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Abstract

We show that a large class of restricted domains such as single-peaked, single-crossing, single-dipped,

tree-single-peaked with top-set along a path, Euclidean, multi-peaked, intermediate (Grandmont (1978)),

etc., can be characterized by using betweenness property, and we present a unified characterization of

unanimous and strategy-proof random rules on these domains. As corollaries of our result, we show that

all the domains we consider in this paper satisfy tops-onlyness and deterministic extreme point property.

Finally, we consider weak preferences and provide a class of unanimous and strategy-proof random

rules on those domains.
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1. INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

We analyze the classical social choice problem of choosing an alternative from a set of feasible alternatives

based on preferences of individuals in a society. Such a procedure is known as a deterministic social choice

function (DSCF). Some desirable properties of a DSCF are unanimity and strategy-proofness. The classic

Gibbard (1973)-Satterthwaite (1975) impossibility theorem states that if there are at least three alternatives

and the preferences of the individuals are unrestricted, then every unanimous and strategy-proof DSCF is

dictatorial.
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and Welfare (held at Lund, Sweden during June 28-July 1, 2016) for their helpful comments.
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Although unanimity and strategy-proofness are desirable properties of a DSCF, the assumption of an

unrestricted domain made in Gibbard-Satterthwaite Theorem is quite strong. Not only do there exist

many political and economic scenarios where preferences of individuals satisfy natural restrictions such

as single-peakedness, single-dippedness, single-crossingness, Euclidean, etc., but also the conclusion of

Gibbard-Satterthwaite Theorem does not apply to such restricted domains.

The study of single-peaked domains can be traced back to Black (1948) where he shows that a Condorcet

winner exists on such domains. Later, Moulin (1980) shows that a DSCF on a single-peaked domain is

unanimous and strategy-proof if and only if it is a min-max rule. Peremans and Storcken (1999) show

that a DSCF on a single-dipped domain is unanimous and strategy-proof if and only if it is a monotone

rule between the left-most and the right-most alternatives. Saporiti (2014) shows that a DSCF on a single-

crossing domain is unanimous and strategy-proof if and only if it is an augmented representative voter

scheme. A domain is Euclidean if its alternatives are elements of Euclidean space and its preferences are

based on Euclidean distances. Lahiri et al. (2017) and Öztürk et al. (2014) characterize the unanimous and

strategy-proof DSCFs on Euclidean domains.

The horizon of social choice theory has been expanded by the concept of random social choice functions

(RSCF). An RSCF assigns a probability distribution over the alternatives at every preference profile. The

importance of RSCFs over DSCFs is well-established in the literature (see, for example, Ehlers et al. (2002),

Peters et al. (2014)).

The study of RSCFs dates back to Gibbard (1977) where he shows that an RSCF on the unrestricted

domain is unanimous and strategy-proof if and only if it is a random dictatorial rule. For the case of

continuous alternatives, Ehlers et al. (2002) characterise unanimous and strategy-proof RSCFs on maximal

single-peaked domains, and Border and Jordan (1983) and Dutta et al. (2002) characterise unanimous and

strategy-proof DSCFs and RSCFs, respectively, on multi-dimensional single-peaked domains. Barberà

and Jackson (1994) characterise efficient and strategy-proof DSCFs on multi-dimensional single-peaked

domains with cardinal preferences when the range is one-dimensional. Later, Peters et al. (2014) show that

every unanimous and strategy-proof RSCF on maximal single-peaked domain is a convex combination of

min-max rules. Pycia and Ünver (2015) establish a similar result by using the theory of totally unimodular

matrices from combinatorial integer programming. Recently, Peters et al. (2017) and Roy and Sadhukhan

(2019) characterize unanimous and strategy-proof RSCFs on single-dipped domains and Euclidean domains,

respectively. However, to the best of our knowledge, unanimous and strategy-proof RSCFs on domains

such as single-crossing, multi-peaked, intermediate (Grandmont (1978)), and single-peaked on trees with

top-set along a path have not yet been characterized in the literature.
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1.2 OUR MOTIVATION AND CONTRIBUTION

Our main motivation of this paper is to present one unified characterization of unanimous and strategy-proof

RSCFs that summarizes all existing results for both DSCFs and RSCFs and allows for new ones. We intend

to do this under minimal assumption on the domains.

We show that a large class of restricted domains can be modelled by using the concept of betweenness

(Nehring and Puppe (2007a), Nehring and Puppe (2007b)). Given a prior order over the alternatives, a

preference satisfies the betweenness property with respect to an alternative a if, whenever a lies in-between

(with respect to the prior order) the top-ranked alternative of the preference and some other alternative

b, a is preferred to b. A domain satisfies the betweenness property with respect to an alternative if each

preference in it satisfies the property with respect to that alternative. Consider the set of alternatives that

appear as top-ranked for some preference in the domain. Assume the betweenness property is satisfied for

each such alternatives. Then, the domain is called generalized intermediate.

We show that in case of finitely many alternatives, an RSCF is unanimous and strategy-proof on a

minimally rich generalized intermediate domain if and only if it is a convex combination of the tops-

restricted min-max rules. A min-max rule is tops-restricted if all its parameters belong to the top-set of

the domain. We establish that all restricted domains that we have discussed so far, namely single-peaked,

single-crossing, single-dipped, tree-single-peaked with top-set along a path, Euclidean, multi-peaked, and

intermediate are special cases of generalized intermediate domains. Finally, we consider domains consisting

of weak preferences where indifference can occur only at the top position. Single-plateaued domain is

an important example of such domain. We provide a class of unanimous and strategy-proof RSCFs on

these domains. Berga (1998) provides a characterization of plateau-only and strategy-proof DSCFs on

single-plateaued domains; we show that a similar characterization for plateau-only and strategy-proof

RSCFs does not hold.

Our result strengthens existing results for DSCFs by dropping the maximality assumption to minimal

richness. Note that in a social choice problem with m alternatives, the number of preferences in the

maximal single-peaked or single-dipped domain is 2m−1 and in a maximal single-crossing domain is

(m(m−1)/2)+ 1, whereas that number can range from 2m−2 to 2m−1 in a minimally rich single-peaked

domain, from 2 to 2m−1 in a minimally rich single-dipped domain, and from 2m∗−2 to (m(m−1)/2)+ 1

in a minimally rich single-crossing domain, where m∗ is the cardinality of the top-set of the domain.

It follows from our results that minimally-rich generalized intermediate domains satisfy both tops-only

property and deterministic extreme point property. Chatterji and Zeng (2018) provide a sufficient condition

on a domain that guarantees tops-onlyness for the unanimous and strategy-proof RSCFs on it, however

minimally-rich generalized intermediate domains do not satisfy their condition. A domain is said to satisfy
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the deterministic extreme point (DEP) property if every unanimous and strategy-proof RSCF on the domain

is a convex combination of unanimous and strategy-proof DSCFs on it. This property can be utilized

in finding the optimal RSCFs for a society. Gershkov et al. (2013) characterize the optimal DSCFs on

single-crossing domains. Therefore, by means of the DEP property of single-crossing domains, one can

extend their result to the case of RSCFs.

1.3 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows: Section 2 introduces the model and basic definitions. Section 3

presents our main result characterizing unanimous and strategy-proof RSCFs on minimally rich generalized

intermediate domains. Section 4 contains some applications of our results. Section 5 analyzes unanimous

and strategy-proof RSCFs on domains with weak preferences. Finally, Section 6 concludes the paper. The

Appendix gathers all omitted proofs.

2. PRELIMINARIES

Let N = {1, . . . ,n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2. Let A = {a1, . . . ,am}

be a finite set of alternatives with a prior ordering ≺ given by a1 ≺ ·· · ≺ am. Whenever we write minimum

or maximum of a subset of A, we mean it with respect to the ordering ≺. By a � b, we mean a = b or

a ≺ b. For a,b ∈ A, we define [a,b] = {c | either a � c � b or b � c � a} as the set of alternatives that

lie in-between a and b, and for B ⊆ A, we define [a,b]B = [a,b]∩B as the alternatives in B that lie in the

interval [a,b]. For notational convenience, whenever it is clear from the context, we do not use braces for

singleton sets, for instance we denote a set {i} by i.

2.1 DOMAIN OF PREFERENCES

A complete, reflexive, antisymmetric, and transitive binary relation (also called a linear order) over A

is called a preference. We denote by L(A) the set of all preferences over A. For P ∈ L(A) and distinct

a,b ∈ A, aPb is interpreted as “a is strictly preferred to b according to P”. For P ∈ L(A) and 1 ≤ k ≤ m, by

rk(P) we denote the k-th ranked alternative in P, i.e., rk(P) = a if and only if |{b ∈ A | bPa}|= k. Since

we refer to the top-ranked alternative of a preference P very frequently, we use a simpler notation, τ(P),

for that. For P ∈ D and a ∈ A, the upper contour set of a at P, denoted by U(a,P), is defined as the set of

alternatives that are as good as a in P, i.e., U(a,P) = {b ∈ A | bPa}.1 By Pa, we denote a preference with a

as the top-ranked alternative, that is, Pa is such that τ(Pa) = a. Similarly, by Pa,b, we denote a preference

1Observe that a ∈U(a,P) by reflexivity.
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with a as the top-ranked and b as the second-top-ranked alternatives, that is, Pa,b is such that τ(Pa,b) = a

and r2(Pa,b) = b. For ease of presentation, sometimes we write P ≡ Pa,b to mean τ(P) = a and r2(P) = b.

We denote by D ⊆ L(A) a set of admissible preferences (henceforth, will be called a domain). For

a ∈ A, let Da = {P ∈ D | τ(P) = a} denote the preferences in D that have a as the top-ranked alternative.

For a domain D , the top-set of D , denoted by τ(D), is the set of alternatives that appear as a top-ranked

alternative in some preference in D , that is, τ(D) = ∪P∈Dτ(P). Whenever we write τ(D) = {b1, . . . ,bk},

we assume without loss of generality that the indexation is such that b1 ≺ ·· · ≺ bk. A domain D is regular

if τ(D) = A.

A preference profile, denoted by PN = (P1, . . . ,Pn), is an element of Dn = D ×·· ·×D that represents a

collection of preferences one for each agent.

For P ∈ L(A) and B ⊆ A, the restriction of P to B, P|B ∈ L(B) is defined as follows: for all a,b ∈ B,

aP|Bb if and only if aPb. For D ⊆ L(A), PN ∈ Dn, and B ⊆ A, we define the restriction of the domain D

to B as D |B = {P|B | P ∈ D}, and the restriction of the profile PN to B as PN |B = (P1|B, . . . ,Pn|B).

2.1.1 PROPERTIES OF A DOMAIN

In this section, we introduce a few properties of a domain. First, we introduce the concept of a single-peaked

domain. A preference is single-peaked if it decreases as one goes far away (with respect to the ordering

≺) in any particular direction from its peak (top-ranked alternative). More formally, a preference P is

single-peaked if for all a,b ∈ A, [τ(P) � a ≺ b or b ≺ a � τ(P)] implies aPb. A domain is single-peaked

if each preference in it is single-peaked, and is maximal single-peaked if it contains all single-peaked

preferences. For B ⊆ A, a domain D of preferences is a single-peaked domain restricted to B if D |B is a

single-peaked domain.

A preference P satisfies the betweenness property with respect to an alternative a if for all b ∈ A\a,

a ∈ [τ(P),b] implies aPb. A domain D satisfies the betweenness property with respect to an alternative a

if each preference P ∈ D satisfies the property with respect to a.

Note that the betweenness property of a preference with respect to an alternative a does not put any

restriction on the relative ordering of two alternatives if (i) both of them are different from a, or (ii) one of

them lies in-between the top-ranked alternative of that preference and a, and the other one is a itself, or

(iii) one of them is a and the other one lies in the other side of the top-ranked alternative. A domain D is

generalized intermediate if it satisfies the betweenness property with respect to each alternative in τ(D).

REMARK 2.1. Note that the generalized intermediate property does not impose any restriction on the relative

ordering of the alternatives outside the top-set of a domain. Furthermore, if a domain D satisfies this

property, then D |τ(D) is single-peaked, which in particular implies that a regular domain is single-peaked if
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a1 a3 a4 a7 a9 a10

P5

Figure 1: A graphic illustration of the preference P5 given in Table 1

and only if it is generalized intermediate.

Note that a maximal generalized intermediate domain requires quite a few preferences to be present

in the domain. In view of this, we require a minimal set of preferences to be present in a generalized

intermediate domain. Our minimal requirement ensures that for two alternatives that are consecutive in the

top-set of a domain,2 there are two different preferences which (i) rank those two alternatives in the top-two

positions, and (ii) agree on the ranking of the other alternatives.3

To ease our presentation, for two preferences P and P′ in D , we write P ∼ P′ if τ(P) = r2(P′),

r2(P) = τ(P′), and rl(P) = rl(P
′) for all l ≥ 3, that is, P and P′ differ only on the ranking of the top two

alternatives. Recall that throughout this paper, whenever we write τ(D) = {b1, . . . ,bk} for a domain D , we

assume b1 ≺ ·· · ≺ bk.

A domain D with τ(D) = {b1, . . . ,bk} satisfies the minimal richness property if for all b j,b j+1 ∈ τ(D),

there are P ∈ Db j and P′ ∈ Db j+1 such that P ∼ P′. Below, we provide an example of a generalized

intermediate domain satisfying the minimal richness property.

Example 1. Let the set of alternatives be A = {a1, . . . ,a10} with prior order a1 ≺ ·· · ≺ a10. Consider the

domain D = {P1, . . . ,P8} given in Table 1.

Note that τ(D) = {a3,a4,a7,a9}. To see that D is a generalized intermediate domain, consider, for

instance, the preference P3. We show that P3 satisfies the betweenness property with respect to each

alternative in {a3,a4,a7,a9}. Consider a7. Observe that τ(P3) = a4 and a7P3a j for all j ∈ {8,9,10}. So,

P3 satisfies the betweenness property with respect to a7. Similarly, it can be checked that P3 satisfies the

betweenness property with respect to a3 and a9. It is left to the reader to verify that the other preferences in

D satisfy the betweenness property with respect to {a3,a4,a7,a9} and that it is minimally rich. In Figure 1,

we present a pictorial description of the preference P5 ∈ D . �

2We say two alternatives are “consecutive in the top-set” if (i) they are in the top-set of the domain, and (ii) there is no

alternative in the top-set of the domain that lies strictly in-between (with respect to the prior order ≺) those two alternatives.
3This property is known as top-connectedness in the literature (Monjardet (2009), Sato (2013), Cho (2016)).
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P1 P2 P3 P4 P5 P6 P7 P8

a3 a3 a4 a4 a7 a7 a9 a9

a1 a4 a3 a7 a4 a9 a7 a10

a4 a1 a1 a3 a3 a10 a10 a7

a2 a6 a6 a8 a8 a4 a4 a8

a6 a7 a7 a6 a6 a3 a3 a6

a7 a5 a5 a2 a2 a1 a1 a4

a5 a9 a9 a9 a9 a2 a2 a3

a8 a2 a2 a10 a10 a5 a5 a5

a9 a10 a10 a5 a5 a6 a6 a1

a10 a8 a8 a1 a1 a8 a8 a2

Table 1: The domain in Example 1

2.2 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

In this section, we define social choice functions and discuss a few properties of those. By ∆A, we

denote the set of probability distributions over A. A random social choice function (RSCF) is a function

ϕ : Dn → ∆A that assigns a probability distribution over A at every preference profile. For a ∈ A and

PN ∈ Dn, we denote by ϕa(PN) the probability of a at the outcome ϕ(PN), and for B ⊆ A, we define

ϕB(PN) = ∑a∈B ϕa(PN) as the total probability of the alternatives in B at ϕ(PN).

An RSCF is a deterministic social choice function (DSCF) if it selects a degenerate probability

distribution at every preference profile. More formally, an RSCF ϕ : Dn → ∆A is a DSCF if ϕa(PN) ∈ {0,1}

for all a ∈ A and all PN ∈ Dn.

For later reference we include the following (trivial) observation.

REMARK 2.2. For all L,L′ ∈ ∆A and all P ∈ L(A), if LU(x,P) ≥ L′
U(x,P) and L′

U(x,P) ≥ LU(x,P) for all x ∈ A,

then L = L′.

We now introduce some properties of an RSCF that are standard in the literature. An RSCF ϕ : Dn → ∆A

is unanimous if for all a ∈ A and all PN ∈ Dn, [τ(Pi) = a for all i ∈ N] ⇒ [ϕa(PN) = 1]. An RSCF

ϕ : Dn → ∆A is strategy-proof if for all i ∈ N, all PN ∈ Dn, all P′
i ∈ D , and all x ∈ A, ϕU(x,Pi)(Pi,P−i) ≥

ϕU(x,Pi)(P
′
i ,P−i).4 The concepts of unanimity and strategy-proofness for DSCFs are special cases of the

corresponding ones for RSCFs. Two profiles PN ,P′
N ∈Dn are tops-equivalent if each agent has the same top-

ranked alternative in those two profiles, that is, τ(Pi) = τ(P′
i ) for all i ∈ N. An RSCF ϕ : Dn → ∆A is tops-

only if ϕ(PN) = ϕ(P′
N) for all tops-equivalent PN ,P′

N ∈Dn. An RSCF ϕ : Dn → ∆A is uncompromising if

ϕB(PN) = ϕB(P′
i ,P−i) for all i ∈ N, all PN ∈ Dn, all P′

i ∈ D , and all B ⊆ A such that B∩ [τ(Pi),τ(P′
i )] = /0.

In words, uncompromisingness says that if an agent moves his peak (top-ranked alternative) from an

4Our notion of strategy-proofness (which is introduced in Gibbard (1977)) is based on first order stochastic dominance.

Informally speaking, strategy-proofness ensures that the outcome an(y) agent can obtain by misreporting his/her preference will

be first order stochastically dominated by the original/sincere outcome.
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alternative a to another alternative b, then the probability assigned by an RSCF to each alternative outside

the interval [a,b] will remain unchanged. Note that an uncompromising RSCF is tops-only by definition.

2.2.1 A CLASS OF SOCIAL CHOICE FUNCTIONS

Moulin (1980) introduces the concept of min-max rules with respect to a collection of parameters. Tops-

restricted min-max rules are special cases of these rules where the parameters must come from the top-set

of the domain.

A DSCF f : Dn → A is a tops-restricted min-max (TM) rule if for all S ⊆ N, there exists βS ∈ τ(D)

satisfying the conditions that β /0 = max(τ(D)),βN = min(τ(D)), and βT � βS for all S ⊆ T such that

f (PN) = min
S⊆N

[
max
i∈S

{τ(Pi),βS}

]
.

If τ(D) = A, then a TM rule is called a min-max rule. In what follows, we present an example of a TM

rule.

Example 2. Let A= {a1, . . . ,a10} and N = {1,2,3}. Consider a domain D with τ(D) = {a2,a3,a4,a5,a7,a8,a9}.

Consider the TM rule, say f , with respect to the parameters given in Table 2.

β β /0 β1 β2 β3 β{1,2} β{1,3} β{2,3} β{1,2,3}

a9 a8 a9 a7 a4 a5 a2 a2

Table 2: Parameters of the TM rule in Example 2

Let (a5,a3,a8) denote a profile where a5, a3 and a8 are the top-ranked alternatives of agents 1, 2 and 3,

respectively. The outcome of f at this profile is determined as follows.

f (PN) = min
S⊆{1,2,3}

[
max
i∈S

{τ(Pi),βS}
]

= min
[

max{β /0},max{τ(P1),β1},max{τ(P2),β2},max{τ(P3),β3},

max{τ(P1),τ(P2),β{1,2}},max{τ(P1),τ(P3),β{1,3}},max{τ(P2),τ(P3),β{2,3}},

max{τ(P1),τ(P2),τ(P3),β{1,2,3}}
]

= min
[
a9,a8,a9,a8,a5,a8,a8,a8

]

= a5. �

Note that the outcome of a TM rule f always lies in the top-set of the corresponding domain, i.e.,
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f (PN) ∈ τ(D) for all PN ∈ Dn. Our next remark says that a TM rule on a domain can be seen as a min-max

rule on the domain obtained by restricting it to its top-set. It further says that the former is strategy-proof if

and only if latter is.

REMARK 2.3. Let f : Dn → A be a TM rule. Define f̂ : (D |τ(D))
n → τ(D) such that f̂ (PN |τ(D)) = f (PN).5

Then, f is strategy-proof if and only if f̂ is strategy-proof.

For DSCFs f j, j = 1, . . . ,k and nonnegative numbers λ j, j = 1, . . . ,k, summing to 1, we define the

RSCF ϕ = ∑
k
j=1 λ j f j as ϕa(PN) = ∑

k
j=1 λ j f

j
a (PN) for all PN ∈ Dn and all a ∈ A. We call ϕ a convex

combination of the DSCFs f j. So, at every profile, ϕ assigns probability λ j to the outcome of f j for all

j = 1, . . . ,k.

An RSCF ϕ : Dn → ∆A is a tops-restricted random min-max (TRM) rule if ϕ can be written as a

convex combination of some TM rules on Dn.6 If τ(D) = A, then a TRM rule ϕ : Dn → ∆A is a random

min-max rule.

3. RESULTS

3.1 UNANIMOUS AND STRATEGY-PROOF RSCFS ON GENERALIZED INTERMEDIATE

DOMAINS

In this subsection, we present our main result characterizing the unanimous and strategy-proof RSCFs on

the minimally rich generalized intermediate domains.

Theorem 1. Let D be a minimally rich generalized intermediate domain. Then, an RSCF ϕ : Dn → ∆A is

unanimous and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix A. We provide a brief sketch of it here. The if part of

the theorem follows from Moulin (1980). To see this, first note the following two facts: (i) every minimally

5This is well-defined since by the definition of a TM rule, f is tops-only and f (PN) ∈ τ(D) for all PN ∈ Dn.
6A TRM rule can be directly defined as follows. Let τ(D) = {b1, . . . ,bk}. An RSCF ϕ : Dn → ∆A is a TRM rule if if there

exists a lottery βS ∈ ∆τ(D) for each S ⊆ N, referred to as a probabilistic ballot, such that the following three conditions are

satisfied:

(i) (Regularity condition) βN = eb1
and β /0 = ebk

.

(ii) (Monotonicity condition) For all S,T ⊆ N with S ⊂ T , we have

βT [b1,bl ] ≥ βS[b1,bl ] for all l = 1,2, . . . ,k.

(iii) For all PN ∈ Dn and ak ∈ A, we have

ϕak
(PN) = βS (ak ,PN )[a1,ak]−βS (ak−1,PN )[a1,ak−1], where S (ak,PN) = {i ∈ N | τ(Pi)� ak} and βS (a0,PN )[a1,a0]≡ 0.
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rich generalized intermediate domain D restricted to its top-set τ(D) is a subset of the maximal single-

peaked domain over τ(D), and (ii) every TRM rule on Dn is a random min-max rule on Dn|τ(D). In view

of these observations, it is enough to show that every random min-max rule is unanimous and strategy-proof

on D |τ(D). From Moulin (1980), every min-max rule on D |τ(D) is unanimous and strategy-proof, and since

every random min-max rule is a convex combination of min-max rules, such rules are also unanimous and

strategy-proof on D |τ(D).

We prove the only-if part of the theorem in the following two steps. In the first step, we prove a

proposition that states that every unanimous and strategy-proof RSCF on a minimally rich generalized

intermediate domain is uncompromising and assigns probability 1 to the top-set of the domain. We prove

this proposition by using the method of induction on the number of agents. We start with the base case

n = 1. The proposition follows trivially for this case. Assuming that the proposition holds for all cases

where the number of agents is less than n, we proceed to prove it for n agents. First, we consider the

set of profiles where agents 1 and 2 have the same preferences. We show that the restriction of ϕ to

this set induces a unanimous and strategy-proof RSCF on Dn−1, and claim by means of the induction

hypothesis that the proposition holds (in a suitable sense) on this set of profiles. Next, we show that

the same holds for the profiles where agents 1 and 2 have the same top-ranked alternatives (instead of

having the same preferences). Finally, in order to prove the proposition for profiles where agents 1 and

2 have arbitrary top-ranked alternatives, we use another level of induction on the “distance” between the

top-ranked alternatives of agents 1 and 2. The distance between two alternatives b j,b j+l ∈ τ(D) is defined

as l. Assuming that the proposition holds for the profiles where the said distance is less than some l̂, we

prove the proposition for the profiles where it is l̂. By induction, this completes the proof of the proposition.

For a clearer picture, we explain the first step of the proof by means of an example. Suppose that N =

{1,2,3} and A = {a1, . . . ,a10}. Let D be a minimally rich generalized intermediate domain with τ(D) =

{a1,a4,a5,a8,a9}. Note that if we had one agent, then trivially every unanimous and strategy-proof RSCF

on D would be uncompromising and would assign probability 1 to the alternatives in {a1,a4,a5,a8,a10} at

every profile. Suppose (as the induction hypothesis) that the same holds if we had two agents. Consider all

the preference profiles PN , where agents 1 and 2 have the same preferences. We look at the restriction of a

unanimous and strategy-proof RSCF ϕ on these profiles. Since agents 1 and 2 have the same preferences

for all these profiles, they can be treated as one agent and ϕ can be seen as an RSCF for two agents. By

some elementary arguments, one can show that ϕ , when seen as a two-agent RSCF, is unanimous and

strategy-proof. So, by the induction hypothesis, ϕ satisfies uncompromisingness and assigns probability

1 to the set {a1,a4,a5,a8,a9} for all these profiles. Next, we let the preferences of agents 1 and 2 differ

beyond their top-ranked alternatives and extend our proposition to those profiles. We use Remark 2.2

to complete this step. Finally, we proceed to prove the proposition when agents 1 and 2 have arbitrary
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preferences. Here, we use another level of induction. Suppose (as the induction hypothesis) that the

proposition holds over the profiles for which the top-ranked alternatives of agents 1 and 2 are at distance 1,

that is, their top-ranked alternatives are either {a1,a4} or {a4,a5} or {a5,a8} or {a8,a9}. We show as the

induction step that the same holds over the profiles for which their top-ranked alternatives are at distance 2,

that is, they are either {a1,a5} or {a4,a8} or {a5,a9}. We prove this as a general step of the induction, and

thereby cover all profiles in D3. The details of the arguments needed to show this step is quite technical, so

we do not discuss it here.

In the second step, we show that every uncompromising RSCF on Dn is a random min-max rule. We

use results from Ehlers et al. (2002) and Peters et al. (2014) to prove this. Finally, we argue that if a random

min-max rule assigns positive probability only to the alternatives in the top-set of the domain, then it is a

TRM rule. This completes the proof of the only-if part of the theorem.

REMARK 3.1. Since every TRM rule is tops-only, it follows from our result that unanimity and strategy-

proofness together guarantee tops-onlyness for the RSCFs on minimally rich generalized intermediate

domains. Chatterji and Zeng (2018) provide a sufficient condition for a domain to be tops-only for RSCFs.7

However, minimally rich generalized intermediate domains do not satisfy their condition.

REMARK 3.2. A domain D satisfies the deterministic extreme point (DEP) property if every unanimous

and strategy-proof RSCF on Dn can be written as a convex combination of unanimous and strategy-proof

DSCFs on Dn. It follows from Theorem 1 that minimally rich generalized intermediate domains satisfy

deterministic extreme point property.

REMARK 3.3. Barberà and Moreno (2011) introduce the notion of top-monotonicity. It can be verified

that if every preference in a domain satisfies the betweenness property, then the corresponding preference

profile will satisfy the top-monotonicity property. Therefore, it follows from Barberà and Moreno (2011)

that generalized intermediateness guarantees the existence of voting equilibria, not only under the majority

rule but also for the wide class of voting rules analyzed by Austen-Smith and Banks (2000). Moreover,

these equilibria are closely connected to an extended notion of the median voter.

REMARK 3.4. It can be verified that minimally rich generalized intermediate domains are semilattice single-

peaked, and hence by Proposition 3 of Chatterji and Massó (2018), it follows that they admit unanimous,

anonymous, tops-only, and strategy-proof DSCFs.

4. APPLICATIONS

In this section, we demonstrate the applicability of our results by showing that a class of domains of

practical importance are generalized intermediate.

7A domain is tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
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4.1 SINGLE-PEAKED DOMAINS

Ehlers et al. (2002) characterize the unanimous and strategy-proof RSCFs on the maximal single-peaked

domain as fixed-probabilistic-ballots rules, and Peters et al. (2014) show that such an RSCF is a convex

combination of the min-max rules. Theorem 1 improves these results by relaxing the maximality assumption.

Note that the number of preferences in the maximal single-peaked domain is 2m−1, whereas that in a

minimally rich single-peaked domain can range from 2m−2 to 2m−1.

4.2 SINGLE-CROSSING DOMAINS

In this subsection, we introduce the concept of single-crossing domains and show that every single-crossing

domain is generalized intermediate. Saporiti (2014) characterizes all unanimous and strategy-proof DSCFs

on maximal single-crossing domains. Carroll (2012) considers a slightly more general class of single-

crossing domains called successive single-crossing domains in the context of local strategy-proofness with

transfers. We show that all these domains are special cases of minimally rich generalized intermediate

domains.

A domain D is single-crossing if there is an ordering ⊳ over D such that for all a,b ∈ A and all P,P′ ∈D ,

[a ≺ b,P⊳P′, and bPa] =⇒ bP′a. In words, a single-crossing domain is one for which the preferences

can be ordered in a way such that every pair of alternatives switches their relative ranking at most once

along that ordering. A single-crossing domain D̄ is maximal if there does not exist another single-crossing

domain that is a strict superset of D̄ . Note that a maximal single-crossing domain with m alternatives

contains m(m−1)/2+ 1 preferences.8 A domain D is successive single-crossing if there is a maximal

single-crossing domain D̄ with respect to some ordering ⊳ and two preferences P′,P′′ ∈ D̄ with P′ E P′′

such that D = {P ∈ D̄ | P′ E P E P′′}.9

In the following example, we present a maximal single-crossing domain and a successive single-crossing

domain with 5 alternatives.

Example 3. Let the set of alternatives be A = {a1,a2,a3,a4,a5} with the prior order a1 ≺ ·· · ≺ a5. The

domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5, a4a2a3a5a1,

a4a3a2a5a1,a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1} is a maximal single-crossing domain with respect to

the ordering ⊳ given by a1a2a3a4a5 ⊳ a2a1a3a4a5 ⊳ a2a3a1a4a5 ⊳ a2a3a4a1a5 ⊳ a2a4a3a1a5 ⊳ a4a2a3a1a5 ⊳

a4a2a3a5a1 ⊳ a4a3a2a5a1 ⊳ a4a3a5a2a1 ⊳ a4a5a3a2a1 ⊳ a5a4a3a2a1 since every pair of alternatives change

their relative ordering at most once along this ordering. Note that the cardinality of A is 5 and that

8For details see Saporiti (2009).
9By P E P′, we mean either P = P′ or P⊳P′.
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of D̄ is 5(5 − 1)/2 + 1 = 11. The domain D = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5,

a2a4a3a1a5, a4a2a3a1a5} is a successive single-crossing domain since it contains all the preferences

in-between a1a2a3a4a5 and a4a2a3a1a5 in the maximal single-crossing domain D̄ . �

In the following lemmas, we show that every single-crossing domain is a generalized intermediate

domain, and every successive single-crossing domain is a minimally rich general intermediate domain.

Lemma 1. Every single-crossing domain is a generalized intermediate domain.

Proof. Let D be a single-crossing domain with an ordering ⊳ over the preferences. We show that D is

a generalized intermediate domain. Suppose not and assume without loss of generality that there exist

a ∈ A, br,bs ∈ τ(D) and Pbr ∈ D such that br ≺ bs ≺ a and aPbrbs. Consider Pbs ∈ D . Since brP
brbs,

bsP
bsbr, and br ≺ bs, it follows from the definition of a single-crossing domain that Pbr ⊳Pbs . By means

of our assumption that bs ≺ a and aPbrbs, Pbr ⊳Pbs implies aPbsbs. However, this is a contradiction since

τ(Pbs) = bs. This completes the proof. �

Lemma 2. Every successive single-crossing domain is a minimally rich single-crossing domain.

Proof. It is enough to show that every successive single-crossing domain is minimally rich. Let D be a

successive single-crossing domain. Then, by the definition of a successive single-crossing domain, there is

a maximal single-crossing domain D̄ with respect to some ordering ⊳ such that D = {P ∈ D̄ | P̃ E P E ˜̃P}

for some P̃, ˜̃P ∈ D̄ with P̃ E ˜̃P. Suppose τ(D) = {b1, . . . ,bk}. We show that for all j = 1,2, . . . ,k− 1,

there are P ∈ Db j and P′ ∈ Db j+1 such that P ∼ P′. Consider b j,b j+1 ∈ τ(D) and consider P̄ ∈ Db j and

P̂ ∈ Db j+1 . Since b jP̄b j+1, b j+1P̂b j, and b j ≺ b j+1, it follows from the definition of a single-crossing

domain that P̄⊳ P̂. Using a similar argument, we obtain Pbl ⊳ P̄ for all l < j, and Pbl > P̂ for all l > j+ 1.

Therefore, there must be P ∈ Db j and P′ ∈ Db j+1 that are consecutive in the ordering ⊳, that is, P ∈ Db j

and P′ ∈ Db j+1 are such that there is no P′′ ∈ D with P⊳P′′
⊳P′. We show P ∼ P′. Suppose not. Let a be

the alternative which is ranked just above b j+1 in P, that is, aPb j+1 and there is no x ∈ A with aPxPb j+1.

Consider the preference P′′ that is obtained by switching the alternatives a and b j+1 in P. We show P′′ /∈ D̄ .

In particular, we show that both P′′
⊳P and P′

⊳P′′ are impossible. This is sufficient since P and P′ are

consecutive in the ordering ⊳. Suppose P′′
⊳P. Since aPb j+1, P⊳P′, and b j+1P′a, by the single-crossing

property of D̄ , it must be that a ≺ b j+1. However, because b j+1P′′a and aPb j+1, this contradicts P′′
⊳P.

Now, suppose P′
⊳P′′. Since P⊳P′, there must be a pair of alternatives c,d with c ≺ d such that cPd and

dP′c. Moreover, because P′ and P′′ are different, it must be that {c,d} 6= {a,b j+l}. Since c ≺ d, dP′c,

and P′
⊳P′′, by the single-crossing property of D̄ , we have dP′′c. However, by the construction of P′′, we

have cP′′d, which is a contradiction. Thus, we have P′′ /∈ D̄ . This implies D̄ ∪P′′ is a single-crossing

domain with respect to the ordering ⊳
′ over D̄ ∪P′′, where ⊳

′ is obtained by placing P′′ in-between P and
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P′ in the ordering ⊳, i.e., ⊳′ coincides with ⊳ over D̄ and P⊳
′ P′′

⊳
′ P′. This contradicts the fact that D̄ is a

maximal single-crossing domain. Therefore, P ∼ P′ and D is minimally rich. This completes the proof of

the lemma. �

4.3 SINGLE-DIPPED DOMAINS

In this subsection, we introduce the concept of single-dipped domains and show that they are generalized

intermediate. A preference P is single-dipped if it has a unique minimal element d(P), the dip of P, such

that for all a,b ∈ A, [d(P) � a ≺ b or b ≺ a � d(P)] ⇒ bPa. A domain is single-dipped if each preference

in it is single-dipped.

It is straightforward that a minimally rich single-dipped domain is a minimally rich generalized interme-

diate domain. Note that the number of preferences in the maximal single-dipped domain is 2m−1, while that

in a minimally rich single-dipped domain can range from 2 to 2m−1.

It is worth mentioning that any unanimous and strategy-proof RSCF on a minimally rich single-dipped

domain can give positive probability to two particular (the boundary ones) alternatives.

4.4 SINGLE-PEAKED DOMAINS ON TREES WITH TOP-SET ALONG A PATH

A domain is tree-single-peaked if the alternatives are located on a tree and agents’ preferences fall as one

moves away from his/her top-ranked alternative along any path. Schummer and Vohra (2002) characterize

the tops-only, unanimous and strategy-proof DSCFs on tree-single-peaked domains. Under the additional

restriction that the top-set of the domain lie along a path, our result improves their one in two ways: first,

by allowing for random rules, and second, by relaxing tops-onlyness.

We introduce a graph structure over the set of alternatives. A collection G ⊆ {{a,b} | a,b ∈ A, a 6= b}

is an undirected graph over A. The elements of G are edges. A path in G from a node a1 to another ak is

a sequence of distinct nodes 〈a1, . . . ,ak〉 such that {ai,ai+1} ∈ G for all i = 1, . . . ,k−1. Note that a path

cannot have a cycle by definition.

A graph over A is a tree, denoted by T , if for all a,b ∈ A, there exists a unique path from a to b. Since

such a path is unique in a tree, for ease of presentation we denote it by [a,b]. A preference P is single-peaked

on T if for all distinct x,y ∈ A with y 6= τ(P), x ∈ [τ(P),y] =⇒ xPy. A domain is single-peaked on T if

each preference in it is single-peaked on T .

Let T be a tree over A and let D be a single-peaked domain on T . Suppose τ(D) = {b1, . . . ,bk}. We call

D a single-peaked domain with top-set along a path if 〈b1, . . . ,bk〉 is a path in T . In Figure 2, we present a

tree in which a path is marked with red. A single-peaked domain with respect to this tree with top-set along

the red path can be constructed by taking those single-peaked preferences that have top-ranked alternatives
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Figure 2: An example of a tree

in that path.

The following lemma says that a single-peaked domain on a tree with top-set along a path is a minimally

rich generalized intermediate domain.

Lemma 3. Let D be a single-peaked domain on a tree T with top-set along a path in T . Then, D is a

minimally rich generalized intermediate domain.

Proof. Let T be a tree and let π = 〈b1, . . . ,bk〉 be a path in it. Let D be a single-peaked domain on T with

τ(D) = {b1, . . . ,bk}. Consider a linear order ≺ on A such that

• b1 ≺ ·· · ≺ bk, and

• for all a ∈ A\{b1, . . . ,bk}, a ≺ bl if and only if the projection of a on π is b j for some j ≤ l.10

Note that the linear order ≺ defined above is not unique since it does not specify the relative ordering of

two alternatives that are outside the path π but have the same projection. We show that D is a minimally rich

generalized intermediate domain with respect to ≺. Since D is single-peaked on T and {bl ,bl+1} is an edge

in T for all l ∈ {1, . . . ,k−1}, we can always find two preferences P and P′ such that τ(P) = r2(P′) = bl ,

r2(P) = τ(P′) = bl+1, and rl(P) = rl(P
′) for all l ≥ 3. Therefore, D is minimally rich.

Now, we show that D is generalized intermediate. Consider br and bs with br ≺ bs. To show D is

generalized intermediate, it is enough to show that for all P with τ(P) = br, we have bsPa for all a with

bs ≺ a. Assume for contradiction that there exist P ∈D and a ∈ A with τ(P) = br and bs ≺ a such that aPbs.

If a ∈ {bs+1, . . . ,bk}, then by means of the fact that T is a tree, we have bs ∈ [br,a]. However, by single-

peakedness of P, this implies bsPa, which is a contradiction to aPbs. Now, suppose a ∈ A\{bs+1, . . . ,bk}.

Since bs ≺ a, by the definition of ≺, there exists bl ∈ {bs+1, . . . ,bk} such that the projection of a on π is bl .

10By the projection of an alternative a ∈ A on a path π in a tree T , we mean the alternative b ∈ π that is closest (with respect

to graph distance) to a, i.e., b ∈ π is such that |[a,b]| ≤ |[a,c]| for all c ∈ π .
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By the definition of projection and by single-peakedness of P, we have blPa. Moreover, since bs ∈ [br,bl ] it

follows that bsPbl , which in turn implies bsPa. However, this is a contradiction to aPbs. Thus, for all P with

τ(P) = br, we have bsPa for all a with bs ≺ a. This proves D is a generalized intermediate domain. �

4.5 MULTI-PEAKED DOMAINS

In many practical scenarios in Economics and Political Science, preferences of individuals often exhibit

multi-peakedness as opposed to single-peakedness. As the name suggests, multi-peaked preferences admit

multiple (local) ideal points in a unidimensional policy space. We discuss a few settings where it is plausible

to assume that individuals have multi-peaked preferences.

• Preference for “Do Something” in Politics: Davis et al. (1970) and Egan (2014) consider policy

(decision) problems such as choosing alternate tax regimes, lowering health care costs, responding to

foreign competition, reducing national debt, etc. They show that such a problem is perceived to be

poorly addressed by the status-quo policy, and consequently some individuals prefer both liberal and

conservative policies to the moderate status quo one. Clearly, such a preference will have two peaks,

one on the left of the status quo and another one on the right of it.

• Multi-stage Voting System: Shepsle (1979), Denzau and Mackay (1981), Enelow and Hinich (1983)

deal with multi-stage voting system where individuals vote on a set of issues where each issue can be

thought of as a unidimensional spectrum and voting is distributed over several stages considering one

issue at a time. In such a model, preference of an individual over the present issue can be affected by

his/her prediction of the outcome of future issues. In other words, such a preference is not separable

across issues. They show that preferences of individuals in such scenarios exhibit multi-peaked

property.

• Provision of Public Goods with Outside Options: Barzel (1973), Stiglitz (1974), and Bearse et al.

(2001) consider the problem of setting the level of tax rates to provide public funding in the education

sector, and Ireland (1990) and Epple and Romano (1996) consider the same problem in the health

insurance market. They show that preferences of individuals exhibit multi-peaked property due to the

presence of outside options (i.e., the public good is also available in a competitive market as a private

good).

• Provision of Excludable Public Goods: Fernandez and Rogerson (1995) and Anderberg (1999)

consider public good provision models such as health insurance, educational subsidies, pensions, etc.,

where a government provides the public good to a particular section of individuals and show that

individuals’ preferences in such scenarios exhibit multi-peaked property.
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Figure 3: A multi-peaked preference

We now present a formal definition of multi-peaked domains and show that they are special cases of

generalized intermediate domains. To ease our presentation, for two alternatives a and b, we denote by

(a,b) the set [a,b] \{a,b}.

Let b1 ≺ ·· · ≺ bk be such that (bl ,bl+1) 6= /0 for all 1 ≤ l < k. Then, a preference P is multi-peaked with

peak-set {b1, . . . ,bk} if (i) P|[a1,b1] and P|[bk,am] are single-dipped with dips at a1 and am, respectively, (ii)

for all 1 ≤ l < k, P|[bl ,bl+1] is single-dipped with a dip in (bl ,bl+1), and (iii) P|{b1,...,bk} is single-peaked. A

domain D is multi-peaked if it contains all multi-peaked preferences with peak-set τ(D).

In words, for a multi-peaked preference there are several (local) peaks such that the preference behaves

like a single-dipped one between every two consecutive peaks and like a single-peaked one over the peaks.

In Figure 3, we present a pictorial description of a multi-peaked preference.

Lemma 4. Every multi-peaked domain is a minimally rich generalized intermediate domain.

Proof. Let D be a multi-peaked domain. Suppose τ(D) = {b1, . . . ,bk} with b1 ≺ . . .≺ bk. By the definition

of D , for all bl ,bl+1 ∈ τ(D), there are preferences P,P′ ∈D such that τ(P) = bl , τ(P′) = bl+1 and P ∼ P′.

This shows D is minimally rich. Now, we prove D is a generalized intermediate domain. Consider br and

bs where br ≺ bs. We show that for all P with τ(P) = br, we have bsPa for all a ∈ A with bs ≺ a. Consider

P ∈ D with τ(P) = br and consider a ∈ A with bs ≺ a. Since bs ≺ a there exists bl with bs � bl such that

a ∈ [bl ,bl+1]. By the definition of multi-peaked domains, we have bsPbl and blPa, which implies bsPa.

This proves that D is a generalized intermediate domain. �

REMARK 4.1. Note that for both applications 4.4 and 4.5, the top-set of the domain is (exogenously) known

to the designer. Domains with exogenously given characteristics are not new to the literature, for instance

Alcalde-Unzu and Vorsatz (2018) consider domains where the top-ranked alternative of each agent is known

to the designer and Pramanik and Sen (2016) consider domains where the indifference classes are known to

the designer.
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4.6 EUCLIDEAN DOMAINS

Roy and Sadhukhan (2019) consider Euclidean domains and show that every unanimous and strategy-proof

RSCF on such domains is a random minmax rule.

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of the

interval [0,1].11 In particular, we assume 0 = a1 < · · ·< am = 1. Suppose that the individuals are located

at arbitrary locations in [0,1] and they derive their preferences using Euclidean distances of the alternatives

from their own locations. We call such preferences Euclidean. A preference P is Euclidean if there is

x ∈ [0,1], called the location of P, such that for all alternatives a,b ∈ A, |x−a|< |x−b| implies aPb. A

domain is Euclidean if it contains all Euclidean preferences.

Lemma 5. Every Euclidean domain is a minimally rich generalized intermediate domain.

Proof. Let D be a Euclidean domain. Then, by definition, it is regular single-peaked, and by Remark 2.1, it

is generalized intermediate. It remains to show that D is minimally rich. Consider ar and ar+1 for some

r ∈ {1, . . . ,m−1}. By the definition of Euclidean domain, there are two preferences P and P′ in D with

location
ar+ar+1

2
such that τ(P) = r2(P′) = ar, r2(P) = τ(P′) = ar+1, and rl(P) = rl(P

′) for l ≥ 3. This

completes the proof of the lemma. �

4.7 INTERMEDIATE DOMAIN

Grandmont (1978) introduces the concept of intermediate domains and shows that under some conditions

on the distribution of voters over preferences, majority rule is transitive on these domains. However, to

the best of our knowledge, no characterization of unanimous and strategy-proof RSCFs on these domains

is available in the literature. Under a mild condition on these domains (mainly to avoid non-transitive

preferences), we show that these domains are special cases of generalized intermediate domains, and

consequently, we provide a characterization of unanimous and strategy-proof RSCFs on those.

Throughout this section, we denote by X an open convex subset of the Euclidean space E2, and whenever

we refer to a line, we mean a line in X (that is, a collection of points in X that constitute a line).

A preference P is between two preferences P1 and P2, denoted by P ∈ (P1,P2), if for all a,b ∈ A,

aP1b and aP2b imply aPb. A domain {Px}x∈X satisfies the intermediate property if for every x′ and x′′ ∈ X ,

x ∈ (x′,x′′) implies Px ∈ (Px′ ,Px′′).
12

Grandmont (1978) provides a characterization of the intermediate domains where preferences are

allowed to be weak (i.e., can have indifferences) and non-transitive. In the following lemma, we modify

his/her result for the situation where preferences are strict and transitive (i.e., linear orders).

11With abuse of notation, we denote by [0,1] the set of all real numbers in-between 0 and 1.
12With slight abuse of notation, by x ∈ (x′,x′′), we mean x = λx′+(1−λ )x′′ for some real number λ ∈ (0,1).
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Lemma 6. Let a domain {Px}x∈X satisfy the intermediate property. Then, for every pair of alternatives

(a,b), exactly one of the following statements must hold:

(i) aPxb for all x ∈ X.

(ii) bPxa for all x ∈ X.

(iii) There exist q = (q1,q2) ∈ E2; (q1,q2) 6= (0,0) and κ ∈ R such that for all (x1,x2) ∈ X, aPxb implies

q1x1 + q2x2 ≥ κ and bPxa implies q1x1 + q2x2 ≤ κ .

Proof. Suppose that both (i) and (ii) do not hold. We show that then (iii) must hold. Consider a,b ∈ A.

Let A1 = {x ∈ X | aPxb} and A2 = {x ∈ X | bPxa}. By our assumption that both (i) and (ii) do not hold,

it follows that both A1 and A2 are non-empty. Moreover, by definition, A1 and A2 are disjoint, and by

the intermediate property, both A1 and A2 are convex. Therefore, by Hyperplane separation theorem

(Rockafellar (1970), Theorem 11.3), there exist q = (q1,q2) ∈ E2; (q1,q2) 6= (0,0) and κ ∈ R such that

for all (x1,x2) ∈ X , aPxb implies q1x1 + q2x2 ≥ κ and bPxa implies q1x1 + q2x2 ≤ κ . This completes the

proof of the lemma. �

Note that for a domain satisfying the intermediate property and for a pair of alternatives (a,b) that

satisfies (iii) in Lemma 6, the object ((q1,q2),κ) identifies the line: q1x1 + q2x2 = κ . We denote such a

line by l(a,b). Lemma 6 implies that a is preferred to b on one side of this line, and b is preferred to a on

the other side.13 Since such a line separates the preferences with respect to a and b, we call it the separating

line for a and b. In what follows, we introduce the concept of strict intermediate property.

Definition 4.1. A domain {Px}x∈X satisfies the strict intermediate property if

(i) there are no three distinct separating lines of the domain that pass through a common point, that is, for

all three distinct (unordered) pairs (x1,y1), (x2,y2), and (x3,y3), we have l(x1,y1)∩ l(x2,y2)∩ l(x3,

y3) = /0,14 and

(ii) there exists a line l that intersects with all the separating lines of the domain, that is, for all pairs

x,y ∈ A satisfying (iii) in Lemma 6, we have l ∩ l(x,y) 6= /0.

We provide an example of a domain that satisfies the strict intermediate property. It is worth noting from

this example that (i) strictness is indeed a mild condition, and (ii) the strict intermediate property does not

imply the single-crossing property.

13There is no restriction on the relative preference over a and b for the preferences Px when x lies on this line.
14By distinct (unordered pairs), we mean that {xi,yi} 6= {x j,y j} for all i, j ∈ {1,2,3} with i 6= j.
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Figure 4: The set of separating lines of the domain in Example 4

P1 P2 P3 P4 P5 P6 P7 P8 P9

a a b b b b b c c

b b a a c c c b b

c c c c a e e e e

d e d e e a d a d

e d e d d d a d a

Table 3: The domain in Example 4

Example 4. Let X be the open set in Figure 4 and let {Px}x∈X = {abcde,abced,bacde,baced,bcaed,

bcead,bceda,cbead,cbeda} be a domain satisfying intermediate property. For each pair of alternatives, the

separating line is indicated in the figure. Note that for the pairs (b,d), (b,c), etc., there are no separating

lines. Further note that Px is constant over all points x that are enclosed by some separating lines of the

domain (this follows from Lemma 6). Such Pxs are mentioned in the respective region in Figure 4.

Clearly, the domain {Px}x∈X satisfies strict intermediate property since no three separating lines pass

through a common point and the line l (marked with red) intersects with all these lines. It is left to the

reader to verify that the domain {Px}x∈X is not a single-crossing domain. �

It is worth noting that the domain in Example 4 is a minimally rich generalized intermediate domain.

Our next lemma shows that this fact is true in general.

Lemma 7. Every domain {Px}x∈X satisfying strict intermediate property is a generalized intermediate

domain.

The proof of this lemma is relegated to Appendix B.
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5. THE CASE OF INDIFFERENCE AT THE TOP

In this section, we investigate the structure of the unanimous and strategy-proof RSCFs when indifference

can occur at the top position. A particular class of these domains are known as single-plateaued domains.

Importance of such domains is well-established in the literature (see Berga (1998) for more details).

A weak preference is a transitive and complete binary relation. For a weak preference R, we denote its

indifference part by I and strict part by P. We denote the set of top-ranked alternatives in R by τ(R) and

call it the plateau of R. In this section, we consider weak preferences R such that the size of the plateau

can be at most two and the rest part of the preference is strict, that is, |τ(R)| ≤ 2 and aIb if and only if

a,b ∈ τ(R). We denote a collection of such preferences by sD .

For a domain sD , we define τ( sD) = {x | x ∈ τ(R) for some R ∈ sD} as the set of alternatives that appear

in the plateau of some preference in sD . Following our terminology for the case of strict preferences, we

write the elements of τ( sD) as {b1, . . . ,bk}, where b1 ≺ ·· · ≺ bk.

An RSCF ϕ : sDn → ∆A is unanimous if for all RN ∈ sDn, ∩i∈Nτ(Ri) 6= /0 implies ϕ∩i∈Nτ(Ri)(RN) = 1. An

RSCF ϕ : sDn → ∆A is strategy-proof if for all i ∈ N, all RN ∈ sDn, all R′
i ∈

sD , and all x ∈ A, ϕU(x,Ri)(RN)≥

ϕU(x,Ri)(R
′
i,R−i).15

A tie-breaking of a preference R ∈ sD is defined as a strict preference P̂ such that for all a,b ∈ A, aPb

implies aP̂b. In other words, if R is strict, then its tie-breaking is R itself, and if |τ(R)| = 2, then in a

tie-breaking the top two alternatives appear as the first and the second ranked alternatives, and rest of the

preference remains the same. A domain sD satisfies the tie-braking property if each preference R in it has a

tie-breaking present in it.

We define the suitable version of the betweenness property for weak preferences. A preference R

satisfies the betweenness property with respect to an alternative a if for all b ∈ A \ a with b /∈ τ(R),

a ∈ [x,b] for some x ∈ τ(R) implies aPb. A domain sD satisfies the betweenness property with respect

to an alternative a if each preference R ∈ sD satisfies the property with respect to a. A domain sD is

generalized intermediate if it satisfies the betweenness property with respect each alternative in τ( sD).

Note that this means that for each R ∈ sD with |τ(R)|= 2, τ(R) can only be of the form {bt ,bt+1} for some

t ∈ {1, . . . ,k−1} (that is, it cannot be like {bs,bt} where t − s ≥ 2). We use the same definition for minimal

richness as in the case of strict preferences, that is, sD satisfies minimal richness if its strict preferences

satisfy the same.

Our next theorem says that every unanimous and strategy-proof RSCF on a minimally rich generalized

intermediate domain satisfying the tie-breaking property is tops-restricted, that is, the top-set of the domain

gets probability 1 at all profiles.

15For a weak preference R and an alternative a, U(a,R) = {b ∈ A|bRa}.
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Theorem 2. Let sD be a minimally rich generalized intermediate domain satisfying the tie-breaking property

and let ϕ : sD → ∆A be a unanimous and strategy-proof RSCF. Then ϕτ( sD)(RN) = 1 for all RN ∈ sDn.

The proof of this theorem is relegated to Appendix C.

In what follows, we analyze the structure of unanimous and strategy-proof RSCFs on sD . With slight

abuse of terminology, we define a tie-breaking mapping of an agent i ∈ N as πi : sDn → A such that

πi(RN) ∈ τ(Ri) for all RN ∈ sDn. For a collection of tie-breaking mappings πππ = (πi)i∈N and a profile RN ,

we write πππ(RN) to denote the profile (π1(RN), . . . ,πn(RN)). A collection of tie-breaking mappings πππ is

called unanimous and strategy-proof if each πi in it is unanimous and strategy-proof.

We now define a new class of RSCFs by composing a TRM rule with a collection of tie-breaking

mappings. Let ϕ be any arbitrary TRM rule and πππ be an arbitrary collection of unanimous and strategy-

proof tie-breaking mappings. Since ϕ is tops-only, it can be viewed as a function from An to ∆A. Define the

composition of ϕ and πππ as the RSCF sϕ : sDn → ∆A defined as sϕ(RN) = ϕ(πππ(RN)) for all RN ∈ sDn. Our

next theorem says that every composition of a TRM rule and a unanimous and strategy-proof collection

of tie-braking mappings is unanimous and strategy-proof on a minimally rich generalized intermediate

domain.

Theorem 3. Let sD be a minimally rich generalized intermediate domain. Then, for any TRM rule ϕ and

any collection of unanimous and strategy-proof tie-breaking mappings πππ , the composition of ϕ and πππ is

unanimous and strategy-proof.

The proof of this theorem is relegated to Appendix D.

The natural question arises as to what happens with the converse of Theorem 3. Berga (1998) shows that

if we replace unanimity by plateau-onlyness, then converse of Theorem 3 holds for deterministic rules.16 In

what follows, we provide an example of a unanimous and strategy-proof RSCF that cannot not be written

as a composition as in Theorem 3, which in particular means that the converse of Theorem 3 is not true.

Furthermore, it can be verified that the RSCF in the example is also plateau-only, which says that the

converse of Theorem 3 does not hold even under plateau-onlyness.

Example 5. Let A = {a1,a2,a3} and N = {1,2}. Consider the domain sD = {a1a2a3,a2a1a3,a2a3a1,

a3a2a1, [a3a2]a1}. Here, for instance, by [a3a2]a1 we denote the preference R such that τ(R) = {a2,a3},

and the second ranked alternative is a1. Consider the RSCF ϕ given in Table 4. It can be verified that this

rule is unanimous and strategy-proof. It is plateau-only too. We argue that this rule cannot be written as

a composition of a TRM rule and a collection of unanimous and strategy-proof tie-breaking mappings.

Assume for contradiction this rule is a composition of a TRM rule and a collection of unanimous and

16An RSCF ϕ : sDn → ∆A is plateau-only if for all RN ,R′
N such that τ(Ri) = τ(R′

i) for all i ∈ N, we have ϕ(RN) = ϕ(R′
N).
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strategy-proof tie-breaking mappings. By the definition of a TRM rule, we can deduce the following

facts about its parameters: β1 = ϕ(a1a2a3,a3a2a1) and β2 = ϕ(a3a2a1,a1a2a3), which implies β1 = (0.3,

0.4,0.3) and β2 = (0.2,0.4,0.4). Consider the profile ([a3a2]a1, [a3a2]a1). By unanimity, πi([a3a2]a1,

[a3a2]a1) ∈ {a2,a3} for all i = 1,2. Since ϕa2
([a3a2]a1, [a3a2]a1) > 0 and ϕa3

([a3a2]a1, [a3a2]a1) > 0, it

must be that π1([a3a2]a1, [a3a2]a1) 6= π2([a3a2]a1, [a3a2]a1). Suppose π1([a3a2]a1, [a3a2]a1) = a2 and

π2([a3a2]a1, [a3a2]a1) = a3. But this means ϕ([a3a2]a1, [a3a2]a1) = (0,0.3,0.7), which is a contradiction

as ϕ([a3a2]a1, [a3a2]a1) = (0,0.5,0.5). A similar contradiction as before emerges by considering the

opposite case: π1([a3a2]a1, [a3a2]a1) = a3 and π2([a3a2]a1, [a3a2]a1) = a2. This shows that ϕ can not be

written as a composition of a TRM rule and a collection of unanimous and strategy-proof tie-breaking

mappings.

1\2 a1a2a3 a2a1a3 a2a3a1 a3a2a1 [a3a2]a1

a1a2a3 (1,0,0) (0.3,0.7,0) (0.3,0.7,0) (0.3,0.4,0.3) (0.3,0.7,0)
a2a1a3 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0.7,0.3) (0,1,0)
a2a3a1 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0.7,0.3) (0,1,0)
a3a2a1 (0.2,0.4,0.4) (0,0.6,0.4) (0,0.6,0.4) (0,0,1) (0,0,1)
[a2a3]a1 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0,1) (0,0.5,0.5)

Table 4: The RSCF in Example 5

�

It is worth noting from Example 5 that the structure of unanimous (plateau-only) and strategy-proof

RSCFs on single-plateaued domains is fairly complicated. This is particularly because unanimity (plateau-

onlyness) and strategy-proofness do not uniquely determine the outcomes at profiles that involve plateaus.

For instance, in Example 5, any vector of the form (0,δ ,1−δ ), where δ ∈ [0,1], can be the outcome at the

profile ([a2a3]a1, [a3a2]a1) (maintaining unanimity (plateau-onlyness) and strategy-proofness). We leave

the problem of characterizing all unanimous (plateau-only) and strategy-proof rules on single-plateaued

domains for future research.

6. CONCLUSION

In this paper, we have shown that in case of finitely many alternatives, an RSCF on a minimally rich

generalized intermediate domain is unanimous and strategy-proof if and only if it can be written as a

convex combination of the tops-restricted min-max rules. As applications of our result, we have obtained a

characterization of the unanimous and strategy-proof RSCFs on restricted domains such as single-peaked,

single-crossing, single-dipped, single-peaked on a tree with top-set along a path, Euclidean, multi-peaked,

and intermediate domain (Grandmont (1978)). We have also analyzed the structure of unanimous and
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strategy-proof RSCFs on domains containing weak preferences for which indifference can occur only at the

top two positions.

To our understanding, our results apply to all well-known restricted domains in one dimension. An

interesting problem would be to see to what extent one can enlarge a generalized intermediate domain

ensuring the existence of a non-random-dictatorial, unanimous, and strategy-proof (not necessarily tops-

restricted random min-max) random rule. This will give some idea of the robustness of the generalized

intermediate domains as possibility domains. Another interesting problem would be to explore the

generalized intermediate domains for multiple dimensions. We leave all these problems for future research.

A. PROOF OF THEOREM 1

First, we prove a proposition that constitutes a major step in this proof.

Proposition 1. Let D be a minimally rich generalized intermediate domain and let ϕ : Dn → ∆A be a

unanimous and strategy-proof RSCF. Then,

(i) ϕτ(D)(PN) = 1 for all PN ∈ Dn, and

(ii) ϕ is uncompromising.

We prove a sequence of lemmas which we will use in the proof of Proposition 1. The following lemma

establishes that a generalized intermediate domain restricted to its top-set is single-peaked.

Lemma 8. Let D be a generalized intermediate domain. Then, D |τ(D) is single-peaked.

Proof. Let D be a generalized intermediate domain with τ(D) = {b1, . . . ,bk}. We show that D |τ(D) is

single-peaked. Without loss of generality, assume by contradiction that there exists P ∈ D such that

τ(P) = b j and bl′Pbl for some l, l′ with l′ < l < j. This means P violates the betweenness property with

respect to bl , which is a contradiction since D is a generalized intermediate domain and bl ∈ τ(D). This

completes the proof of the lemma. �

In what follows, we prove a technical lemma that we use repeatedly in the proof of Proposition 1. We

use the following notation in this lemma: for X ,Y ⊆ A and a preference P, XPY means xPy for all x ∈ X

and y ∈ Y .

Lemma 9. Let D be a domain and let ϕ : Dn → ∆A be a strategy-proof RSCF. Let PN ∈Dn, P′
i ∈D , and B,

C ⊆ A be such that BPiC, BP′
i C, and Pi|C = P′

i |C. Suppose ϕC(PN) = ϕC(P
′
i ,P−i) and ϕa(PN) = ϕa(P′

i ,P−i)

for all a /∈ B∪C. Then, ϕa(PN) = ϕa(P′
i ,P−i) for all a ∈C.
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Proof. First note that since ϕC(PN) = ϕC(P
′
i ,P−i) and ϕa(PN) = ϕa(P′

i ,P−i) for all a /∈ B∪C, ϕB(PN) =

ϕB(P′
i ,P−i). Suppose b ∈C is such that ϕb(PN) 6= ϕb(P

′
i ,P−i) and ϕa(PN) = ϕa(P′

i ,P−i) for all a ∈C with

aPib. In other words, b is the maximal element of C according to Pi that violates the assertion of the lemma.

Without loss of generality, assume that ϕb(PN) < ϕb(P
′
i ,P−i). Since BPiC, ϕB(PN) = ϕB(P′

i ,P−i), and

ϕa(PN) = ϕa(P′
i ,P−i) for all a /∈ B with aPib, it follows that ϕU(b,Pi)(PN) < ϕU(b,Pi)(P

′
i ,P−i). This implies

agent i manipulates at PN via P′
i , which is a contradiction. This completes the proof of the lemma. �

Proof of Proposition 1

Now, we are ready to complete the proof of Proposition 1.

Proof. We prove this proposition by using induction on the number of agents. Let D be a generalized

intermediate domain with τ(D) = {b1, . . . ,bk}.

Let |N| = 1 and let ϕ : D → ∆A be a unanimous and strategy-proof RSCF. Then, by unanimity,

ϕτ(D)(PN) = 1 for all PN ∈ D , and hence ϕ satisfies uncompromisingness.

Assume that the proposition holds for all sets with k < n agents. We prove it for n agents. Let |N|= n

and let ϕ : Dn → ∆A be a unanimous and strategy-proof RSCF. Suppose N∗ = N \{1}. Define the RSCF

g : Dn−1 → ∆A for the set of voters N∗ as follows: for all PN∗ = (P2,P3, . . . ,Pn) ∈ Dn−1,

g(P2,P3, . . . ,Pn) = ϕ(P2,P2,P3,P4, . . . ,Pn).

Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3 in Sen

(2011) for a detailed argument). Hence, by the induction hypothesis, gτ(D)(PN∗) = 1 for all PN∗ ∈Dn−1 and

g satisfies uncompromisingness. In terms of ϕ , this implies ϕτ(D)(PN) = 1 for all PN ∈ Dn with P1 = P2.

We complete the proof of Proposition 1 by using the following lemmas. In the next lemma, we show that

ϕτ(D)(PN) = 1 and ϕ is tops-only over all profiles PN where agents 1 and 2 have the same top alternative.

Lemma 10. Let PN ,P′
N ∈ Dn be two tops-equivalent profiles such that P1,P2 ∈ Db j for some b j ∈ τ(D).

Then, ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P′
N).

Proof. Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only and P1,

P2 ∈ Db j , we have g(P1,P−{1,2}) = g(P2,P−{1,2}), and hence ϕ(P1,P1,P−{1,2}) = ϕ(P2,P2,P−{1,2}). We

show ϕ(P1,P2,P−{1,2}) = ϕ(P1,P1,P−{1,2}). Using strategy-proofness of ϕ for agent 2, we have ϕU(x,P1)(P1,

P1,P−{1,2}) ≥ ϕU(x,P1)(P1,P2,P−{1,2}) for all x ∈ A, and using that for agent 1, we have ϕU(x,P1)(P1,P2,

P−{1,2}) ≥ ϕU(x,P1)(P2,P2,P−{1,2}) for all x ∈ A. Since ϕ(P1,P1,P−{1,2}) = ϕ(P2,P2,P−{1,2}), it follows

from Remark 2.2 that ϕ(P1,P1,P−{1,2}) = ϕ(P1,P2,P−{1,2}). Using a similar logic, we have ϕ(P′
1,P′

1,

P′
−{1,2}) = ϕ(P′

1,P′
2,P′

−{1,2}). Because g is tops-only and PN ,P′
N are tops-equivalent, we have g(P1,

P−{1,2}) = g(P′
1,P′

−{1,2}). This implies ϕ(P1,P1,P−{1,2}) =ϕ(P′
1,P′

1,P′
−{1,2}), and hence ϕ(P1,P2,P−{1,2}) =
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ϕ(P′
1,P′

2,P′
−{1,2}). Moreover, as ϕτ(D)(P1,P1,P−{1,2}) = 1, it follows that ϕτ(D)(P1,P2,P−{1,2}) = 1. This

completes the proof of the lemma. �

Lemma 11. Let 1 ≤ j ≤ j+ l ≤ k and let PN ,P′
N ∈ Dn be such that P1,P2 ∈ Db j and P′

1,P′
2 ∈ D

b j+l , and

τ(Pi) = τ(P′
i ) for all i 6= 1,2. Then, ϕb(PN) = ϕb(P

′
N) for all b /∈ [b j,b j+l ]τ(D).

Proof. By uncompromisingness of g and the fact that gτ(D)(PN∗) = 1 for all PN∗ ∈ Dn−1, we have gb(P1,

P−{1,2}) = gb(P
′
1,P−{1,2}) for all b /∈ [b j,b j+l ]τ(D). Moreover, since g is tops-only and τ(Pi) = τ(P′

i ) for all

i ∈ {3,4, . . . ,n}, we have g(P′
1,P−{1,2}) = g(P′

1,P′
−{1,2}). By the definition of g, g(P1,P−{1,2}) = ϕ(P1,P1,

P−{1,2}) and g(P′
1,P−{1,2}) = ϕ(P′

1,P′
1,P−{1,2}). As τ(P1) = τ(P2) and τ(P′

1) = τ(P′
2), Lemma 10 implies

ϕ(P1,P2,P−{1,2}) = ϕ(P1,P1,P−{1,2}) and ϕ(P′
1,P′

2,P′
−{1,2}) = ϕ(P′

1,P′
1,P′

−{1,2}). Combining all these

observations, we have ϕb(P1,P2,P−{1,2}) = ϕb(P
′
1,P′

2,P′
−{1,2}) for all b /∈ [b j,b j+l ]τ(D). This completes

the proof of the lemma. �

Lemma 12. Let 1 ≤ j ≤ j+ l ≤ k and let PN ,P′
N ∈ Dn be such that P1,P2,P′

1 ∈ Db j and P′
2 ∈ D

b j+l , and

τ(Pi) = τ(P′
i ) for all i 6= 1,2. Then, ϕc(PN) = ϕc(P′

N) for all c /∈ U(b j+l ,P
′
1)∩U(b j,P

′
2).

Proof. By Lemma 10, ϕ(P1,P2,P−{1,2}) = ϕ(P′
1,P′

1,P′
−{1,2}). Hence, it suffices to show that ϕc(P′

1,P′
1,

P′
−{1,2}) = ϕc(P′

1,P′
2,P′

−{1,2}) for c /∈ U(b j+l ,P
′
1)∩U(b j,P

′
2). We prove this for c /∈ U(b j+l ,P

′
1), the proof

of the same when c /∈ U(b j,P
′
2) follows from symmetric argument.

Consider c /∈ U(b j+l ,P
′
1). By strategy-proofness of ϕ ,

ϕU(c,P′
1)
(P′

1,P′
1,P′

−{1,2}) ≥ ϕU(c,P′
1)
(P′

1,P′
2,P′

−{1,2}) ≥ ϕU(c,P′
1)
(P′

2,P′
2,P′

−{1,2}).

Moreover, by Lemma 11, ϕb(P
′
1,P′

1,P′
−{1,2}) = ϕb(P

′
2,P′

2,P′
−{1,2}) for all b /∈ [b j,b j+l ]τ(D), and hence

ϕB(P′
1,P′

1,P′
−{1,2}) = ϕB(P′

2,P′
2,P′

−{1,2}) for all B ⊆ A such that [b j,b j+l ]τ(D) ⊆ B. Since c /∈ U(b j+l ,P
′
1)

and τ(P′
1) = b j, by the definition of a generalized intermediate domain, we have [b j,b j+l ]τ(D) ⊆U(c,P′

1),

and hence ϕU(c,P′
1)
(P′

1,P′
1,P′

−{1,2}) = ϕU(c,P′
1)
(P′

2,P′
2,P′

−{1,2}). Thus, we have

ϕU(c,P′
1)
(P′

1,P′
1,P′

−{1,2}) = ϕU(c,P′
1)
(P′

1,P′
2,P′

−{1,2}). (1)

Suppose that d ∈ A is ranked just above c in P′
1. Then, [b j,b j+l ]τ(D) ⊆U(d,P′

1), and hence

ϕU(d,P′
1)
(P′

1,P′
1,P′

−{1,2}) = ϕU(d,P′
1)
(P′

1,P′
2,P′

−{1,2}). (2)

Subtracting (2) from (1), we have ϕc(P′
1,P′

1,P′
−{1,2}) = ϕc(P′

1,P′
2,P′

−{1,2}), which completes the proof of

the lemma. �
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Recall that for two preferences P and P′, we write P ∼ P′ to mean τ(P) = r2(P′), r2(P) = τ(P′), and

rl(P) = rl(P
′) for all l > 2.

Lemma 13. Let Pb j,b j+1 ,Pb j+1,b j ∈D be such that Pb j,b j+1 ∼Pb j+1,b j . Then, for all i∈N and all P−i ∈Dn−1,

[ϕτ(D)(P
b j,b j+1 ,P−i) = 1] =⇒ [ϕτ(D)(P

b j+1,b j ,P−i) = 1].

Proof. As Pb j,b j+1 ∼ Pb j+1,b j , by strategy-proofness, ϕa(Pb j,b j+1 ,P−i) = ϕa(Pb j+1,b j ,P−i) for all a /∈ {b j,

b j+1}. Thus ϕτ(D)(P
b j,b j+1 ,P−i) = 1 implies ϕτ(D)(P

b j+1,b j ,P−i) = 1. This completes the proof of the

lemma. �

To simplify notations for the following lemma, for j < l, we define the distance from bl to b j, denoted

by bl −b j, as l − j.

Lemma 14. The RSCF ϕ is tops-only and ϕτ(D)(PN) = 1 for all PN ∈ Dn.17

Proof. We prove this lemma by using induction on the distance between the top-ranked alternatives of

agents 1 and 2.

Consider l such that 0 ≤ l ≤ k−1. Suppose ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P̃N) for all tops-equivalent

profiles PN , P̃N ∈ Dn with |τ(P2)− τ(P1)| ≤ l. We show ϕτ(D)(P
′
N) = 1 and ϕ(P′

N) = ϕ(P̃′
N) for all

tops-equivalent profiles P′
N , P̃′

N ∈ Dn with |τ(P′
2)− τ(P′

1)|= l + 1.

Let PN and P′
N be such that P1,P′

1 ∈ Db j , P2 ∈ D
b j+l , P′

2 ∈ D
b j+l+1 , and τ(Pi) = τ(P′

i ) for all i 6= 1,2.

Further, let P̄1 ≡ Pb j ,b j+1 , P̂1 ≡ Pb j+1,b j , P̂2 ≡ Pb j+l ,b j+l+1 , and P̄2 ≡ Pb j+l+1,b j+l be such that P̄u ∼ P̂u for all

u = 1,2. Note that such preferences exist by the definition of a minimally rich generalized intermediate

domain. By the induction hypothesis, ϕ(PN) = ϕ(P′
1, P̂2,P′

−{1,2}). We prove the following claims.

Claim 1. ϕτ(D)(P̄1, P̄2,P′
−{1,2}) = 1 and ϕ(P̄1, P̄2,P′

−{1,2}) = ϕ(P′
1, P̄2,P′

−{1,2}) = ϕ(P̄1,P′
2,P′

−{1,2}).

By the induction hypothesis, ϕτ(D)(P
′
1, P̂2,P′

−{1,2}) = 1 and ϕ(PN) = ϕ(P̄1, P̂2,P′
−{1,2}) = ϕ(P′

1, P̂2,

P′
−{1,2}). Let P′′

1 ∈ {P′
1, P̄1}. By Lemma 12,

ϕc(P
′′
1 ,P′′

1 ,P′
−{1,2}) = ϕc(P

′′
1 , P̂2,P′

−{1,2}) for all c /∈ U(b j+l ,P
′′
1 )∩U(b j, P̂2), (3)

and

ϕc(P
′′
1 ,P′′

1 ,P′
−{1,2}) = ϕc(P

′′
1 , P̄2,P′

−{1,2}) for all c /∈ U(b j+l+1,P′′
1 )∩U(b j, P̄2). (4)

17Chatterji and Zeng (2018) provide a sufficient condition for a domain to be tops-only for RSCFs. However, generalized

intermediate domains do not satisfy their condition.
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As τ(P̂2)− τ(P′′
1 ) ≤ l, it follows from the induction hypothesis that ϕτ(D)(P

′′
1 ,P′′

1 ,P′
−{1,2}) = ϕτ(D)(P

′′
1 , P̂2,

P′
−{1,2}) = 1. Since U(b j+l ,P

′′
1 )∩U(b j, P̂2)∩ τ(D) = [b j,b j+l ]τ(D), (3) implies

ϕb(P
′′
1 ,P′′

1 ,P′
−{1,2}) = ϕb(P

′′
1 , P̂2,P′

−{1,2}) for all b /∈ [b j,b j+l ]τ(D). (5)

Moreover, since P̂2 ≡Pb j+l ,b j+l+1 , P̄2 ≡Pb j+l+1,b j+l , and ϕτ(D)(P
′′
1 , P̂2,P′

−{1,2}) = 1, by Lemma 13, ϕτ(D)(P
′′
1 ,

P̄2,P′
−{1,2}) = 1. This, in particular, implies ϕτ(D)(P̄1, P̄2,P′

−{1,2}) = 1. Because U(b j+l+1,P′′
1 )∩U(b j,

P̄2)∩ τ(D) = [b j,b j+l+1]τ(D), (4) implies

ϕb(P
′′
1 ,P′′

1 ,P′
−{1,2}) = ϕb(P

′′
1 , P̄2,P′

−{1,2}) for all b /∈ [b j,b j+l+1]τ(D). (6)

Combining (5) and (6), ϕb(P
′′
1 , P̂2,P′

−{1,2}) = ϕb(P
′′
1 , P̄2,P′

−{1,2}) for all b /∈ [b j,b j+l+1]τ(D). Since P̂2 ≡

Pb j+l ,b j+l+1 and P̄2 ≡Pb j+l+1,b j+l , we have by strategy-proofness that ϕ{b j+l ,b j+l+1}(P
′′
1 , P̂2,P′

−{1,2}) =ϕ{b j+l ,b j+l+1}(P
′′
1

P̄2,P′
−{1,2}). Let B′ = [b j,b j+l+1]τ(D) \ {b j+l ,b j+l+1}. Then, ϕB′(P′′

1 , P̂2,P′
−{1,2}) = ϕB′(P′′

1 , P̄2,P′
−{1,2}).

Note that by Lemma 8, P̂2|B′ = P̄2|B′ . Therefore, by applying Lemma 9 with B = {b j+l ,b j+l+1} and C = B′,

we have

ϕb(P
′′
1 , P̂2,P′

−{1,2}) = ϕb(P
′′
1 , P̄2,P′

−{1,2}) for all b 6= b j+l ,b j+l+1. (7)

By the induction hypothesis, ϕ(P̄1, P̂2,P′
−{1,2}) = ϕ(P′

1, P̂2,P′
−{1,2}). Again, by Lemma 8, b j+lP̄1b j+l+1

and b j+lP
′
1b j+l+1, which implies ϕ(P̄1, P̄2,P′

−{1,2}) = ϕ(P′
1, P̄2,P′

−{1,2}). Using a similar logic, ϕ(P̄1, P̄2,

P′
−{1,2}) = ϕ(P̄1,P′

2,P′
−{1,2}). This completes the proof of Claim 1. �

Claim 2. ϕc(P′
1, P̄2,P′

−{1,2}) = ϕc(P′
N) for all c /∈ U(b j+l+1,P′

1)∩U(b j,P
′
2).

By (6), ϕb(P
′
1,P′

1,P′
−{1,2}) = ϕb(P

′
1, P̄2,P′

−{1,2}) for all b /∈ [b j,b j+l+1]τ(D). Since [b j,b j+l+1]τ(D) ⊆

U(b j+l+1,P′
1)∩U(b j,P

′
2), we have ϕc(P′

1,P′
1,P′

−{1,2}) = ϕc(P′
1, P̄2,P′

−{1,2}) for all c /∈ U(b j+l+1,P′
1)∩

U(b j,P
′
2). Moreover, by Lemma 12, ϕc(P′

1,P′
1,P′

−{1,2}) = ϕc(P′
N) for all c /∈ U(b j+l+1,P′

1)∩U(b j,P
′
2).

Hence, ϕc(P′
1, P̄2,P′

−{1,2}) = ϕc(P′
N) for all c /∈ U(b j+l+1,P′

1)∩U(b j,P
′
2). This completes the proof of

Claim 2. �

Claim 3. ϕb(P
′
1, P̄2,P′

−{1,2}) = ϕb(P
′
N) for all b ∈ [b j,b j+l+1]τ(D).

First, we show ϕb j
(P′

1, P̄2,P′
−{1,2}) = ϕb j

(P′
N). By Claim 1, ϕ(P′

1, P̄2,P′
−{1,2}) = ϕ(P̄1,P′

2,P′
−{1,2}). More-

over, as τ(P̄1) = τ(P′
1) = b j, by strategy-proofness, ϕb j

(P̄1,P′
2,P′

−{1,2}) = ϕb j
(P′

N). Combining, we have

ϕb j
(P′

1, P̄2,P′
−{1,2}) = ϕb j

(P′
N).

Now, we complete the proof of Claim 3 by induction. Consider s < l + 1. Suppose ϕb j+r
(P′

1, P̄2,

P′
−{1,2}) = ϕb j+r

(P′
N) for all 0 ≤ r ≤ s. We show ϕb j+s+1

(P′
1, P̄2,P′

−{1,2}) = ϕb j+s+1
(P′

N). We show this in

two steps. In Step 1, we show that if an alternative outside τ(D) appears above b j+s+1 in the preference

P′
1, then it receives zero probability at ϕ(P′

N). In Step 2, we use this fact to complete the proof of the claim.
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STEP 1. Consider c ∈ A\ τ(D) such that cP′
1b j+s+1. We show ϕc(P′

N) = 0. Assume for contradiction that

ϕc(P′
N) > 0. Since cP′

1b j+s+1, by the definition of a generalized intermediate domain, we have b j+s+1P′
2c.

Let t ∈ {2, . . . ,k− j− l} be such that U(b j+s+1,P′
2)∩τ(D) = [b j+s+1,b j+l+1]τ(D)∪ [b j+l+2,b j+l+t ]τ(D).

By Claim 1, ϕτ(D)(P
′
1, P̄2,P′

−{1,2}) = 1, and hence

ϕU(b j+s+1,P′
2)
(P′

1, P̄2,P′
−{1,2}) = ϕ[b j+s+1,b j+l+1]τ(D)

(P′
1, P̄2,P′

−{1,2})+ϕ[b j+l+2,b j+l+t ]τ(D)
(P′

1, P̄2,P′
−{1,2})

= 1−ϕ[b1,b j+s]τ(D)
(P′

1, P̄2,P′
−{1,2})−ϕ[b j+l+t+1,bk]τ(D)

(P′
1, P̄2,P′

−{1,2}). (8)

By Claim 2, ϕbi
(P′

1, P̄2,P′
−{1,2}) = ϕbi

(P′
N) for all i ∈ [1, j−1]∪ [ j+ l + t + 1,k], and by the assumption

of Claim 3, ϕbi
(P′

1, P̄2,P′
−{1,2}) = ϕbi

(P′
N) for all i ∈ [ j, j+ s]. Combining all these observations, we have

ϕ[b1,b j+s]τ(D)
(P′

1, P̄2,P′
−{1,2}) =ϕ[b1,b j+s]τ(D)

(P′
N) and ϕ[b j+l+t+1,bk]τ(D)

(P′
1, P̄2,P′

−{1,2}) =ϕ[b j+l+t+1,bk]τ(D)
(P′

N).

Note that the sets [b1,b j+s]τ(D), U(b j+s+1,P′
2), [b j+l+t+1,bk]τ(D), and {c} are pairwise disjoint. Therefore,

ϕ[b1,b j+s]τ(D)
(P′

N)+ϕU(b j+s+1,P′
2)
(P′

N)+ϕ[b j+l+t+1,bk]τ(D)
(P′

N)+ϕc(P′
N) ≤ 1, and hence

ϕU(b j+s+1,P′
2)
(P′

N) ≤ 1−ϕ[b1,b j+s]τ(D)
(P′

N)−ϕ[b j+l+t+1,bk]τ(D)
(P′

N)−ϕc(P
′
N)

= 1−ϕ[b1,b j+s]τ(D)
(P′

1, P̄2,P′
−{1,2})−ϕ[b j+l+t+1,bk]τ(D)

(P′
1, P̄2,P′

−{1,2})−ϕc(P
′
N). (9)

As ϕc(P′
N) > 0, (8) and (9) imply ϕU(b j+s+1,P′

2)
(P′

1, P̄2,P′
−{1,2}) > ϕU(b j+s+1,P′

2)
(P′

N), which implies agent 2

manipulates at P′
N via P̄2, a contradiction. This completes Step 1.

STEP 2. In this step, we complete the proof of Claim 3. By Claim 1, it is sufficient to show that

ϕb j+s+1
(P̄1,P′

2,P′
−{1,2}) = ϕb j+s+1

(P′
N).

Suppose ϕb j+s+1
(P̄1,P′

2,P′
−{1,2}) > ϕb j+s+1

(P′
N). Consider d ∈U(b j+s+1,P′

1) \ τ(D). By Step 1, ϕd(P
′
1,

P̄2,P′
−{1,2}) = ϕd(P

′
N), and by Claim 1, ϕd(P

′
1, P̄2,P′

−{1,2}) = ϕd(P̄1,P′
2,P′

−{1,2}). Now, consider d ∈

U(b j+s+1,P′
1)∩ τ(D) such that d 6= b j+s+1. This implies d = b j′ for some j′ ≤ j+ s. By Claim 2 and the

assumption of Claim 3, ϕd(P
′
1, P̄2,P′

−{1,2}) = ϕd(P
′
N). By Claim 1, ϕ(P′

1, P̄2,P′
−{1,2}) = ϕ(P̄1,P′

2,P′
−{1,2}).

Combining all these observations, we have ϕd(P̄1,P′
2,P′

−{1,2}) = ϕd(P
′
N) for all d ∈U(b j+s+1,P′

1)\b j+s+1.

Therefore, ϕb j+s+1
(P̄1,P′

2,P′
−{1,2}) > ϕb j+s+1

(P′
N) implies ϕU(b j+s+1,P′

1)
(P̄1,P′

2,P′
−{1,2}) > ϕU(b j+s+1,P′

1)
(P′

N),

which implies agent 1 manipulates at P′
N via P̄1.

Now, suppose ϕb j+s+1
(P̄1,P′

2,P′
−{1,2}) < ϕb j+s+1

(P′
N). By Claim 1, ϕτ(D)(P̄1,P′

2,P′
−{1,2}) = 1. Let u ≤ j

be such that U(b j+s+1, P̄1) ∩ τ(D) = [bu,b j+s+1]τ(D). Then, by the assumption of Claim 3, ϕb(P̄1,

P′
2,P′

−{1,2}) = ϕb(P
′
N) for all b ∈ [b j,b j+s]τ(D), and by Claim 2, ϕb(P̄1,P′

2,P′
−{1,2}) = ϕb(P

′
N) for all

b∈ [bu,b j−1]τ(D). Therefore, ϕb j+s+1
(P̄1,P′

2,P′
−{1,2})< ϕb j+s+1

(P′
N) implies ϕU(b j+s+1,P̄1)(P̄1,P′

2,P′
−{1,2})<

ϕU(b j+s+1,P̄1)(P
′
N), which implies agent 1 manipulates at (P̄1,P′

2,P′
−{1,2}) via P′

1. This completes the proof
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of Claim 3. �

We are now ready to complete the proof of Lemma 14. First, we show ϕτ(D)(P
′
N) = 1. By Claim

3, ϕb(P
′
1, P̄2,P′

−{1,2}) = ϕb(P
′
N) for all b ∈ [b j,b j+l+1]τ(D). By Claim 2, ϕb(P

′
1, P̄2,P′

−{1,2}) = ϕb(P
′
N)

for all b ∈ [b1,b j−1]τ(D) ∪ [b j+l+2,bk]τ(D). Combining all these observations, we have ϕτ(D)(P
′
1, P̄2,

P′
−{1,2}) = ϕτ(D)(P

′
N). Moreover, by Claim 1, ϕτ(D)(P

′
1, P̄2,P′

−{1,2}) = 1, and hence ϕτ(D)(P
′
N) = 1.

Now, we show ϕ(P′
N) = ϕ(P̃′

N) for all tops-equivalent profiles P′
N , P̃′

N ∈ Dn. By claims 1, 2, and

3, we have ϕ(P̄1, P̄2,P′
−{1,2}) = ϕ(P′

N). Moreover, as P̃′
1 ∈ Db j and P̃′

2 ∈ D
b j+l+1 , applying claims 1,

2, and 3 to P̃′
N , we have ϕ(P̄1, P̄2, P̃′

−{1,2}) = ϕ(P̃′
N). Hence, to show ϕ(P′

N) = ϕ(P̃′
N), it is enough to

show ϕ(P̄1, P̄2,P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}). Recall that P̂2 ≡ Pb j+l ,b j+l+1 . Since τ(P̂2)− τ(P′
1) = l and

τ(P′
i ) = τ(P̃′

i ) for all i 6= 1,2, by the assumption of Lemma 14, we have ϕ(P̄1, P̂2,P′
−{1,2}) = ϕ(P̄1, P̂2,

P̃′
−{1,2}). Also, by (7), ϕb(P̄1, P̂2,P′

−{1,2}) = ϕb(P̄1, P̄2,P′
−{1,2}) for all b 6= b j+l ,b j+l+1, which implies

ϕb(P̄1, P̄2,P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

−{1,2}) for all b 6= b j+l ,b j+l+1. Using similar arguments as for the proof of

(7), it follows that ϕ(P̄1, P̄2,P′
−{1,2}) = ϕ(P̂1, P̄2,P′

−{1,2}) for all b 6= b j,b j+1, and hence ϕ(P̄1, P̄2,P′
−{1,2}) =

ϕ(P̄1, P̄2, P̃′
−{1,2}) for all b 6= b j,b j+1. Note that if l ≥ 1, then ϕb(P̄1, P̄2,P′

−{1,2}) = ϕb(P̄1, P̄2, P̃′
−{1,2})

for all b ∈ A. Now suppose l = 0. We show ϕ(P̄1, P̄2,P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}) for τ(P̄1) = b j and

τ(P̄2) = b j+1. Because ϕb(P̄1, P̄2,P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

−{1,2}) for all b 6= b j,b j+1 and all tops-equivalent

P′
−{1,2}, P̃′

−{1,2} ∈ Dn−2, we have ϕb(P̄1, P̄2,P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

3,P′
−{1,2,3}) for all b 6= b j,b j+1. As

τ(P′
3) = τ(P̃′

3), by Lemma 8, b jP
′
3b j+1 if and only if b jP̃

′
3b j+1. Therefore, if ϕb j

(P̄1, P̄2,P′
−{1,2}) 6= ϕb j

(P̄1,

P̄2, P̃′
3,P′

−{1,2,3}), then agent 3 manipulates either at (P̄1, P̄2,P′
−{1,2}) via P̃′

3 or at (P̄1, P̄2, P̃′
3,P′

−{1,2,3}) via

P′
3. Hence, ϕ(P̄1, P̄2,P′

−{1,2}) = ϕ(P̄1, P̄2, P̃′
3,P′

−{1,2,3}). Continuing in this manner, we have ϕ(P̄1, P̄2,

P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}). Therefore, ϕ(P′
N) = ϕ(P̃′

N) for all tops-equivalent profiles P′
N , P̃′

N ∈ Dn. This

completes the proof of the lemma. �

Lemma 15. The RSCF ϕ satisfies uncompromisingness.

Proof. We prove this in two steps. In Step 1, we provide a sufficient condition for uncompromisingness,

and in Step 2, we use that to prove the lemma.

STEP 1. In this step, we show that ϕ is uncompromising if the following happens: for all j < k, all

Pi ≡ Pb j,b j+1 ∈ D , all P′
i ≡ Pb j+1,b j ∈ D , and all P−i ∈ Dn−1,

ϕb(Pi,P−i) = ϕb(P
′
i ,P−i) ∀b /∈ [τ(Pi),τ(P

′
i )]. (10)

Suppose (10) holds. Since ϕ is tops-only, (10) implies that for all Pi ∈ Db j , all P′
i ∈ Db j+1 , all P−i, and

all b /∈ [τ(Pi),τ(P′
i )],

ϕb(Pi,P−i) = ϕb(P
′
i ,P−i). (11)
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Similarly, for all P̄i ∈ Db j+1 , all P̄′
i ∈ Db j+2 , all P−i, and all b /∈ [τ(P̄i),τ(P̄′

i )], we have

ϕb(P̄i,P−i) = ϕb(P̄
′
i ,P−i). (12)

Combining (11) and (12), we have ϕb(Pi,P−i) = ϕb(P̄
′
i ,P−i) for all Pi ∈ Db j , all P̄′

i ∈ Db j+2 , all P−i, and all

b /∈ [τ(Pi),τ(P̄′
i )]. Continuing in this manner, we have ϕb(Pi,P−i) = ϕb(P

′
i ,P−i) for all Pi,P

′
i ∈ D , all P−i,

and all b /∈ [τ(Pi),τ(P′
i )], which implies ϕ is uncompromising.

STEP 2. In this step, we show that ϕ satisfies (10). We do this in two further steps. In Step 2.a., we show

(10) for agents 1 and 2, and in Step 2.b., we show this for other agents.

STEP 2.a. It is enough to show (10) for agent 1, the proof of the same for agent 2 follows from symmetric

argument. Without loss of generality, assume τ(P2) = b j+l . Note that by Lemma 14, ϕτ(D)(PN) = 1.

Therefore, by Lemma 12, ϕb(P1,P2,P−{1,2}) = ϕb(P2,P2,P−{1,2}) for all b /∈ [b j,b j+l ]τ(D) and ϕb(P
′
1,

P2,P−{1,2}) = ϕb(P2,P2,P−{1,2}) for all b /∈ [b j+1,b j+l ]τ(D). This implies ϕb(P1,P2,P−{1,2}) = ϕb(P
′
1,

P2,P−{1,2}) for all b /∈ [b j,b j+l ]τ(D). By strategy-proofness, ϕ{b j,b j+1}(P1,P2,P−{1,2}) = ϕ{b j,b j+1}(P
′
1,P2,

P−{1,2}). Let B′ = [b j,b j+l ]τ(D) \ {b j,b j+1}. Since P1|B′ = P′
1|B′ , by applying Lemma 9 with B = {b j,

b j+1} and C = B′, we have ϕb(P1,P2,P−{1,2}) = ϕb(P
′
1,P2,P−{1,2}) for all b 6= b j,b j+l . This proves (10)

for agent 1. Therefore, by Step 1, we have for all i ∈ {1,2}, all Pi ∈ D , all P′
i ∈ D , and all P−i ∈ Dn−1,

ϕb(Pi,P−i) = ϕb(P
′
i ,P−i) ∀b /∈ [τ(Pi),τ(P

′
i )]. (13)

This completes Step 2.a.

STEP 2.b. In this step, we show (10) for agents i ∈ {3, . . . ,n}. It is enough to show this for i = 3. If P1 = P2,

then by the induction hypothesis, ϕb(P3,P−3) = gb(P1,P3,P−{1,2,3}) = gb(P1,P′
3,P−{1,2,3}) = ϕb(P

′
3,P−3)

for all P3,P′
3 ∈ D and all b /∈ [τ(P3),τ(P′

3)]. Let τ(P1) = bp and τ(P2) = bq. Since ϕτ(D)(PN) = 1 for all

PN ∈ Dn, it follows from Lemma 12 that ϕb(P1,P1,P3,P−{1,2,3}) = ϕb(P1,P2,P3,P−{1,2,3}) for all b /∈ [bp,

bq]τ(D) and ϕb(P1,P1,P′
3,P−{1,2,3}) = ϕb(P1,P2,P′

3,P−{1,2,3}) for all b /∈ [bp,bq]τ(D). Combining all these

observations, we have

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P′
3,P−{1,2,3}) for all b /∈ [bp,bq]τ(D)∪ [b j,b j+1]τ(D). (14)

Also, by strategy-proofness,

ϕ{b j,b j+1}(P1,P2,P3,P−{1,2,3}) = ϕ{b j,b j+1}(P1,P2,P′
3,P−{1,2,3}). (15)

Now, we distinguish two cases.
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Case 1. Suppose p,q ≤ j+ 1 or p,q ≥ j.

Let B′ = [bp,bq]τ(D) \ [b j,b j+1]τ(D). Then, by (14) and (15), ϕB′(P1,P2,P3,P−{1,2,3}) = ϕB′(P1,P2,P′
3,

P−{1,2,3}). Since P3|B′ = P′
3|B′ , by applying Lemma 9 with B = {b j,b j+1} and C = B′, ϕb(P1,P2,P3,

P−{1,2,3}) = ϕb(P1,P2,P′
3,P−{1,2,3}) for all b ∈ B′. Therefore,

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P′
3,P−{1,2,3}) for all b /∈ {b j,b j+1}. (16)

This completes Step 2.b. for Case 1.

Case 2. Suppose p < j ≤ j+ 1 < q or q < j ≤ j+ 1 < p.

We prove the lemma for the case p < j ≤ j+ 1 < q, the proof of the same for the case q < j ≤ j+ 1 < p

follows from symmetric arguments. By (13), for all b /∈ [b j,bq]τ(D), we have ϕb(P1,P2,P3,P−{1,2,3}) =

ϕb(P1,P3,P3,P−{1,2,3}) and ϕb(P1,P2,P′
3,P−{1,2,3}) = ϕb(P1,P3,P′

3,P−{1,2,3}). Moreover, since τ(P1) ≤

b j+1, τ(P3) = b j and τ(P′
3) = b j+1, it follows from (16) that ϕb(P1,P3,P3,P−{1,2,3}) = ϕb(P1,P3,P′

3,

P−{1,2,3}) for all b /∈ [b j,b j+1]τ(D). Combining all these observations, ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,

P′
3,P−{1,2,3}) for all b /∈ [b j,bq]τ(D). By strategy-proofness, ϕ{b j,b j+1}(P1,P2,P3,P−{1,2,3}) = ϕ{b j,b j+1}(P1,

P2,P′
3,P−{1,2,3}). Let B′ = [b j,bq]τ(D) \{b j,b j+1}. Since P3|B′ = P′

3|B′ , by applying Lemma 9 with B = {b j,

b j+1} and C = B′, we have ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P′
3,P−{1,2,3}) for all b ∈ B′. Hence,

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P′
3,P−{1,2,3}) for all b /∈ {b j,b j+1},

which completes Step 2.b. for Case 2.

Since cases 1 and 2 are exhaustive, this completes Step 2, and consequently the proof of Lemma 15. �

Proposition 1 now follows from Lemma 14 and Lemma 15. �

Now, we come back to the proof of Theorem 1. Our proof uses the following theorem which is taken

from Peters et al. (2014).

Theorem 4 (Theorem 3(a) in Peters et al. (2014)). Let D be the maximal single-peaked domain. Then,

every tops-only and strategy-proof RSCF ϕ : Dn → ∆A is a convex combination of some tops-only and

strategy-proof DSCFs f : Dn → A.

Our next lemma presents the structure of an uncompromising and strategy-proof RSCF on a regular

single-peaked domain.
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Lemma 16. Let D be a regular single-peaked domain and let ϕ : Dn → ∆A be uncompromising and

strategy-proof. Then, ϕ is a convex combination of the generalized min-max rules on Dn.18

Proof. Note that since ϕ is uncompromising, ϕ is tops-only. Let D̂ be the maximal single-peaked domain.

Let ϕ̂ : D̂n → ∆A be the tops-only extension of ϕ on D̂ . More formally, for all P̂N ∈ D̂n, ϕ̂(P̂N) = ϕ(PN),

where PN ∈ Dn is such that PN and P̂N are tops-equivalent. This is well-defined as ϕ is tops-only and D is

regular. Since D̂ is single-peaked and ϕ is strategy-proof, ϕ̂ is also strategy-proof. Hence, by Theorem 4,

ϕ̂ is a convex combination of the generalized min-max rules on D̂n. By the definition of ϕ̂ , this implies ϕ

is a convex combination of the generalized min-max rules on Dn, which completes the proof. �

Finally, we are ready to complete the proof of Theorem 1.

Proof. (If Part) Let D be a generalized intermediate domain with τ(D) = {b1, . . . ,bk} and let ϕ : Dn → ∆A

be a TRM rule. Since ϕ is a TRM rule, it is unanimous by definition. We show that ϕ is strategy-

proof. Let ϕ = ∑
t
l=1 λl fl , where λls are non-negative numbers summing to 1 and fls are TM rules. To

show ϕ is strategy-proof, it is enough to show that fls are strategy-proof. For all l ∈ {1, . . . , t}, define

f̂l : (D |τ(D))
n → τ(D) as f̂l(PN |τ(D)) = fl(PN). Note that by Lemma 8, D |τ(D) is a single-peaked domain.

Therefore, it follows from Moulin (1980) that f̂l is strategy-proof for all l = 1, . . . , t. By Remark 2.3, this

implies fl is strategy-proof for all l = 1, . . . , t. This completes the proof of the if part.

(Only-if Part) Let D be a generalized intermediate domain with τ(D) = {b1, . . . ,bk} and let ϕ : Dn →∆A

be a unanimous and strategy-proof RSCF. Define ϕ̂ : (D |τ(D))
n → ∆τ(D) as ϕ̂b(PN |τ(D)) = ϕb(PN) for

all b ∈ τ(D). This is well-defined as by Proposition 1, ϕτ(D)(PN) = 1 for all PN ∈ Dn and ϕ is tops-only.

Because ϕ satisfies uncompromisingness, ϕ̂ also satisfies uncompromisingness. Hence, by Lemma 16, ϕ̂

is convex combination of generalized min-max rules on (D |τ(D))
n. Moreover, since ϕ is unanimous, ϕ̂

is a also unanimous. This implies ϕ̂ is a convex combination of the min-max rules on (D |τ(D))
n. By the

definition of ϕ̂ , this implies ϕ is a TRM rule. This completes the proof of the only-if part. �

B. PROOF OF LEMMA 7

First we prove a lemma which we repeatedly use in the proof of Lemma 7.

Lemma 17. Let {Px}x∈X be a strict intermediate domain. Then for all distinct a,b,c ∈ A, the separating

lines of the pairs (a,b) and (b,c) do not intersect.

18If the set of alternatives is an interval of real numbers, then every uncompromising RSCF on the maximal single-peaked

domain is strategy-proof (see Lemma 3.2 in Ehlers et al. (2002)). However, the same does not hold for the case of finitely many

alternatives.

33



Proof. Let {Px}x∈X be a strict intermediate domain. Assume for contradiction that there exist distinct

a,b,c ∈ A such that the separating lines of (a,b) and (b,c) intersect. Since {Px}x∈X is strict, no three

separating lines of {Px}x∈X intersect at a common point. Therefore, we can choose an open (see Figure

5) ball such that no separating line other than those of the pairs (a,b) and (b,c) passes through that open

ball. Consider the regions X1 and X2 in Figure 5. Consider x ∈ X1. Since aPxb and bPxc, by transitivity, we

have aPxc. Now, consider y ∈ X2. Again, since bPa and cPb, by transitivity, we have cPa. Since the relative

preference over a and c is changing from X1 to X2, it must be that the separating line of (a,c) intersects at

least one of these regions. However, this is a contradiction to our assumption that no separating line other

than those of (a,b) and (b,c) intersects this open ball. This completes the proof of the lemma.

(a,b) (b,c)

aPxb
bPxc

X1

bPza
bPzc

cPyb
bPya

X2

Figure 5: Diagram for the proof of Lemma 17

�

Now we prove Lemma 7.

Proof. Let {Px}x∈X be a domain satisfying strict intermediate property. Since the number of alternatives

is finite, there are finitely many preferences in the domain {Px}x∈X . Consider a preference P ∈ {Px}x∈X .

Let XP = {x ∈ X |Px = P}. Since there are finitely many preferences in the domain {Px}x∈X , we can find

a finite collection of parallel lines {l1, . . . , lk} such that for each P ∈ {Px}x∈X , there exists l ∈ {l1, . . . , lk}

such that XP ∩ l 6= /0. This implies that {Px}x∈X = ∪k
i=1{Px}x∈li . Since {Px}x∈X satisfies strict intermediate

property, there exists a line l̂ that intersects all the separating lines (as defined in Lemma 6). We assume that

(i) l̂ ∈ {l1, . . . , lk}, and (ii) no li passes through the point of intersection of any two separating lines. This

assumption is without of loss of generality because for (i), we can start with l̂ and can consider a collection

of parallel lines satisfying the required properties, and for (ii), since we have finitely many separating

lines and hence finitely many points of intersection of those, we can always choose the lines {l1, . . . , lk} by

avoiding those points.
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Now we show that ∪k
i=1{Px}x∈li is a generalized intermediate domain satisfying minimal richness. We

show this using the following three claims.

Claim 1. For each l ∈ {l1, . . . , lk}, the family of preferences {Px}x∈l is a generalized intermediate domain

satisfying minimal richness.

Consider l ∈ {l1, . . . , lk}. Let x1, . . . ,xs be the points of intersection of the line l with the separating

lines of {Px}x∈X . Note that s ≤ k since there can be separating lines of {Px}x∈X that do not intersect with

l. Assume without loss of generality that x j ∈ (x j−1,x j+1) for all j ∈ {2, . . . ,s− 1}, that is, the points

{x1, . . . ,xs} are ordered in a particular direction. Consider x ∈ l such that x1 ∈ (x,x2). Such a point x can

always be chosen as X is open and x1 ∈ X . Let Px = P1. By Lemma 6, Py = P1 for all y ∈ [x,x1). By

our assumption of x1, there exists a separating line, say for the pair of alternatives (a,b), that intersects

l at x1. This implies there exists P2 ∈ {Px}x∈l such that Py = P2 for all y ∈ (x1,x2). By Lemma 6, P1 and

P2 differ only over the ordering of the pair (a,b). Again, by Lemma 6, the preference Px1
is either P1 or

P2. Continuing in this manner, we can get hold of a sequence of preferences {Pj} j∈{1,...,s+1} such that

(i) {Px}x∈l = {P1, . . . ,Ps+1}, and (ii) for all j = {2, . . . ,s}, Pj and Pj+1 differ only over the ordering of a

particular pair of alternatives. This implies that {Px}x∈l is minimally rich.

Next, we show {P1, . . . ,Ps+1} is a generalized intermediate domain with respect to the ordering given by

P1. Assume for contradiction that there exist c,d,e ∈ A with cP1dP1e such that d,e ∈ τ({P1, . . . ,Ps+1}) and

cPd for some P∈{P1, . . . ,Ps+1} with τ(P) = e. Let xe ∈X be such that Pxe
=P. Since d ∈ τ({P1, . . . ,Ps+1})

and cP1d, it follows that the separating line of the pair (c,d) intersects with l. Let xt be this point of

intersection. Since cPd by our assumption, xe ∈ (x1,xt). Consider xd ∈ X such that τ(Pxd
) = d. Such a

point xd must exist since d ∈ τ({P1, . . . ,Ps+1}) Then, it must be that xt ∈ (x1,xd). Also, dP1e and ePd

together imply xd ∈ (x1,xe). But this contradicts the fact that xe ∈ (x1,xt). This implies that {P1, . . . ,Ps+1}

is a generalized intermediate domain completing the proof of Claim 1. �

Recall that by our assumption, l̂ ∈ {l1, . . . , lk}. Therefore, by applying Claim 1 for l = l̂, it follows that

{Px}x∈l̂ is a minimally rich generalized intermediate domain with respect to some ordering, say ≺. Suppose

τ({Px}x∈l̂) = {b1, . . . ,br}, where b1 ≺ b2 ≺ . . .≺ br.

Claim 2. For all l ∈ {l1, . . . , lk}, there exist s and t with 1 ≤ s ≤ t ≤ r such that {Px}x∈l is a generalized

intermediate domain with τ({Px}x∈l) = {bs, . . . ,bt}.

Consider l ∈ {l1, . . . , lk} \ l̂. Let y1, . . . ,yq be the points of intersection of l with the separating lines

such that y j ∈ (y j−1,y j+1) for all j ∈ {2, . . . ,q−1}. Similarly, let x1, . . . ,xp be the points of intersection

of l̂ with the separating lines such that x j ∈ (x j−1,x j+1) for all j ∈ {2, . . . , p−1}. Assume without loss of

generality that #      »xxxpppxxx111 =
#      »yyyqqqyyy111, that is, the direction along which the points x1, . . . ,xp are counted is the same

as that along which the points y1, . . . ,yq are counted (see Figure 6).
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X

(b,bv) (bu,bv) (bu,b)

l̂

l

bPbv

bPbu

Figure 7: Diagram for the proof of Lemma 7

X

(a,b) (a,c) (a,d) (b,c)

l̂

l

x1 x2 x3 x4

y1 y2 y3

Figure 6: Diagram for the proof of Lemma 7

First, we show τ({Px}x∈l) ⊆ τ({Px}x∈l̂). Consider b ∈ τ({Px}x∈l). Assume for contradiction that

b /∈ τ({Px}x∈l̂). Since min≺ τ({Px}x∈l̂) = b1, this implies b1 ≺ b. Suppose br ≺ b. Then, it must be that

for all preferences in {Px}x∈l̂ , br is ranked above b, and hence the separating line of the pair (br,b) does

not intersect with l̂. However, since b ∈ τ({Px}x∈l), there must be a separating line of the pair (br,b). This

is a contradiction to our assumption that l̂ intersects with all separating lines. This shows b ≺ br. Now,

suppose bu ≺ b ≺ bv where bu and bv are two consecutive alternatives (with respect to the ordering ≺) in

the top-set τ({Px}x∈l̂).
19 Since bu ≺ b ≺ bv and b /∈ τ({Px}x∈l̂), by Lemma 6, there must be xe, x f and xg

with x f ∈ (xe,xg) such that the separating lines of the pairs (b,bv), (bu,bv), and (bu,b) intersect l̂ at xe,

x f , and xg, respectively. By Lemma 17, no two of these separating lines intersect. Note that b = τ(Pz) for

some z ∈ X implies that z must be on the left side of the separating line of (b,bv) and on the right side of

the separating line of (bu,b) (see Figure 7). However, as it is evident from Figure 7, there cannot be any

such z. Moreover, this is true in general since the separating lines of (b,bv) and (bu,b) do not intersect.

This shows b ∈ τ({Px}x∈l̂), and hence τ({Px}x∈l) ⊆ τ({Px}x∈l̂).

Next, we show that for all b,bu,bv such that bu,bv ∈ τ({Px}x∈l) and bu � b � bv, we have b ∈ τ({Px}x∈l).

Suppose not. Assume without loss of generality that bu and bv are consecutive in τ({Px}x∈l), that is,

19By consecutive in τ({Px}x∈l̂), we mean (bu,bv)∩ τ({Px}x∈l̂) = /0.
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(bu,bv)∩ τ({Px}x∈l) = /0. Recall that by our assumption, all the separating lines of {Px}x∈X intersect

l̂. Suppose that the separating lines of the pairs (bu,b), (bu,bv), and (b,bv) intersect l̂ at xe, x f , and xg,

respectively, where x f ∈ (xe,xg). By Lemma 17, no two of those three separating lines intersect each

other. This, together with the fact that bu,bv ∈ τ({Px}x∈l), implies that the separating lines of the pairs

(bu,b), (bu,bv), and (b,bv) intersect l at yh, yi, and y j, respectively, where yi ∈ (yh,y j) (see Figure 8). By

Lemma 17, bu � τ(Pyi
) � bv. However, since bPyi

bu and bPyi
bv, it must be that τ(Pyi

) 6= bu,bv. This is a

contradiction since (bu,bv)∩ τ({Px}x∈l̂) = /0. This completes the proof of Claim 2. �

X

(b,bv) (bu,bv) (bu,b)

l̂

l

xe
x f xg

yh yi y j

Figure 8: Diagram for the proof of Lemma 7

Claim 3. For all l ∈ {l1, . . . , lk}, all P̄ ∈ {Px}x∈l , and all bv ∈ {b1, . . . ,br}, P̄ satisfies the betweenness

property with respect to bv.

If bv ∈ τ({Px}x∈l), then Claim 3 follows from Claim 2. Suppose bv /∈ τ({Px}x∈l). Without loss of

generality, assume bv ≺ bs where bs = minτ({Px}x∈l). Let a ≺ bv. It is enough to show that bvP̄a. Since

bv ≺ bs and bsPbv for all P ∈ {Px}x∈l , it must be that the separating line of (bv,bs) does not intersect l.

Let bt = max≺ τ({Px}x∈l). Suppose that the points of intersection of l̂ with the separating lines of (a,bv),

(bv,bs), and (bs,bt) are xc, xd , and xe, respectively. Because a ≺ bv ≺ bs and bv ∈ τ({Px}x∈l̂), we have

xd ∈ (xc,xe). By Lemma 17, separating lines of (a,bv) and (bv,bs) cannot intersect each other. This,

together with the fact that the separating line of (bv,bs) does not intersect l, implies that the separating line

of (a,bv) too does not intersect l (see Figure 9). This, in particular, implies bvP̄a, which completes the

proof of Claim 3. �
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X

(a,bv) (bv,bs) (bs,bt)

l̂

l

xc xd xe

Figure 9: Diagram for the proof of Lemma 7

Now, the proof of Lemma 7 follows from Claim 2 and Claim 3. �

C. PROOF OF THEOREM 2

Proof. Let D̂ ⊆ sD be the set of strict preferences in sD , i.e., D̂ = {R ∈ sD | |τ(R)|= 1}. We first prove a

claim.

Claim 1: D̂ is a minimally rich generalized intermediate domain and τ( sD) = τ(D̂).

Since D̂ ⊆ sD , we have τ(D̂) ⊆ τ( sD). As sD is a generalized intermediate domain, all preferences in

it satisfies betweenness property with respect to each alternative in τ( sD). This means all preferences in

sD satisfies betweenness property with respect to each alternatives in τ(D̂) and hence, D̂ is a generalized

intermediate domain.

Suppose τ( sD) = {b1, . . . ,bk}. Since sD is minimally rich, for every bt ,bt+1 ∈ τ( sD) there exists R,

R′ ∈ sD such that r1(R) = r2(R′) = bt and r1(R′) = r2(R) = bt+1 and rl(R) = rl(R
′) for all l ≥ 2. Note

that both R and R′ are strict preferences and hence, R,R′ ∈ D̂ . This means bt ,bt+1 ∈ τ(D̂). Similarly, we

can show this for other alternatives in sD . This shows τ( sD) = τ(D̂) and D̂ is minimally rich. �

Let ϕ̂ : D̂n → ∆A be an RSCF defined as ϕ̂(RN) = ϕ(RN) for all RN ∈ D̂n. Note that ϕ̂ is well defined.

Moreover, since ϕ is unanimous and strategy-proof, ϕ̂ is also unanimous and strategy-proof. Since D̂ is

a minimally-rich generalized intermediate domain (by Claim 1), by Theorem 1, ϕ̂ is TRM rule. Hence,

ϕ̂c(RN) = 0 for all RN ∈ D̂n and all c /∈ τ(D̂).

Assume for contradiction there exists a profile R̃N ∈ sDn such that ϕc(R̃N) > 0 for some c /∈ τ( sD). Let

i ∈ N be such that |τ(R̃i)| = 2. By the tie-breaking property, there exists R̂i ∈ sD with {τ(R̂i),r2(R̂i)} =

τ(R̃i) and rl(R̃i) = rl+1(R̂i) for all l ≥ 2. By strategy-proofness this means ϕa(R̃N) = ϕa(R̂i), R̃−i) for

all a /∈ {bt ,bt+1}. This implies ϕc(R̂i), R̃−i) > 0. Continuing in this manner we can reach a profile R̂N

where for all j ∈ N, R̂ j = R̃ j if |τ(R̃ j)| = 1 and {τ(R̂ j),r2(R̂ j)} = τ(R̃ j) and rl(R̃ j) = rl+1(R̂ j) for all

l ≥ 2 if |τ(R̃ j)| = 2. Furthermore, ϕc(R̂N) > 0. But this is a contradiction as R̂N ∈ D̂n and by Claim 1
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τ( sD) = τ(D̂). This completes the proof of the theorem. �

D. PROOF OF THEOREM 3

Proof. Let sD a minimally rich generalized intermediate domain such that |τ(R)| ≤ 2 for all R ∈ sD . Further,

let ϕ be a TRM rule and πππ be a collection of unanimous and strategy-proof tie-breaking rules. Consider the

RSCF sϕ(RN) : sDn → ∆A defined as sϕ(RN) = ϕ(πππ(RN)). We show that sϕ is unanimous and strategy-proof.

Since ϕτ( sD)(πππ(RN)) = 1 for all RN ∈ sDn, for the rest of the proof for some a � b, by [a,b] we denote

[a,b]τ( sD).

Unanimity: Consider a profile R̃N ∈ sDn such that ∩i∈Nτ(R̃i) 6= /0. Since all R̃is satisfy betweenness

property with respect to each alternative in τ( sD), we have ∩i∈Nτ(R̃i) = [a,b] for some a � b. Note that

unanimity of πis imply πi(R̃N)∈ [a,b] for all i∈N. Hence, [mini∈N πi(RN),maxi∈N πi(RN)]⊆ [a,b]. By the

definition of ϕ , ϕ[mini∈N πi(RN),maxi∈N πi(RN)](πππ(RN)) = 1 for all RN ∈ sDn. Combining all these observations

we get ϕ[a,b](πππ(R̃N)) = 1 which implies sϕ∩i∈Nτ(Ri)(R̃N) = 1. This completes the proof that sϕ is unanimous.

Strategy-proofness: Consider a profile R̃N ∈ sDn and an agent i ∈ N. We show that by changing his/her

preference to any R̃′
i ∈

sD agent i cannot manipulate. Consider an upper contour set U(a, R̃i) for some

a ∈ A. We show that sϕU(a,R̃i)(R̃N) ≥ sϕU(a,R̃i)(R̃
′
i, R̃−i). Note that sϕ(R̃N) = ϕ(π1(R̃N), . . . ,πn(R̃N)) and

sϕ(R̃′
i, R̃−i) = ϕ(π1(R̃′

i, R̃−i), . . . ,πn(R̃′
i, R̃−i)). Combining all these observations, to complete the proof it is

enough to show that ϕU(a,R̃i)(π1(R̃N), . . . ,πn(R̃N)) ≥ ϕU(a,R̃i)(π1(R̃′
i, R̃−i), . . . ,πn(R̃N)). Note that by the

definition of TRM rule,

ϕb(π1(R̃N), . . . ,πn(R̃N)) 6= ϕb(π1(R̃
′
i, R̃−i), . . . ,πn(R̃N)) for all b 6= [π1(R̃N),π1(R̃

′
i, R̃−i)]. (17)

Let i 6= 1. Note that by the definition of π1, π1(R̃N),π1(R̃′
i, R̃−i) ∈ τ(R̃1). Since |τ(R̃1)| ≤ 2 and π1 is

strategy-proof, we have either π1(R̃′
i, R̃−i) � π1(R̃N) � minτ(R̃i) or maxτ(R̃i) � π1(R̃N) � π1(R̃′

i, R̃−i).

Without loss of generality assume that π1(R̃′
i, R̃−i) � π1(R̃N) � minτ(R̃i). Let U(a, R̃i) = [br,bs]. This

means br � minτ(R̃i)� bs. Note that if br � π1(R̃′
i, R̃−i) or π1(R̃N)≺ br, then [π1(R̃N),π1(R̃′

i, R̃−i)]⊆ [br,

bs] or [π1(R̃N),π1(R̃′
i, R̃−i)]∩ [br,bs] = /0 and hence, by (17), ϕ[br,bs](π1(R̃N), . . . ,πn(R̃N)) = ϕ[br,bs](π1(R̃′

i,

R̃−i), . . . ,πn(R̃N)). So, assume π1(R̃′
i, R̃−i) ≺ br � π1(R̃N). Assume for contradiction ϕ[br,bs](π1(R̃N), . . . ,

πn(R̃N)) < ϕ[br,bs](π1(R̃′
i, R̃−i), . . . ,πn(R̃N)). Together with (17), this implies

ϕ[br,π1(R̃N)](π1(R̃N), . . . ,πn(R̃N)) < ϕ[br,π1(R̃N)](π1(R̃
′
i, R̃−i), . . . ,πn(R̃N)). (18)

Consider a single-peaked preference profile RN such that τ(R j) = π j(R̃N) and U(br,R1) = [br,π1(R̃N)].
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Further consider R′
1, a single-peaked preference with τ(R′

1) = π1(R̃′
i, R̃−i). In view of (18), these profiles

imply ϕU(br,R1)(RN) < ϕU(br,R1)(R
′
1,R−1) which means agent 1 manipulates at RN via R′

1. But this is a

contradiction since by Theorem 1, ϕ is strategy-proof on the set of single-peaked preference profiles.

Let i = 1. By the definition of π1, π1(R̃N) ∈ τ(R̃1) and π1(R̃′
1, R̃−1) ∈ τ(R̃′

1). Consider a single-peaked

preference profile RN where τ(R j) = π j(RN) and U(a, R̃1) = U(a,R1). Further consider R′
1, a single-

peaked preference with τ(R′
1) = π1(R̃′

1, R̃−1). By strategy-proofness of ϕ , ϕU(a,R1)(RN) ≥ ϕU(a,R1)(R
′
1,

R−1), which is exactly what we want to show. This completes the proof of the theorem. �
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