying

the UCNR property with respect to U . As aPib and aPjb, this means aP(l)b for all

l ∈ {1, . . . ,k}. Assume for contradiction that ϕb(Pi,Pj) > 0. Consider the profile (P(2),

Pj). Suppose τ(Pi) = τ(P(2)). By Claim C.1, we have ϕ(Pi,Pj) = ϕ(P(2),Pj), and

hence, ϕb(P(2),Pj) > 0. Suppose τ(Pi) 6= τ(P(2)). Since Pi ∼ P(2), we have τ(Pi) =

r2(P(2)), r2(Pi) = τ(P(2)), and rt(Pi) = rt(P(2)) for all y ≥ 3. As aP(l)b for all

l ∈ {1, . . . ,k}, we must have b = rs(Pi) = rs(P(2)) for some s ≥ 3. By UCSP, this

means ϕb(Pi,Pj) = ϕb(P(2),Pj). Thus, ϕb(P(2),Pj) > 0. Continuing in this manner,

we can show that ϕb(P(k),Pj) > 0 where P(k) = Pj.. However, this is a contradiction

to unanimity as aPjb implies τ(Pj) 6= b. �

Now, we are ready to show that ϕ satisfies multi-swap monotonicity. Suppose not.

Since D satisfies the swap UCNR, this means there exist Pi,P
′
i ,Pj ∈ D with Pi ∼ P′

i ,

where Pi ≡ ab · · · and P′
i ≡ ba · · · , such that

ϕa(Pi,Pj) < ϕa(P
′
i ,Pj). (13)

As a = τ(Pi) = r2(P
′
i ) and b = r2(Pi) = τ(P′

i ), by UCSP we have

ϕ{a,b}(Pi,Pj) = ϕ{a,b}(P
′
i ,Pj). (14)

Suppose aPjb. Combining (13) and (14), we have ϕb(Pi,Pj) > 0. Moreover, as aPib

and aPjb, by Claim D.1 we have ϕb(P1,P2) = 0, which contradicts our earlier finding

that ϕb(P1,P2) > 0. Suppose bPja. By (13), we have ϕa(P
′
i ,Pj) > 0. Again, as bP′

i a and

bPja, by Claim D.1 we have ϕa(P
′
1,P2) = 0, a contradiction to our earlier finding that

ϕa(P
′
1,P2) > 0. This completes the proof of Theorem 5.1. �

E. PROOF OF PROPOSITION 6.1

We first introduce a few notations to facilitate the presentation of the proof of Proposition

6.1 in this section and the proof of Proposition 6.2 in Appendix F. For k ∈ {0, . . . ,m},

for a path π
k = (P̂k(1), . . . , P̂k(t)) in Dk, and for a collection of marginal preferences
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(P0,P1, . . . ,Pk−1,Pk+1, . . . ,Pm), we denote by (πk,P0,P1, . . . ,Pk−1,Pk+1, . . . ,Pm) the

path (P(1), . . . ,P(t)) from (P0,P1, . . . ,Pk−1, P̂k(1),Pk+1, . . . ,Pm) to (P0,P1, . . . ,Pk−1,

P̂k(t),Pk+1, . . . ,Pm) such that for all s ≤ t, Pl(s) = Pl for all l 6= k and Pk(s) = P̂k(s).

In other words, the path (P(1), . . . ,P(t)) follows the path π
k over the kth component,

while having fixed marginal preferences (P0,P1, . . . ,Pk−1,Pk+1, . . . ,Pm) over the other

components.

For M̂ ⊆ M and x
˜
∈ AM̂, we denote by A(x

˜
) the set of alternatives that coincide with

x
˜

over the components in M̂, that is, A(x
˜
) = x

˜
×AM\M̂.

Proof: Consider two preferences P = (P0,P1, . . . ,Pm) and P̄ = (P0, P̄1, . . . , P̄m) in

DLS and an upper contour set U of P. We show that there exists a path π = (P(1) = P,

. . . ,P(v) = P̄) in DLS such that for all u ≤ v, there exist (Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k ) such

that

(i) P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k )], and

(ii) U ∩ (Xu
l ∪Y u

l ) is an upper contour set of P(u)|Xu
l
∪Y u

l
for all l ≤ k.

For each k ∈ M, let π
k = (Pk(1), . . . ,Pk(tk)) be a path in Dk from Pk to P̄k having no-

restoration. Such a path exists by the assumption of Proposition 6.1. Consider the path π

defined as follows:

π =
(
(π1,P0,P2, . . . ,Pm), (π2,P0, P̄1,P3, . . . ,Pm), . . . , (πm,P0, P̄1, . . . , P̄m−1)

)
.

In words, the path π starts from the preference (P0,P1,P2, . . . ,Pm) and goes to the

preference (P0, P̄1, P̄2, . . . , P̄m). First it follows the path π
1 from (P0,P1,P2, . . . ,Pm) to

(P0, P̄1,P2, . . . ,Pm), then it follows the path π
2 from the preference (P0, P̄1,P2, . . . ,Pm)

to (P0, P̄1, P̄2, . . . ,Pm), and so on. Thus, the path π changes the marginal preferences

sequentially following the corresponding paths in the marginal domains.

Let P(u),P(u+ 1) be two consecutive preferences in π . Suppose P(u) = (P0, P̄1,

. . . , P̄k−1, P̃k,Pk+1, . . . ,Pm) and P(u+ 1) = (P0, P̄1, . . . , P̄k−1, P̂k,Pk+1, . . . ,Pm) where

P̂k = P̃k[(ak,bk)] for some ak,bk ∈ Ak. This implies P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ), . . . , (X
u
t ,

Y u
t )], where t = |A1 × ·· · × Ak−1|, and for all s ∈ {1, . . . , t}, (Xu

s ,Y u
s ) = (A((x

˜
,ak)),

A((x
˜

,bk))) where x
˜

is the s-th ranked alternative of the lexicographic preference (P0, P̄1,
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. . . , P̄k−1) over the components 1 to k−1, that is, x
˜
= rs(P

0, P̄1, . . . , P̄k−1).

We proceed to show U ∩ (Xu
s ∪Y u

s ) is an upper contour set of P(u)|Xu
s ∪Y u

s
. Note that

as π
k does not have (ak,bk) restoration and P̂k = P̃k[(ak,bk)], it must be that akPkbk.

This, together with the fact that P(u) has the same marginal preferences as P on the

components k + 1, . . . ,m, implies that for all s ∈ {1, . . . , t} and for all x,y ∈ Xu
s ∪Y u

s ,

xP(u)y if and only if xPy. Therefore, for all x,y ∈ Xu
s ∪Y u

s , the facts xPy, x ∈U ∩ (Xu
s ∪

Y u
s ), and y /∈ U ∩ (Xu

s ∪Y u
s ) together imply that xP(u)y. This implies U ∩ (Xu

s ∪Y u
s ) is

an upper contour set of P(u)|Xu
s ∪Y u

s
. �

F. PROOF OF PROPOSITION 6.1

Proof: Let P = (P0,P1, . . . ,Pm), P̄ = (P̄0, P̄1, . . . , P̄m) ∈ DLS and let U be an upper

contour set of P. We show that there exists a path π = (P(1) = P, . . . ,P(v) = P̄) in DLS

such that for all u ≤ v, there exists (Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k ) such that

(i) P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ), . . . , (X
u
k ,Y u

k )], and

(ii) U ∩ (Xu
l ∪Y u

l ) is an upper contour set of P(u)|Xu
l
∪Y u

l
for all l ≤ k.

Without loss of generality assume that 1P̄02P̄0 · · · P̄0m. Let P0
0 = P0, and for all k ∈ {1,

. . . ,m−1}, let P0
k be the preference in which the components 1, . . . ,k appear sequentially

at the top k positions and the relative ordering of the remaining components match with

P0, that is, rl(P
0
k ) = l for all l ≤ k, and for all p,q ∈ {k+ 1, . . . ,m}, pP0

k q if and only if

pP0q. By our construction, P0
m−1 = P̄0. Let π

0
k = (P0

k−1(1) = P0
k−1, . . . ,P0

k−1(t) = P0
k )

be the path in D0 from P0
k−1 to P0

k that moves component k to the k-th rank through

a sequence of swaps, that is, for all s ≤ t − 1, the component k swaps up from the

preference P0(s) to the preference P0(s+1) without any other change in the preferences.

Consider the path π defined as follows

π =
(
(P0

0 ,P1,P2, . . . ,Pm), (P0
0 , P̄1,P2, . . . ,Pm), (π0

1 , P̄1,P2, . . . ,Pm), (P0
1 , P̄1, P̄2, . . . ,Pm)

. . . , (π0
m−1, P̄1, . . . , P̄m−1,Pm), (P0

m−1, P̄1, . . . , P̄m−1, P̄m)
)
.

In words, the path π (i) starts from the preference (P0
0 ,P1,P2, . . . ,Pm) and changes the
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marginal preference in component 1 from P1 to P̄1, (ii) changes the component ordering

from P0
0 to P0

1 along the path π
0
1 , (iii) changes the marginal preference in component 2

from P2 to P̄2, (iv) changes the component ordering from P0
1 to P0

2 along the path π
0
2 , and

so on till the path reaches the preference (P0
m−1, P̄1, . . . , P̄m−1, P̄m). Let P(u),P(u+ 1)

be two consecutive preferences in π . We distinguish two cases based on the structure of

the preferences P(u) and P(u+ 1).

Case 1: Suppose P(u) = (P0
k−1, P̄1, . . . , P̄k−1,Pk,Pk+1

. . . ,Pm) and P(u+ 1) = (P0
k−1,

P̄1, . . . , P̄k−1, P̄k,Pk+1, . . . ,Pm) where P̄k = Pk[(0,1)] for some k ∈ {2, . . . ,m}.

The proof for this case is similar to the proof of Proposition 6.2; we provide it for the

sake of completeness. By the assumption of the case, we have P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ),

. . . , (Xu
t ,Y u

t )] where t = |A1×·· ·×Ak−1| and for all s∈ {1, . . . , t}, (Xu
s ,Y u

s ) = (A((x
˜

,0)),

A((x
˜

,1))) where x
˜
= rs(P

0
k−1, P̄1, . . . , P̄k−1). We show U ∩ (Xu

s ∪Y u
s ) is an upper contour

set of P(u)|Xu
s ∪Y u

s
. Note that for all x,y ∈ (Xu

s ∪Y u
s ), xl = yl for all l ∈ {1, . . . ,k− 1}.

Moreover, as both P(u) and P have the same marginal preferences over the components

k+ 1, . . . ,m, we have for all x,y ∈ (Xu
s ∪Y u

s ), xP(u)y if and only if xPy. Therefore, for

all x,y ∈ Xu
s ∪Y u

s , the facts that xPy, x ∈U ∩ (Xu
s ∪Y u

s ), and y /∈ U ∩ (Xu
s ∪Y u

s ), imply

xP(u)y. This means U ∩(Xu
s ∪Y u

s ) is an upper contour set of P(u)|Xu
s ∪Y u

s
. This completes

the proof of the theorem for Case 1.

Case 2: Suppose P(u) = (P̂0, P̄1, . . . , P̄k,Pk+1, . . . ,Pm) and P(u+ 1) = (P̃0, P̄1, . . . , P̄k,

Pk+1, . . . ,Pm) where P̃0 = P̂0[(rv(P̂
0),rv+1(P̂

0))] with rl(P̂
0) = rl(P̄

0) = l for all l ≤

k−1 and rv+1(P̂
0) = k for some v ∈ {k, . . . ,m}.

Let rv(P̂
0) = j. By the construction of the path π

0
k , it follows that j > k. This implies

P(u+ 1) = P(u)[(Xu
1 ,Y u

1 ), . . . , (X
u
t ,Y u

t )] where t = |A1 ×·· ·×Ak−1|, and for all s ∈ {1,

. . . , t}, (Xu
s ,Y u

s ) = (A((x
˜

,r1(P
j),r2(P̄

k))),A((x
˜

,r2(P
j),r1(P̄

k)))) where x
˜
= rs(P̂

0, P̄1,

. . . , P̄k−1). We show that U ∩ (Xu
s ∪Y u

s ) is an upper contour set of P(u)|Xu
s ∪Y u

s
. Note

that along the path π
0
k , k overtakes j for the first time at P(u+ 1). Therefore, it must

be that jP0k. Take x,y ∈ (Xu
s ∪Y u

s ). For all l ∈ {k+ 1, . . . ,m}, since Pl(u) = Pl , we

have xlPlyl if and only if xlPl(u)yl . Moreover, as rp(P̂
0) = rp(P̃

0) = p for all p ∈ {1,

. . . ,k−1}, xl 6= yl implies l ∈ {k, . . . ,m}. Combining all these observations and the fact

that jP0k and jP̂0k, we get xP(u)y if and only if xPy. Therefore, the facts that xPy,
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x ∈U ∩ (Xu
s ∪Y u

s ), and y /∈ U ∩ (Xu
s ∪Y u

s ) imply xP(u)y, and hence U ∩ (Xu
s ∪Y u

s ) is an

upper contour set of P(u)|Xu
s ∪Y u

s
. This completes the proof of the theorem for Case 2.

Since Case 1 and Case 2 are exhaustive, the proof of the theorem is complete. �

REFERENCES

[1] Gabriel Carroll. When are local incentive constraints sufficient? Econometrica, 80

(2):661–686, 2012.

[2] Shurojit Chatterji and Huaxia Zeng. On random social choice functions with the

tops-only property. Games and Economic Behavior, 109:413–435, 2018.

[3] Shurojit Chatterji, Souvik Roy, Soumyarup Sadhukhan, Arunava Sen, and Huaxia

Zeng. Restricted probabilistic fixed ballot rules and hybrid domains. 2020.

[4] Wonki Jo Cho. Incentive properties for ordinal mechanisms. Games and Economic

Behavior, 95:168–177, 2016.

[5] Youngsub Chun and Kiyong Yun. Upper-contour strategy-proofness in the proba-

bilistic assignment problem. Social Choice and Welfare, pages 1–21, 2019.

[6] Bhaskar Dutta, Hans Peters, and Arunava Sen. Strategy-proof probabilistic mecha-

nisms in economies with pure public goods. Journal of Economic Theory, 106(2):

392–416, 2002.

[7] Lars Ehlers, Hans Peters, and Ton Storcken. Strategy-proof probabilistic decision

schemes for one-dimensional single-peaked preferences. Journal of Economic

Theory, 105(2):408–434, 2002.

[8] Allan Gibbard. Manipulation of schemes that mix voting with chance. Economet-

rica: Journal of the Econometric Society, pages 665–681, 1977.

[9] Jean-Michel Grandmont. Intermediate preferences and the majority rule. Econo-

metrica: Journal of the Econometric Society, pages 317–330, 1978.

[10] Ujjwal Kumar, Souvik Roy, Arunava Sen, Sonal Yadav, and

Huaxia Zeng. Local global equivalence in voting models:

A characterization and applications. 2020. URL https:

//docs.google.com/viewer?a=v&pid=sites&srcid=

ZGVmYXVsdGRvbWFpbnxodWF4aWF6ZW5nfGd4OmExOTBmZWRmZmIxZTI5Nw.

31



[11] Dipjyoti Majumdar and Arunava Sen. Ordinally bayesian incentive compatible

voting rules. Econometrica, 72(2):523–540, 2004.

[12] Debasis Mishra. Ordinal bayesian incentive compatibility in restricted domains.

Journal of Economic Theory, 163:925–954, 2016.

[13] Hans Peters, Souvik Roy, Arunava Sen, and Ton Storcken. Probabilistic strategy-

proof rules over single-peaked domains. Journal of Mathematical Economics, 52:

123–127, 2014.

[14] Hans Peters, Souvik Roy, Soumyarup Sadhukhan, and Ton Storcken. An extreme

point characterization of strategy-proof and unanimous probabilistic rules over

binary restricted domains. Journal of Mathematical Economics, 69:84–90, 2017.

[15] Hans Peters, Souvik Roy, and Soumyarup Sadhukhan. Unanimous and strategy-

proof probabilistic rules for single-peaked preference profiles on graphs. Accepted

in Mathematics of Operations Research, 2020.
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