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Abstract

We study one-shot play in the set of all bimatrix games by a large population of

agents. The agents never see the same game twice, but they can learn ‘across games’

by developing solution concepts that tell them how to play new games. Each agent’s

individual solution concept is represented by a computer program, and natural selection

is applied to derive a stochastically stable solution concept. Our aim is to develop a

theory predicting how experienced agents would play in one-shot games. To use the

theory, visit https://gplab.nhh.no/gamesolver.php.
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By three methods we may learn wisdom: First, by reflection, which is noblest; second, by

imitation, which is easiest; and third by experience, which is the bitterest. — Confucius.

1 Introduction

One-shot games put players in unfamiliar situations. Playing well in such situations is a

difficult task. Games with multiple Nash equilibria raise the question of which one, if any,

of those equilibria will be played, and there is ample evidence that equilibrium solution

concepts fail to predict actual behavior in many games. However, by playing many one-shot

games, an agent can learn ‘across games’ to form, and to gradually improve, a theory of

games. A theory that can be used to solve all games in a given class is a solution concept.

In this paper we apply the idea of learning across games to develop a new solution

concept for one-shot bimatrix games.1 Like Harsanyi & Selten’s (1988) general theory of

equilibrium selection, it assigns a unique solution to every game, and it agrees with their

risk dominance criterion for 2×2 games. However, our solution concept is not a refinement

of Nash equilibrium. In (the extensive form of) some games, the solution is not subgame

perfect, and in others, it is not even a Nash equilibrium.

Such digressions from rationality have interesting implications: First, they tend to in-

crease the agents’ payoffs, which helps protect the solution concept against invasion by Nash

players. Second, they allow us to account for observed behavior in many games where Nash

equilibrium, or some refinement, fails to predict actual outcomes. Examples include the Ul-

timatum game, the Centipede game, and the Traveler’s dilemma. And third, they suggest a

new explanation why people seem to be motivated by fairness, trust and reciprocity in some

games designed to study social norms.

Our analysis is carried out with a numerical evolutionary model. Because the analysis

consists of several steps and elements, we proceed with an outline of the main ideas.

1A bimatrix game is a two-person simultaneous-move game where each player has a finite number of pure
strategies.
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Individual solution concepts. The model contains a large number of agents who

use individual solution concepts to play random games in random positions (Row and Col)

against random opponents across many periods of time. An individual solution concept is a

map which to each position in every game assigns an action for the agent and a conjecture

about the opponent’s action. Only actions entail consequences, but the agents also need

conjectures to reason about how to play a game. By prescribing conjectures, the solution

reveals the agent’s reasoning and explains her actions.

We are agnostic about conjectures and leave them to be shaped by evolution. In particu-

lar, we do not require that an agent’s action at one position be consistent with her conjecture

at the other. Some agents may then appear to believe that they can outsmart their oppo-

nents. Our experience with the model suggests that a side effect of allowing such beliefs is

to boost the agents’ ability to learn.

Aggregate solution concepts. By taking the mean across all individual solution

concepts for each game, one obtains an aggregate solution concept (ASC). It assigns a joint

probability distribution over all pairs of actions and conjectures for each position in every

game. For a given game and position, one derives mixed actions and conjectures as the

marginal distributions of the probability distribution for that position. As discussed above,

an ASC may not solve all one-shot games at equilibrium points, but we shall require that

the ASC itself be an equilibrium point in an appropriate space. Specifically, we shall look for

an ASC whose individual components form a stochastically stable equilibrium (SSE) when

applied to one-shot bimatrix games.

Good replies and good solutions. To that end, we impose some structure on the set of

admissible solution concepts. First, we generalize the Nash equilibrium concept by assuming

that the agents reason in terms of good replies and good solutions. Each term is meant to

capture one aspect of the agent’s preferences, and is defined by a function, specific to each

agent, on the relevant domain of information. An action is a good reply to a conjecture if the

agent likes the corresponding vector of deviation losses. And a pair of action and conjecture
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is a good solution if the agent thinks the two are mutual good replies. By composing the

good solution function with the good reply function, we obtain a numerical representation

of the agent’s solution concept: To solve a game at a position, the agent maximizes the

composite function.

Separability, symmetry and scale invariance. The Nash equilibrium concept has

three properties that will also be imposed here. Payoffs represent von Neumann-Morgenstern

utilities, and the agents’ solution concepts must therefore be scale invariant to reflect that

fact. Good reply functions are assumed to be symmetric and separable. An iteration function

on a domain of fixed dimension can then be used to process games with different dimensions in

the same way. We do not impose symmetry on good solution functions because, as mentioned

above, we will allow the agents to believe that they can outsmart their opponents.

Genetic programming. To obtain an SSE, we represent each agent’s good reply it-

eration function and his good solution function by computer programs, and use a genetic

programming (GP) algorithm (Koza 1992)2 to evolve these programs until the ASC remains

constant. The algorithm works as follows: Begin with a population of randomly generated

programs. Let the programs play lots of random games against random opponents and mea-

sure their performance. Arrange tournaments and replace some low performing programs

with copies of high performing ones, cross and mutate some of the copies and let the pro-

grams play another random set of games. By continuing in this manner across thousands

of iterations, the programs become increasingly better at one-shot play until possibly, the

process converges to an SSE.

Data. The data are generated by doing several runs with the GP algorithm. Table 1

contains an overview of the main model parameters. At the end of each run, we save the

population of programs. These programs constitute the data set for our analysis. In total

our data set contains 200,000 computer programs.

The data analysis consists of three parts: First, we try to gain some intuition for the

2A technique for ‘programming computers by means of natural selection’, see also the series of handbooks
edited by Koza (1992-2003).
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Table 1: Model parameters
Model runs 100 Iterations per run 100,000
Number of games 1,000 Tournaments per iteration 50
Number of agents 2,000 Agents per tournament 4

evolved ASC by solving 11 games from the literature and comparing its predictions to the

theoretical and experimental evidence (Section 4.1). Second, we apply the ASC to a set of

random games and compute a number of statistical performance measures, e.g., the frequency

of deviation from Nash play, and the performance of Nash players against the ASC and vice

versa. We also use additional data from the model runs to check that the ASC has converged

to an SSE (Section 4.2). In the third (and main) part, we analyze all individual solution

concepts to identify any common structure (Section 4.3).

Structure of individual solution concepts. Section 4.3 begins with an example of

an individual solution concept. It suggests to look for additive good reply functions and scale

invariant good solution functions (Section 4.3.1), and indeed, we find that almost all agents

have additive and almost linear good reply functions (Section 4.3.2). It means that an action

is usually a good reply to a conjecture if the corresponding sum of deviation losses is large.

Individual good solution functions turn out to be more complex, with substantial hetero-

geneity across agents (Section 4.3.3). But most of the variation can be explained by fitting,

for each agent, a collection of CES functions3 to a fixed partition of the domain of the good

reply functions.

2×2 games. In Section 4.3.4, we use the data to construct a representative solution

concept for 2×2 games. It agrees with Harsanyi & Selten’s (1988) risk dominance criterion

for games with strict Nash equilibria, and the representative agent is rational, in the sense

that her action is always a best reply to her conjecture.

Additional details. Model details are presented in Appendix A. That includes an

algorithm for computing separable good replies, implementation of solution concepts as

executable programs, generation of random games, and the genetic programming algorithm.

3A CES function is a product of power functions.
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In Appendix B we test the robustness of our ASC with respect to some changes in the model

specification.

2 Related literature

Our paper belongs to the literature on learning across games. Following Selten, Abbink,

Buchta & Sadrieh (2003), we consider a population of (artificial) agents who use behavior

rules as in Stahl (1996) to decide upon some course of action in unfamiliar situations as

described by Gilboa & Schmeidler (1995).

Gilboa & Schmeidler (1995) provide a theoretical basis for learning across games. In

their ‘Case-based decision theory’, the agents do not know all states of the world, but they

can make decisions by drawing upon their experience with past cases. This situation is

what our model is meant to represent. Gilboa, Schmeidler & Wakker (2002) suggest a set

of axioms for rational behavior in such situations and show that it can be represented by

a similarity-weighted utility function. LiCalzi (1995), Jehiel (2005) and Steiner & Stewart

(2008) model learning across games by agents who use exogenous similarity measures, and in

Samuelson (2001) and Mengel (2012) the agents learn to partition games into endogeneous

analogy classes. An empirical test of Mengel’s (2012) partition model is provided by Grimm

& Mengel (2012).

Stahl (1996, 1999, 2000) introduced a rule–based approach to model learning by bound-

edly rational agents. The agents have behavior rules, which are maps from information sets

to sets of feasible actions, and the reinforcement principle defines a learning dynamic on the

space of behavior rules. In our paper, we use a different learning dynamic, but our solution

concepts represent the same idea as Stahl’s behavior rules. Stahl’s rule based learning model

covers a number of special cases, including fictitious play (Brown 1951), replicator dynamics

(Taylor & Jonker 1978), belief updating (Mookherjee & Sopher 1994) and reinforcement

learning (Roth & Erev 1995). Models of these types have been used by LiCalzi (1995), Ger-
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mano (2007) and Mengel (2012) to represent learning in theoretical analogy-based models,

and by Gale, Binmore & Samuelson (1995), Cooper & Kagel (2003, 2008) and Haruvy &

Stahl (2012) to study transfer of learning across games. The latter three papers find that

human subjects learn to reason across dissimilar games, and with increasing sophistication

as they become more experienced.

Stahl’s rule based learning model builds on Nagel (1995) and Stahl & Wilson (1994),

who introduced level-k reasoning as a model of initial play. In experiments with initial play,

one finds that the subjects often deviate in systematic ways from equilibrium play, and that

level-k reasoning and other structural non-equilibrium models (Stahl 2001, Costa-Gomes,

Crawford & Broseta 2001) do a better job at predicting actual outcomes. A survey of this

literature is provided by Crawford, Costa-Gomes & Iriberri (2013), and a recent contribution

is Fudenberg & Liang (2019), who use machine learning to re-examine the empirical evidence.

Our paper is related to this literature by considering only one-shot games, but differs in one

important respect: In experiments with initial play, the subjects usually play a sequence

of one-shot games without intermediate feedback. The purpose is to suppress learning and

preserve an impression of initial play throughout the experiment. As a result, inexperienced

subjects remain so during the whole experiment. This contrasts with our paper, and with

Selten et al. (2003), where the agents receive systematic feedback to become experienced at

one-shot play over time.

Selten et al. (2003) is closely related to our paper. They provide a detailed account of

an experiment aimed at studying one-shot play in 3×3 games by means of Selten’s (1967)

strategy method. As part of an economics course, students were asked to write computer pro-

grams that would determine their choice of actions in randomly chosen 3×3 games. Several

contests were held during the teaching term. In each contest the programs played 500,000

random games, with the results of each contest being used by the students to further refine

their programs. They quickly introduced a distinction between games with and without pure

Nash equilibria. In the former, they ended up coordinating on equilibria with maximal joint
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payoff. In the latter, their behavior was a more diverse mix of best-reply cascades, as in

level-k reasoning.

Also closely related to our paper is a small literature on learning across games by artificial

agents. Sgroi & Zizzo (2009) train neural networks (NNs) to play Nash in 3×3 games with

one pure equilibrium. They find that the NNs behave as if they try to identify pure Nash

equilibria by means of level-k reasoning. When the NNs are applied to unfamiliar games,

this ‘shortcut’ yields a prediction accuracy which is comparable to that of human subjects.

Spiliopoulos (2015) considers a population of NNs who learn to play ex post best reply against

the field in seven strategically different classes of 2×2 games. He finds strong evidence of

cross–game learning, e.g., training on games with more incentives to cooperate yields more

cooperation in unfamilar games. Spiliopoulos (2011) uses a population of NNs to play general

3×3 games. He finds that the NNs develop similarity measures which they use to classify

games by their strategic properties, consistent with the case-based decision theory of Gilboa

& Schmeidler (1995). The same phenomenon occurred in Selten et al.’s (2003) experiment,

as mentioned above, and we show that it also occurs in our model.4

Many authors have used genetic algorithms to model learning by heterogeneous agents

in repeated games and markets. Genetic algorithms suit that purpose because they impose

very little structure on the agents’ decision rules. Agents are modeled by specifying their

information, their feasible actions and a measure of their individual performance. Competi-

tion drives behavior, which is commonly found to agree well with that of human subjects, see

e.g, Arifovic (1995, 1996) and Chen, Duffy & Yeh (2005). A pioneering contribution to this

literature is Arifovic’s (1994) analysis of the cobweb market model. Marks (2002) provides

a survey, and more recent applications include coordination games (Chen et al. 2005), Trav-

eler’s dilemma games (Pace 2009), and financial market microstructure models (Lensberg,

Schenk-Hoppé & Ladley 2015).

4See Section 4.3 where the structural properties of solution concepts are analyzed.
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3 Model

In this section, we introduce a general class of solution concepts. We consider a large

population of agents, each one equipped with a solution concept that she uses to solve

games. Agents will be randomly assigned to play random bimatrix games in some random

position, Row (1) or Col (2), against random opponents.

3.1 Solution concepts

Let Γ denote the set of all bimatrix games. The members of Γ are pairs G = (S, π), where

S = S1 × S2 is a finite set of pure strategy profiles and π : S → R
2 is a payoff function such

that π(s) = (π1(s), π2(s)) are the von Neumann-Morgenstern utilities obtained by the two

players when profile s ∈ S is played. From now on, the word ‘game’ will be used to designate

the members of Γ.

For any game G, let Σ(G) denote the associated set of strategy profiles. A solution

concept is a map F from games to strategy profiles, such that F (G) ⊂ Σ(G) for all G ∈ Γ.

F (G) can contain one or more elements, any one of which is a solution to G. Solution

concepts allow to solve a game from the perspectives of both players (Row and Col). Let

G = (S, π) be any game and define its transpose G⊤ as G⊤ = (S ′, π′), where S ′
1 = S2,

S ′
2 = S1, and (π′

1(t, s), π
′
2(t, s)) = (π2(s, t), π1(s, t)) for all (s, t) ∈ S. Then:

1. each (s, t) ∈ F (G) is a solution to G from Row’s point of view. s is Row’s action and

t is her conjecture about Col’s action; and

2. each (t′, s′) ∈ F (G⊤) is a solution to G from Col’s point of view. t′ is Col’s action and

s′ is his conjecture about Row’s action.

One has consistency of actions and conjectures if the solution concept solves any game G

at (s, t) if and only if it solves its transpose at (t, s). Nash equilibrium is a solution concept

which satisfies this property. It will not be imposed here because we will leave it for evolution

to determine the agents’ conjectures.
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Solution concepts are applied as follows.

Playing games. Let a and b be two agents, with individual solution concepts F a and

F b. Let G be a game and suppose a and b are assigned as player 1 and 2, respectively. The

game G is played as follows: Agent a makes a uniform random draw of (s, t) from F a(G)

and plays s. Agent b makes a uniform random draw of (t′, s′) from F b(G⊤) and plays t′. a

receives payoff π1(s, t
′) and b receives payoff π2(s, t

′).

Aggregate solution concepts. Consider a population A of agents, each of whom is

equipped with an individual solution concept F a. For any finite set X, let |X| denote the

number of elements in X. For any game G, define

pa1(s, t, G) :=
1

|F a(G)|
if (s, t) ∈ F a(G) and 0 otherwise (1)

pa2(s, t, G) := pa1(t, s, G
⊤) =

1

|F a(G⊤)|
if (t, s) ∈ F a(G⊤) and 0 otherwise. (2)

pa1(s, t, G) is the probability by which agent a solves G at (s, t) as player 1 (Row) and

pa2(s, t, G) is the probability by which he solves the transposed game G⊤ at (t, s) as player 2

(Col). By taking the mean of the probability distributions {(pa1, p
a
2)}a∈A across all agents we

obtain

Pi(s, t, G) :=
1

|A|

∑

a∈A

pai (s, t, G) (3)

for each position i ∈ {1, 2}. P1(s, t, G) is the percentage of Row players who solve G at (s, t),

and P2(s, t, G) is the percentage of Col players who solve the transposed game G⊤ at (t, s).

Let P (s, t, G) = (P1(s, t, G), P2(s, t, G)). The bimatrix P (·, ·, G) is the aggregate solution to

game G for population A, and the function P (·) is the aggregate solution concept.

Given an aggregate solution concept P and a game G, one obtains mixed actions and

conjectures for the row and column players as the marginal distributions of P , as shown in

Table 2.
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Table 2: Mixed actions (σ) and conjectures (φ) in a game G
σ1(s,G) :=

∑

t P1(s, t, G) Percentage of Row players who do s
φ1(t, G) :=

∑

s P1(s, t, G) Percentage of Row players who conjecture that Col will do t
σ2(t, G) :=

∑

s P2(s, t, G) Percentage of Col players who do t
φ2(s,G) :=

∑

t P2(s, t, G) Percentage of Col players who conjecture that Row will do s

Mixed Nash equilibria. In our model, the agents solve games by choosing a pair of

action and conjecture, using uniform randomizations to select one outcome in games with

multiple solutions. There is no mechanism to align the actions or conjectures of indifferent

agents to sustain mixed Nash equilibria, which may seem to rig the model in disfavor of such

equilibria. However, mixing will also occur at the population level because different agents

will typically use (slightly) different solution concepts, and this will enable the population to

play mixed Nash equilibria without external intervention. In Section 4.1, we shall see that

the agents play plausible mixed strategies in many games.

Numerical representations of solution concepts. A solution concept is (numeri-

cally) representable if there is a family of functions V (·, G) : Σ(G) → R, such that for each

game G, F (G) = argmax
s∈Σ(G)V (s, G).

We consider a class of representable solution concepts that includes Nash equilibrium as

a special case. For any game G = (S, π), and any strategy profile s = (s, t) ∈ S, define pairs

of vectors δ(s) = (δ1(s), δ2(s)) as

δ1(s) := (π1(s, t)− π1(s
′, t))s′∈S1\s (4)

δ2(s) := (π2(s, t)− π2(s, t
′))t′∈S2\t. (5)

The vectors (4) and (5) contain the deviation losses that players 1 and 2 would incur by

unilateral deviations from s and t to each one of their alternative strategies. Next, let

f : R2 → R and g : ∪n∈NR
n → R be two functions, where, by definition, g takes a variable

number of arguments, and define

V (s, G) := f(g(δ1(s)), g(δ2(s))). (6)

11



Several key concepts in game theory can be represented in this fashion:

Nash equilibrium. A numerical representation V N for the (pure strategy) Nash equilib-

rium concept FN can be obtained by setting f(x, y) = min(x, y) and g(δi(s)) = min(0, δi(s)).

This yields

V N(s, G) := min{min(0, δ1(s)),min(0, δ2(s))}. (7)

Vectors of non-negative deviation losses represent best replies, and a strategy profile s is a

Nash equilibrium in pure strategies if V N(·, G) attains its maximal value of 0 at s.

Risk dominance. Another special case of (6) is the risk dominance concept of Harsanyi

& Selten (1988) for 2×2 games with two strict Nash equilibria. This is a refinement of the

Nash equilibrium concept for that class of games, where the vectors of deviation losses δi(s)

are singletons, and where a risk dominant equilibrium is one that maximizes the product

of the two players’ deviation losses. To represent this solution concept by (6), let g be the

identity function on R, f(x, y) = x · y if (x, y) > 0, and f(x, y) = −∞ (or any negative

number) otherwise. Then

V RD(s, G) :=















δ1(s) · δ2(s) if δ(s) > 0

−∞ otherwise.

(8)

Given a 2×2 game G = (S, π), a strategy profile s is a risk dominant solution if s uniquely

maximizes V RD(·, G) on S with V RD(s, G) > 0.5 An example to illustrate concepts and

notation is provided in Table 3.

Interpretation. Any solution concept that is representable by some version of V in

(6) has three features that are worth noting. First, it can be used to solve games of any

finite dimension because the function g can take any number of arguments. Second, V (·) =

f(g(·), g(·)) is separable with respect to the two vectors of deviation losses (the arguments

to g). This suggests to think of g as a measure of the extent to which a strategy for one

5If V RD(s, G) ≤ 0, the game has no strict equilibria. If the maximizer is not unique, it has two, but
neither risk dominates the other.
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Table 3: A game G = (S, π) with two strict Nash equilibria (corresponding payoffs marked
in bold). The risk dominant solution is (C,C).

π(S)
C A

C 4, 4 0, 1
A 1, 0 1, 1

(g(δ1(S)), g(δ2(S))) = δ(S)
C A

C 3, 3 -1, -3
A -3, -1 1, 1

V RD(S,G) =
f(g(δ1(S)), g(δ2(S)))

C A
C 9 −∞
A −∞ 1

player is a good reply to that of the other, and of f as a device that aggregates two good

replies into a good solution. Third, by relaxing the Nash equilibrium concept in this way,

one can construct solution concepts which potentially use more information about games.

In particular, it allows to talk about strategies being almost best replies, and to consider if

one solution to a game might be better than another because the former provides weaker

incentives to deviate than the latter.

The Nash equilibrium concept has some additional properties that do not follow from

(6). The following properties will be imposed on (6) as well. The first two are imposed by

means of a ‘nudge’, as explained in Appendix A.2. The idea is to scramble any information

about games that could lead to a violation of the property in question, thereby stimulating

development of functional forms that are insensitive to the scrambled information.

Scale invariance. We require individual solution concepts F to be invariant with respect

to positive affine transformation of payoffs, because payoffs are assumed to be Neumann-

Morgenstern utilities. Adding a constant term to some player’s payoffs has no effect on F

because the functions g in (6) only depend on payoff differences, but the functions f and g

must be jointly chosen to eliminate any scale effect as well.

Symmetric good replies. An individual solution concept has symmetric good replies

if it is invariant with respect to the ordering of any player’s strategies. Nash equilibrium

satisfies this property because gN is symmetric. We impose this requirement because it

prevents the agents from conditioning their actions on some irrelevant aspects of the game.

Separable good replies. A good reply function g is separable if there is a func-
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tion γ : R
2 → R and a constant z0, such that g(x1) = γ(z0, x1) and g(x1, . . . , xk) =

γ(g(x1, . . . , xk−1), xk) for k ≥ 2. The Nash good reply function, gN(·) = min(0, ·), is separa-

ble with γN(z, x) = min(z, x) and z0 ≥ 0. We require individual solution concepts to have

separable good replies. An implementation of this condition is provided in Appendix A.1.

Solution concepts with separable good replies have two important benefits: First, they al-

low to represent games of different dimensions within the same structure and (low-dimensional)

domain, parametrized by the game dimensions. Second, this fact, in conjunction with sym-

metric good replies, will ensure that the solution concepts behave in a similar way across

game dimensions. The latter is a desirable property of any solution concept, and without

the former our evolutionary approach to solving games would simply not work.

A solution concept F is called admissible if it is representable by (6) and satisfies scale

invariance, symmetric good replies and separable good replies. For any such F the associated

pair of functions (f, γ) will be said to represent F .

3.2 Solving the model

To solve the model, we represent each agent’s good solution function f and his good reply

iteration function γ as computer programs. A genetic programming (GP) algorithm is then

used to search for an aggregate solution concept (ASC) whose individual components consti-

tute a stochastically stable equilibrium (SSE). The GP algorithm is described in Appendix

A.4. To train the agents, it uses large numbers of randomly generated games, as explained

in Appendix A.3. Because such games differ from the kind that people face in practice, they

might fail to prepare the agents for the real thing. We therefore check whether our approach

is fit for purpose by applying our ASC to 11 well-known games from the theoretical and

experimental literature (Section 4.1).

To obtain the ASC, we do 100 independent runs with the model. Each run is carried

out with a population of 2,000 agents. At the end of each run, we save the pair of programs

(fa, γa) for each agent a. The ASC consists of this collection of 200,000 program pairs. To
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find the aggregate solution to a given game, we solve it by means of each program pair of

the ASC and take the mean of those solutions.

As explained in Section 3.1, the aggregate solution to a given game is a pair P = (P1, P2)

of probability distributions on the set of strategy profiles for that game, one probability

distribution for each of the two players. For a given player i and strategy profile (s, t),

Pi(s, t) is the probability that a randomly chosen agent will solve the game at (s, t) when

called upon to play it as player i. For each probability distribution Pi one derives the mixed

actions and conjectures for player i as the marginal distributions of Pi.

4 Results

In this section, we present results for the aggregate solution concept (ASC) obtained from the

model described in Section 3. Section 4.1 illustrates the behavior of the ASC in some familiar

games. Section 4.2 tests convergence and analyzes the performance of the ASC against

agents who play best reply, i.e., hypothetical, omniscient agents who know the distribution

of strategies in the population for each game. We also look at the performance of the ASC

against Nash players in games with one pure Nash equilibrium. Section 4.3 analyzes the

structure of individual solution concepts by investigating the functional form of the good

reply and the good solution functions. The aim is to understand the logic that drives the

agents’ behavior.

4.1 Behavior in selected games

When assessing the results of this section, it is important to bear in mind that the agents

have no prior experience with any of the games to be considered here. Anything the agents

do has been learned by experience with other games, and so the situation is literally one-shot

play by experienced agents.
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4.1.1 Classical games

Rock, Paper, Scissors is the zero-sum game depicted in Table 4. Panel (a) contains the

payoff matrix, and Panel (b) shows the aggregate solution P = (P1, P2) and its marginal

distributions σ = (σ1, σ2) and φ = (φ1, φ2). (σ1, σ2) are the aggregate mixed actions of

the Row and Col players, and (φ1, φ2) are their aggregate conjectures about the opponent’s

actions. The mixed actions and conjectures are also shown along with the payoff matrix in

Panel (a).

Table 4: Rock, Paper, Scissors. Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) R P S

σ 33 33 33 Col
R 34 0, 0 -1, 1 1, -1 33
P 33 1, -1 0, 0 -1, 1 33
S 33 -1, 1 1, -1 0, 0 33
Row 33 33 33 φ

(b) Solution, actions and conjectures
(s, t) R P S

σ 33 33 33 Col
R 34 19 ,19 1 ,13 13 , 1 33
P 33 13 , 1 19 ,19 1 ,13 33
S 33 1 ,13 13 , 1 19 ,19 33
Row 33 33 33 φ

The game has a unique (mixed) Nash equilibrium in which both players do each of

their three actions with probability 1/3. The ASC yields the same actions, and (correct)

conjectures.

Consider next the details of the solution shown in Panel (b). Given the payoff structure

of this game, it seems fair to say that 3 × 19 = 57% of both players believe in a draw,

3× 13 = 39% expect to win, and 3× 1 = 3% expect to lose. On the other hand, the agents’

tendency to solve the game at the diagonal suggests that they may rather be looking for

some kind of equitable compromise. With that interpretation in mind, the agents appear to

be 57% egalitarian, 39% selfish, and 3% altruistic.

Prisoners’ dilemma. We next consider a game where the agents’ self-interest prevails.

In the Prisoners’ dilemma game, Table 5, the players get a sentence depending on whether

they deny (d) or confess (C) a crime. Deny is strictly dominated6, (C,C) is the only Nash

6We use lower case letters to designate strategies that do not survive iterated elimination of strictly
dominated strategies.
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Table 5: Prisoners’ dilemma. Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) d C

σ 0 100 Col
d 0 -1, -1 -3, 0 0
C 100 0, -3 -2, -2 100

Row 0 100 φ

(b) Solution, actions and conjectures
(s, t) d C

σ 0 100 Col
d 0 0 ,0 0 , 0 0
C 100 0 ,0 100 ,100 100

Row 0 100 φ

equilibrium, and this solution is also selected by 100% of the agents, so (C,C) is the ASC

outcome.

In games where (almost) all agents agree on one strategy profile, the solution bimatrix

in Panel (b) is not informative and will not be shown from now on.

Battle of the sexes is a coordination game with the following payoff structure:

Table 6: Coordination games with x > y > 0. (Battle of the sexes.)

(s, t) B F
B x,y 0, 0
F 0, 0 y,x

In this game, Row and Col would like to attend a Ballet or a Football match. Row prefers

Ballet, Col prefers Football, but in any case, they would like to be together. The game has

two equilibria in pure strategies, marked in bold in Table 6, and a mixed equilibrium where

the players do their preferred action with probability x/(x+ y).

The original version of Battle of the sexes, Luce & Raiffa (1957), has (x, y) = (3, 2).

Applying our ASC to that game, we obtain the results in Table 7.

Table 7: Battle of the sexes with (x, y) = (3, 2). Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) B F

σ 41 59 Col
B 59 3, 2 0, 0 41
F 41 0, 0 2, 3 59

Row 59 41 φ

(b) Solution, actions and conjectures
(s, t) B F

σ 41 59 Col
B 59 59 ,41 0 , 0 41
F 41 0 , 0 41 ,59 59

Row 59 41 φ

Panel (b) shows that 59% of both players solve the game at their preferred Nash equi-

17



librium, which is (B,B) for Row and (F, F ) for Col. There are several things to note about

this solution. First, since the agents solve the game at (B,B) and (F, F ) with different

probabilities, their solutions cannot result from individual uniform randomizations between

equally good solutions. To obtain the solution in Panel (b), there must be some mixing at

the population level. Second, the agents’ conjectures are wrong: The Row players do B and

F with probabilities 59 and 41% while the Col players believe they do it with the opposite

probabilities. Third, despite that, the mixed actions are almost equal to the mixed Nash

equilibrium of the game, in which the players do their preferred action with 60% probability.

The latter finding turns out to be a coincidence, because the ASC solves all Battle of the

sexes games at the mixed actions ((59, 41), (41, 59)) as long as x > y > 0. But this result is

in line with the empirical evidence. In experimental studies, games with x/y ranging from

1.2 to 5 have been used. The probability of playing the preferred action ranges from 55 to

83% in the corresponding mixed Nash equilibria, but appears to vary randomly around 60

to 65% among the human subjects.7 Thus, the ASC seems to beat Nash at predicting actual

behavior in general Battle of the sexes games.

4.1.2 Refinements

We continue with some games from the refinement literature, which analyzes strategic stabil-

ity of Nash equilibria with respect to criteria such as subgame perfectness, weak dominance,

and backward and forward induction. The question is whether, or to what extent, the ASC

reflects such considerations.

Market entry game. In this game, which is shown in Table 8, Col is an incumbent

monopolist. Row can stay out of the market (O) or enter (E), in which case Col can choose

to fight (F ) or acquiesce (A). The game has two Nash equilibria in pure strategies, indicated

by bold type. Backward induction supports (E,A), and so does the ASC, which plays this

pair of strategies with 97% probability.

7See Cooper, DeJong, Forsythe & Ross (1989, 1993), Huck & Müller (2005), Crawford, Gneezy & Rot-
tenstreich (2008), Duffy, Lai & Lim (2017) and He & Wu (2020).
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Table 8: Market entry game. Numbers in italics are probabilities (%).

(s, t) F A
σ 0 100 Col

O 3 2, 2 2, 2 0
E 97 0, 0 3, 1 100

Row 3 97 φ

The next two games are taken from Kohlberg & Mertens (1986).

Kohlberg and Mertens I. The game in Table 9 has two pure Nash equilibria, (T,R)

and (M,L), and a unique strategically stable set, which is the convex hull of (T,R) and

(T, 1
2
L+ 1

2
R). Backward induction selects (T,R) with payoffs (2, 0), but (M,L) is supported

by the following (informal) forward induction argument: If Row fails to play T , then Col

should understand that Row aims to get 3 by threatening to play M if Col fails to play L.

This yields (M,L), which is the solution selected by the ASC.

Table 9: Kohlberg & Mertens (1986, p. 1029). Numbers in italics are probabilities (%).

(s, t) L R
σ 99 1 Col

T 4 2, 0 2, 0 0
M 95 3, 1 0, 0 99
B 0 3, 1 1, 2 1

Row 95 5 φ

I 1, 2
B

0, 0

M

I

R

3, 1

L

II

2, 0

T

Kohlberg and Mertens II. The game in Table 10 has one Nash equilibrium in pure

strategies (T,R) with payoffs (2, 2), and a mixed equilibrium (M, 1
2
LL+ 1

2
LR) with superior

payoffs (3, 3), which is selected by the ASC. By replacing the subgame with its value (0)

and applying iterated dominance, one finds that the mixed equilibrium is also the unique

strategically stable set of this game.

4.1.3 Equilibrium selection

We next apply the aggregate solution concept to some games in which refinement consid-

erations somehow fail to identify the ‘right’ outcome with respect to intuition or empirical
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Table 10: Kohlberg & Mertens (1986, p. 1016). Numbers in italics are probabilities (%).

(s, t) LL LR R
σ 50 50 0 Col

T 0 2, 2 2, 2 2, 2 0
M 100 3, 3 3, 3 0, 0 100
BT 0 4, -4 -4, 4 1, 1 0
BB 0 -4, 4 4, -4 1, 1 0

Row 50 50 0 φ

I

1, 1 4,−4

−4, 4
B

−4, 4R

4,−4L

T

IB

0, 0R

3, 3
L

M

I

2, 2

T

II

II

evidence.

Stag hunt. This game, which is due to Carlson & van Damme (1993), represents the

following story: Two hunters can cooperate (C) to catch a stag, or hunt alone (A) to obtain

a catch of smaller game amounting to a fraction x ∈ (0, 1) of what each of them would get

by cooperating.

Table 11: Stag hunt game. Numbers in italics are probabilities (%).

(a) x < 1
2

(s, t) C A
σ 100 0 Col

C 100 1, 1 0, x 100
A 0 x, 0 x,x 0

Row 100 0 φ

(b) x > 1
2

(s, t) C A
σ 0 100 Col

C 0 1, 1 0, x 0
A 100 x, 0 x,x 100

Row 0 100 φ

The game is illustrated in Table 11. It has two strict Nash equilibria: (C,C) and (A,A).

When x < 1
2
, the Risk Dominant equilibrium (Harsanyi & Selten 1988) is (C,C), and when

x > 1
2
, it is (A,A). Table 11 shows that the ASC always selects the risk dominant equilibrium

in the Stag hunt game. When x = 1
2
(not shown in the table), 50% of the agent population

solve the game at (C,C) and 50% solve it at (A,A).

Ultimatum game. Few games have been subject to more empirical analysis than the

Ultimatum game of Güth, Schmittberger & Schwarze (1982). In this game, Row and Col

get n dollars to share if they can agree how to do it. Row (the proposer) suggests a division

by offering an integer amount of x dollars to Col (the responder). Col accepts or rejects.

If he accepts, they divide according to Row’s suggestion, if Col rejects the offer, both get
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zero. Any division of the money is the outcome of some Nash equilibrium, but only one is

subgame perfect: Row offers zero dollars and Col accepts any offer.

Table 12: Ultimatum game. Numbers in italics are probabilities (%).

(s, t) A0 A1 A2 A3 A4 A5

σ 0 0 100 0 0 0 Col
O0 0 5, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0
O1 0 4, 1 4, 1 0, 0 0, 0 0, 0 0, 0 0
O2 100 3, 2 3, 2 3, 2 0, 0 0, 0 0, 0 100
O3 0 2, 3 2, 3 2, 3 2, 3 0, 0 0, 0 0
O4 0 1, 4 1, 4 1, 4 1, 4 1, 4 0, 0 0
O5 0 0, 5 0, 5 0, 5 0, 5 0, 5 0, 5 0

Row 0 0 100 0 0 0 φ

A small version of this game (with 5 dollars to share) is shown in Table 12. Action Ok

for Row stands for ‘Offer k dollars’, and action Ak for Col stands for ‘Accept any offer of k

or more dollars’. In the ASC, Row offers 2 dollars, and Col accepts all offers of 2 or more. If

the total amount is doubled to 10 from 5 dollars, the ASC offers and demands double to 4

from 2. These results agree well with the experimental evidence, where mean offers amount

to some 40% of the stake, and where the responder rejects offers of some 30% or less, see,

e.g., Güth & Tietz (1990).

4.1.4 Non-equilibrium behavior

The ultimatum game challenges the idea of backward induction – a basic rationality postulate

in game theory. We next consider some games where intuition or experiment suggest that

the players will not even play a Nash equilibrium.

The Centipede game by Rosenthal (1981) describes a situation in which two players

alternate to decide when to take (T) an increasing pot of money. By continuing (C) for one

more round, a player gains if the other player also continues, but loses if the other player

then decides to take. A version of this game is shown in Table 13. For each player, Cn

denotes the strategy of n C’s and then a T if n < 3.
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Table 13: Centipede game. Numbers in italics are probabilities (%).

T T T T T T

CCCCCCI I III II II

1, 1 0, 3 2, 2 1, 4 3, 3 2, 5

4, 4

(a) Payoffs, actions and conjectures
(s, t) C0 C1 C2 C3

σ 8 4 67 21 Col
C0 22 1, 1 1, 1 1, 1 1, 1 9
C1 1 0, 3 2, 2 2, 2 2, 2 3
C2 0 0, 3 1, 4 3, 3 3, 3 2
C3 77 0, 3 1, 4 2, 5 4, 4 86

Row 20 1 19 60 φ

(b) Solution, actions and conjectures
(s, t) C0 C1 C2 C3

σ 8 4 67 21 Col
C0 22 20 ,6 1 ,1 1 , 1 1 , 1 9
C1 1 0 ,2 0 ,0 1 , 1 0 , 0 3
C2 0 0 ,0 0 ,2 0 , 0 0 , 0 2
C3 77 0 ,0 0 ,1 17 ,65 60 ,20 86

Row 20 1 19 60 φ

The game has a unique (subgame perfect) Nash equilibrium, in which both players take

at the first opportunity. In experiments with human subjects, the game often continues for

several moves, but seldom to the end (McKelvey & Palfrey 1992). Under the ASC, 77% of

the Row players continue as long as they can, and 86% of the Col players conjecture they will

do so. However, Row’s willingness to continue seems to be based on the false conjecture that

60% of the Col players will also continue until the end, whereas only 21% of them actually

plan to do so. The mixed actions for this game imply that 22% of the player pairs end the

game at the first opportunity with payoffs (1, 1), 0.77 × 0.67 = 52% end it at the next to

last node with payoffs (2, 5), and 0.77 × 0.21 = 16% go all the way to the end with payoffs

(4, 4).

Traveler’s dilemma. In this game, due to Basu (1994), two travelers have lost their

luggage and the airline offers compensation for their loss. They can claim any integer amount

in the interval [c, c] = [2, 100]. In any case, the airline will pay both travelers the minimum

of the two claims, with the following (slight) modification: If player i claims more than

player j, then i pays a penalty of R = 2 dollars, and j is rewarded by the same amount.

As noted by Basu (1994), intuitively both players should make a high claim and pay little
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attention to the small penalty/reward. However, the game has a unique Nash equilibrium

where both players claim the minimal 2 dollars. In fact, this is the only action pair which

survives iterated elimination of strictly dominated strategies.

Capra, Goeree, Gomez & Holt (1999) conduct an experiment with human subjects and

find that their behavior is sensitive to the penalty/reward parameter R, with players making

large claims for small R and vice versa. The ASC turns out to have the same property. To

illustrate, we consider a small version of the Traveler’s dilemma game, where (c, c) = (4, 11)

instead of (2, 100). The game is shown in Table 14, where Cn and cn stand for ‘Claim n

dollars’.

Table 14: Traveler’s dilemma game with c = 4, c = 11 and penalty/reward parameter R = 2.
Numbers in italics are probabilities (%).

(s, t) C4 c5 c6 c7 c8 c9 c10 c11
σ 50 0 0 0 0 0 0 50 Col

C4 50 4, 4 6, 2 6, 2 6, 2 6, 2 6, 2 6, 2 6, 2 50
c5 0 2, 6 5, 5 7, 3 7, 3 7, 3 7, 3 7, 3 7, 3 0
c6 0 2, 6 3, 7 6, 6 8, 4 8, 4 8, 4 8, 4 8, 4 0
c7 0 2, 6 3, 7 4, 8 7, 7 9, 5 9, 5 9, 5 9, 5 0
c8 0 2, 6 3, 7 4, 8 5, 9 8, 8 10, 6 10, 6 10, 6 0
c9 0 2, 6 3, 7 4, 8 5, 9 6, 10 9, 9 11, 7 11, 7 0
c10 0 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 10, 10 12, 8 0
c11 50 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 8, 12 11, 11 50

Row 50 0 0 0 0 0 0 50 φ

When R = R∗ ≡ 2, the agents make the minimal and maximal claims with equal prob-

ability, as shown in Table 14. When R > R∗, all agents claim the minimal 4, and when

R < R∗ all agents claim the maximal 11. The critical value R∗, relative to the length of the

feasible claim interval is R∗/(c− c) = 2/(11− 4) = 0.29, which is in line with the empirical

findings of Capra et al. (1999).

Social norms. There is a large literature on the role of social norms in economic

transactions and relationships. In experiments with human subjects on bargaining, public

goods, and labor relations, the hypothesis of purely self-interested behavior is often rejected

in favor of explanations based on fairness, reciprocity or altruism. We have applied our
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solution concept to some of the games studied in this literature and found that in many

cases, the ASC agrees with the empirical results in the sense of predicting more cooperation

than what would be achieved through rational play by self-interested agents.

To illustrate, consider the gift exchange experiment of Van der Heijden, Nelissen, Potters

& Verbon (1998). Two players live for two periods. A player who consumes c1 in period 1

and c2 in period 2 obtains utility c1 · c2. In period 1, player 1 is rich and player 2 is poor.

In period 2 their situations are reversed. A rich player has income 9 and a poor player has

income 1, but the players can smooth consumption by exchanging gifts: Player 1 gives an

integer amount 0 ≤ s ≤ 7 to player 2 in period 1 and player 2 gives 0 ≤ t ≤ 7 to player 1 in

period 2. This yields utilities

u1(s, t) = (9− s) · (1 + t) (9)

u2(s, t) = (9− t) · (1 + s) (10)

for players 1 and 2, respectively. The simultaneous move version of this game is shown in

Table 15, where tk stands for ‘Transfer k dollars to the other player’. Giving zero (T0) strictly

dominates any other action for both players, but the ASC predicts that both players will

give one dollar (t1) to the other player. This agrees with the average gifts of 0.99 and 1.03

observed empirically by Van der Heijden et al. (1998).

Table 15: Gift exchange game. Numbers in italics are probabilities (%).

(s, t) T0 t1 t2 t3 t4 t5 t6 t7
σ 0 100 0 0 0 0 0 0 Col

T0 0 9, 9 18, 8 27, 7 36, 6 45, 5 54, 4 63, 3 72, 2 0
t1 100 8, 18 16, 16 24, 14 32, 12 40, 10 48, 8 56, 6 64, 4 100
t2 0 7, 27 14, 24 21, 21 28, 18 35, 15 42, 12 49, 9 56, 6 0
t3 0 6, 36 12, 32 18, 28 24, 24 30, 20 36, 16 42, 12 48, 8 0
t4 0 5, 45 10, 40 15, 35 20, 30 25, 25 30, 20 35, 15 40, 10 0
t5 0 4, 54 8, 48 12, 42 16, 36 20, 30 24, 24 28, 18 32, 12 0
t6 0 3, 63 6, 56 9, 49 12, 42 15, 35 18, 28 21, 21 24, 14 0
t7 0 2, 72 4, 64 6, 56 8, 48 10, 40 12, 32 14, 24 16, 16 0

Row 0 100 0 0 0 0 0 0 φ
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To understand why the agents sometimes act as if motivated by social norms, recall that

our solution concepts solve games G = (S, π) at strategy profiles s ∈ S which maximize

f(g(δ1(s)), g(δ2(s))),

where δ1(s) and δ2(s) are vectors of deviation losses for players 1 and 2. The function

f(g(·), g(·)) resembles a social welfare function for the two players, except that its arguments

are deviation losses instead of payoffs. But in many games, including the Gift exchange game

in Table 15 and the Rock, Paper, Scissors game in Table 4, payoffs and deviation losses are

positively correlated, so when the ASC solves such games by balancing the players’ incentives

to deviate, it looks as if it tries to make a fair compromise in terms of payoffs.

4.2 Performance and stability

We have seen that the aggregate solution concept (ASC) sometimes solves games at strategies

that do not constitute a Nash equilibrium. In this section we examine how often non-Nash

play occurs, how costly it is relative to always playing best reply (if one could), and what

non-Nash behavior means in terms of evolutionary stability. We also test whether the 100

model runs have converged to stochastically stable equilibria.

Table 16 contains descriptive statistics for a set of variables that measure the performance

and stability of the ASC. The performance variables in Panel 1 are computed for each of

the 100 model runs from five equally spaced samples taken from the last 2,000 (out of

100,000) iterations. Consensus is the percentage of agents who play the modal strategy

for a given game and position. With a value close to 100%, it shows that there is very

little intra-run heterogeneity among the agents. playPureNash is the joint probability of

Row and Col playing a pure Nash equilibrium in games with one or more pure equilibria,

playBestReplyToASC is the percentage of agents whose actions are a best reply to the mixed

actions of the ASC, meanPayoff is the mean payoff of the ASC against the ASC, and gainBR
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Table 16: Descriptive statistics. The number of observations is 100 for each variable, one
observation for each of the 100 independent runs of the GP-algorithm.

Variable Mean Std.dev Min Max
Panel 1: All games

Consensus 98.8% 0.2% 98.3% 99.8%
playPureNash 86.2% 0.4% 85.1% 87.2%
playBestReplyToASC 83.8% 0.4% 82.5% 84.8%
meanPayoff 8.90 0.09 8.62 9.15
gainBR 8.0% 0.3% 7.4% 8.9%

Panel 2: Games with one pure Nash equilibrium
gain2BR -7.8% 0.6% -9.4% -6.1%
pASC ASC (a) 9.09 0.06 8.96 9.24
pNash ASC (b) 7.76 0.07 7.58 7.91
pNash Nash (c) 8.69 0.06 8.57 8.86
pASC Nash (d) 7.51 0.07 7.34 7.67
pDiff (a-b) - (c-d) 0.16 0.03 0.09 0.23
playPureNash 83.8% 0.4% 83.0% 84.6%

is the percentage net gain in mean payoff from playing best reply, rather than ASC, against

the ASC. Consensus, playPureNash, playBestReplyToASC and meanPayoff are computed

separately for each game and then averaged across all games. gainBR is computed at an

aggregate level because game payoffs are normally distributed with a zero mean.

The variables in Panel 2 of Table 16 are intended to provide some information about the

evolutionary stability of the ASC. Data are obtained by restarting each saved population to

solve 10,000 random games with exactly one Nash equilibrium in pure strategies. gain2BR

is the percentage net gain to player i from deviating to a best reply (if not currently playing

a best reply) when that is followed by subsequent best reply by player j, pASC ASC is the

mean payoff across all games and positions from playing the ASC against itself (identical to

meanPayoff in Panel 1 except for considering only games with one pure Nash equilibrium),

pNash ASC is the mean payoff from playing the Nash equilibrium actions against the ASC,

pNash Nash is the mean payoff from playing the Nash equilibrium against itself, pASC Nash

is the mean payoff from playing the ASC against the Nash equilibrium, pDiff is the net gain

from playing the ASC (rather than Nash) against ASC, minus the net gain from playing
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Nash (rather than ASC) against Nash, and playPureNash is the joint probability of Row

and Col playing the pure Nash equilibrium.

The findings in Table 16 can be interpreted as follows. The ASC appears to be well

protected against invasion by agents who play Nash because by switching from ASC to Nash

they would lose on average 1.33 = 9.09 − 7.76 (pASC ASC - pNash ASC in Panel 2). The

agents play best reply to the ASC 83.8% of the time, which gives an average payoff of 8.90

(meanPayoff in Panel 1). An agent could increase her average payoff by 8% if she could

play best reply in every game (gainBR), but if every deviation to best reply would trigger

another best reply from the opponent, the 8% gain would turn into a 7.8% loss (gain2BR).

Finally, pDiff shows that ASC agents outperform Nash agents in an ASC world by a larger

margin than Nash agents outperform ASC agents in a Nash world. In other words, ASC is

more robust against invasion by Nash agents than vice versa.

We next perform a simple test to check if the 100 model runs have converged to stochas-

tically stable equilibria. This is done by testing for trends in the four variables in Panel

1 of Table 16 towards the end of the model runs. To that end, we use data sampled at

every 500th iteration from the last 20,000 iterations of each model run, when mutation and

crossover probabilities have reached their common minimum of 1%. We skip the middle part

of the data set and test for differences in means between the two intervals 80,000–85,000

and 95,000–100,000 of iterations. The boundary points of each interval are included, which

gives 2×11 observations for each run and 2,200 observations in total for each variable in Ta-

ble 17. The results are consistent with the hypothesis that the 100 model runs have reached

stochastically stable equilibria after 80,000 iterations.

4.3 Structural properties of solution concepts

Recall that the individual solution concept for an agent a is represented by a pair of computer

programs (fa, γa), where fa is a good solution function and γa is an iterator which is used

to compute the agent’s good reply function ga. In this section, we aim to uncover structural
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Table 17: Convergence tests. Tests of differences in means for the variables Consensus,
playBestReplyToASC, meanPayoff and gainBR across two intervals of model iterations. The
number observations is 2,200 for each variable.

Iterations Consensus playBestReply meanPayoff gainBR
80,000 – 85,000 98.8% 83.8% 8.91 8.0%
95,000 – 100,000 98.8% 83.8% 8.90 8.0%
p-value (0.634) (0.883) (0.118) (0.796)

properties of these programs to shed light on the results presented above.

4.3.1 Example

To gain some intuition for the general results, we first look at a typical agent from the model

runs. The programs of such an agent are listed in (11) and (12).8

γa(z, x) = z + 0.006 + 4x. (11)

fa(x1, x2) =



































x1 · x2, if (x1, x2) > 0

x2, if x1 > 0 and x2 ≤ 0

−∞, if x1 < 0

undefined, if x1 = 0.

(12)

The good reply score equates to9

ga(x) =
K
∑

k=1

(0.006 + 4xk). (13)

Note that ga is additive and almost proportional to the sum of deviation losses. Thanks

to the constant 0.006 in (11), ga(x) is positive if
∑K

k=1 xk ≥ 0 and negative almost always

if
∑K

k=1 xk < 0. In turn, the function fa(ga(·), ga(·)) extends continuously from positive to

zero sums of deviation losses and almost never returns undefined values.10

8The programs have been simplified without altering their function, and the constants are truncated.
9Given a K-vector x of deviation losses, initialize z to 0, iterate z ← γ(z, xk) for k = 1, . . . ,K, and finally

set ga(x) = z to obtain (13).
10To see this, observe first that each xk is a random integer ck, scaled by some random real α ∈ [0.01, 100],
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We have required that solution concepts be scale invariant, and have taken steps to ensure

that this requirement is fulfilled. Consider the solution concept F a which is represented by

fa(ga(·), ga(·)). To see if F a is scale invariant, we shall need the following definition, where

‘◦’ denotes element-wise vector multiplication.

Scale invariant functions on R
n. A function h : Rn → R is scale invariant if h(x) ≥

h(x′) implies h(λ ◦ x) ≥ h(λ ◦ x′) for all x and x′ in R
n and all positive λ ∈ R

n.

If both fa and ga are scale invariant functions, then so is fa(ga(·), ga(·)), and F a is a scale

invariant solution concept. There are many ways in which fa can be scale invariant, e.g., if

(i) it is constant, or (ii) constant in one argument and monotone in the other one, or (iii)

depends only on the sign of its arguments, or (iv) is a CES function, i.e., if fa(x) = xρ1
1 ·x

ρ2
2 .

And indeed, the fa in (12) is scale invariant by exploiting all those possibilities. In particular,

on the positive quadrant, fa(x) is the CES function x1 · x2. Since ga is almost linear, then

fa(ga(·), ga(·)) is almost scale invariant as well, and so is F a. The lack of full scale invariance

makes evolutionary sense: The small constant term in ga assigns positive good reply scores

to weak best replies, and this ensures that fa(ga(·), ga(·)) is well-defined at weak best replies.

To solve a game, one selects a strategy profile which maximizes fa(ga(·), ga(·)). Since

ga(x) > 0 if
∑K

k=1 xk ≥ 0, then, for each conjecture t about player 2, there is an action

s for player 1 (e.g., a best reply to t) which yields a positive ga-score to player 1 at (s, t).

This implies that fa(ga(·), ga(·)) is maximized at case 1 or 2 of (12). Case 1: Games with

strategy profiles that yield two positive ga-scores (e.g., pure Nash equilibria) are solved at

some strategy profile (not necessarily a Nash equilibrium) which maximizes their product.

Case 2: All other games are solved at some strategy profile that maximizes the (non-positive)

ga-score to player 2 among those that yield positive ga-scores to player 1. In other words,

cf. Appendix A.2 and A.3. Hence
∑K

k=1
xk = α

∑K

k=1
ck ∈ (−∞,−0.01] ∪ {0} ∪ [0.01,∞). Consequently,

ga(x) 6= 0 almost surely, and ga(x) ≥ 0.006K > 0 whenever
∑K

k=1
xk ≥ 0. But ga may fail to preserve the

sign of
∑K

k=1
xk when

∑K

k=1
xk is negative and close to 0. The maximal negative value of

∑K

k=1
xk is -0.01.

Then ga(x) = 0.006K − 0.040, which is negative if and only if K < 6.67. So ga(x) preserves the sign of
∑K

k=1
xk for K ≤ 6, but may fail to do so for K ≥ 7. However, such failures occur less than twice per million

random games, which explains why this ‘bug’ escapes removal by the genetic programming algorithm.
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the action is a good reply to the conjecture, which is a least bad reply to any such action.

The ASC, which consists of the programs of 200,000 agents, is a more complex object than

an individual agent’s solution concept. To study the ASC, we proceed in three steps. First,

we show that the additive structure of the good reply function in (13) is shared by almost

all agents. Second, we show that most good solution functions share a common structure,

of which (12) is a representative example. Finally, we construct a representative solution

concept for 2×2 games and provide a graphical illustration of its numerical representation.

4.3.2 Good reply functions

A good reply function g is said to be additive if

g(x) =
K
∑

k=1

(α + βxk), (14)

where β 6= 0. Negative β’s may occur because the signed effect of the arguments to g is

determined by the composite function f(g(·), g(·)).

To test if the g-functions of the ASC are additive, we proceed as follows: For each agent

a, generate a data set with 100 observations (ya, x1, x2), where (x1, x2) is a vector of two

random deviation losses and ya = ga(x1, x2). Then estimate the linear model

ya = α + β1x1 + β2x2 + β12x1x2, (15)

and conclude that agent a has an additive good reply function if β1 = β2, β12 = 0, and the

R2 of the regression exceeds 0.99. For each run, compute the mean R2 and the median values

of the parameter estimates across all agents.11 This yields a data set of 100 observations

which is described in Table 18.

The table shows that β1 is not significantly different from β2, that β12 does not differ

11We use medians to aggregate the parameter estimates, because they can potentially vary widely across
agents. But most agents have R2’s close to 1, so we use means to obtain conservative averages of R2.
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Table 18: Test of additive good reply functions by means of (15). The number of observations
is 100, one observation for each run with the model. P-values (from left to right) refer to
Wilcoxon tests against the null hypotheses that α = 0, β1 = β2, and β12 = 0.

Parameter α β1 β2 β12 R2

Min −0.047 1 1 0 0.999
Max 0.015 15 15 8.2e−05 1
Median 0 5 5 0 1
Mean 0.000 5.760 5.760 8.4e−07 1.000
P-value 0.394 0.995 0.371

significantly from zero, and that R2 > 0.99 for all runs. We can therefore conclude that ad-

ditive good replies is a characteristic feature of the aggregate solution concept. Furthermore,

since α is insignificant and generally small relative to β1 = β2, the good reply function g is

almost proportional to the sum of deviation losses. Loosely speaking, if the sum of Row’s

deviation losses is large at some strategy profile (s, t), then s is a good reply to t.

4.3.3 Good solution functions

In this section, we analyze all agents’ good solution functions and show that they share many

structural properties with the example good solution function in (12).

The following notation and terminology will be used: R++, R+, R− and R−− denote,

respectively, the positive, non-negative, non-positive and negative real numbers. The positive

quadrant in R
2 is Q1 := R

2
++. Similarly, Q2 := R−− × R++, Q3 := R−− × R−−, and

Q4 := R++ × R−−. For each Qk, ςk = (ςk1, ςk2) denotes the signs of the coordinates in Qk.

Given a subset X of R2, ∂X and X̄ denote the boundary and the closure of X, e.g., Q̄1 is

the non-negative quadrant. Consider a game G which is solved at a strategy profile s by

some agent a. If the corresponding pair of good reply scores (ga(δ1(s)), g
a(δ2(s))) belongs to

X ⊂ R
2, the game is said to be solved in X for that agent. Two good solution functions

are equivalent if they yield the same ranking, i.e., if they are related by a positive monotone

transformation.

We begin with some basic observations about individual solution concepts in Table 19.

31



Table 19: Some properties of the individual solution concepts. The data consist of program
pairs for all agents and 1,000 random games for each model run, a total of 100,000 games.

Subdomain Q1 Q2 Q3 Q4 ∂Q1 ∪ ∂Q4

% of games solved in 86 2 2 9 1
% of good solution functions constant in 0 22 22 11 −

The table shows that the agents solve 95% of all randomly generated games in Q1 or Q4, i.e.,

at strategy profiles that yield positive good reply scores for player 1 (the decision maker).

Another 1% are solved on the boundaries of these two quadrants, and only 4% are solved

in Q2 ∪Q3, i.e., at points that yield a negative good reply score to player 1. The table also

shows that the agents’ good solution functions tend be constant on Q2 ∪Q3, less so on Q4,

and not at all on Q1. Both properties are matched by the example good solution function

fa in (12), which is constant on Q2 ∪Q3 and solves all games in Q̄1 ∪ Q̄4.

Recall that fa in (12) of Section 4.3.1 is scale invariant with fa(x) = x1 · x2 on Q1 and

fa(x) = x2 on Q4. Therefore, on Q1, f
a is a CES function, and on Q4 it is equivalent to

the CES function x0
1 · (−x2)

−1. We next investigate whether this observation carries over to

the whole population of agents, i.e., are most good solution functions scale invariant, and, in

particular, are they equivalent to collections of CES functions fitted on separate quadrants.

To that end we consider the two-dimensional grid D0 := {−10,−9.5, . . . , 10}
2 along with

scaled versions λD0 for λ ∈ {1, 10, 100}. For each agent a, each quadrant Qk and each scale

λ, compute fakλ := fa(λD0 ∩ Qk). This gives a data set with 20 × 20 = 400 observations.

If fakλ is not constant, a CES function f̂akλ(x, ρ) = (ςk1x1)
ςk1ρ1 · (ςk2x2)

ςk2ρ2 is fitted to faλk

by searching for parameter values ρ which maximize the rank correlation between f̂akλ(·, ρ)

and the data faλk. For that purpose, only relative values of ρ matter, so we can do a one–

dimensional search for angles θ and let ρ be proportional to the corresponding point on the

unit circle. With θ measured in degrees we have (ρ1, ρ2) ∝ (cos( π
180

θ), sin( π
180

θ)).

Table 20 displays summary statistics across agents by quadrant and scale for the esti-

mated θ’s. In each case, the number of observations is 200,000 minus the number of agents
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Table 20: Estimated CES good solution functions f̂(x, ρ). ρ = (ρ1, ρ2) is proportional to
(cos( π

180
θ), sin( π

180
θ)), where θ is an angle measured in degrees. The table contains summary

statistics for θ by quadrant (Qk), and scale (λ). Numbers in parentheses are p-values from
Watson-Wheeler tests of equal distributions for θ across different scales within each quadrant.
All statistical measures involving θ are circular, see e.g., Pewsey et al. (2013).

Quadrant Q2 Q1

f̂(x, ρ) (−x1)
−ρ1 · xρ2

2 xρ1
1 · x

ρ2
2

Scale (λ) 1 10 100 1 10 100
Mean 324.4 323.2 323.1 44.8 45.0 45.0
St.dev. 42.9 43.1 43.2 1.9 1.6 1.5
P(H0: Equal means) (0.000) (0.000)
Median 316.2 315.0 315.0 45.0 45.0 45.0
Mode 315.0 315.0 315.0 45.0 45.0 45.0
ρ(mode) (1, -1) (1, -1) (1, -1) (1, 1) (1, 1) (1, 1)
Obs. at mode 22% 36% 46% 87% 99% 98%
Obs. (1,000) 157 156 156 200 200 200
Mean rank corr. 0.986 0.989 0.989 0.999 0.999 0.999

Quadrant Q3 Q4

f(x, ρ) (−x1)
−ρ1 · (−x2)

−ρ2 xρ1
1 · (−x2)

−ρ2

Scale (λ) 1 10 100 1 10 100
Mean 18.2 18.8 19.5 79.9 78.9 78.9
St.dev. 53.3 52.2 54.4 53.3 55.6 54.2
P(H0: Equal means) (0.000) (0.000)
Median 0.0 0.0 0.0 90.0 90.0 90.0
Mode 0.0 0.0 0.0 90.0 90.0 90.0
ρ(mode) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1)
Obs. at mode 50% 56% 55% 28% 33% 34%
Obs. (1,000) 155 154 155 180 178 175
Mean rank corr. 0.971 0.977 0.973 0.932 0.931 0.952

whose good solution functions are constant at that combination of quadrant and scale. The

mean rank correlations between actual and estimated good solution functions show that the

CES functions fit the data well, especially on Q1. On that quadrant, θ is close to 45◦ for

all agents, as can be seen from the mean, median and mode, the low standard deviations,

and the large concentrations of observations at the mode. θ = 45◦ corresponds to ρ ∝ (1, 1),

which yields the good solution function f(x) = x1 · x2, as in (12).

On Q4, the mean θ is about 79◦. But standard deviations are large, and rank correlations

are relatively low. Thus there is a variety of good solution functions, some of which are
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not scale invariant because they are neither constant nor CES. There is, however, a large

concentration of agents with θ = 90◦, which is the common mode and median in Q4. It

corresponds to ρ ∝ (0, 1) and f(x) = (−x2)
−1, or equivalently, f(x) = x2, as in (12).

On Q2 ∪Q3, the good solution functions tend to prefer higher x1 and x2 closer to 0. But

there is substantial heterogeneity, which is well captured by the CES functions, as evidenced

by the high standard deviations and the high rank correlations. The number of observations

is relatively small because 22% of the agents have constant good solution functions onQ2∪Q3,

cf. Table 19. Since only 4% of all games are solved at points in that subdomain, it makes

evolutionary sense that many agents do not care to distinguish between them.

In order for the good solution functions to be scale invariant, the estimated θ’s should be

the same on different scales within the same quadrant. In Table 20, the evidence against this

hypothesis is somewhat mixed: We find significant differences in means, but the differences

are small, and with one exception, modes and medians coincide and are constant across

scales.

We conclude this subsection with a rule of thumb to find approximate solutions to many

games.12 Let Γ1 denote the set of games which contain some strategy profile that yields a

pair of positive good reply scores, i.e., a point in Q1. For instance, Γ1 includes all games with

one or more strict Nash equilibria. Our data show that 99.6% of all individual good solution

functions rank all points in Q1 above all points in R
2 \ Q1. This implies that all games in

Γ1 are solved in Q1. Since individual good reply scores are almost scaled sums of deviation

losses (Table 18), and since on Q1 the good solution functions are almost equivalent to the

product function (Table 20), it follows that almost all games in Γ1 are solved at a pair of

action and conjecture which maximizes the product of the two players’ sums of deviation

losses. Table 19 shows that 86% of all randomly generated games can be solved in this way.

Note, however, that when the maximizer is not unique, as would be the case in the Battle of

the sexes game of Section 4.1.1, one must consult the ASC to get the correct randomization.

12Exact solutions to all games (up to 10×10) can be found at https://gplab.nhh.no/gamesolver.php.
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In that sense, the rule of thumb yields only approximate solutions.

4.3.4 2×2 games

In this subsection, we construct a representative solution concept for 2×2 games. We do this

because 2×2 games constitute an important special case, and because it allows to visualize

its numerical representation in two dimensions.

Let Γ2 denote the set of 2×2 games. Consider an agent a and the composite function

va : R2 → R, defined as

va(x) := fa(ga(x1), g
a(x2)), (16)

where x = (x1, x2) = δ(s) is a pair of deviation losses corresponding to some strategy

profile s for some G ∈ Γ2. The function va in (16) is a numerical representation of agent

a’s solution concept on Γ2. We construct a representative solution concept by aggregating

those numerical representations across all agents. For each agent a, rank all the points in

D0 = {−10,−9.5, . . . , 10}
2 according to va. Define v : D0 → [0, 1] as the Borda count of all

the 200,000 rankings obtained in this way, normalized to yield rank scores in [0, 1]. Let D

denote the convex hull of D0 and extend v to D by interpolation. For each G = (S, π) ∈ Γ2

such that δ(S) ⊂ D, let F 2(G) := argmax
s∈Sv(δ(s)). Then F 2 is a representative solution

concept for the ASC on Γ2.

A contour plot of v is provided in Figure 1. Each quadrant illustrates the information in

the corresponding quadrant in Table 20.13 In Q1, v has a rank correlation of 0.9999 with the

CES function x1 · x2, which shows that F 2 agrees with the Harsanyi-Selten risk dominance

concept (8) for 2×2 games. Furthermore, the wriggly contour lines in Q4 reflect our finding

in Table 20 that some good solution functions fail to be scale invariant on Q4.

13Figure 1 and Table 20 deal with different functions, but the comparison is still meaningful because
va = fa(ga(), ga()) of the former only differs from fa of the latter by the affine transformations ga.
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Figure 1: Contour plot of the numerical representation v for the solution concept F 2 on the
set D = [−10, 10]2 of pairs of deviation losses. The subsets {Dk}

4
k=1 constitute a partition

of D such that v(x) > v(y) > v(z) > v(w) for any (x, y, z, w) ∈ D1×D2×D3×D4. Straight
black lines represent boundaries between those partition elements, and gray curves represent
indifference with respect to v.
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The four subsets {Dk}
4
k=1 are defined as

D1 = D ∩Q1, D3 = D ∩ (Q4 ∪ ({0} × R)),

D2 = D ∩ (R++ × {0}), D4 = D ∩ (R−− × R). (17)

They constitute a partition of D such that

v(x) > v(y) > v(z) > v(w) for any (x, y, z, w) ∈ D1 ×D2 ×D3 ×D4. (18)

i.e., the elements of ∪4k=1Dk are coarse equivalence classes for v. The straight black lines in

Figure 1 represent borders between those equivalence classes, and the gray curves represent

indifference with respect to v. Plotting of indifference curves is suppressed along the zero

bins of D0 because v is discontinuous at such points. But the data show that v increases in

x1 for x2 = 0, whereas for x1 = 0, v increases as x2 → 0.
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A 2×2 game G is solved with the representative solution concept F 2 by using the contour

lines in Figure 1 to rank the strategy profiles s ∈ Σ(G) by their deviation losses δ(s).

For many games, this ranking can be obtained directly from the partition {Dk}
4
k=1. Since

F 2 solves games by maximizing v(δ(·)), the definition of {Dk}
4
k=1 and the relation (18) imply

the following: First, games with strict Nash equilibria are solved in D1. Second, any other

game with one or more weak Nash equilibria is solved in D2 if player 1 has a strict best

reply in any such equilibrium. Otherwise the game is solved in D3. Finally, since any game

can be solved in D \D4 by choosing a best reply for player 1 to any conjecture about player

2, it follows that no game is solved in D4 and that all games without pure Nash equilibria

are solved in D3. This implies that the solution concept F 2 is rational in the sense that its

action is always a best reply to its conjecture.

5 Conclusion

The paper uses an evolutionary model to develop a new solution concept for one-shot bi-

matrix games. It is constructed by aggregating the individual solution concepts of 200,000

artificial agents who have learned to play one-shot games through natural selection. The

agents solve games by reasoning in terms of good replies and good solutions. This can be

thought of as a soft, non-equilibrium generalization of the Nash equilibrium concept. By

taking the mean of all individual solutions to each game we obtain an aggregate solution

concept (ASC), whose individual components constitute a stochastically stable equilibrium.

Almost all agents have additive and almost linear good reply functions. The good solution

functions are heterogeneous, but most of the variation can be accounted for by fitting a

collection of CES functions to each agent’s good solution function. In particular, on the

positive quadrant, most good solution functions are the product of their two arguments.

This means that games with strict Nash equilibria, and other games which contain some

strategy profile that yields a pair of positive good reply scores, can be solved by finding strat-
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egy profiles which maximize the product of the two players’ sums of deviation losses. This

yields risk dominance for 2×2 games and an extension of that criterion to games with higher

dimensions. 86% of all games can be solved by this rule of thumb. There is no simple recipe

to solve the remaining 14% because the solutions to those games depend on the full spectrum

of individual heterogeneity. We therefore provide a web page that can be used to solve all

bimatrix games with up to 10 strategies per player (https://gplab.nhh.no/gamesolver.php).

Applying the ASC to a number of well-known games, we find that it agrees well with

intuition and empirical evidence. Examples include the Ultimatum game, the Traveler’s

dilemma, the Centipede game and a collection of games from the refinement literature. The

ASC also behaves as if the agents were motivated by social norms in some games that were

designed to test such concepts as fairness, trust and reciprocity.

Our approach to modeling one-shot play can be extended in several directions. (1) We

have assumed that payoffs represent von Neumann-Morgenstern utility. A model with mon-

etary payoffs might be built by evolving utility functions along with the good reply and good

solution functions. (2) Our agents are boundedly rational due to computational constraints

on program length and memory. These parameters can be varied to study behavioral ef-

fects of variations in bounded rationality. (3) By representing games in terms of vectors of

deviation losses, our model forces the agents to focus on strategic stability, i.e., variations

in player i’s payoffs for a given action by player j, with no focus on risk, i.e., variations in

i’s payoffs for a given action by player i. In experiments with human subjects, such risk

considerations seem to play a role, and it would be of interest to see if our artificial agents

would make the same considerations if they were provided with the relevant information.
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Appendix A Model details

A.1 Implementation of separable good replies

A good reply function g is separable if there exists a function γ : R2 → R and a constant

z0, such that g(x1) = γ(z0, x1) and g(x1, . . . , xk) = γ(g(x1, . . . , xk−1), xk) for k ≥ 2. An

implementation of this condition is provided in Table 21. x is a vector of deviation losses,

and z is a real vector of scratch memory for the algorithm, whose first element (z1) is taken

to be its return value. K is the number of deviation losses, one less than the number of pure

strategies available to player i. For instance the value of K can be used by solution concepts

that rely on some kind of average. d(k) is a dummy variable to indicate whether the current

iteration k is the first one. This information will allow γ to re-initialize one or more of the

memory slots z at the beginning of the first iteration for solution concepts that need some

initial value other than 0.

Table 21: Algorithm to compute the function g for a player i at strategy profile s in a game
G by means of an iteration function γ. x = (x1, ..., xK) is a vector of length K containing
the deviation losses in δi(s) for G at s ∈ Σ(G) and d(k) is a dummy variable which is 1 if
k = 1 and 0 otherwise. z is a real vector of scratch memory for the algorithm, whose first
element (z1) is taken to be its return value.

Pseudo-code Comment
z = 0 Initialize memory
For k = 1 to K Loop over deviation losses

z← γ(z, xk, d(k), K) Update memory
End For End of loop
g(x) = z1 Return value

A.2 Implementation of solution concepts

Let F be an admissible solution concept, let (f, γ) be a numerical representation for F , and

let g be the good reply function generated by γ by means of the algorithm in Table 21. To

solve games, the functions f and γ, which are specific to each agent, must be implemented
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as computer programs. Because computing time is going to be an issue, we implement f

and γ in machine code,14 following Nordin (1997). Each program consists of at most 32

machine instructions for the x86-64 processor. The processor has 16 floating point registers,

and we use four of those as scratch memory for the programs. For the iteration program γ,

the contents of the memory slots (denoted z in Table 21) are preserved across iterations.

Program instructions specify one or more operators and one or more operands. Operators

consist of +, -, /, ×, maximum, minimum, change sign, absolute value, variable manipula-

tions copy, program-flow instructions, if, goto, and relational operators <, >, ≤, ≥, =, 6=.

This set of operators allows for conditional arithmetic operations and assignments, as well as

conditional jumps.15 Operands consist of the relevant input variables, the four memory slots,

and randomly chosen constants. When a program executes, the memory slots are initialized

to 0 and the instructions are performed in order. The output from a program is taken to be

the value of the first memory slot after the program has executed.16

We next describe how scale invariance and symmetric good replies can be imposed on F .

Because solution concepts are subject to random modifications, strict compliance is difficult

to achieve. Instead, we provide strong incentives by means of a ‘nudge’, which scrambles any

information that could lead to a violation of the property in question. To see how, consider

a game G = (S, π), and a player position i ∈ {1, 2}.

First, we impose symmetric good replies by randomly shuffling the deviation losses in

δj(s) before computing g(δj(s)) for each player j ∈ {1, 2} and each strategy profile s. This

scrambles the ordering of strategies and removes any possibilities for the agents to coordinate,

or otherwise condition, their actions on the ordering of strategies.

14The machine code representation is used for fast execution of programs. In addition, we use a byte code
representation to simplify program generation and manipulation, a small compiler to translate byte code to
binary machine code, and a byte code disassembler to produce program representations that can be read by
humans and analyzed by computer algebra applications.

15All jumps are forward jumps to avoid infinite loops.
16The agents’ programs will sometimes produce ±∞ or NaN (not a number). The function g will be

restricted to return only real numbers to ensure that the arguments to f are real, while f will be allowed to
return ±∞ as well. To this end, any NaN or ±∞ from g and any NaN from f will be replaced by a random
draw from a normal distribution with large standard deviation.
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Second, to enforce scale invariance, we introduce a distinction between the payoffs that

will be used as arguments to the solution concept F and the payoffs that will be used to

measure its performance. To measure performance, we use the original payoffs πi, whereas

the arguments to F are obtained by multiplying both players’ payoffs by two separate real

random numbers from the interval [0.01, 100]. This scrambles the agents’ information about

the stakes of the game, which provides them with an incentive to develop scale invariant

solution concepts.17

A.3 Games

Agents develop solution concepts by playing lots of random games. To generate the di-

mensions and payoffs of those games, a probability distribution on the space of games is

needed.

Game payoffs are generated by independent draws from a normal distribution with mean

0 and standard deviation 10. Each payoff is rounded to the nearest integer to produce some

games with weak best replies, weakly dominated strategies, and connected components of

Nash equilibria. Games with these features are the subject matter of the large literature on

equilibrium refinements.

To generate game dimensions, we need a probability distribution with finite support to

ensure that the computing time to solve a random game is bounded, and it should select

larger games with lower probability in order to save computing time. Moreover, because we

shall compare results with alternative experiments where the agents are not allowed to play

strictly dominated strategies, we want the game dimensions to be identically distributed

across those experiments.

To meet those ends, we consider games where the number of strategies per player is

a number between 2 and 10, inclusive. To produce a game G, we first generate a pair of

dimensions (n′
1, n

′
2) by means of two independent draws from the probability distribution p in

17As noted earlier, F is already immune against the constant term in such transformations because it only
depends on the players’ deviation losses. So there is no need to also add a random number.
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Table 22: Auxiliary probability distribution to select a number n of strategies for one player.

n 2 3 4 5 6 7 8 9 10
p(n) 0.222 0.243 0.152 0.117 0.088 0.065 0.050 0.039 0.024

Table 22, and then randomly generate payoffs for a game G1 with those dimensions. Second,

we iteratively eliminate all strictly dominated strategies from G1 to obtain a game G2 of

dimension (n1, n2) ≤ (n′
1, n

′
2). If ni < 2 for any i ∈ {1, 2}, we discard G1 and G2 and repeat

the first two steps until both players in G2 have at least two undominated strategies. Third,

set G = G2 if we want a game without strictly dominated strategies, otherwise, randomly

generate a new game G3 with the same dimensions (n1, n2) as G
2, and set G = G3.

The first step of this procedure produces a large proportion of asymmetrically shaped

games. The actual or simulated elimination of dominated strategies in steps 2 and 3 improves

the distribution by removing some asymmetric games, while at the same time shifting it

towards smaller games. The numbers in Table 22 are somewhat arbitrary, but the shape of

the distribution has been chosen in order for the whole procedure to produce a reasonable

number of medium-sized and large games. For example, it yields 2×2 games with probability

0.21, 4×5 games with probability 0.05, and 10×10 games with probability 0.003.

A.4 Evolution

We apply a genetic programming algorithm (Koza 1992) to model the evolution of solution

concepts. The algorithm starts by creating 1,000 random games and 2,000 agents, each

equipped with a random pair of programs (fa, γa). These programs are then applied to solve

each game for each agent from the point of view of each player, as described in Section 3.1.

The genetic programming algorithm is run for 100,000 iterations, each of which consists

of the following three stages:

1. Performance measurement: Each agent a plays each game in a random position against

a random opponent b 6= a in the opposite position. The payoffs for agent a are summed
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up across all games to obtain a measure of a’s performance.18

2. Tournament selection: Using these performance measures, the algorithm arranges 50

tournaments, each involving four randomly selected agents. In each tournament, the

algorithm replaces the programs of the two losers by recombining the programs of the

two winners. Equipped with new programs, both losers then solve all 1,000 games.

3. Game replacement: 10 games are randomly selected and replaced with another 10

randomly generated games. The 10 new games are solved by all 2,000 agents.

By replacing only 10 out of 1,000 games in stage 3 of each iteration, most games will be

played several times by most agents across subsequent iterations. By keeping records of each

agent’s solutions to each game, it can be solved once and then played repeatedly without

having to execute the agent’s programs. This allows to complete a run with the genetic

programming algorithm in a couple of days, as compared to months if one were to replace

all games in every iteration.

With all this repeated play, the reader may wonder what became of our story of one-shot

games, in which the agents are supposed to never play the same game twice. Fortunately,

it is still intact, because the agents have no memory of previously played games, except

for whatever is contained in their programs. From the agents’ perspective, the situation

looks like a one-shot game, provided the set of games exhibits enough variation over time to

prevent overfitting (knowing the solutions to specific games) and induce learning (knowing

how to play games). To that end, it will suffice to replace 10 out of 1,000 games in each

iteration.

Tournament selection uses the standard genetic operators copy, crossover and mutation to

produce programs that perform increasingly better over time. We implement this mechanism

as follows:

18The performance of a’s opponents is computed separately but in the same way, i.e., by randomly selecting
an opponent and a position for each game, and accumulating payoffs across all games.
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1. Tournament: Randomly select four agents from the population, and rank them by

decreasing performance to get an ordered set {a1, a2, a3, a4} of agents.

2. Copy: Replace the programs of agents 3 and 4 with copies of the programs of agents

1 and 2. Denote the copied programs by (f 3, γ3) and (f 4, γ4).

3. Crossover: With probability χ1, cross f
3 with f 4 by swapping randomly selected sub-

lists of instructions among them, and cross γ3 with γ4 in the same way.

4. Mutation: Each of the four new programs undergoes a mutation with probability χ2: A

single instruction in the program is randomly selected, and replaced with a randomly

generated instruction.

The crossover and mutation rates, χ1 and χ2, are initially set to 0.5 and 0.8. Between

iteration 40,000 and 80,000 both rates decay to 0.01 and stay there until the last iteration.

To begin with, this produces a noisy environment with lots of experimentation, and then

a period with increasing imitation as the system cools down to possibly settle in a stable

state. We collect data from the last 20,000 iterations, and examine whether the distribution

of solution concepts has then reached a stochastically stable equilibrium in the sense of Young

(1994).

Appendix B Robustness checks

The ASC is tested for robustness with respect to two changes to the model specification.

First, we consider the algorithm which computes good replies, and ask if initialization by

zero values could have introduced a bias towards additive good replies. Second, we analyze to

what extent individual solution concepts are affected by the presence of strictly dominated

strategies. This yields the four experiments shown in Table 23. The case D0 is the one

considered so far.

44



Table 23: Robustness checks

Strictly dominated strategies
Initial memory
Zero Random

Allowed D0 DR
Not allowed N0 NR

B.1 Memory initialization

The algorithm in Table 21, computing good reply scores for strategy profiles, initializes its

memory slots z to zero. On exit from the algorithm, the first memory slot z1 contains

its return value, which is taken to be the good reply score for the given strategy profile.

In this setting, additive good reply function can be obtained as a single instruction which

simply adds the next deviation loss to z1. To gauge the extent to which the existence of

this ‘shortcut’ may have influenced the results, we re-run the model with the memory slots

initialized to random values. This experiment, called DR in Table 23, turns out to sometimes

produce a new type of agent with multiplicative good reply functions of the following form:

g(x) =















∏K

k=1(α + βxk), if x ≥ 0

ξ(x) < min
x
′≥0

∏K

k=1(α + βx′
k), otherwise.

(19)

The first case assigns high scores to vectors of deviation losses x that correspond to best

replies, and the second case assigns low scores (ξ(x)) to all other x. This suggests that

solution concepts with multiplicative good replies are geared towards solving games at pure

Nash equilibria whenever they exist.
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The functions γa and fa for a typical agent a of this type are listed in (20)–(21).

γa(z, xk, k) =















3.7 · 1013 · (1.7 · 10−4 + xk) ·max(0, 1), if k = 1

3.7 · 1013 · (1.7 · 10−4 + xk) ·max(0, z), if k > 1.

(20)

fa(x1, x2) =























x1 · x2, if (x1, x2) > 0

x1, if x1 > 0 and x2 ≤ 0

0, if x1 ≤ 0.

(21)

At the first iteration (k = 1) of γa, it deals with the initial random z by replacing it with 1.

After K iterations, one obtains the good reply function ga in (22), which has the structure

(19).

ga(x) =































∏K

k=1(6.3 · 10
9 + 3.7 · 1013xk) ≥ (6.3 · 109)K , if x ≥ 0

0, if xk < 0 for some k < K

∏K

k=1(6.3 · 10
9 + 3.7 · 1013xk) < 0, if x−K ≥ 0 and xK < 0.

(22)

Pure Nash equilibria are represented by Case 1 of (21). Again we see that the good solu-

tion function scores such strategy profiles by the product of the good reply scores. Parallel

to (11) of Section 4.3, the small constant in (20) guarantees that the function fa(ga(·), ga(·))

extends continuously from strict to weak best replies because (1.7 · 10−4 + xk) is positive for

xk ≥ 0 and negative for all other deviation payoffs. This is shown below along with a proof

of (22).19

The large constant factor in (20) is typical for multiplicative good reply functions. Larger

19We show that (22) holds. The first case follows directly from (20). Consider next the second and third
cases of (22). As shown in footnote 10, abs(xk) ≥ 10−2 if xk 6= 0. Consequently, the term (1.7 · 10−4 + xk)
in (20) is positive if xk ≥ 0 and negative otherwise, and γa(z, xk, . . .) ≤ 0 if xk < 0. If xk < 0 for k < K, the
term max(0, z) in (20) ensures that γa(xk′ , . . .) = 0 for all k′ > k, hence ga(x) = 0, which proves case 2 of
(22). But if xk ≥ 0 for k < K and xK < 0 then γa(z, xk, . . .) > 0 for all k < K and ga(x) = γa(z, xK , . . .) < 0,
which proves case 3 of (22). Thus the random order in which deviation losses are presented to γa can lead
to a negative or a zero score if one or more deviation losses are strictly negative. But the agent still behaves
in a consistent manner because the good solution function fa in (21) does not distinguish between zero and
negative arguments.
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constants cause more games to be solved at pure Nash equilibria, by producing larger g–

scores which increase the likelihood that fa reaches a maximum at case 1 of (21).20 As an

upshot, games without pure Nash equilibria are solved somewhat arbitrarily: The g–score to

player 1 is maximized without regard for that of player 2 (case 2 of (21)). By comparison,

the additive solution concept in (12)–(13) of Section 4.3 solves games without pure Nash

equilibria by maximizing the g–score to player 2 on the set of strategy profiles that yield a

positive g–score for player 1.

We do 100 runs with experiment DR and use the same procedure as in Section 4.3.2 to

test for additive and multiplicative good replies: For each agent a, we generate a data set

with 100 observations (ya, x1, x2), where (x1, x2) is a vector of two random deviation losses

and ya = ga(x1, x2). We restrict the deviation losses to be positive and bounded away from 0

because we cannot exclude the possibility that some good reply functions have discontinuities

close to zero values of the arguments, cf. (19) and (22). We then estimate the linear model

(15) for each agent and aggregate the parameter estimates by runs.

A summary of the results is contained in Table 24, where P (β12) is the P-value asso-

ciated with the multiplicative term β12 in (15). We sort the sample by P (β12), split it at

P (β12) = 0.1, and examine the estimated parameters to find that the 48 runs in Panel A

(with parameters α = 0, β1 = β2, β12 = 0 and R2 > 0.99) have additive good reply functions,

while the 52 runs in Panel B (with β12 6= 0) are consistent with the multiplicative good reply

structure in (19).

Table 24 supports our conjecture that multiplicative good replies are closely associated

with Nash equilibrium play. Variable playNash is the frequency of Nash equilibrium play

in games with one Nash equilibrium, as explained in Section 4.2. On average, agents with

multiplicative good replies play the Nash equilibrium 99% of the time, against 83.7% for the

agents with additive good replies. By looking at individual runs, we find that 46 of the 52

runs in Panel B have playNash ≥ 0.99 and that all 48 runs in Panel A have playNash < 0.85.

20To see this, let (x1, x2) and (x′

1
, x′

2
) satisfy the conditions of case 1 and 2 of (21), respectively. Then

λx1 · λx2 > λx′

1
, for sufficiently large λ.
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Table 24: Test of good reply functions by means of (15) for experiment DR. The number of
observations is 100, one observation for each run with the model. Parameters α, β1, β2, β12

and R2 are defined as in Table 18. P (β12) is the median P-value by run associated with β12,
and playNash is the frequency of Nash equilibrium play in games with one Nash equilibrium.
P-values (from left to right) refer to Wilcoxon tests against the null hypotheses that α = 0,
β1 = β2, and β12 = 0.

Panel A: P (β12) > 0.1, 48 runs, none with playNash ≥ 0.99.
Parameter α β1 β2 β12 R2 P (β12) playNash
Min −0.013 −6 −6 −6.4e−09 0.997 0.606 0.828
Max 1.000 18 18 3.4e−08 1.000 1.000 0.846
Median 0 2 2 0 1.000 1.000 0.838
Mean 0.043 3.667 3.667 8.8e−10 0.999 0.927 0.837
P-value 0.363 1.000 0.236

Panel B: P (β12) ≤ 0.1, 52 runs, 46 with playNash ≥ 0.99.
Parameter α β1 β2 β12 R2 P (β12) playNash
Min −2.1e+27 −1.7e+26 1.1e−01 −7.9e−03 0.161 0.000 0.838
Max 4.1e+31 5.3e+30 3.7e+30 4.5e+29 0.929 0.051 1.000
Median 2.8e+17 8.3e+19 4.9e+21 2.7e+20 0.659 0.000 0.997
Mean 1.0e+30 1.6e+29 1.5e+29 1.5e+28 0.593 0.001 0.990
P-value 0.000 0.449 0.000

The remaining 6 runs seem to represent a mix of agents with additive and multiplicative and

good reply functions.

In what follows, we will disregard those 6 runs and reserve the term multiplicative for

agents and model runs with playNash ≥ 0.99. Analogously, an additive agent is one whose

good reply function yields β1 = β2, β12 = 0 and R2 > 0.99 when fitted to (15), and an additive

model run is one for which the median β’s and the mean R2 satisfy these conditions.

In the remainder of this subsection, we compare the 48 additive runs of Table 24, Panel

A with the 46 multiplicative runs from Panel B. The 48 additive runs constitute an additive

ASC, and the 46 multiplicative runs form a multiplicative ASC.

Applying the multiplicative ASC to the games in Section 4.1, we find less cooperation

and lower aggregate payoffs as compared to the additive one: The ‘refinement’ games in

Tables 9 and 10 are both solved at the inferior equilibrium (T,R), and in the Centipede

game the agents take the money at the first opportunity. In ultimatum games with 5 or
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10 dollars to share, the players offer and demand one dollar, and with 50 or 100 dollars to

share, offers and demands amount to only 8% of the total.

We next compare the additive and the multiplicative ASC across a large number of games

with a varying number of pure Nash equilibria. We create six sets of 1,000 games with the

number of pure Nash equilibria ranging from 0 to 5 and solve each one of those 6,000 games

with the two ASC’s. The results are presented in Figure 2.

Figure 2: Behavior of the additive and the multiplicative aggregate solution concepts from
experiment DR in games with a varying number of pure Nash equilibria. The number of
observations is 94.
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The left panel of Figure 2 shows the frequency of Nash equilibrium play.21 In games with

one pure Nash equilibrium, the multiplicative agents play that strategy profile in 99.7% of

those games. As the number of pure Nash equilibria increases, the frequency of Nash play

declines, but remains above 95%. The additive agents are not equipped to identify Nash

equilibria. Instead they look for strategy profiles with positive sums of deviation losses,

which become more prevalent as the number of pure Nash equilibria increases. In games

with one pure Nash equilibrium, these agents play Nash only 84% of the time, but this

frequency is increasing in the number of equilibria. For games with 5 pure Nash equilibria

there is no significant difference between the two ASC’s with respect to the frequency of

Nash equilibrium play.

21If agents would independently randomize between the n row and n column strategies that support n
pure Nash equilibria, the generic probability of playing some Nash equilibrium is 1/n.
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The right panel of Figure 2 plots payoffs against the number of pure Nash equilibria for the

two ASC’s. Payoffs increase as the number of Nash equilibria increases, with additive agents

doing better throughout. The difference is small for games with one pure Nash equilibrium,

but widens as the number of equilibria increases. The multiplicative agents fare particularly

badly in games with no pure Nash equilibrium, obtaining less than half the payoff of the

additive agents.

B.2 Rationalizability

We have seen in Section 4.1 that the additive solution concept sometimes produces solutions

that are not subgame perfect, or not Nash, or include strictly dominated strategies. While

strictly dominated solutions agree with intuition or experiments for some games, it raises

the issue to what extent the solution concept is robust with respect to addition of dominated

strategies.22 To illustrate the issue, we consider the game in Table 25.

Table 25: A game with strictly dominated strategies. Numbers in italics are probabilities
(%).

(s, t) A b c
σ 0 100 0 Col

A 0 1, 1 11, 0 -1, -2 0
b 100 0, 11 10, 10 -2, 0 100
c 0 -2, -1 0, -2 -3, -3 0

Row 0 100 0 φ

The game is symmetric and has one Nash equilibrium in pure strategies at (A,A), with

payoffs (1, 1). The additive ASC solves the game at (b, b), which yields payoffs (10, 10).

Human players might also be able to solve the game at (b, b) because it yields high, identical

payoffs and only weak incentives to deviate to A. But this is not quite how the ASC arrives at

its solution: When the good solution function takes sums of deviation losses as inputs, (b, b)

is selected because it has a high g-score of 9 because (10−11)+(10−0) = −1+10 = 9. The

22Kohlberg & Mertens (1986) dismiss the idea of robustness with respect to addition of strictly dominated
strategies in relation to strategic stability, but in our case, there are additional considerations to be made.
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smaller negative term −1 is associated with the weak incentives to deviate. But the larger

positive term 10 is due to the presence of the dominated action c. Although the ASC seems

to have found the ‘right’ solution to this game, it may have done so for the wrong reason. If

the dominated action c is eliminated from the game, we obtain a Prisoner’s dilemma game

which is solved at (A,A) by the ASC, cf. Section 4.1.

It is easy to construct this type of examples by adding strictly dominated strategies to

an existing game. An obvious remedy would be to iteratively eliminate strictly dominated

strategies (IESDS) before presenting the game to the ASC for solution. The modified ASC

would then solve the game in Table 25 at (A,A) and any other game at some rationalizable23

pair of strategies. However, the ASC may no longer be stochastically stable if IESDS is

imposed on it ex post. We will therefore impose IESDS ex ante and see if, and how, this

affects the aggregate solution concept.

To that end, we carry out two additional experiments, N0 and NR, each one consisting of

100 runs with the model. N0 and NR are identical to D0 and DR, respectively, except that

the agents are not allowed to play strictly dominated strategies, see Table 23. This restriction

is imposed by iteratively removing all strictly dominated strategies from any game before

applying some individual solution concept.

Experiment NR (IESDS and random initial memory) yields 81 additive runs and one

multiplicative one out of 100 runs in total. Further, 100 runs of experiment N0 (IESDS

and zero initial memory) yields 93 additive runs and no multiplicative ones. Thus IESDS

strengthens the additive solution concept, apparently by removing some potentially irrelevant

information which the additive solution concept is unable to detect. Apparently, this effect

is strong enough, or the competition from multiplicative Nash players is weak enough, for

the additive solution concept to prevail when IESDS is imposed.

23Bernheim (1984) and Pearce (1984).
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